离散数学试题及答案精选版
离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。
答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。
答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。
答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。
自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。
2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。
答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。
判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。
四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。
答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。
2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。
找出所有强连通分量。
答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学试题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】一、填空题1设集合A,B,其中A={1,2,3},B={1,2},则A-B=____________________;(A)-(B)=__________________________.2.设有限集合A,|A|=n,则|(A×A)|=__________________________.3.设集合A={a,b},B={1,2},则从A到B的所有映射是_______________________________________,其中双射的是__________________________.4.已知命题公式G=(PQ)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合,A={1,2,4},B={3,4},则从AB=_________________________;AB=_________________________;A-B=_____________________.7.设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________,__________________ _____________.8.设命题公式G=(P(QR)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9.设集合A={1,2,3,4},A上的关系R 1={(1,4),(2,3),(3,2)},R2={(2,1),(3,2),(4,3)},则R1R2=________________________,R2R1=____________________________,R12=________________________.10.设有限集A,B,|A|=m,|B|=n,则||(AB)|=_____________________________. 11设A,B,R是三个集合,其中R是实数集,A={x|-1≤x≤1,xR},B={x|0≤x<2,xR},则A-B=__________________________,B-A=__________________________,A∩B=__________________________,.13.设集合A={2,3,4,5,6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14.设一阶逻辑公式G=xP(x)xQ(x),则G的前束范式是_______________________________.16.设谓词的定义域为{a,b},将表达式xR(x)→xS(x)中量词消除,写成与之对应的命题公式是____________________________________________________________________ ______.17.设集合A={1,2,3,4},A上的二元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。
则RS=_____________________________________________________,R2=______________________________________________________.二、选择题1设集合A={2,{a},3,4},B={{a},3,4,1},E为全集,则下列命题正确的是()。
(A){2}A(B){a}A (C){{a}}BE(D){{a},1,3,4}B.2设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R 不具备().(A)自反性(B)传递性(C)对称性(D)反对称性3设半序集(A,≤)关系≤的哈斯图如下所示,若A的子集B={2,3,4,5},则元素6为B的()。
(A)下界(B)上界(C)最小上界(D)以上答案都不对4下列语句中,()是命题。
(A)请把门关上(B)地球外的星球上也有人(C)x+5>6(D)下午有会吗?5设I是如下一个解释:D={a,b},11b)P(b,a)P(b,b)P(a,),(aaP则在解释I下取真值为1的公式是().(A)xyP(x,y)(B)xyP(x,y) (C)xP(x,x)(D)xyP(x,y).6.若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是().(A)(1,2,2,3,4,5)(B)(1,2,3,4,5,5) (C)(1,1,1,2,3)(D)(2,3,3,4,5,6).7.设G、H是一阶逻辑公式,P是一个谓词,G=xP(x),H=xP(x),则一阶逻辑公式GH是().(A)恒真的(B)恒假的(C)可满足的(D)前束范式.8设命题公式G=(PQ),H=P(QP),则G与H的关系是()。
(A)GH(B)HG (C)G=H(D)以上都不是.9设A,B 为集合,当()时A -B =B.(A)A =B(B)AB(C)BA(D)A =B =.10设集合A={1,2,3,4},A 上的关系R ={(1,1),(2,3),(2,4),(3,4)},则R 具有()。
(A)自反性(B)传递性(C)对称性(D)以上答案都不对11下列关于集合的表示中正确的为()。
(A){a}{a,b,c}(B){a}{a,b,c}(C){a,b,c}(D){a,b}{a,b,c}12命题xG(x)取真值1的充分必要条件是().(A)对任意x ,G(x)都取真值1.(B)有一个x 0,使G(x 0)取真值1.(C)有某些x ,使G(x 0)取真值1.(D)以上答案都不对. 13.设G 是连通平面图,有5个顶点,6个面,则G 的边数是().(A)9条(B)5条(C)6条(D)11条.15.设图G的相邻矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110110101110110010111110,则G 的顶点数与边数分别为().(A)4,5 (B)5,6 (C)4,10 (D)5,8.三、计算证明题1.设集合A ={1,2,3,4,6,8,9,12},R 为整除关系。
(1)画出半序集(A,R)的哈斯图;(2)写出A 的子集B={3,6,9,12}的上界,下界,最小上界,最大下界; (3)写出A 的最大元,最小元,极大元,极小元。
2. 设集合A ={1,2,3,4},A 上的关系R ={(x,y)|x,yA 且xy},求(1)画出R的关系图;(2)写出R的关系矩阵.3.设R是实数集合,,,是R上的三个映射,(x)=x+3,(x)=2x,(x)=x/4,试求复合映射,,,,.4.设I是如下一个解释:D={2,3},a b f(2)f(3)P(2,2)P(2,3)P(3,2)P(3,3)32320011试求(1)P(a,f(a))∧P(b,f(b));(2)xyP(y,x).5.设集合A={1,2,4,6,8,12},R为A上整除关系。
(1)画出半序集(A,R)的哈斯图;(2)写出A的最大元,最小元,极大元,极小元;(3)写出A的子集B={4,6,8,12}的上界,下界,最小上界,最大下界.6.设命题公式G=(P→Q)∨(Q∧(P→R)),求G的主析取范式。
7.(9分)设一阶逻辑公式:G=(xP(x)∨yQ(y))→xR(x),把G化成前束范式.9.设R是集合A={a,b,c,d}.R是A上的二元关系,R={(a,b),(b,a),(b,c),(c,d)},(1)求出r(R),s(R),t(R);(2)画出r(R),s(R),t(R)的关系图.11.通过求主析取范式判断下列命题公式是否等价:(1)G=(P∧Q)∨(P∧Q∧R)(2)H=(P∨(Q∧R))∧(Q∨(P∧R))13.设R和S是集合A={a,b,c,d}上的关系,其中R={(a,a),(a,c),(b,c),(c,d)}, S={(a,b),(b,c),(b,d),(d,d)}.(1)试写出R和S的关系矩阵;(2)计算RS,R∪S,R-1,S-1R-1.四、证明题参考答案一、填空题1.{3};{{3},{1,3},{2,3},{1,2,3}}.2n.2.23.1={(a,1),(b,1)},2={(a,2),(b,2)},3={(a,1),(b,2)},4={(a,2),(b,1)};3,4.4.(P∧Q∧R).5.12,3.6.{4},{1,2,3,4},{1,2}.7.自反性;对称性;传递性.8.(1,0,0),(1,0,1),(1,1,0).9.{(1,3),(2,2),(3,1)};{(2,4),(3,3),(4,2)};{(2,2),(3,3)}.10.2mn.11.{x|-1≤x<0,xR};{x|1<x<2,xR};{x|0≤x≤1,xR}.12.12;6.13.{(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)}.14.x(P(x)∨Q(x)).15.21.16.(R(a)∧R(b))→(S(a)∨S(b)).17.{(1,3),(2,2)};{(1,1),(1,2),(1,3)}.二、选择题1.C.2.D.3.B.4.B.5.D.6.C.7.C.8.A.9.D.10.B.11.B.13.A.14.A. 15.D三、计算证明题1.(1)(2)B无上界,也无最小上界。
下界1,3;最大下界是3.(3)A无最大元,最小元是1,极大元8,12,90+;极小元是1.2.R={(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)}.(1)(2)1000110011101111 RM⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦3.(1)=((x))=(x)+3=2x+3=2x+3.(2)=((x))=(x)+3=(x+3)+3=x+6,(3)=((x))=(x)+3=x/4+3,(4)=((x))=(x)/4=2x/4=x/2,(5)=()=+3=2x/4+3=x/2+3.4.(1)P (a ,f (a ))∧P (b ,f (b ))=P (3,f (3))∧P (2,f (2)) =P (3,2)∧P (2,3) =1∧0=0.(2)xyP (y ,x )=x (P (2,x )∨P (3,x )) =(P (2,2)∨P(3,2))∧(P (2,3)∨P(3,3)) =(0∨1)∧(0∨1) =1∧1=1.5.(1) (2)无最大元,最小元1,极大元8,12;极小元是1. (3)B 无上界,无最小上界。