小学数学思维拓展课—第3节 分解法 讲义

合集下载

数学浙教版七下因式分解精品教案3

数学浙教版七下因式分解精品教案3

数学浙教版七下因式分解精品教案3

一、教学内容

本节课选自浙教版数学七年级下册第3章《因式分解》。具体内容包括教材第3.1节至3.3节的内容,详细讲解因式分解的定义、方法和应用。重点掌握提取公因式法、平方差公式、完全平方公式等方法进行因式分解。

二、教学目标

1. 让学生理解因式分解的概念,掌握因式分解的基本方法,并能熟练运用。

2. 培养学生运用因式分解解决实际问题的能力,提高数学思维能力。

3. 培养学生合作交流、自主探究的学习习惯,激发学生学习数学的兴趣。

三、教学难点与重点

1. 教学重点:因式分解的定义、提取公因式法、平方差公式、完全平方公式。

2. 教学难点:如何灵活运用各种方法进行因式分解,解决实际问题。

四、教具与学具准备

1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程

1. 导入:通过实际情景引入,如让学生分解一个多项式的因式,

引出本节课的主题——因式分解。

2. 讲解:讲解因式分解的定义,介绍提取公因式法、平方差公式、完全平方公式等方法。

4. 随堂练习:让学生独立完成教材上的练习题,及时巩固所学知识。

5. 小组讨论:分组讨论,让学生相互交流心得,解决练习中遇到

的问题。

7. 作业布置:布置课后作业,巩固所学知识。

六、板书设计

1. 因式分解的定义

2. 提取公因式法

3. 平方差公式

4. 完全平方公式

七、作业设计

1. 作业题目:

(1)分解因式:x^2 5x + 6

(2)分解因式:4a^2 9b^2

(3)分解因式:9x^2 + 30x + 25

(4)应用题:一个长方形的长是x+3,宽是x3,求长方形的

因式分解讲义精讲

因式分解讲义精讲

教育教学讲义

学员姓名:年级:学科教师:

上课时间:辅导科目:数学课时数:2

课题因式分解

教学目标讲解因式分解的三种方法 1 提取公因式法2用乘法公式因式分解3特殊的因式分解

教学内容

课前检测

知识梳理

6.1因式分解

谁能以最快速度求:当a=101,b=99时,a2-b2的值?

概念.像这样,把一个多项式化成几个整式的积的形式叫因式分解,有时,也把这一过程叫分解因式.

①左边是多项式,右边是整式;②右边是整式的乘积的形式.

1.填空(整式乘法,因式分解)

2.这两种运算是什么关系?(互逆)

图示表示:

小学数学_分解质因数教学设计学情分析教材分析课后反思

小学数学_分解质因数教学设计学情分析教材分析课后反思

⼩学数学_分解质因数教学设计学情分析教材分析课后反思

《分解质因数》教学设计

教学内容:青岛版义务教科书四年级下册第三单元信息窗3

教学⽬标:(⼀)理解质因数、分解质因数的意义。

(⼆)会把⼀个合数分解质因数,掌握⽤短除式分解质因数。

(三)培养学⽣观察分析,概括的能⼒。

教学重点:质因数与分解质因数的意义。

教学难点:⽤短除式分解质因数。

⼀、温故质疑,引⼊新课

师、同学们,本单元我们学习了很多数,有:因数、倍数、奇数、偶数、质数、合数,这么多的数,你分的清吗?很有信⼼,考考你?

师、⽤乘法算式找出60所有的因数?⽼师开个头:60=1×60,1和60是60的因数。你能像⽼师这样接着说吗?

⽣:60=2×30,2和30是60的因数……7没有,8没有,9没有,10重复了)所以,60的因数有:1、60、2、30、3、20、4、15、5、12、6、10。

师:在60的这些的因数中,那些是质数?

⽣:2、3、5

师:那些是合数?

⽣:60、30、20、15、12、6、10、4

师:1呢?

⽣:1既不是质数,⼜不是合数。

师:同学们对以前的知识掌握的⾮常好,今天这节课。我们继续学习有关数的知识。(板书:分解质因数)

师:看到这个课题,你能提出什么问题?

⽣:⑴什么是质因数?

⑵什么是分解质因数?

⑶怎样分解质因数?

⑷分解质因数的⽅法是什么?

⑸为什么要分解质因数?

师:同学们很会思考,根据课题就能提出这么多有价值的问题,⽼师整理了⼀下⼏条:⾸先是质因数和分解质因数的定义,再就是分解质因数的⽅法和作⽤,⽼师再提⼀个问题:把什么数分解质因数?下⾯我们带着这些问题,⼀起来学习本节课。

5以内数的分解与组成教案

5以内数的分解与组成教案

5以内数的分解与组成教案

5以内数的分解与组成教案篇1

活动目标:

1、初步体验数量为5的物品可以分成两个部分

2、在活动中学习掌握5的分解与组合

3、通过感知分解组合的关系,提高对数学活动的兴趣。

活动准备:物质准备:PPT,黑板上展示操作——盘子,数字,符号卡,操作题…

经验准备:接触过5以内数的分合

活动过程:

一、游戏导入:《数字问答游戏》

二、活动环节

1、观看并操作课件《分草莓》

(1)教师引导引导幼儿将5颗草莓分在两个盘子里,可以怎么分呢?

(2)教师示范将5颗草莓分成1颗和4颗。

(3)请幼儿操作,尝试不同的分法。

教师:还可以怎么分呢?请小朋友试试看吧!

(4)教师小结:5颗草莓可以分成

1颗草莓和4颗草莓

4颗草莓和1颗草莓

2颗草莓和3颗草莓

3颗草莓和2颗草莓

一共有4种分法。

2、观看课件《学习分合式》,认识分合号及分合式。

(1)认识分合号

教师:这是分合号,用分合号就可以很方便把刚才分草莓的结果记录下来。

(2)教师示范分合式及读法

教师:5颗草莓分成了1颗和4颗,所以5可以分成1和4;1颗草莓和4颗草莓合起来是5颗草莓,所以1和4合起来是5。

3、操作课件《数字卡片》,进一步了解5的分解组合。

教师:请根据卡片上的数字及图案数量,找出合起来是5的两张不同形状的卡片。

4、操作课件《彩色气球》,巩固5的分解组合。

教师:请给气球涂上红蓝两种颜色,涂完后用对应的分合式记录下来。

三、教师将分合式汇总到黑板上进行展示。

教师:小朋友看一看有几种分法?请小朋友分分看。

幼儿:4种。

教师:这4种分法怎样记录让我们看起来更清晰呢?

人教版四年级数学下册。第三单元。运算定律能力题和奥数题(附答案)

人教版四年级数学下册。第三单元。运算定律能力题和奥数题(附答案)

人教版四年级数学下册。第三单元。运算定律能力题和奥数题(附答案)

本文介绍了人教版四年级数学(下)同步奥数能力提升思维拓展潜能开发课程中的第三单元——运算定律能力题和奥数题。其中,板块一介绍了凑整法,通过例题1和练1展示了如何解决复杂的计算问题。板块二介绍了“交换两个加数相同数

位上的数,和不变”的规律,通过例题2和练2展示了如何解

决竖式谜问题。板块三介绍了转化法,通过例题3和练3展示了如何解决加法简算问题。板块四介绍了对应法,通过例题4

和练4展示了如何解决等差数列求和的问题。板块五介绍了分解凑整法,通过例题5和练5展示了如何解决乘法简算的问题。板块六介绍了乘法交换律,通过例题6和练6展示了如何解决乘、除混合运算中的简算问题。板块七介绍了5和2相乘积中的规律,通过例题7和练7展示了如何解决积末尾有几个连续的问题。板块八介绍了转化法,通过例题8和练8展示了如何解决复杂的推算问题。最后,板块九介绍了拆分法,通过例题

9展示了如何解决简算问题。

人教版四年级数学(下)同步奥数能力提升思维拓展潜能开发

练9

1) 计算:666×667+222×999.

2) 计算:+9999×9999.

板块十

比较乘法算式积的大小的问题

例题10

不计算,比较下列两个乘法算式的积的大小。

1) 3636×42

2) 4242×36

练10

计算:×39-×61

板块十一

使用数的组成和乘法分配律解决简算问题

例题11

快速计算下列问题的结果。

1234+2341+3412+4123)÷(1+2+3+4)

练11

计算:++++

期中、期末考试真题

1.(2014·大兴) 与101×125相等的算式是()。

智力七巧板:第五节课《按图分解3--(1)图形分解》说课讲解

智力七巧板:第五节课《按图分解3--(1)图形分解》说课讲解
Biblioteka Baidu
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
智力七巧板:第五节课《按图分 解3--(1)图形分解》
划分割线的要点
①先拼再划——先组拼出图案,再用七 巧专用画板根据组拼结构划出分割线; ②主次分明——着重确定“曲形板”、 “中心板”的位置; ③结构拼图——根据板块之间的结构或 部分板块的结合方法来划分。
练习用智力七巧板组拼下图,并在图案上用七巧专用画板划出分解线:

3的分解中班数学教案

3的分解中班数学教案

3的分解中班数学教案

一、教学目标

1.了解并掌握3的分解。

2.学会运用分解法解决简单数学问题。

3.培养学生逻辑思维和数学推理能力。

二、教学重点

1.掌握3的分解方法。

2.运用分解法解决相关问题。

三、教学难点

1.培养学生逻辑思维和数学推理能力。

2.在实际问题中运用3的分解法。

四、教学准备

1.教案

2.黑板、粉笔

3.练习题

4.PPT或教学素材

五、教学过程

步骤一:引入

1.教师引导学生回顾上节课学过的分解法,并简要介绍今天的教学内容。

2.通过一些日常生活中的示例引发学生的思考,如:小明手上有3个苹果,他想把这些苹果分给他的两个朋友,每人分几个较合适?

步骤二:认识3的分解

1.通过上述引导,学生可能会意识到3可以分解为1+2或2+1两个部分。教师可以在黑板上写出3=1+2和3=2+1的式子,并与学生一起读。

2.教师引导学生自主观察和思考,在生活中还有哪些数可以用3的分解来表示。学生可以举出一些例子,如:3个梨、3个桃子等。

3.教师在黑板上列出这些例子,并与学生一起朗读。

步骤三:学习运用3的分解法解决问题

1.教师通过举例与学生一起解决一些简单的数学问题,如:小明手上有6个苹果,他想把这些苹果分给他的三个朋友,每人分几个?

教师先引导学生分解6,即6=1+5,然后再进行小组讨论,最终得出每人分2个苹果。

这样的例子可以多进行几个,以加深学生对分解法的理解和运用能力。

步骤四:拓展练习

1.教师给学生布置一些相关的练习题,要求学生自己进行思考并解

决问题。

2.在完成练习后,教师可以选择几道题目进行讲解,鼓励学生展示

人教版九年级数学上册:21.2.3 因式分解法 教学设计3

人教版九年级数学上册:21.2.3 因式分解法  教学设计3

人教版九年级数学上册:21.2.3 因式分解法教学设计3

一. 教材分析

因式分解法是九年级数学上册中的一个重要内容,主要让学生掌握因式分解的方法和技巧,培养学生解决一元二次方程的能力。本节课的内容是在学生已经掌握了多项式乘法、完全平方公式的基础上进行学习的,通过本节课的学习,让学生能够熟练运用因式分解法解决实际问题。

二. 学情分析

九年级的学生已经具备了一定的数学基础,对于多项式乘法和完全平方公式有一定的了解。但是,因式分解法作为一种解决一元二次方程的方法,对学生来说还比较陌生,需要通过本节课的学习来掌握。同时,学生对于新知识的学习还是有一定的畏惧心理,需要教师在教学中给予引导和鼓励。

三. 教学目标

1.让学生掌握因式分解法的基本步骤和技巧。

2.培养学生运用因式分解法解决实际问题的能力。

3.提高学生对数学学习的兴趣和自信心。

四. 教学重难点

1.重点:因式分解法的基本步骤和技巧。

2.难点:如何运用因式分解法解决实际问题。

五. 教学方法

1.采用问题驱动法,引导学生主动探究因式分解法的步骤和技巧。

2.运用实例讲解法,让学生通过具体的例子来理解和掌握因式分解法。

3.采用分组合作法,让学生在小组内讨论和分享学习心得,提高学生的

合作能力。

六. 教学准备

1.准备相关的教学PPT,内容包括因式分解法的步骤和技巧,以及实际

的例子。

2.准备一些练习题,用于学生在课堂上练习和巩固所学知识。

七. 教学过程

1.导入(5分钟)

通过一个实际问题引入本节课的主题,让学生思考如何解决这个问题,从而引出因式分解法的重要性。

小学数学-六年级下册-3-3 解决问题 教学设计

小学数学-六年级下册-3-3 解决问题 教学设计

小学数学-六年级下册-3-3 解决问题教学设计

一. 教材分析

《小学数学-六年级下册-3-3 解决问题》这一节内容主要让学生掌握解决问题的方法,培养学生的逻辑思维能力和解决实际问题的能力。教材通过具体的实例,让学生学会如何分析问题,如何列出算式,并能够进行计算。同时,教材还注重培养学生的估算能力,让学生在解决实际问题时,能够快速准确地进行估算。

二. 学情分析

六年级的学生已经掌握了基本的数学运算能力和一些解决实际问题的方法。但是,他们在面对复杂的问题时,可能会感到困惑,不知道如何下手。因此,在教学这一节内容时,需要让学生通过具体的实例,逐步掌握解决问题的方法,并能够灵活运用。

三. 教学目标

1.让学生掌握解决问题的基本方法,能够通过分析问题,列出算式,并

进行计算。

2.培养学生解决实际问题的能力,让他们能够将所学知识应用到生活中。

3.培养学生的估算能力,让他们在解决实际问题时,能够快速准确地进

行估算。

四. 教学重难点

1.教学重点:让学生掌握解决问题的基本方法,能够通过分析问题,列

出算式,并进行计算。

2.教学难点:让学生在面对复杂的问题时,能够灵活运用所学知识,进

行准确的估算。

五. 教学方法

1.实例教学:通过具体的实例,让学生学会如何分析问题,如何列出算

式,并能够进行计算。

2.小组讨论:让学生在小组内进行讨论,共同解决问题,培养他们的合

作能力和解决实际问题的能力。

3.估算练习:让学生进行估算练习,培养他们的估算能力。

六. 教学准备

1.准备具体的实例,用于讲解和练习。

2.准备估算练习题,用于巩固所学知识。

小学数学因式分解课件

小学数学因式分解课件

练习题目的选择 应与因式分解的 知识点紧密相关, 难度适中。
练习形式可以多 样化,如填空、 选择、计算等, 以激发学生的学 习兴趣。
练习过程中应及 时给予学生反馈, 指出错误并引导 学生进行纠正。
练习环节的时间 安排应合理,以 保证学生有足够 的时间进行思考 和练习。
总结环节
回顾本节课所学内 容
总结因式分解的步 骤和方法
教学建议
结合实际:将因式分解与生活实例 相结合,帮助学生理解
强化练习:通过多种形式的练习, 如填空、选择、计算等,帮助学生 巩固所学知识
添加标题
添加标题
添加标题
添加标题
互动教学:采用小组合作、竞赛等 方式,激发学生的学习兴趣和主动 性
及时反馈:对学生的表现和练习结 果及时给予反馈和指导,帮助学生 发现问题并及时纠正
教学方法
结合具体实例进行讲解,帮助学生 理解因式分解的概念和应用。
引入竞赛机制,激发学生的兴趣和 积极性。
添加标题
添加标题
添加标题
添加标题
注重学生的实践操作,通过练习题 巩固所学知识。
及时反馈学生的错误和问题,进行 有针对性的辅导。
教学评价
教学方法:采用 多种教学方法, 如讲解、示范、 练习等,以提高 学生的学习兴趣 和效果。
问题处理
课件运行环境:Windows 7及 以上操作系统

2023年《因式分解》说课稿_3

2023年《因式分解》说课稿_3

2023年《因式分解》说课稿

2023年《因式分解》说课稿1

一、教材分析

(一)地位和作用

分解因式与数是分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。因此分解因式这一章在整个教材中起到了承上启下的作用。同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。因此,因式分解的学习是数学学习的重要内容。根据《课标》的要求,__介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。因此公式法是分解因式的重要方法之一,是现阶段的学习重点(二)学情分析:学生已经学习了乘法公式中的完全平方公式和平方差公式,在上一节课学习了提公因式法和平方差公式分解因式,初步体会了分解因式与整式乘法的互逆关系,为本节课的学习奠定了良好的基础。学生已经建立了较好的预习习惯,为本节课的难点突破提供了先决条件。

(三)教学目标

1.知识与技能使学生了解运用公式法分解因式的意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式。

2.过程与方法经历通过整式乘法的完全平方公式逆向得出运用公式分解因式方法的过程,发展学生的逆向思维和推理能力。

3.情感与态度培养学生灵活的运用知识的能力和操积极思考的良好行为,体会因式分解在数学学科中的地位和价值。

因式分解教案_3

因式分解教案_3

因式分解教案

因式分解教案篇1

【教学目标】

1、了解因式分解的概念和意义;

2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

【教学重点、难点】

重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学过程】

㈠、情境导入

看谁算得快:(抢答)

(1)若a=101,b=99,则a2-b2=___________;

(2)若a=99,b=-1,则a2-2ab+b2=____________;

(3)若x=-3,则20x2+60x=____________。

㈡、探究新知

1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)

(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

板书课题:§6.1 因式分解

因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

㈢、前进一步

1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

小学数学思维分解教案

小学数学思维分解教案

小学数学思维分解教案

教学目标:

1. 学生能够理解数学思维分解的概念。

2. 学生能够运用数学思维分解解决简单的数学问题。

3. 学生能够发展创造性思维和解决问题的能力。

教学重点:

1. 数学思维分解的概念和方法。

2. 运用数学思维分解解决问题的能力。

教学难点:

1. 培养学生的创造性思维和解决问题的能力。

2. 引导学生将问题分解为更小的部分进行思考和解决。

教学准备:

1. 教师准备一些简单的数学问题,如加减法、乘除法等。

2. 准备白板、彩色粉笔或幻灯片等教学工具。

教学过程:

Step 1: 引入

教师通过提问和讨论的方式引入数学思维分解的概念。例如,教师可以问学生:“你们知道什么是数学思维分解吗?在解决数学问题时,我们为什么需要使用思

维分解呢?”通过引导学生思考和回答问题,激发学生对数学思维分解的兴趣和

好奇心。

Step 2: 概念讲解

教师向学生介绍数学思维分解的概念和方法。教师可以通过具体的例子和图示

来说明思维分解的过程。例如,教师可以用一个简单的加法问题来说明思维分

解的方法,如“8 + 5 = ?”,教师可以引导学生将问题分解为“8 + 2 = ?”和“5 = ?”,然后分别解决这两个小问题,最后将结果相加得到最终答案。

Step 3: 练习

教师提供一些简单的数学问题给学生进行练习。教师可以让学生分组合作解决

问题,鼓励他们运用数学思维分解的方法来解决。教师可以在解决过程中给予

适当的指导和帮助。

Step 4: 拓展

教师提供一些稍微复杂的数学问题给学生进行拓展练习。教师可以要求学生自

己思考和分解问题,并给予他们更多的自主解决问题的机会。教师可以鼓励学

智力七巧板:第五节课《按图分解3--(1)图形分解》

智力七巧板:第五节课《按图分解3--(1)图形分解》

第五节课
按图分解——3—(1)图形分解 二年级数学组
直源自文库飞机
划分割线的要点
①先拼再划——先组拼出图案,再用七 巧专用画板根据组拼结构划出分割线; ②主次分明——着重确定“曲形板”、 “中心板”的位置; ③结构拼图——根据板块之间的结构或 部分板块的结合方法来划分。
练习用智力七巧板组拼下图,并在图案上用七巧专用画板划出分解线:

代数第二册第八章第3节分组分解法(一)

代数第二册第八章第3节分组分解法(一)

【本讲教育信息】

一. 教学内容:

分组分解法(一)

二. 重点、难点:

分组分解是一种很重要的方法,当提公因式法与运用公式法不能直接起作用时,要想到利用分组分解法,另外拆项,添项也可以看作是分组分解的拓展,分组分解在于恰当的分组,一般说来分组的方法不是唯一的。

【典型例题】

[例1] 分解因式2332

3+++a a a

分析:这是四项所以不能用公式,注意到3a 所以它可以用立方公式或者观察系数1,3,3,2适当的拆分即可。

解法一:原式33231)1(1)133(++=++++=a a a a ]1)1()1)[(11(2++-+++=a a a )1)(2(2+++=a a a

解法二:原式)2()2()2(223+++++=a a a a a

)1)(2()2()2()2(22+++=+++++=a a a a a a a a 解法三:原式)222()(223+++++=a a a a a )1(2)1(22+++++=a a a a a )2)(1(2

+++=a a a 解法四:原式)333()1(2

3

+++-=a a a )1(3)1)(1(2

2

+++++-=a a a a a

)1)(2()31)(1(2

2

+++=+-++=a a a a a a

说明:分组方法不唯一,此题解法一、四是将常2拆项后再分组;解法二、三是将二

次项、一次项都拆项后再分解。 [例2] 分解因式

(1)xy y y x x 2)1()1(-++- (2))()(2222b a cd d c ab +++ (3)3232)1(x x x x -+++

大班数学3的分解教案

大班数学3的分解教案

大班数学3的分解教案

【教学目标】

1. 理解分解的概念,能正确运用分解法对数字进行分解。

2. 能用分解法将整数分解成质数的积。

3. 能用分解法将简单的二次根式分解成其最简形式。

4. 培养学生的观察和分析能力,提高他们的数学思维能力和解决问题的能力。

【教学重难点】

1. 分解整数的积为质数的积。

2. 分解二次根式为最简形式。

【教学准备】

黑板、彩色粉笔、练习纸。

【教学过程】

一、导入(5分钟)

1. 上一节课我们学习了因式分解的方法,谁能告诉我什么是因式分解?

(回答学生的问题,导入本节课的内容)

二、新课讲解(15分钟)

1. 分解整数的积为质数的积

(1)将一个整数按质因数相乘的形式叫做分解这个整数。(2)分解整数的方法:

a. 当整数是质数时,分解的结果就是它本身。

b. 当整数不是质数时,用小质数去除,直到所得商是一个质

数为止。

(3)我们可以用相应的过程把分解从左到右表示出来,叫分解树。

2. 分解二次根式为最简形式

(1)简单的二次根式是指,根式中的指数是1、2或者2的倍数。

(2)分解二次根式的方法

a. 拆分出完全平方因子。

b. 化简完全平方因子。

三、示范练习(10分钟)

1. 将12分解成质数的积。

(这是一个实际的问题,其中的技巧是分析我们现在有的知识点进行运用)

2. 将2√50分解成最简形式。

(通过这个问题,学生理解如何应用分解法对二次根式进行分解和化简)

四、小组合作(15分钟)

1. 将20分解为两个数字的积,使得它们的和最小。

2. 将84分解成两个数字的积,使得它们的差最小。

五、巩固练习(10分钟)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

125×24=
25×160=
(4) 125×48=
125×56=
125×16=
1、135×12=
课后练习 2:小学四年级数学上册乘法练习题
2、176×46=
3、325×26=
15、85×142=
4、237×83=
5、322×35=
6、54×145=
14、28×153=
7、36×254=
8、83×217=
9、43×129=
16、16×134=
10、32×164=
11、25×328=
12、12×124=
17、34×246=
4
启迪思维 点拨方法 开发潜能 因材施教 直线提分
教师: 伍老师
学生: 年级:
科目: 数学
时间: 2017 年 月
日 课次:
成绩:
知识点一:两位数乘两位数
分解法
1、在计算过程中,一般的,我们把最高位的数称为“头”,个位数就被称为“尾”。 2、十几乘十几的计算方法:
(1)一个因数加上另一个因数的尾数的和乘10,再加上两尾数的积。
十几乘十几的公式:(一个因数+另一个因数的尾数)×10+尾数×尾数
例题讲解: 例1: 12×13=
17×18=
所以:12×13 我们可以写成: 12×13= (12+3)×10+2×3=150+6=156
所以 17×18 我们可以写成:
课堂练习: 1、计算
12 ×17=
16×13=
13×13=
18×14=
16×15=
12×17=
(2)17×150=
140×13=
120×16=
(3) 17×190=
18×150=
130×19=
知识点四:分解成特殊数 1、把因数分解成特殊数,用特殊数组合更快求出结果。(25×4=100,125×8=1000)
(25×3=75, 125×4=500) (25×2=50, 125×2=250) 3、分解法主要是抓住因数的特征进行分解,运用乘法的交换律、结合律,令到计算更简便。
例题讲解:
例2、计算:18×130
用公式:[(18+3)×10+8×3]×10=(210+24)×10=2340
把 130 当成 13, 然后用 18×13=(18+3)×10+8×3
=210+24 =234 最后在 234 后面加上一个 0。
1
课堂练习: (1) 18×14=
启迪思维 点拨方法 开发潜能 因材施教 直线提分
7、88×125=
8、24×125=
9、80×125=
10、250×44=
11、16×160=
12、180×18=
3
启迪思维 点拨方法
课后练习:1、计算下列各式
(1) 25×48=
36×25 =
开发百度文库能 因材施教
48×25=
直线提分
(2) 12×25=
25×16=
125×16=
(3) 72×125=
启迪思维 点拨方法 开发潜能 因材施教 直线提分
28×25 = = =
25×32 = = =
125×32 = = =
课堂练习: 25×16=
125×64=
125×12=
44×125=
分组比赛: 1、130×12=
2、64×125=
3、25×24=
4、250×80=
5、320×25=
6、 36×25=
例题讲解: 例1、计算
25×36 = 25×4×9 = 100 ×9 = 900
先把 36 分解成 4×9, 然后用 4×25=100
例2: 64×125 = 8×8×125 = 8×1000 =8000
先把 64 分解成 8×8, 然后用 8×125=1000
2
课堂练习: 1、计算:
25×44 = = =
相关文档
最新文档