2012年考研数学二试题及答案
2012年考研数学二真题及答案解析
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线渐近线的条数为()221x xy x +=-(A )0(B )1(C )2(D )3【答案】:C【解析】:,所以为垂直的221lim 1x x xx →+=∞-1x =,所以为水平的,没有斜渐近线 故两条选22lim 11x x x x →∞+=-1y =C (2)设函数,其中为正整数,则2()(1)(2)()xxnx f x e e e n =--- n '(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn --(C )1(1)!n n --(D )(1)!nn -【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+--- 所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)(4)设sin x d x (k=1,2,3),则有D2kx keI e =⎰(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3.【答案】:(D)【解析】::看为以为自变量的函数,则可知2sin kx keI e xdx =⎰k ,即可知关于在上为单调()2'sin 0,0,k k I e k k π=≥∈2sin kx k eI e xdx =⎰k ()0,π增函数,又由于,则,故选D()1,2,30,π∈123I I I <<(5)设函数f (x,y ) 可微,且对任意x ,y 都 有 >0,<0,f (x 1,y 1)<f(,)f x y x ∂∂(,)f x y y∂∂(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D)【解析】:,表示函数关于变量是单调递增的,关于(,)0f x y x ∂>∂(,)0f x y y∂<∂(,)f x y x 变量是单调递减的。
2012年全国硕士研究生入学统一考试数学二试题及答案解析
2 0 0 1
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
更多考研资料分享+qq810958634
更多考研资料分享+qq810958634
(10)计算
lim
x→∞
n
1
1 + n2
+
22
1 +
n2
+…+
n2
1 +
n2
= ________。
π
【答案】:
4
【解析= 】:原式
∑ lim
n→∞
1 n
n i=1
1+= 1ni 2
∫= 1 dx
0 1+ x2
arc= tan x 1 0
(A)
2
1
1
(B)
1
2
2
(C)
1
2
2
(D)
2
1
【答案】:(B)
1 0 0
1 0 0
【解析】:
Q
=
P
1
1
0
,则
Q
−1
=
−1
1
0
P
−1
,
0 0 1
2012考研数学二真题及参考答案
2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。
故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
【Selected】2012年考研数学二试题及答案.doc
20GG 年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数()(A)0(B)1(C)2(D)3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果(1)()lim x f x x→∞不存在;(2)()limx f x a x →∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x xy x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线). 又211lim lim111x x x y x →∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C.(2)设函数2()(1)(2)()x x n xf x e e e n =---,其中n 为正整数,则(0)f '=()(A)1(1)(1)!n n ---(B)(1)(1)!n n --(C)1(1)!n n --(D)(1)!n n - 【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1x e -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3)设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的()(A )充分必要条件(B )充分非必要条件(C )必要非充分条件(D )既非充分也非必要条件 【答案】B 【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有()(A)123I I I <<(B)321I I I <<(C)231I I I <<(D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点:设a c b <<,则()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdxππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是() (A )12x x >,12y y <(B )12x x >,12y y > (C )12x x <,12y y <(D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y <又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y <因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dxy dxdy -=⎰⎰()(A )π (B )2 (C )-2 (D )π- 【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)D D f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数 在本题中,11555222sin sin 221(1)(1)()2x xDx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为()(A)123,,ααα(B)124,,ααα(C)134,,ααα(D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=,所以134,,ααα必线性相关.故选C.(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -=() (A)100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----== 100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题..纸.指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则22x d y dx == .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
2012年考研数学二真题及答案解析
数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1
设
A
0
1
a
2012年考研数学二试题及答案
2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是 故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )既非充分也非必要条件 【答案】B 【考点】数列极限 【难易度】★★★ 【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dxy dxdy -=⎰⎰( )(A )π (B )2 (C )-2(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰其中521(1sin )2x x -,sin x 均为奇函数,所以 52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----== 故选B. 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d y dx == .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
2012年考研数学二真题及答案
2012年考研数学二真题及答案一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.).(1). 设3(),(1),t x f t y f e π=-⎧⎨=-⎩其中f 可导,且(0)0f '≠,则0t dy dx ==______. (2). 函数2cos y x x =+在[0,]2π上的最大值为______.(3).0x →=______. (4). 21(1)dx x x +∞=+⎰______. (5). 由曲线x y xe =与直线y ex =所围成的图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.).(1). 当0x →时,sin x x -是2x 的( ).(A). 低阶无穷小 (B). 高阶无穷小(C). 等价无穷小 (D). 同阶但非等价的无穷小(2). 设22 , 0(),0x x f x x x x ⎧≤⎪=⎨+>⎪⎩,则( ). (A). 22 , 0()(),0x x f x x x x ⎧-≤⎪-=⎨-+>⎪⎩ (B). 22(),0() , 0x x x f x x x ⎧-+<⎪-=⎨-≥⎪⎩ (C). 22 , 0(),0x x f x x x x ⎧≤⎪-=⎨->⎪⎩ (D). 22,0() , 0x x x f x x x ⎧-<⎪-=⎨≥⎪⎩ (3). 当1x →时,函数12111x x e x ---的极限( ).(A). 等于2 (B). 等于0(C). 为∞ (D). 不存在但不为∞(4). 设()f x 连续,220()()x F x f t dt =⎰,则()F x '等于( ).(A). 4()f x (B). 24()x f x(C). 42()xf x (D). 22()xf x(5). 若()f x 的导函数是sin x ,则()f x 有一个原函数为( ).(A). 1sin x + (B). 1sin x -(C). 1cos x + (D). 1cos x -三、(本题共5小题,每小题5分,满分25分.).(1). 求123lim()6xx x x-→∞++. (2). 设函数()y y x =由方程1y y xe -=所确定,求220x d y dx =的值.(3).求3. (4).求0π⎰.(5). 求微分方程3()20y x dx xdy --=的通解.四、(本题满分9分).设21,0() , 0x x x f x e x -⎧+<⎪=⎨≥⎪⎩,求31(2)f x dx -⎰.五、(本题满分9分).求微分方程32x y y y xe '''-+=的通解.六、(本题满分9分).计算曲线2ln(1)y x =-上相应于102x ≤≤的一段弧的长度.七、(本题满分9分).求曲线y =的一条切线l ,使该曲线与切线l 及直线0,2x x ==所围成的平面图形面积最小.八、(本题满分9分).已知()0,(0)0f x f ''<=,试证:对任意的二正数1x 和2x ,恒有1212()()()f x x f x f x +<+成立.2012年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.).(1).【答案】:3(2).【答案】6π(3).【答案】:0 (4).【答案】:1ln 22(5).【答案】:12e - 二、选择题(本题共5小题,每小题3分,满分15分.).(1).【答案】:(B).(2).【答案】:(D).(3).【答案】:(D).(4).【答案】:(C).(5).【答案】:(B).(3).【答案】:322(1)x C + 其中C 为任意常数.方法1:积分的凑分法结合分项法,有(4).【答案】:1)(5).【答案】:315y x =,其中C 为任意常数四、(本题满分9分).分段函数的积分应六、(本题满分9分).由于2ln(1)y x =-, 2222222(1),1,1(1)x x y y x x -+''=+=--2211,(0)12x ds dx x x +==≤≤-, 所以 221/21/2220012(1)11x x s dx dx x x +--==--⎰⎰1/21/21/22000211111112dx dx dx x x x ⎛⎫=-=+- ⎪--+⎝⎭⎰⎰⎰ 1/20111ln ln 3122x x +⎛⎫=-=- ⎪-⎝⎭. 七、(本题满分9分).过曲线上已知点00(,)x y 的切线方程为00()y y k x x -=-,其中当0()y x '存在时,0()k y x '=.如图所示,设曲线上一点(,)t t 处的切线方程为 1()2y t x t t -=-,化简即得 22xt y t =+. 面积 2014()2232x t S t x dx t t t ⎡⎤⎛⎫=+-=+-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 其一阶导数 3/21/2111()222t S t t t t t---'=-+=. 令()0S t '=解得唯一驻点1t =,而且S '在此由负变正,即()S t 在(,1]-∞单调递减,在[1,)+∞单调递增,在此过程中()S t 在1t =时取极小值也是最小值,所以将1t =代入先前所设的切线方程中,得所求切线方程为122x y =+.八、(本题满分9分).证法一:用拉格朗日中值定理证明.不妨设210x x >>,要证的不等式是 1221()()()(0)f x x f x f x f +-<-.在1[0,]x 上用中值定理,有 11()(0)(),f x f f x ξ'-=10x ξ<<,在212[,]x x x +上用中值定理,又有 1221212()()(),f x x f x f x x x x ηη'+-=<<+,由()0,f x ''<所以()f x '单调减,而12x x ξη<<<,有()()f f ξη''>,所以12211()()()(0)()f x x f x f x f f x +-<-=,O 2即 1212()()()f x x f x f x +<+. 证法二:用函数不等式来证明.要证 11()()(),0f x x f x f x x +<+>. 令辅助函数11()()()()x f x f x f x x ϕ=+-+,则1()()()x f x f x x ϕ'''=-+. 由()0,()f x f x '''<单调减,1()(),()0f x f x x x ϕ'''>+>,由此, 11()(0)()(0)()0(0)x f x f f x x ϕϕ>=+-=>. 改x 为2x 即得证.。
2012年考研数学二真题及答案解析
2012年全国硕士研究生入学统一考试数学二试题
一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选 项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1) 曲线渐近线的条数 221
x x y x +=-( )
(A) 0 (B) 1 (C) 2 (D) 3
【答案】C
【考点】函数图形的渐近线
【难易度】★★
【详解】本题涉及到的主要知识点:
(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(,为常数)、垂直渐近线()和lim ()x f x b →∞=b 0lim ()x x f x →=∞斜渐近线(,为常数)。
lim[()()]0x f x ax b →∞
-+=,a b (iii )注意:如果
(1)不存在;()lim x f x x
→∞(2),但不存在,可断定不存在斜渐近线。
()lim x f x a x
→∞=lim[()]x f x ax →∞-()f x 在本题中,函数的间断点只有.221
x x y x +=-1x =±由于,故是垂直渐近线.1
lim x y →=∞1x =1。
2012年考研数学(二)真题
lim
x
【解析】
x2 x x2 1
lim
1
1 x
x
1
1 x2
1 ,可得有一条水平渐近线 y 1 ;
lim
x1
x2 x2
x 1
lim
x1
2 x2
1
,可得有一条铅直渐近线
x
1;
lim
x1
x2 x2
x 1
lim
x1
(x
x(x 1) 1)(x 1)
lim
x 1
x
x 1
1 2
,可得
x
1 不是铅直渐近线。
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
xn
,证明
lim
n
xn
存在,并求此极限。
22.(本题满分 11 分)。
1 a 0 0
1
A
0 0
1 0
a 1
0 a
,
1 0
设 a 0 0 1
0 。
(1)计算行列式 A 。
(2)当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解。
23.(本题满分 11 分)。
1 0 1
A
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x
2012全国考研数二真题及解析.doc
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为() (A )0(B )1 (C )2 (D )3(2)设函数2()(1)(2)()x x nx f x e ee n =---,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C)必要非充分条件.(D )即非充分地非必要条件. (4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2. (D) x 1< x 2, y 1> y 2.(6)设区域D 由曲线,1,2,sin =±==y x x y π围成,则())(15⎰⎰=-dxdy y x ππ--)(2)(2)()(D C B A(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα(C )134,,ααα (D )234,,ααα(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( )(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则________。
2012年考研数学真题及参考答案(数学二)
(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ Ik ' = ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
=
(
y3
+
C
)
1 y
又因为 y = 1时 x = 1,解得 C = 0 ,故 x = y2 .
(13)曲线 y = x2 + x(x < 0) 上曲率为
2
的点的坐标是________。
2
您所下载的资料来源于 考研资料下载中心
获取更多考研资料,请访问
又因为,当 x → 0 时, x − sin x 与 1 x3 等价,故 f (x) − a ~ 1 x ,即 k = 1
6
6
(16)(本题满分 10 分)
求 f ( x, y) = xe − x2 + y2 的极值。
2
【解析】: f ( x, y) = xe − x2 + y2 ,
2
您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变
2012考研数二真题及解析
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:C【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n =a 1+a 2+…a n 为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1n n a ∞=∑收敛是充要条件。
故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3.【答案】:(D) 【解析】::2sin kx k eI e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin kx k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是 (A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012年考研数学(二)真题
(D) 0 0 1
二、填空题(9—14 小题,每小题 4 分,共 24 分)
9.设 y
d2y y(x) 是由方程 x2 y 1 ey 所确定的隐函数,则 dx2
x0
________。
10.
lim
n
n
1
1 n2
22
1
n2
n2
1
n2
________。
11.设
z
f
2. 【答案】A
【解析】 f (0) (11)(1 2)(1 n) 0 ,则
f
'(0)
lim
x0
y(x) x
y(0) 0
lim
x0
(ex
1)(e2x
2)(enx x
n)
lim
x0
x(e2x
2) (enx x
n)
(1 2)(1 n) (1)n1(n 1)!。
3. 【答案】B
【解析】充分性:因为 an 0 ,所以数列 Sn 单调递增,又因为数列{Sn} 有界,所以数列{Sn}
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x
x2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分也非必要条件 【答案】B【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x et dt e xdx ππππππ-=-+⎰⎰223()312[]sin 0x x e exdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dx y dxdy -=⎰⎰( )(A )π(B )2(C )-2(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以 52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰ 故选(D )(7)设1100c α⎛⎫⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵. 在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----==100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d ydx== .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
然后求解相应的线性方程式或方程组,求得所要的隐函数的偏导数或导数。
2. 利用一阶全微分形式的不变性,对每个方程两边求全微分,此时各变量的地位是平等的,然后求解相应的线性方程组或者方程式,球的相应的隐函数的全微分。
对于多元隐函数来说,若题目中求的是全部偏导数或全微分,往往是用方法2比较简单些,若只求某个偏导数,则方法1和方法2的繁简程度差不多。