八年级下 第一次月考测试题

合集下载

八年级数学(下)学期 第一次月考检测测试卷含答案

八年级数学(下)学期 第一次月考检测测试卷含答案

八年级数学(下)学期 第一次月考检测测试卷含答案一、选择题1.若2a <,化简()223a --=( )A .5a -B .5a -C .1a -D .1a --2.下列计算正确的为( ). A .2(5)5-=- B .257+=C .64322+=+D .3622=3.下列运算错误的是( ) A .1832= B .322366⨯=C .()2516+=D .()()72723+-=4.下列计算正确的是( ) A .2+3=5B .8=42C .32﹣2=3D .23⋅=65.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .276.2的倒数是( ) A .2B .22C .2-D .22-7.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( ) A .1B .2C .3D .438.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 20209.下列二次根式中,是最简二次根式的是( ). A .2xyB .2ab C .12D .422x x y +10.若化简|1-x|-2816x x -+的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤411.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 12.下列二次根式是最简二次根式的是( )ABCD二、填空题13.已知112a b +=,求535a ab b a ab b++=-+_____. 14.2==________. 15.设a ﹣b=2b ﹣c=2a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 16.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).17.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________.18.已知|a ﹣2007=a ,则a ﹣20072的值是_____. 19.,则x+y=_______. 20.已知2x =243x x --的值为_______.三、解答题21.计算及解方程组: (1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩. 【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩ ∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227-==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.25.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴()21343=123--;(3)∵22265(5)525a m n m n mn +=+=++, ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.26.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.27.计算:27812)6【答案】3243【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:(27812)6=(332223)6=322)6= 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.29.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.30.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.2.D解析:D【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A 5=,故A 选项错误;B B 选项错误;C =,故C 选项错误;D 2=,正确, 故选D .【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.3.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确; 故选:C .【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.4.D解析:D【解析】解:A A 错误;B ==,所以B 错误;C .=C 错误;D ==D 正确.故选D . 5.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:AB ,不是最简二次根式;C 是最简二次根式;D故选:C .【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.6.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】2,2; 故选:B.【点睛】 本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题.7.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.8.A解析:A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∴x-2020≥0,解得:x ≥2020;故选:A .【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.9.A解析:A【详解】根据最简二次根式的意义,可知2=. 故选A.10.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.11.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.12.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题13.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=222(2(242++=15. 故答案为:15.16.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 17.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.18.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007|+=a ,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007=a ,∴a ≥2008,∴a ﹣2007=a,=2007,两边同平方,得:a ﹣2008=20072,∴a ﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.19.8+2根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

辽宁省沈阳市南昌中学2023—2024学年八年级下学期第一次月考语文卷

辽宁省沈阳市南昌中学2023—2024学年八年级下学期第一次月考语文卷

2023-2024 学年度上学期八年级语文学科第一次月限时性作业(10月8日)一、积累与运用(15 分)1.下列词语中加点字的字音、字形完全正确的一项是()(2分) A.要塞.(sài) 教诲.(huī) 躁.热(zào) 眼花缭.乱(liáo) B.篡.改(cuàn) 翘.首 (qiào) 畸.形(jī) 深恶痛急.(jí) C. 仲.裁(zhòng) 绯.红(fēi) 黝.黑(yǒu) 杳.无消息(y āo ..) D. 悄.然(qiāo) 诘.责(jié) 胆怯..(qiè) 震聋.发聩(zhèn) 2. 依次填入下面语段横线处的词语最恰.当的一项是()(2分)与梅兰荷菊相比,妩媚的桃花似乎少了 的气节;与竹松柏杨相比,逐水的桃花又似乎少了守住一方的 , ,它打开了一年的时光宝盒,捧出了一个季节,它 ,照亮了整个春天,也照亮了诗人们或黯淡或忧伤的脸。

A. 洁身自好 宁静 所以 脉脉含情B. 洁净自守 宁静 所以 灼灼光华C. 洁身自好 坚定 但是 脉脉含情D. 洁净自守 坚定 但是 灼灼光华3.下列各项中分析正确的一项是( ) (3分)所谓特写,本是摄影、电视、 电影的一种常用手法,①以增强艺术表现力,②使之放大占据整个画面....③指拍摄人或物的某一部分,④形成强烈视觉效果。

新闻特写,是采用类似于特写的手法,以形象化的描写作为主要表现手段,截.取.新闻事件中最.具有价值、最生动感人....、最富有特征的片段和部分予以放大,从而..鲜明再现典型人物、事件或场景的一种新闻体裁。

新闻特写兼有新闻和.文学的特点,⑤但由于其强调新闻性......、时效性和真实性,所以更接近于通讯体裁。

所以,消息和新闻特写并不完全相同。

A.加点的词语“截取”是动词,“最”是副词,“和”是介词。

B.“整个画面” “最生动感人”是偏正短语, “强调新闻性”是补充短语。

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)

2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共30分)1.下列二次根式中是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.4•=4B.5•5=5C.4•2=6D.4•=4 3.若代数式在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥34.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.35.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,在△ABC中,AB=AC,AD是BC边上的高.已知AB=5,BC=8,则AD的长为()A.6B.5C.4D.37.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2B.C.D.8.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若直角三角形的两条直角边各扩大一倍,则斜边()A.不变B.扩大一倍C.扩大两倍D.扩大四倍10.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的面积和为4,则a,b,c三个方形的面积和为()A.10B.13C.15D.22二、填空题(共24分)11.在,,中与可以合并的二次根式是.12.已知直角三角形的两边长为3、2,则另一条边长是.13.如果=1﹣2a,则a的取值范围是.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为.16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为.三、解答题(共66分)17.计算:(1);(2).18.分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.19.先化简,后求值:÷(1﹣),其中x=2+1.20.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.21.已知x=2+,y=2﹣,求下列各式的值:(1)x2+xy+y2;(2).22.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S =(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.23.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD=4寸,点C、点D与门槛AB的距离CE=DF=1尺(1尺=10寸),求AB的长.24.如图,在Rt△ABC中,∠C=90°,AC=BC,在Rt△ABD中,∠D=90°,AD与BC 交于点E,且∠DBE=∠DAB.求证:(1)∠CAE=∠DBC;(2)AC2+CE2=4BD2.25.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=(400+400)千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据≈1.41,≈1.73,≈2.24)参考答案一、选择题(共30分)1.解:A、被开方数含开得尽的因数或因式,故A不符合题意;B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数不含分母,被开方数不含开得尽的因数或因式,故C符合题意;D、被开方数含开得尽的因数或因式,故D不符合题意;故选:C.2.解:A、4•=4×3=12,错误;B、5•5=5×5×=25,错误;C、4•2=4×2×=8,错误;D、正确.故选:D.3.解:由题意得,3﹣x≥0,解得,x≤3,故选:B.4.解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.5.解:∵∠AEB=90°,AE=6,BE=8,∴AB===10,∵四边形ABCD是正方形,∴S正方形ABCD=AB2=102=100,∵S△AEB=AE•BE=×6×8=24,∴S阴影=S正方形ABCD﹣S△AEB=100﹣24=76,∴阴影部分的面积是76,故选:C.6.解:在△ABC中,AB=AC,AD⊥BC,BC=8,则BD=CD=BC=4.在直角△ABD中,AB=5,BD=4,由勾股定理,得AD===3.故选:D.7.解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.8.解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.9.解:设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;扩大2倍后,直角三角形直角边为2a、2b,则根据勾股定理知斜边为:=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:C.10.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:C.二、填空题(共24分)11.解:=2,=2,=3,则与可以合并的二次根式是,故答案为:12.解:①长为2的边是直角边,长为3的边是斜边时:第三边的长为:=;②长为2、3的边都是直角边时:第三边的长为:=,所以第三边的长为:或,故答案为:或.13.解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.14.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.AB==2;如图(2)所示:AB==20.由于2>20,所以最短路径为20cm.故答案为:20cm.16.解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.三、解答题(共66分)17.解:(1)原式=10﹣6+4=20﹣9+4=15;(2)原式=+﹣2=4+﹣2=4﹣.(2)如图2所示:19.解:原式====,当时,原式==.20.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.21.解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴(1)x2+xy+y2=(x+y)2﹣xy=42﹣1=15;(2)===4.22.解:(1)∵p==12,∴由海伦公式得:S===12;(2)由秦九韶公式得:S====.23.解:设AE=BF=x寸,则AC=(x+2)寸,∵AE2+CE2=AC2,∴x2+102=(x+2)2,解得:x=24,则AB=24+24+4=52(寸),答:AB的长为52寸.24.证明:(1)∵∠ACB=∠D=90°,∴∠CEA+∠CAE=∠BED+∠CBD=90°,∴∠CEA=∠BED,∴∠CAE=∠DBC;(2)延长BD交AC延长线于点F,∵∠DBE=∠DAB,∴∠DAB=∠CAE,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,∴BF=2BD,在△ACE和△BCF中,,∴△ACE≌△BCF(ASA),∴AE=BF,∴AE=2BD,在Rt△ACE中,AC2+CE2=AE2,∴AC2+CE2=(2BD)2=4BD2.25.解:(1)海港C受台风影响,理由:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠CAD=45°,∴∠ACD=45°,∴AD=CD,∵∠DBC=30°,∴BD=CD,∵AB=(400+400)千米,∴AB=AD+BD=CD+CD=400+400,∴CD=400千米,∵以台风中心为圆心,周围600千米以内为受影响区域,∴海港C受台风影响;(2)当EC=600km,FC=600km时,正好影响C港口,∵ED==200(km),∴EF=400km,∵台风的速度为20千米/小时,∴400÷20≈45(小时).答:台风影响该海港持续的时间大约为45小时.。

人教版八年级下第一次月考数学试题及答案

人教版八年级下第一次月考数学试题及答案

八年级下第一次月考数学试卷一、选择题(每小题3分,共30分) 1.代数式xx n m n m a x 232、、、-+中,分式有( ) A.4 个 B. 3 个 C.2 个 D.1个2.对于反比例函数x y 2=,下列说法不正确的是( ) A.点(-2,-1)在它的图象上 B.它的图象在第一、三象限C.当0 x 时,y 随x 的增大而增大D.当0 x 时,y 随x 的增大而减小 3.若分式392--x x 的值为0,则x 的值是( ) A.-3 B.3 C. ±3 D.04.以下是分式方程1211=--xx x去分母后的结果,其中正确的是( )A.112=--xB.112=+-xC.x x 212=--D.x x 212=+-5.如图,点A 是函数xy 4=图象上的任意一点,AB ⊥x 轴于点B,AC ⊥y 轴于点C ,则四边形OBAC 的面积为( )A.2 B .4 C.8 D.无法确定6.下列分式一定有意义的是( ) A. 12+x x B. 22x x + C. 22--x x D.32+x x 7.已知反比例函数()0 k xk y =的图象上有两点A ()11y x ,,B ()22y x ,,且21x x ,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定8.若关于x 的方程xm x x -=--223无解,则m 的值为( ) A.2 B.0 C.-1 D .19.下列运算中,错误的是( ) A.1-=+--b a b a B.ba b a b a b a 321053.02.05.0-+=-+ C.yx y x y xy x y x +-=++-22222 D.223m m m m m +=+ 10.在一段坡路,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段OC B A x y5题图路上、下坡的平均速度是每小时( )A. 221v v +千米B.2121v v v v +千米 C. 21212v v v v +千米 D.无法确定 二、填空题(每小题3分,共30分)11.写出一个图象位于第一、三象限的反比例函数的表达式: .12.反比例函数k x k y (=≠0)的图象经过点A(-3,1),则k 的值为 . 13.若分式31--x x 的值是负数,那么x 的取值范围是 . 14.用科学计数法表示:-0.00002006= . 15.计算0122004(521)1()π-÷-⎪⎭⎫ ⎝⎛+--的结果是 . 16.轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/小时.17.化简:=++-44422a a a . 18.如图所示是三个反比例函数x k y x k y x k y 321,,===的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).19.已知反比例函数xa y =和一次函数b kx y +=的图象的两个交点分别是A(-3,-2)、B(1,m ), 则b k -2= .20.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要 小时.三、解答题: 21.(6分)先化简,再求值:x x x x +÷⎪⎭⎫⎝⎛--+211111,其中x =5.y=k 3x y=k 2x y=k 1x O xy 18题图22.解方程(每小题6分,共12分)(1)125552=-+-x x x (2)6272332+=++x x23.(6分)在平面直角坐标系XOY 中,反比例函数x k y =的图象与xy 3=的图象关于x 轴对称,又与直线2+=ax y 交于点A (m ,3),试确定a 的值.24.(8分)已知函数21y y y +=,且1y 与x 成反比例函数关系,2y 与(2-x )成正比例函数关系.当x =1时,y =-1;当x =3时,y =5.求x =5时,y 的值.25.(8分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.26.(10分)学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为X 吨,那么这批煤能维持Y 天.(1)则Y 与X 之间有怎样的函数关系?(2)若每天节约0.1吨,则这批煤能维持多少天?27.(10分)如图所示,已知一次函数y=kx+b 的图象与反比例函数x y 8-=的图象交于A 、B 两点,且点A 的横坐标和B 点的纵坐标都是-2.(1)求一次函数的解析式;(2)求∆AOB 的面积.O BA x y 27题图参考答案1.B ;2.C ;3.A ;4.D ;5.B ;6.A ;7.D ;8.D ;9.D ;10.C ;11.x y 2=;12.3;13.1<x <3;14.-2.006×10-5;15.-2;16.8.5;17. 24+-a a ;18. 1k <3k <2k ;19.0;20.yx xy +; 21.原式=12--x x ,当x =5时,原式=25-; 22.(1)x =0,(2)x =-2;23. a =-1; 24. ()243-+=x x y ,当x =5时,y =563; 25.4;26.(1)x y 90=,(2)180;27.(1)x y -=+2,(2)6.。

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。

江苏省泰州二中附中2023-2024学年八年级下学期第一次月考数学试题

江苏省泰州二中附中2023-2024学年八年级下学期第一次月考数学试题

江苏省泰州二中附中2023-2024学年八年级下学期第一次月考数学试题一、单选题1.下面四幅作品分别代表“大雪”、“立春”、芒种”、“白露”四个节气,其中是中心对称图形的是()A.B.C.D.2.去年我区有近5千名考生参加中考,为了了解这些考生的数学成绩,从中抽取500名考生的数学成绩进行统计分析,以下说法正确的是()A.这500名考生是总体的一个样本B.近5千名考生是总体C.每位考生的数学成绩是个体D.500名学生是样本容量3.下列事件:①三条线段能组成一个三角形;②太阳从东方升起;③a是实数,0a<;④购买一张大乐透彩票,中大奖500万.其中必然事件是().A.①B.②C.③D.④4.下列式子从左边至右边变形错误的是()A.422a a=B.33a a-=-C.21x x xxy y--=D.3322aa=5.下列结论中,矩形具有而菱形不一定具有的性质是()A.对边相等B.对角线互相平分C.对角线互相垂直D.对角线相等6.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=3AB=,点M、N分别是线段BD和AB的中点,则MN的长为()A B .32C D二、填空题 7.要使分式12x -有意义,则x 的取值范围为. 8.如果分式293x x --的值为0,则x =.9.用反证法证明”时,第一步应该假设.10.如表是小明做“抛掷图钉试验”获得的数据,则可估计“钉尖不着地”的概率为.11.如图,ABCD Y 的面积为4,点P 在对角线AC 上,E 、F 分别在AB 、AD 上,且PE BC ∥,PF CD ∥,连接EF ,图中阴影部分的面积为.12.菱形周长是20,对角线长的比为3:4,则菱形的面积为.13.一次数学测试后,某班40名学生的成绩被分成5组,第14-组的频数分别为12、10、6、8,则第5组的频率是.14.如图,矩形ABCD 的对角线交于点O ,点E 在线段OD 上,且AE AB =,若15EAO ∠=︒,则AEO ∠=.15.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,如果图2和图3每个图形中间的正方形面积分别为9和1,则图1中菱形的面积为.16.如图,矩形ABCD 中,5AB =,6BC =,点E 在BC 边上,且2BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG V ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为.三、解答题 17.解方程: (1)322x x =- (2)22111xx x +=-+ 18.先化简:22111a aa a a ⎛⎫-+÷⎪+-⎝⎭,再从1-,0,1,2中选一个你认为合适的数作为a 的值代入求值.19.两种品牌方便面销售增长率折线统计图如图:(1)BB 牌方便面的销售量比AA 牌多吗?为什么?你认为要做出这样的推断还需要什么信息?(2)从折线统计图中你能获得哪些信息?20.如图,通过旋转ABC V 可以使其与DEF V 重合(1)仅用无刻度直尺确定旋转中心M (保留作图痕迹),并写出旋转ABC V ,使其与DEF V 重合的过程.(2)若F 、A 的坐标分别为()32-,,()47-,,则旋转中心的坐标为 21.某水果店用3000元购进新品水果销售,由于销售状况良好,超市又调拨9000元资金购进该种水果,但这次的进价比第一次的进价提高了20%,购进水果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分水果售出后,余下的500千克按售价的8折售完.(1)该种水果的第一次进价是每千克多少元? (2)超市销售这种水果共盈利多少元?22.数学来源于生活,生活离不开数学,开水中加入适量的糖冲泡成甜糖水很受一些人的喜爱,人们常用糖水中糖与糖水的比表示糖水的甜度.(1)若在a 克糖水里面含糖b 克()0a b >>,则该糖水的甜度为______;(2)现向(1)中的糖水中再加入适量的糖,充分搅匀后,感觉糖水更甜了.请用所学的数学知识解释这一现象.(提示:我们在判断两个数的大小时,常常会用到作差法,如5320-=>所以53>,同样如果0m n ->,就说明m n >)23.如图1,1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点,且AC BD ⊥,6AC =,10BD =.(1)试判断四边形1111D C B A 的形状,并证明你的结论;(2)如图2,依次取11A B ,11B C ,11C D ,11D A 的中点2A ,2B ,2C ,2D ,再依次取22A B ,22B C ,22C D ,22D A 的中点3A ,3B ,3C ,3D ……以此类推,取11n n A B --,11n n B C --,11n n C D --,11n n D A --的中点n A ,n B ,n C ,n D ,根据信息填空: ①四边形1111D C B A 的面积是__________; ②若四边形n n n n A B C D 的面积为1516,则n =________; ③试用n 表示四边形n n n n A B C D 的面积___________.24.如图,Rt CEF △中,90C ∠=︒,CEF ∠和CFE ∠的外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,点B ,D 为垂足.(1)求证:四边形ABCD 是正方形;(2)若AB a =(a 为常数),求()()BE a DF a ++的值. 25.对x ,y 定义一种新运算T ,规定:()2ax byT x y x y+=+,(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:()01010212a b bT ⨯+⨯==+⨯,.(1)已知()5214T =,,()111T -=-,. ①求a ,b 的值;②若()23T m m +=-,,求m 的值;(2)若()()T x y T y x =,,对任意有理数x ,y 都成立(这里()T x y ,和()T y x ,均有意义),则a ,b 应满足怎样的关系式?26.折纸不仅是一项有趣的活动,也是一项益智的数学活动.实践操作:将矩形ABCD 沿对角线AC 翻折,使点D 落ABCD 所在平面内,边BC 和AD '相交于点E 解决问题:(1)如图1,①求证ABE CD E '≌V V ②连接BD ',判断BD '和AC 的位置关系,并说明理由(2)如图2,在矩形ABCD 中,若AB =F 是对角线AC 上一动点,30ACB ∠=︒,连接EF ,作点C 关于直线EF 的对称点P ,直线PE 交AC 于Q ,当AEQ △是直角三角形时,直接写出CF 的长.。

人教版八年级数学第二学期第一次月考测试卷含答案

人教版八年级数学第二学期第一次月考测试卷含答案

人教版八年级数学第二学期第一次月考测试卷含答案一、选择题1.当0x =时,二次根式42x -的值是( )A .4B .2C .2D .02.下列二次根式是最简二次根式的是( ) A .12B .3C .0.01D .123.下列算式:(1)257+=;(2)5x 2x 3x -=;(3)8+50=4257+=;(4)33a 27a 63a +=,其中正确的是( ) A .(1)和(3)B .(2)和(4)C .(3)和(4)D .(1)和(4)4.下列运算正确的是( ) A .32-=﹣6 B .31182-=-C .4=±2D .25×32=5105.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:()()()S p p a p b p c =---,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A .3154B .3152C .352D .3546.下列二次根式中,是最简二次根式的是( ). A .2xyB .2abC .12D .422x x y +7.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a8.a ab有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.下列各式计算正确的是( ) A 235+=B .236=()C 824=D 236=10.23a -2a a 的值是( ) A .2 B .-1C .3D .-1或311.23(2,1(2(3,1,2xx y y x x x x y >+=-->++中,二次根式有( ) A .2个B .3个C .4个D .5个12.下面计算正确的是( )A .BCD 2-二、填空题13.732x y -=-,则2x ﹣18y 2=_____.14.当x x 2﹣4x +2017=________. 15.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________.16.已知整数x ,y 满足y =,则y =__________.17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.18.如果0xy >.19.有意义,则x 的取值范围是____.20.x 的取值范围是_____. 三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。

八年级语文(下)第一次月考测试卷

八年级语文(下)第一次月考测试卷

八年级语文(下)第一次月考测试卷学校班级学号一、基础及运用(共38分)1.下列各项中,加点字读音全部正确的一项是( )(3分)A.陨(shǔn)落狼藉(jí) 懵(měng)懂喋(dié)喋不休B.鄙(bǐ)视簌(sù)簌擦拭(shì) 热泪盈眶(yíng)C.轻蔑(miè) 奔丧(sàng) 颓(tuí)唐孤苦伶仃(lín)D.出没(mò) 蹒跚(shàn) 讪(xiān)笑令人心颤(chàn)2.下列各项中,没有错别字的一项是( )(3分)A. 垂手可得文质彬彬立推之地寄人篱下B.呆若木鸡不能自己一片狼籍喋喋不休C.顽固不化明辩是非捣毁老巢变卖典质D. 俯拾皆是触目伤怀情郁于中背井离乡3.选出下面句子中加点词语使用不正确的一项()(3分)A.每年的春晚就好似一部反映当年社会生活的戏剧,演员们表演得无与伦比,让人们在一个个真实生活场景的回忆中得到美的享受。

B.不是归途,是千里奔波,雪中送炭;不是邻里,是素不相识,出手相援。

13位唐山农民用淳朴、善良和倔强的行动,告诉了我们“兄弟”的含义。

C.杨利伟、费俊龙、聂海胜和“嫦娥一号”研发团队,他们无一例外地成为当年“感动中国”人物评选的入围者,“神舟七号”航天员团队的当选,更是众望所归。

D.直到今天,“五四”运动的爱国主义光芒仍灼灼其华,烛照神州,激励着新一代青年。

4.下列没有语病的选项是()(3分)①生活在计算机时代的人们发现,“离开电脑不会写字了”,“有些字认得是认得,就是写不出”。

②随着电脑输入法功能的日益强大,让许多人在键盘上敲字的速度也“飞”了起来。

③会打字,但不会写字,这成为当今电脑一族患上了“怪病”。

④越来越多的人担忧,这样下去会导致书写能力的退化,出现一群只会看不会写的新“文盲”。

A.①②B. ②③C. ③④D. ①④5.给下列句子排序,最恰当的一项是()(3分)①当阳光洒在身上时,它更坚定了心中的信念——要开出一朵鲜艳的花。

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。

八年级下期第一次月考试题

八年级下期第一次月考试题

八年级下学期第一次月考试题说明:Array 1.全卷共8页,满分为120分,考试时间为120分钟。

2.本试卷设有附加题,共10分,考生可答可不答;该题得分作为补偿分计入总分,但全卷最后得分不得超过120分。

3.答案必须写在各题目指定区域内相应位置上。

一、基础(24分)1.根据课文默写古诗文。

(10分)(1)十五从军征。

”(2)莽红尘,________________?青衫湿(秋瑾《满江红》)(3)、《朝天子·咏喇叭》中描写喇叭、锁哪特点的句子是 ______________________,描写喇叭功用的句子是 _______________________ 。

(4)《诉衷情》中回忆作者往日豪放军旅生活的句子是:“,。

”(5)默写辛弃疾《南乡子.登京口北固亭有怀》的上阙?。

,悠悠,。

2.根据拼音写出相应的词语。

(4分)(1)到徐州见着父亲,看见满院下眼泪。

(2)对于这个情况,我最初我不深刻。

(3)星星脱离了轨道,就会(43.依次填入下列各句横线处的词语,最恰当的一项是()(3分)(1)有的书可供一读,有的书可以吞下,而有不多的几部书应当消化。

(2)我单位原公章已作废,自2002年5月1日起新公章,特此通告。

(3)地铁三号线18个车站站名经市地名委员会,已经正式确定。

A.咀嚼启用审查 B.品尝启用审察C.咀嚼起用审察 D.品尝起用审查4.对下列语段中病句修改不正确的一项是()(3分)①5月8日,看到北京奥运会火炬顺利登上世界最高峰──珠穆朗玛峰。

②圣火登顶成功的意义在于它诠释了深刻的奥林匹克“更高、更快、更强”的理念,③建立了中国人民热爱和平,与世界共同发展的美好愿望。

④奥运圣火被带着“和平”、“友爱”、“进步”的精神传遍全球。

A. ①句修改:将“看到”删去。

B. ②句修改:“诠释了深刻的”改为“深刻地诠释了”。

C. ③句修改:“建立”改为“树立”。

D. ④句修改:“被”改为“将”。

5. 仿写句子:根据语境,在横线上填写恰当的句子。

人教版八年级第二学期 第一次 月考检测数学试卷含答案

人教版八年级第二学期 第一次 月考检测数学试卷含答案

人教版八年级第二学期 第一次 月考检测数学试卷含答案一、选择题1.如果0,0a b <<,且6a b -=)A .6B .6-C .6或6-D .无法确定2.下列运算结果正确的是( ) A9=-B3=C .(22=D 5=-3.下列二次根式中是最简二次根式的为() ABCD 4.下列根式中,最简二次根式是( )ABCD5.1在3和4中x 的取值范围是1x ≥-;③3;④5=-58>.其中正确的个数为( ) A .1个B .2个C .3个D .4个6.如果关于x 的不等式组0,2223x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x>则符合条件的所有整数m 的个数是( ). A .5B .4C .3D .27.设,n k为正整数,1A =2A =3A =4A =…k A =….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .40118.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123256722310A .210B .41C .52 D .5110.下列计算不正确的是 ( ) A .35525-= B .236⨯=C .774=D .363693+=+==11.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( )A .1个B .2个C .3个D .4个12.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( ) A .±3B .3C .5D .9二、填空题13.设42-的整数部分为 a,小数部分为 b.则1a b-= __________________________. 14.将2(3)(0)3a a a a-<-化简的结果是___________________.15.已知a ,b 是正整数,且满足15152()a b+是整数,则这样的有序数对(a ,b )共有____对.16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.已知x ,y 为实数,y 求5x +6y 的值________.18.若实数a =,则代数式244a a -+的值为___.19.mn =________.20.已知2x =243x x --的值为_______.三、解答题21.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x、y的值,把原式根据二次根式的性质进行化简,把x、y的值代入化简后的式子计算即可.【详解】1-8x≥0,x≤1 88x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1 222.【点睛】本题考查的是二次根式的化简求值,把已知条件求出x、y,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.23.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.24.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.25.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.26.计算②)21-【答案】①【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.计算 (1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.29.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】=-a-(-b)=b-a=-6.故选B 2.C解析:C 【分析】根据二次根式的性质及除法法则逐一判断即可得答案. 【详解】9=,故该选项计算错误,不符合题意,=C.(22=,故该选项计算正确,符合题意,5=,故该选项计算错误,不符合题意, 故选:C . 【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.3.B解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A=不是最简二次根式,本选项错误;BC=不是最简二次根式,本选项错误;D2=故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.4.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.5.A解析:A【分析】答.【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;58=,(229<,∴1528-<,即1528<,故⑤错误;综上所述:正确的有②,共1个,故选:A .【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.6.C解析:C【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2.【详解】 解:解不等式02x m ->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2,∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2,由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个.故选:C .【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.7.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k=n+(2k-1)∴A100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A1,A2,A3,从而找出规律写出规律的表达式是解题的关键.8.B解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】解:原式1x-=|x-4|-|1-x|,当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n(n =∴第8=,则第9行从左至右第5=, 故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为10.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.11.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确.故选B.12.B解析:B 【分析】由已知可得:2,(11m n mn +==+-=-,【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选B【点睛】考核知识点:二次根式运算.配方是关键.二、填空题13.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=12-故填:1. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.15.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16.故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解.18.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a = ∴244a a -+=(a-2)2=()222+=3, 故答案为3.19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】 根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343n m m-=⎧⎨-=-⎩ , 解得,73m n =⎧⎨=⎩, ∴7321.mn =⨯=故答案为21.20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级下第一次月考试卷(含答案)

八年级下第一次月考试卷(含答案)

八年级下第一次月考测试卷一、积累与运用:(17分)(一)、读下面的句子,根据拼音提示,把恰当的字填写在横线上。

(4分)①安mì()的校园,被暮色浸透了。

细柳、扁柏、小池、曲径……一切都蒙上了凄迷的调子,带着些凉薄的意味。

独有一圃大理菊却盛放着,②wěng wěng()()郁郁地开出一片花海。

在沉沉的夕阳影里,鲜明极了。

那些硕大的花朵,每一朵都像一团火球,逼近去凝视,火球中含③yùn()着生命的烈焰,让人有④zhuó()热的感觉。

①②③④(二)、默写。

(10分)(1)____________ _ _____,干戈寥落四周星。

《过零丁洋》(2)冰霜正惨凄,。

(3),天涯若比邻。

(4)《山坡羊•潼关怀古》中以动写静的句子是:__________________,________________。

(5)《水调歌头》中表现作者感悟人生哲理的词句是:,。

(6)故虽有名马,_____ __________ 不以千里称也。

《马说》(7)《与朱元思书》抒发作者观赏富春江景色后感叹的句子:。

(8)〈五柳先生传〉中描写作者家庭贫困的句子是:。

(9)《赤壁》一诗中作者抒发感慨的诗句是。

(10)《酬乐天扬州初逢席上见赠》中现在用来比喻新事物必将代替旧事物的客观规律的句子是:,。

(三)、仿写:(3分)根据你的观察和对生活的感悟,仿照下面画线的句子再写两个句子。

大自然能给我们许多启示:滴水可以穿石,是在告诉我们做事应持之以恒;大地能载万物,是在告诉我们求学要广读博览;,;,。

二、阅读理解:(48分)(一)(15分)(甲)中国是弱国,所以中国人①是低能儿,分数在六十分以上,便不是自己的能力了:也无怪他们疑惑。

但我接着便有参观枪毙中国人的命运了。

第二年添教霉菌学,细菌的形状是全用电影来显示的,一段落已完而还没有到下课的时候,便影几片时事的片子,②都是日本战胜俄国的情形。

但偏有中国人夹在里边:给俄国人做侦探,被日本军捕获,要枪毙了,围着看的也是一群中国人;在讲堂里的还有一个我。

八年级(下)学期 第一次月考数学试题含答案

八年级(下)学期 第一次月考数学试题含答案

八年级(下)学期 第一次月考数学试题含答案一、选择题1.下列运算结果正确的是( ) A .()299-=- B .623÷= C .()222-= D .255=-2.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .04.已知()()44220,24,180x y x y x yx y>+=++-=、.则xy=( )A .8B .9C .10D .115.下列计算正确的是( ) A .531883+= B .()322326a ba b -=-C .222()a b a b -=- D .2422a ab a a b a -+⋅=-++6.化简二次根式 22a a a+-的结果是( ) A .2a --B .-2a --C .2a -D .-2a -7.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .8.下列各式计算正确的是( ) A .2+3=5 B .43-33=1 C .2333=63⨯D .123=2÷9.下列二次根式是最简二次根式的是( ) A .0.1B .19C .8D .14410.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( ) A .±3B .3C .5D .911.如果12与最简二次根式72a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .212.下列根式中是最简二次根式的是( ) A .23B .10C .9D .3a二、填空题13.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.14.已知a ,b 是正整数,且满足15152()a b+是整数,则这样的有序数对(a ,b )共有____对.15.若()()22223310x y x y +++-+=,则222516x y +=______.16.化简二次根式2a 1a a+-的结果是_____. 17.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.18.===据上述各等式反映的规律,请写出第5个等式:___________________________. 19.若实数a =,则代数式244a a -+的值为___.20.n 为________.三、解答题21.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,即(m+2n)2﹣2(m+2n)﹣3=0,则(m+2n+1)(m+2n﹣3)=0,∴m+2n=﹣1(舍)或m+2n=3,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.先化简,再求值:a+212a a-+,其中a=1007.如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:269a a-+a=﹣2018.【答案】(1)小亮(22a(a<0)(3)2013.【解析】试题分析:(12a,判断出小亮的计算是错误的;(22a的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可.试题解析:(1)小亮(22a(a<0)(3)原式=()23a-a+2(3-a)=6-a=6-(-2007)=2013.24.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲010*******乙2311021101请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.+25.计算:(1)+-(2(33【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】+解:(1)===+-(2(33=5+9-24=-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.26.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.27.先化简,再求值:24224x x x x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.28.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.29.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的性质及除法法则逐一判断即可得答案.【详解】9=,故该选项计算错误,不符合题意,=C.(22=,故该选项计算正确,符合题意,=,故该选项计算错误,不符合题意,5故选:C.【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.2.B解析:B【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义的x的取值范围是:x≥3.故选:B.【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.B解析:B【分析】把x=0【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.4.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可. 【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+= 22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯= 计算得:11xy = 故选:D. 【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.5.D解析:D 【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可. 【详解】解:A. =A 选项错误; B. ()()()33322363228a ba b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D . 【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.6.B解析:B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可 【详解】22202a aa a a +-∴+<∴<-222222a a a a a a a a a+----∴-==•=--- 故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.7.D解析:D 【解析】 【分析】根据等腰直角△ABC 被直线a 和b 所截的图形分为三种情况讨论:①当0≤x ≤1时,y 是BM +BD ;②当1<x ≤2时,y 是CP +CQ +MN ;当2<x ≤3时,y =AN +AF ,分别用x 表示出这三种情况下y 的函数式,然后对照选项进行选择. 【详解】①当0≤x ≤1时,如图1所示.此时BM =x ,则DM =x ,在Rt △BMD 中,利用勾股定理得BD =2 x ,所以等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y =BM +BD =(2+1)x ,是一次函数,当x =1时,B 点到达N 点,y =2+1;②当1<x ≤2时,如图2所示, △CPQ 是直角三角形, 此时y =CP +CQ +MN 2+1. 即当1<x ≤2时,y 2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF=2(3﹣x),y=AN+AF=(﹣1﹣2)x+3+32,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.8.D解析:D【解析】23不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知43333,故不正确;根据二次根式的性质,可知2333,故不正确;2733333==,故正确.故选D.9.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B 正确;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数含分母,故D 错误;故选B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.10.B解析:B【分析】由已知可得:2,(11m n mn +==+-=-,【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选B【点睛】考核知识点:二次根式运算.配方是关键. 11.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D .【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A 、被开方数含分母,故A 不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B符合题意;C被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:B.【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.二、填空题13.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 14.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.15.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.16.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为17.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.18.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。

八年级下学期数学第一次月考试卷(含答案)

八年级下学期数学第一次月考试卷(含答案)

八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。

八年级(下)第一次月考数学试卷

八年级(下)第一次月考数学试卷

八年级(下)第一次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)下列各式一定是二次根式的是()A.B.C.D.2.(3分)在平面直角坐标系中,已知点P的坐标为(5,12),则OP的长为()A.5B.12C.13D.143.(3分)如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③4.(3分)在下列长度的四组线段中,不能组成直角三角形的是()A.a=5,b=12,c=13B.a=b=,c=2C.a:b:c=1:2:D.a=4,b=5,c=65.(3分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=3,BC=4.则BD的长是()A.2B.3C.4D.56.(3分)底面周长为12,高为8的圆柱体上有一只小蚂蚁要从A点爬到B点,则蚂蚁爬行的最短距离是()A.10B.8C.5D.47.(3分)在化简时,甲、乙两位同学的解答如下:甲:===﹣乙:===﹣.A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错8.(3分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP 是腰长为5的等腰三角形时,点P的坐标为()A.(3,4)(2,4)B.(3,4)(2,4)(8,4)C.(2,4)(8,4)D.(3,4)(2,4)(8,4)(2.5,4)二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若x<3,则=.10.(3分)计算:(﹣2)2020(+2)2021=.11.(3分)如图,学校有一块长方形花圃,有极少数同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了米,却踩伤了花草.12.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.13.(3分)一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是.14.(3分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为.15.(3分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),则秋千绳索(OA或OB)的长度为尺.16.(3分)如图,四个全等的直角三角形按如图所示的方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为S.三、解答题(本大题共9小题,共72分)17.(8分)计算:(1)(﹣)÷(2)﹣(5+)18.(6分)已知x=2+,y=2﹣,试求代数式+的值.19.(6分)如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以120海里/时的速度从港口A出发,向北偏东60°方向航行到达B,另一海舰以90海里/时的速度同时从港口A出发,向南偏东30°方向航行到达C,则此时两艘海舰相距多少海里?20.(6分)阅读下面的解答过程,然后作答:有这样一类题目:将化简,若你能找到两个数m和n,使m2+n2=a且mn=,则a+2可变为m2+n2+2mn,即变成(m+n)2,从而使得=m+n.化简:.∵5+2=3+2+2=()2+()2+2=(+)2.∴==+.请你仿照上例将下列各式化简:(1);(2).21.(8分)某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?22.(8分)如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.23.(8分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.24.(10分)如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式的最小值.25.(12分)如图(1),在平面直角坐标系中点A(x,y),B(2x,0)满足|x﹣|+=0,点C为线段OB上一个动点,以AC为腰作等腰直角△ACD,且AC=AD.(1)求点A、B坐标及△AOB的面积;(2)试判断OC、CB、CD间的数量关系,并说明理由;(3)如图(2),若点C为线段OB延长线上一个动点,则(2)中的结论是否成立,并说明理由.。

2023-2024学年山东省枣庄市滕州市育才中学八年级下学期第一次月考数学试题

2023-2024学年山东省枣庄市滕州市育才中学八年级下学期第一次月考数学试题

2023-2024学年山东省枣庄市滕州市育才中学八年级下学期第一次月考数学试题1.若,则下列不等式中正确的是()A.B.C.D.2.不等式的解集在数轴上表示为()A.B.C.D.3.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°4.定义;等腰三角形的底边长与其腰长的比值k称为这个等腰三角形的“优美比”.若等腰三角形的周长为,,则它的“优美比”k为()A.B.C.或D.或5.如图是乌兰察布市某公园一段索道的示意图,已知A、B两点间的距离为30米,,则缆车从A点到B点过程中,上升的高度(的长)为()A.10米B.15米C.20米D.30米6.如图,在中,,.分别以点A、B为圆心,大于的长为半径画弧,两弧交于D,E两点,直线交于点F,连接.以点A为圆心,为半径画弧,交延长线于点H,连接.若,则的周长为()A.8B.C.D.7.如图所示,在中,,平分,交于点D,,,DE⊥AB,则()A.B.C.D.8.下列说法,正确的是()A.一个三角形两边的垂直平分线的交点到这个三角形三边的距离相等B.“若,则”的逆命题是真命题C.在角的内部到角的两边距离相等的点一定在这个角的平分线上D.用反证法证明“三角形中必有一个角不大于”,先假设这个三角形中有一个内角大于9.学校组织八年级同学到劳动教育基地参加实践活动,某小组的任务是平整土地.开始的半小时,由于操作不熟练,只平整完.学校要求完成全部任务的时间不超过小时,若他们在剩余时间内每小时平整土地,则满足的不等关系为()A.B.C.D.10.如图,直线经过点和点,直线过点A,则不等式组的解集为()A.B.C.D.11.已知关于x的不等式的解集是,则a的值为______.12.如图,在中,,,的垂直平分线与交于点,与交于点,连接.若,则的长为____________.13.已知关于的方程组的解满足,则的取值范围是______.14.如图,在数轴上点M、N分别表示数2、,则x的取值范围是__________15.有一个内角为的三角形腰长为4,则它的底边长为_____________16.如图,在平面直角坐标系中,点,,,……都在x轴上,点,,……都在同一条直线上,,,,,……都是等腰直角三角形,且,则点的坐标是_____________.17.解不等式组并写出满足条件的整数解.18.小强在物理课上学习了发声物体的振动试验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球,小球可以自由摆动,如图,A表示小球静止时的位置,当小强用发声物体靠近小球时,小球从A摆到B位置,此时过点B作于点D,当小球摆到C位置时,过点C作于点E,测得,(图中的点A,B,O,C在同一平面内).(1)猜想此时与的位置关系,并说明理由;(2)求的长.19.在北京进行的2022年冬季奥运会和冬季残奥会备受世界人士关注.吉祥物“冰墩墩”、“雪容融”玩具随之大卖,购买8个“冰墩墩”和4个“雪容融”玩具共需960元,购买6个“冰墩墩”和8个“雪容融”玩具共需1020元.(1)分别求出“冰墩墩”和“雪容融”玩具的销售单价.(2)若每个“冰墩墩”玩具制作成本为60元,每个“雪容融”玩具成本为40元,准备制作两种吉祥物玩具共100个,总成本不超过5000元,且销售完该批次吉祥物玩具,利润不低于2480元,请问有哪几种制作方案?20.如图,在△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD的平分线上一点,EB=EC,过点E作EF⊥AC于F,EG⊥AD于G.(1)求证:△EGB≌△EFC;(2)若AB=3,AC=5,求AF的长.21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.如图,在中,,垂直平分,垂足为O,,且.(1)求证:;(2)求的长.23.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以PQ为腰的等腰三角形?24.对m、n的定义一种新运算“◇”,规定:(其中a、b均为非零常数),等式右边的运算是通常的四则运算,例如:.已知,.(1)求a、b的值;(2)若关于x的不等式组有且只有一个整数解,试求字母t的取值范围.。

八年级第二学期 第一次月考检测数学试卷含答案

八年级第二学期 第一次月考检测数学试卷含答案

八年级第二学期 第一次月考检测数学试卷含答案一、选择题1.下列方程中,有实数根的方程是( )A .240x +=B .210x -+=C .12x +=D .331x x -+-=.2.下列计算正确的是( )A .2510⨯=B .623÷=C .12315+=D .241-= 3.二次根式23的值是( ) A .-3B .3或-3C .9D .3 4.下列计算正确的是( ) A .822-= B .321-=C .325+=D .(4)(9)496-⨯-=-⨯-= 5.已知226a b ab +=,且a>b>0,则a b a b +-的值为( ) A .2 B .±2 C .2 D .±26.若化简|1-x|-2816x x -+的结果为2x ﹣5,则x 的取值范围是( )A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤4 7.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .6 8.()23- A .﹣3 B .3 C .﹣9 D .99.下列二次根式中,最简二次根式是( )A 23aB 13C 2.5D 22a b -10.751m +m 的值为( )A .7B .11C .2D .1 11.使式子2124x x +-x 的取值范围是( ) A .x≥﹣2 B .x >﹣2 C .x >﹣2,且x ≠2 D .x≥﹣2,且x ≠212.230x -=成立的x 的值为( ) A .-2 B .3 C .-2或3 D .以上都不对二、填空题13.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.14.,则x+y=_______.15.已知,n=1的值________.16.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.17.已知x ,y 为实数,y 求5x +6y 的值________.18.若a 、b 为实数,且b +4,则a+b =_____.19.n 的最小值为___20.有意义,则x 的取值范围是____. 三、解答题21.阅读下面问题:阅读理解:==1;==2==-.应用计算:(1(2(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9.【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】(1(2(3+98+,(+98+,++99-,=10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】 此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.已知x=23,求代数式(7+3x 2+(23)x 3【答案】23【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可. 试题解析:x 2=(23)2=7﹣3则原式=(37﹣3+(3233=49﹣3325.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式. 比如:22242332313231131-=-=-+=)).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若222a b m n +=+),则有222(2)+22a b m n mn =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若233a b m n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:133-( - 23);(3)若2655a m n +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)2133=(123)--;(3)14a =或46.【解析】试题分析:(1)把等式)233a b m n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:21343(123)-=-;(3)将()2655a m n +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.26.-10【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.27.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.28.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.29.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.30.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】=的形式,再根据二次根式成立的条件逐个进行判断即可.k【详解】解:A、x2+4=0,此时方程无解,故本选项错误;B10=,1-,∵算术平方根是非负数,∴此时方程无解,故本选项错误;C2=,∴x+1=4,∴x=3,故本选项正确;D1=,∴x-3≥0且3-x≥0,解得:x=3,代入得:0+0=1,此时不成立,故本选项错误;故选:C.【点睛】本题考查了二次根式的意义,能根据二次根式成立的条件进行判断是解此题的关键.2.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.3.D解析:D【分析】根据二次根式的性质进行计算即可.|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.4.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.5.A解析:A【解析】【分析】已知a2+b2=6ab,变形可得(a+b)2=8ab,(a-b)2=4ab,可以得出(a+b)和(a-b)的值,即可得出答案.【详解】∵a2+b2=6ab,∴(a+b)2=8ab,(a-b)2=4ab,∵a>b>0,∴∴a ba b+-=故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.6.B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.7.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1,第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:,•=6,故选D8.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】()23-=|﹣3|=3.故选B.9.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式10.C解析:C几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.11.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x+≥,∴x≥-2.∴x的取值范围是:x>-2且2x≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.14.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:15.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.16.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.17.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16. 故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

新人教版八年级物理下册第一次月考测试卷(含答案)

新人教版八年级物理下册第一次月考测试卷(含答案)

新人教版八年级物理下册第一次月考测试卷(含答案)八年级物理下册第一次月考测试卷一、单项选择题(每题3分,共36分)1、甲、乙两个同学沿相反的方向拉测力计,各用力200牛,则测力计的示数为()。

A、100牛B、200牛C、0牛D、400牛2、使用弹簧测力计时,下面几种说法中错误的是()。

A、弹簧测力计必须竖直放置,不得倾斜B、使用前必须检查指针是否指在零点上C、使用中,弹簧、指针、挂钩不能与外壳摩擦D、使用时,必须注意所测的力不能超过弹簧测力计的测量范围3、若不考虑空气的阻力,扔出手的铅球在空中飞行时,受到()。

A、重力B、重力和手对铅球的推力C、手对铅球的推力D、不受任何力4、关于力的作用效果,下列说法错误的是()。

A、可以改变物体速度的大小B、可以改变物体的形状C、可以改变物体的运动方向D、可以改变物体的状态5、一个物体沿圆形轨道运动,在相等时间内通过的路程相等,则物体的运动状态()。

A、不断改变B、始终不变C、有时改变,有时不改变D、无法确定6、“嫦娥一号”月球探测器的成功发射,标志着中国人实现“奔月”的梦想将成为现实,试分析,下列哪种活动在月球上不可实现()。

A、利用凸透镜探究成像规律B、利用录音机录下自己的歌声C、利用天平测物体的质量D、利用弹簧测力计测物体的重力7、人们有时要利用惯性,有时要防止惯性带来的危害。

下列属于防止惯性带来危害的是()。

A、拍打衣服,把灰尘拍去B、将足球射入球门C、公路上汽车限速行驶D、跳远时快速助跑8、自行车骑得太快,容易造成交通事故,这是由于()。

A、运动快,所以惯性大,因此难停下来B、刹车时产生的惯性不够大,所以难停下来C、由于惯性,即使紧急刹车,也需要向前运动一段距离才能停下来D、刹车时来不及克服惯性,所以难停下来9、如图一所示,各物体受到的两个力中彼此平衡的是()。

图一)10、如图二所示,物体在水平拉力F的作用下沿水平桌面匀速向右运动,下列说法中正确的是()。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

校班级
姓名
一、选择题:(每小题只有一个正确答案,将正确答案填在表格中,每空2分,共40分)1.将
带芽的马铃薯小块种植在土壤中,可以长成马铃薯植株。

马铃薯的这种生殖方式属于
()
A.嫁接
B.无性生殖
C.有性生殖
D.分裂生殖
2.将红富士苹果的芽接到香蕉苹果树上,这个芽长成枝条后结出的苹果是()
A. 香蕉苹果与红富士苹果的混合品种
B.香蕉苹果
C. 红富士苹果
D.红富士苹果和香蕉苹果两种
3.下列哪一项属于有性生殖()
A.落地生根的叶子上长出新植株 B.甘薯用块茎发芽生根
C.大豆种子埋在土里,种子发芽 D.柿树嫁接到软枣树上
4.家蚕不属于()
A.无脊椎动物 B.昆虫 C.脊椎动物 D.消费者
5.昆虫发育过程中的蜕皮,是由于()
A.外界的空气过于干燥
B.昆虫的皮肤太干燥
C.外界的气温过高
D.昆虫的外骨骼不能随身体生长
6.蚕吐丝是在它一生发育的什么阶段()
A.成虫
B.幼虫
C.受精卵
D.蛹
7.下图表示蝗虫发育过程中的三个时期,其中正确的发育过程是()
A.C→A→B B.B→C→A
C.A→C→B D.B→A→C
8.从青蛙的发育过程看,青蛙的发育属于()
A.完全变态 B.不完全变态 C.变态发育 D.非变态发育
9. 在美国南部等地发现的畸形蛙约占10%,致畸的原因最可能是()
A.空气污染
B. 土壤污染
C. 水域污染
D.人类捕杀
10.右图是某兴趣小组在田间调查后绘制的青蛙数量与季节关
系的直方图。

图中显示青蛙数量最多的季节是()
A.春季 B.夏季 C.秋季 D.冬季
11.下列对青蛙的生殖和发育过程的叙述,正确的是()
①卵细胞与精子在水中完成受精②生殖和发育都在陆
地上进行③从幼体到成体的发育是变态发育
A.①② B.①③ C.②③ D.①②③
12.保护青蛙的意义在于()
A.青蛙的肉味鲜美
B.青蛙能为人类预报气候
C.青蛙能捕食大量的农业害虫,提高农作物产量
D.青蛙由于水陆两栖,可供人观赏
13.受精的鸡蛋在孵化条件下,将发育成雏鸡的结构是:(

A.卵黄
B.卵白
C.胚盘
D.系带
14.“鸠占鹊巢”这一成语说明“鸠”在生殖和发育过程中,没有经历的过程是()
A.求偶 B.哺乳 C.圈地 D. 筑巢
15.鸟的生殖行为复杂多样,下列属于鸟类生殖行为的是()
①织布鸟筑巢②小鸡啄米③孔雀开屏④燕子孵卵
⑤蜂鸟采食花蜜⑥麻雀育雏⑦雌雄麻雀交配





只2015——2016学年度第二学期期初考试
初中二年级生物试卷
校班级
姓名
A.①②③⑦
B.④⑤⑥
C.①③⑦
D. ①③④⑥⑦
16.下列有关动物生殖发育的叙述,正确的是()
A.家蚕的发育过程是受精卵→若虫→成虫
B.雌雄蛙抱对行为有利于受精
C.蝗虫的发育过程为完全变态
D.鸟类的生殖和发育只包括求偶、圈地、筑巢、哺乳
17.生物的性状不包括的是()
A.形态结构B.生理特征C.染色体上的基因D.行为方式
18.下列现象不属于遗传的是()
A.种瓜得瓜,种豆得豆
B.一母生九子,连母十个样
C.龙生龙,凤生凤,老鼠生来会打洞
D.羊生下的是羊,牛生下的是牛
19.科学家将母羊B体细胞的细胞核移人母羊A除去核的卵细胞中,新组合的卵细胞发育
成胚胎并移人母羊C的子宫中,最终母羊C产下了克隆羊多莉。

则多莉的各种性状最像
谁()
A.母羊A
B.母羊B
C.母羊C
D.三者的平均
20.转基因超级鼠的获得,说明性状和基因间的关系是()
A.基因与性状无关
B.性状决定基因
C.基因决定性状
D.基因是性状的表现形式
二、非选择题
21.填空题(每空2分,共36分)
1).不经过两性生殖细胞的结合,由直接产生新个体。

这种生殖方式成为_ _ ___。

这种生殖方式在农业生产上应用最广泛的有和。

2).昆虫的在由受精卵发育成新个体的过程中,幼体和成体的形态结构和生活习性差别很大,
这种发育过程称为。

家蚕的生殖方式为生殖,发育方式为发育。

3).青蛙的发育属于变态发育,其过程经过了受精卵→→→成蛙四个阶段。

4).鸟的生殖和发育过程一般包括→→→→→几个
阶段。

5).我们把同种生物同一性状的不同表现形式称为。

性状除了受到的控制,
还受到因素的影响。

22.下列属于相对性状的进行连线(每小题2分,共10分)
猫的白毛
人的白皮肤
豌豆的皱粒猫的黑毛
狐的长尾豌豆的圆粒
豌豆的高茎狐的短尾
人的黑皮肤豌豆的矮茎
三、如图所示,某同学在实验中观察到的家鸽卵的示意图,请根据图分析回答下列有关问题。

(每小题2分,共14分)
(1)①是,具有保护鸟卵的作用。

(2)③是,提供胚胎发育所需
的。

(3)④是,为胚胎发育提供营养物质
和。

(4)⑤是,是进行胚胎发育的部位。

(5)将鸟卵放在温水中会看到卵壳的表面有
气泡,说明卵壳上面有很多肉眼看不见
的。

相关文档
最新文档