【3套打包】深圳市七年级上册数学第三章一元一次方程单元测试题(含答案).doc

合集下载

人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案

人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案

人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。

12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。

人教版七年级数学上册《第3章 一元一次方程》单元测试题(有答案)

人教版七年级数学上册《第3章 一元一次方程》单元测试题(有答案)

人教版七年级数学上册第3章一元一次方程单元测试题一.选择题(共10小题)1.在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2.下列方程中,是一元一次方程的是()A.=3 B.x2+1=5 C.x+2y=3 D.x=03.x=2满足下列方程的是()A.x2=2 B.x2=4 C.x2=8 D.x2=164.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1 B.1 C.﹣5 D.55.方程3x+7=x﹣1的解是()A.x=3 B.x=C.x=﹣4 D.x=﹣6.下列等式变形,正确的是()A.如果x=y,那么=B.如果ax=ay,那么x=yC.如果S=ab,那么a=D.如果x=y,那么|x﹣3|=|3﹣y|7.对方程=﹣1﹣进行去分母,正确的是()A.4(7x﹣5)=﹣1﹣3(5x﹣1)B.3(7x﹣5)=﹣12﹣4(5x﹣1)C.4(7x﹣5)=﹣12+3(5x﹣1)D.4(7x﹣5)=﹣12﹣3(5x﹣1)8.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况,如果参赛者F得76分,则他答对的题数为()A .16题B .17题C .18题D .19题9.为迎军运会,武汉市对城区主干道进行绿化,计划把某一段公路的两侧全部栽上银杏树,要求每两棵树的间隔相等,并且路的每一侧的两端都各栽一棵,如果每隔4米栽一棵,则还差102棵;如果每隔5米栽一棵,则多出102棵,设公路长x 米,有y 棵树,则下列方程中:①2(+1)﹣102=2(+1)+102;②﹣102=+102;③4(﹣1)=5(﹣1);④4(﹣1)=5(﹣1) 其中正确的是( )A .①③B .②③C .①④D .①10.某商品进价200元,标价300元,打n 折(十分之n )销售时利润率是5%,则n 的值是( )A .5B .6C .7D .8二.填空题(共8小题)11.方程x =﹣1是关于x 的一元一次方程mx ﹣10=0的解,则m = .12.有一批树苗.若每人种10棵,则余下6棵;若每人种12棵则缺6棵.参与种树的人数是 .13.已知:x ﹣4与2x +1互为相反数.则:x = .14.当x = 时,式子x ﹣和7﹣的值相等.15.某商店在某时刻以每件60元的价格卖出一件衣服,盈利25%,则这件衣服的进价是 .16.父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的,则女儿现在的年龄是 .17.甲乙两城市相距400千米,摩托车与轿车分别从甲乙两城市同时出发,相向而行.已知摩托车每小时行35千米,轿车每小时行65千米,两车相遇时距甲城市 千米.18.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x 米,根据题意列方程为 .三.解答题(共8小题)19.解方程:①2﹣(4﹣x )=6x ﹣2(x+1)②﹣1=20.小莹在解关于x 的方程5a +x =13时,误将+x 看作﹣x ,得方程的解为x =﹣2,求原方程的解为多少?21.我们定义一种新运算:a*b=2a+ab(等号右边为统筹意义的运算):(1)若,求x的值;(2)若(﹣3)*(2*x)=x+24,求x的值.22.【概念学习】:若a+b=2,则称a与b是关于1的平衡数;【初步探究】:(1)5与是关于1的平衡数,与﹣1是关于1的平衡数;灵活运用:(2)若m=﹣3x2+2x﹣6,n=5x2﹣2(x2+x﹣4),试判断m,n是不是关于1的平衡数?并说明理由.23.一般情况下+=不成立,但有些数可以使得它成立,例如m=n=0.我们称使得+=成立的一对数m,n为“相伴数对”,记为(m,n).(1)试说明(1,﹣4)是相伴数对;(2)若(x,4)是相伴数对,求x的值.24.一个旅游团共26人去参观一个景点,已知成人票每张120元,儿童票每张80元,经预算,共需要门票钱2640元.(1)求这个旅游团成人和儿童的数量各是多少人?(2)到了售票窗口得知,购买两张成人票将会赠送一张儿童票,请计算共需门票钱多少元?25.某市区自2019年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.6×20+2.4×10+3.2×2=62.4(元)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为元;(2)如果乙用户缴交的水费为39.2元,则乙月用水量吨;(3)如果丙用户的月用水量为a吨,则丙用户该月应缴交水费多少元?(用含a的代数式表示,并化简)26.已知点M、N在数轴上,点M对应的数是﹣3,点N在点M的右边,且距点M4个单位长度.(1)直接写出点N所对应的有理数;(2)点P是数轴上一动点,请直接写出点P到点M和点N的距离和的最小值;(3)若点P到点M、N的距离之和是6个单位长度:①求点P所对应的有理数是多少?②如果点Q从点N出发,沿数轴正方向以每秒1个单位长度的速度运动,同时点P以每秒3个单位长度的速度沿数轴正方向运动,t秒后P、Q两点相距4个单位长度,求t.参考答案与试题解析一.选择题(共10小题)1.解:(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15﹣8+1,是等式但不含未知数,所以不是方程.(3),是含有未知数的等式,所以是方程.(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.2.解:A、是分式方程,故A错误;B、是一元二次方程,故B错误;C、是二元一次方程,故C错误;D、是一元一次方程,故D正确;故选:D.3.解:A、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.B、当x=2时,左边=4=右边,即x=2满足该方程,故本选项符合题意.C、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.D、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.故选:B.4.解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故选:A.5.解:3x+7=x﹣1,3x﹣x=﹣1﹣7,2x=﹣8,x=﹣4,故选:C.6.解:A、a=0时,两边都除以a2,无意义,故A错误;B、a=0时,两边都除以a,无意义,故B错误;C、b=0时,两边都除以b,无意义,故C错误;D、如果x=y,那么x﹣3=y﹣3,所以|x﹣3|=|3﹣y|,故D正确;故选:D.7.解:方程=﹣1﹣进行去分母得:4(7x﹣5)=﹣12﹣3(5x﹣1),故选:D.8.解:答对一题得100÷20=5(分),答错一题得94﹣5×19=﹣1(分).设参赛者F答对了x道题目,则答错了(20﹣x)道题目,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故选:A.9.解:设公路长x米,有y棵树,根据题意,得①2(+1)﹣102=2(+1)+102,③4(﹣1)=5(﹣1);故选:A.10.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.二.填空题(共8小题)11.解:把x=﹣1代入方程mx﹣10=0得:﹣m﹣10=0,解得:m=﹣10,故答案为:﹣10.12.解:设参与种树的人数为x,∴10x+6=12x﹣6,∴x=6,故答案为:613.解:根据题意得:x﹣4+2x+1=0,移项合并得:3x=3,故答案为:114.解:根据题意得:x﹣=7﹣,去分母得:15x﹣5(x﹣1)=105﹣3(x+3),去括号得:15x﹣5x+5=105﹣3x﹣9,移项得:15x﹣5x+3x=105﹣9﹣5,合并同类项得:13x=91,把x的系数化为1得:x=7,故答案为:7.15.解:设这件衣服的进价为x元,由题意得,x+25%x=60解得x=48,故答案为:48.16.解:设女儿现在年龄是x岁,则父亲现在的年龄是(54﹣x)岁,根据题意得:54﹣x﹣x=3x﹣(54﹣x),解得:x=12.答:女儿现在的年龄是12岁.故答案为:12.17.解:设两车经过x小时相遇,由题意得,35x+65x=400,解得x=4,∴两车相遇时距甲城市的距离为35×4=140(千米),故答案为:140.18.解:设按喇叭时,汽车离山谷x米,根据题意列方程为 2x﹣2×15=340×2.故答案为:2x﹣2×15=340×2.三.解答题(共8小题)19.解:①去括号得:2﹣4+x=6x﹣2x﹣2,移项合并得:﹣3x=0,②去分母得:3x+3﹣12=4x﹣2,移项合并得:﹣x=7,解得:x=﹣7.20.解:把x=﹣2代入方程5a﹣x=13,得:5a+2=13,解得:a=,即原方程为11+x=13,解得:x=2,原方程的解为x=2.21.解:(1)3*x=2×3+3x=6+3x*x=2×+x=1+x,∴6+3x=1+x,∴x=2;(2)∵2*x=2×2+2x=4+2x,∴﹣3*(2*x)=2(﹣3)+(﹣3)(4+2x)=﹣6﹣12﹣6x=﹣18﹣6x,∴﹣18﹣6x=x+24,∴x=﹣622.解:(1)∵a+b=2,∴5与﹣3是关于1的平衡数,3与﹣1是关于1的平衡数.故答案为:﹣3,3.(2)m与n是关于1的平衡数,理由如下:∵m+n=(﹣3x2+2x﹣6)+[5x2﹣2(x2+x﹣4)]=﹣3x2+2x﹣6+5x2﹣2x2﹣2x+8=2.∴a与b是关于1的平衡数.23.解:(1)由题意可知:m=1,n=﹣4,∴+=,=,∴(1,﹣4)是相伴数对;(2)由题意可知: +=,解得:x=﹣224.解:(1)设旅游团成人的数量是x人,则儿童的数量是(26﹣x)人,由题意得:120x+80(26﹣x)=2640解得x=1426﹣x=26﹣14=12答:这个旅游团成人的数量是14人,儿童的数量是12人;(2)2640﹣14÷2×80=2080(元)答:共需门票2080元.25.解:(1)甲用户的月用水量为12吨,则甲需缴交的水费为12×1.6=19.2元;答:甲需缴交的水费为12×1.6=19.2元(2)设用水量为x吨,当20<x≤30时,如果乙用户缴交的水费为39.2元,∴1.6×20+2.4(x﹣20)=39.2,∴x=23答:乙月用水量23吨;(3)①当0<a≤20时,丙应缴交水费=1.6a(元);②当20<a≤30时,丙应缴交水费=1.6×20+2.4(a﹣20)=2.4a﹣16(元);③当a>30时,丙应缴交水费=1.6×20+2.4×10+3.2×(a﹣30)=3.2a﹣40(元).26.解:(1)﹣3+4=1.故点N所对应的数是1;(2)当点P在点M和点N之间时,点P到点M和点N的距离和的最小,最小值为PM+PN=4.(3)①设P点表示的数是x,(a)当点P在点M的左边,∵PM+PN=6,∴1﹣x﹣3﹣x=6,解得x=﹣4,∴点P表示的数是﹣4,(b)当点P在点N的右边,同理可得x﹣1+x+3=6,解得x=2,∴点P表示的数是2,综合以上可得点P表示的数是2或﹣4;(3)点P、Q同时出发向右运动,设运动时间为t秒,当P对应的数是2时,∵点P运动速度大于点Q的运动速度,∴只存在一种情况,∴2﹣1+3t=t+4,解得t=,故分为两种情况讨论:当P对应的数是﹣4时,(a)未追上时:(5+t)﹣3t=4,解得:t=;(b)追上且超过时:3t﹣(5+t)=4,解得:t=.答:经过秒或秒或秒后,P、Q两点相距4个单位长度.。

【精选3套】最新人教版七年级上册数学第三章一元一次方程单元测试题(含答案).doc

【精选3套】最新人教版七年级上册数学第三章一元一次方程单元测试题(含答案).doc

人教版七年级上册数学第三章一元一次方程单元测试题(含答案)一、选择题1.在方程,,中一元一次方程的个数为()A. 1个B. 2个C. 3个D. 4个2.方程3x﹣7=5的解是()A. x=2B. x=3C. x=4D. x=53.如果a+1与互为相反数,那么a=( )A. B. 10 C. - D. -104.若x=1是关于x的方程ax+1=2的解,则a是()A. 1B. 2C. -1D. -25.设P=2y-2,Q=2y+3,有2P-Q=1,则y的值是()A. 0.4B. 4C. -0.4D. -2.56.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?设安排x名工人加工甲部件,可列出方程为()A. 3×16x=2×10(85-x)B. 2×16x=3×10(85-x)C. 8×16x=5×10(85-x)D. 5×16x=8×10(85-x)7.下列方程中,解为x=2的方程是()A. 3x-2=3B. -x+6=2xC. 4-2(x-1)=1D.8.解方程时,去分母、去括号后,正确结果是()A. 4x+1﹣10x+1=1B. 4x+2﹣10x﹣1=1C. 4x+2﹣10x﹣1=6D. 4x+2﹣10x+1=69.下列说法正确的有()(1)若ac=bc,则a=b;(2)若,则a=﹣b;(3)若x2=y2,则﹣4ax2=﹣4by2;(4)若方程2x+5a=11﹣x与6x+3a=22的解相同,则a的值为0.A. 4B. 3C. 2D. 110.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( )A. 26元B. 27元C. 28元D. 29元二、填空题11.若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a=________.12.写出一个以为解的一元一次方程________.13.已知x=3是方程ax﹣6=a+10的解,则a=________.14.在数轴上与表示-2的点相距5个单位长度的点所表示的数是________.15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=________.16.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为 ________17.代数式的值是1,则k = ________.18.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为,于是,他很快知道了这个常数,他补出的这个常数是________.19.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。

人教版七年级上册数学第三章一元一次方程单元测试卷(Word版,含答案)

人教版七年级上册数学第三章一元一次方程单元测试卷(Word版,含答案)

人教版七年级上册数学第三章一元一次方程单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.根据等式的性质,下列变形错误的是( )A .由x+7=5得x+7-7=5-7B .由3x=2x+1得3x -2x=1C .由4-3x=4x 一3得4+3=4x+3xD .由4x=2得x=2A .①①B .①①C .①①D .①①3.下列等式变形中,错误的是( )6.定义新运算:a ①b =a 2﹣b .例如3①2=32﹣2=7,已知4①x =10,则x =( )A .﹣6B .6C .4D .﹣4 7.已知关于x 的方程2(1)10m m x -+=是一元一次方程,则m 的取值是( )A .1±B .1-C .1D .以上答案都不对8.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场.10.某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20B.21C.22D.2311.小明用长16cm的铁丝围成一个长方形,并且长方形的长比宽多2cm,设这个长方形的长为xcm,则x的值为()A.9B.5C.7D.1012.数轴上点A,O,B,C分别表示实数4-,0,2,3,点M,N分别从A,O出发,沿数轴正方向移动,点P从B出发,在线段BC上往返运动(P在B,C处掉头的时间忽略不计),三个点同时出发,点M,N,P的速二、填空题(本大题共8小题,每小题3分,共24分)13.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%19.关于x的方程﹣5x3m﹣2+2m=0是关于x的一元一次方程,那么这个方程的解为.三、解答题(本大题共5小题,每小题8分,共40分)(1)八年级学生进校时开通了A、B两通道,经过6分钟,八年级全部学生进校,已知A通道每分钟通过的人数是B 通道每分钟通过人数的2倍,求A、B通道每分钟通过的人数是多少人?(2)考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A通道旁边增开C通道,在B通道旁边增开D 通道,已知C通道每分钟通过的人数比A通道每分钟通过的人数多20%,求七年级全部学生进校所需时间是多少分钟?25.如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.参考答案:(2)4分钟.25.(1)A出发后经过5秒与B第一次重合;(2)经过40秒A与B第一次重合;(3)s=50米。

人教版七年级数学上册第三章《一元一次方程》章节测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》章节测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》章节测试题一、单选题1.下列方程中为一元一次方程的是( )A .234x y +=-B .232x x -=C .12x x +=D .123y y -=+2.已知关于x 的方程()143k x x k -=-的根是-4,则28k k -的值是( )A .0B .96C .-48D .643.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x +3(x ﹣1)=1 C .若5x ﹣6=2x +8,则5x +2x =8+6D .若3(x +1)﹣2x =1,则3x +3﹣2x =1 4.若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .4 5.解一元一次方程3(2)3212x x --=-去分母后,正确的是( ) A .3(2﹣x )﹣3=2(2x ﹣1) B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1) 6.下列方程变形中,正确的是( )A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1C .方程2332t =,系数化为1得,t =1D .方程110.20.5x x --=,去分母得,5( x ﹣1)﹣2x =1 7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元8.甲、乙两人从同一地点出发,如果甲先出发2小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是( )A .乙比甲多走了2小时B .乙走的路程比甲多C .甲、乙所用的时间相等D .甲、乙所走的路程相等9.明代数学家程大位的《算法统宗》中有一个“以碗知僧”的问题,“巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧?”其大意为:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚?此问题中和尚的人数为( )A .31B .52 C .371 D .624 10.方程 (13153520192021)x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .10102021二、填空题11.如果方程120n x n -+=是关于x 的一元一次方程,那么n =________.12.已知关于x 的方程20x m +=的解比方程30x m -=的解大10,则m =________.13.若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.14.十个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个整数,并把自己想好的数如实告诉他两旁的两个人,然后每人将他两旁的人告诉他的数计算出平均数并报出来.已知每个人报的结果如图所示,那么报“3”的人自己心里想的数是_______.三、解答题15.根据下列条件,列出方程.(1)x 的倒数减去-5的差为9;(2)5与x 的差的绝对值等于4的平方;(3)长方形的长与宽分别为16、x ,周长为40;(4)y 减去13的差的一半为x 的35. 16.解方程: (1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-.17.某连队从驻地出发前往某地执行任务,行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟(15分钟)内把命令传达给该连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问小王能否在规定的时间内完成任务?18.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案11.212.-1213.2514.-215.(1)()159x --=;(2)254x -=;(3)()21640x +=;(4)()131325y x -= 16.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 17.能够在规定时间内完成任务18.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。

七年级上册数学第三章 一元一次方程 测试卷(含答案)

七年级上册数学第三章 一元一次方程 测试卷(含答案)

七年级上册数学第三章 一元一次方程 测试卷一、选择题。

(每小题3分,共30分) 1.下列说法不正确的是( )A .所有的方程都是等式B .方程-2x+1 =0的解是x=21 C .方程y= -2x +1是一元一次方程D .对一元一次方程而言,去分母后所得的方程与原方程是同解方程 2.下列方程是一元一次方程的是( ) A.2x -1=3x +1 B.2x ²+x=1 C.3(2x -1)=2(3x +1) D.y= -5x +43.若关于x 的方程(m -3)1-m x +3 =0是一元一次方程,则m 的值是( ) A .3 B.-3 C.-3或3 D .-2或2 4.下列方程中,解为x= -2的方程是( ) A .4x -2 =5x+1 B .3123=-x x C.7x =9x -2 D.5(x-1)=3(x+3) 5.方程2x+1 =3与2-3xa -=0的解相同,则a 的值为( ) A .7 B .0 C .3 D .56.把1 400元的奖金按两种奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获一等奖的学生有x 人,则下列方程错误的是( ) A.200x+50(22 -x)=1 400 B .502001400x-+x=22 C.50x +200(22 -x)=1 400 D.50(22 -x)=1 400 - 200x 7.若|x+3 |+(2x+y+7)² =0,则2(x -y) +3(x+y )的值是( )A .16 B.- 16 C.12 D .-128.一项工作,甲单独做需要6天完成,乙单独做需要12天完成.若两人合作3天后,剩下的部分由乙单独完成,这样做完这项工作共需要的天数是( )A .10天B .9天C .7天D .6天9.给出下列说法:①若33y x =,则x+3=y+3;②方程2x-3=x+1变形为2x -x=1 +3的方法是移项;③方程7x -2=3x 可变形为3x-2 =7x ;④关于x 的方程(m-2)x=3m -6的解是2.其中说法正确的是( )A .①②③④B .①②④C .①②D .③④10.给出下列说法:①方程x1+x =2是一元一次方程;②方程5x +1=4x -1变形为4x +20= 5x - 20的方法是去分母;③方程-3(1- 2x )=1可变形为-3 -6x =1;④若x ²=y ²,则 |x|=|y|.其中正确说法的序号是( )A .①② B.②④ C.②③④ D .①②③④ 二、填空题。

(人教版)深圳市七年级数学上册第三单元《一元一次方程》测试卷(答案解析)

(人教版)深圳市七年级数学上册第三单元《一元一次方程》测试卷(答案解析)

一、选择题1.代数式x 2﹣1y的正确解释是( )A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数2.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --3.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=24.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n5.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .326.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+-D .如果||||x y =,那么x y =7.下列各式中,符合代数书写规则的是( ) A .273x B .14a ⨯C .126p - D .2y z ÷8.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .09.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202210.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 11.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是12.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个二、填空题13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项. 14.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.15.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________. 16.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________.17.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④18.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.19.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 20.如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米.三、解答题21.已知230x y ++-=,求152423x y xy --+的值. 22.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 23.化简下列各式: (1)32476x y y -+--+; (2)4(32)3(52)x y y x ----. 24.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么? 25.计算:(1)()223537a ab a ab -+-++; (2)()222312424a a a a ⎛⎫+---⎪⎝⎭.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+. (1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由. (3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据代数式的意义,可得答案. 【详解】 解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键.2.C解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题.3.B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】33m x y和22nx y﹣是同类项,得m=2,n=3,所以B选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.4.A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.5.A解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a2020的值.【详解】∵a1=-2,∴2111(3)3a==--,3131213a==-,412312a==--∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.6.B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.7.A解析:A 【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A . 【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.9.A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.10.C解析:C 【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2. 【详解】解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.11.C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.12.C解析:C 【分析】根据单项式的定义逐一判断即可. 【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式, -2是单项式,3b-是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C. 【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.二、填空题13.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3 【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案. 【详解】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项, ∴k-3=0, 解得:k=3. 故答案为:3. 【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.14.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65 【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+ 解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.16.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n表示其规律代入n=2016即可求解【详解】解:观察发现第n个等式可以表示为:(3n-2)×3n+1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.【详解】解:观察发现,第n个等式可以表示为:(3n-2)×3n+1=(3n-1)2,当n=2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n之间的关系是解题的关键.17.加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2ab.第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.18.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.19.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验. 20.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。

人教版七年级上册数学《第三章 一元一次方程》单元检测试卷及答案(共五套)

人教版七年级上册数学《第三章 一元一次方程》单元检测试卷及答案(共五套)

人教版七年级上册数学《第三章一元一次方程》单元检测试卷《第三章一元一次方程》单元检测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列等式变形正确的是( )A.若a=b,则a-3=3-b B.若x=y,则xa=yaC.若a=b,则ac=bc D.若ba=dc,则b=d2.把方程3x+2x-13=3-x+12去分母正确的是( )A.18x+2(2x-1)=18-3(x+1)B.3x+(2x-1)=3-(x+1)C.18x+(2x-1)=18-(x+1)D.3x+2(2x-1)=3-3(x+1)3.若关于x的方程x m-1+2m+1=0是一元一次方程,则这个方程的解是( ) A.x=-5 B.x=-3 C.x=-1 D.x=54.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( )A.518=2(106+x) B.518-x=2×106C.518-x=2(106+x) D.518+x=2(106-x)5.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是( )A .1B .2C .3D .46.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C .42D .44 二、填空题(本大题共6小题,每小题3分,共18分) 7.若-x n +1与2x 2n -1是同类项,则n =________.8.当x =________时,代数式4x -5与3x -9的值互为相反数. 9.若方程x +2m =8与方程2x -13=x +16的解相同,则m =________. 10.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为________.11.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有________名学生.12.某超市在“十一”期间推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款____________. 三、(本大题共5小题,每小题6分,共30分) 13.解下列方程:(1)4x +1=2(3-x ); (2)2x -13-2x -34=1.14.已知关于x的方程2(x-1)=3m-1与3x+2=-4的解互为相反数,求m 的值.15.小聪做作业时解方程x+12-2-3x3=1的步骤如下:解:①去分母,得3(x+1)-2(2-3x)=1;②去括号,得3x+3-4-6x=1;③移项,得3x-6x=1-3+4;④合并同类项,得-3x=2;⑤系数化为1,得x=-2 3 .(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.16.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?17.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?四、(本大题共3小题,每小题8分,共24分)18.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.19.小李在解方程3x+52-2x-m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x=-4,求出m的值并正确解出方程.20.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存有这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?共能做多少套?五、(本大题共2小题,每小题9分,共18分)21.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.22.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?六、(本大题共12分)23.在某市第四次党代会上,提出了“建设美丽城市决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?参考答案与解析1.C 2.A 3.A 4.C 5.B6.C 解析:设图②中白色区域的面积为8x,灰色区域的面积为3x,由题意,得8x+3x=33,解得x=3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.7.2 8.2 9.7210.x=611.30 12.288元或316元13.解:(1)x=56.(3分)(2)x=72.(6分)14.解:方程3x+2=-4,解得x=-2.(2分)所以关于x的方程2(x-1)=3m -1的解为x=2.把x=2代入得2=3m-1,解得m=1.(6分)15.解:(1)不正确①②(2分)(2)去分母,得3(x+1)-2(2-3x)=6,去括号,得3x+3-4+6x=6,移项,得3x+6x=6-3+4,合并同类项,得9x=7,解得x=79.(6分)16.解:设甲种票买了x张,则乙种票买了(35-x)张,(1分)依题意有24x+18(35-x)=750,(3分)解得x=20.则35-x=15.(5分)答:甲种票买了20张,乙种票买了15张.(6分)17.解:设A、B两地间的路程为x km,(1分)根据题意得x60-x70=1,(3分)解得x=420.(5分)答:A、B两地间的路程为420km.(6分)18.解:设这个两位数的十位数字为x,则个位数字为7-x,(2分)由题意列方程为10x+7-x+45=10(7-x)+x,解得x=1,(6分)∴7-x=7-1=6,∴这个两位数为16.(8分)19.解:由题意x=-4是方程3(3x+5)-2(2x-m)=1的解,∴3(-12+5)-2(-8-m)=1,∴m=3,(4分)∴原方程为3x+52-2x-33=1,∴3(3x+5)-2(2x-3)=6,5x=-15,∴x=-3.(8分)20.解:设做上衣的布料用x m,则做裤子的布料用(600-x)m,(2分)由题意得x 3×2=600-x3×3,解得x=360,600-x=240.3603×2=240(套).(7分)答:做上衣的布料用360m,做裤子的布料用240m,才能恰好配套,共能做240套.(8分)21.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm).(4分)因为每相邻两节套管间重叠的长度为x cm,根据题意得(50+46+42+…+14)-9x=311,(6分)即320-9x=311,解得x=1.(8分)答:每相邻两节套管间重叠的长度为1cm.(9分)22.解:(1)由题意,得5020-92×40=1340(元).(3分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)(2)设甲班有x名同学准备参加演出(依题意46<x<90),则乙班有(92-x)名.依题意得50x+60(92-x)=5020,解得x=50,92-x=42.(8分)答:甲班有50名同学,乙班有42名同学.(9分)23.解:(1)∵最小的正方形A的边长是1米,最大的正方形B的边长是x米,∴正方形F的边长为(x-1)米,正方形E的边长为(x-2)米,正方形C的边长为(x-3)米或x+12米.(3分)(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(7分)(3)设余下的工程由乙队单独施工,还要y 天完成.(8分)根据题意得⎝ ⎛⎭⎪⎫110+115×2+115y =1,解得y =10.(11分) 答:余下的工程由乙队单独施工,还要10天完成.(12分)《第三章 一元一次方程》单元检测试卷(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.下列方程是一元一次方程的是( ) A.x -2=3 B.1+5=6 C.x 2+x =1 D.x -3y =0 2.方程2x +3=7的解是( ) A.x =5 B.x =4 C.x =3.5 D.x =2 3.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =dc ,则b =d4.把方程3x +2x -13=3-x +12去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1) B.3x +(2x -1)=3-(x +1) C.18x +(2x -1)=18-(x +1) D.3x +2(2x -1)=3-3(x +1) 5.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( )A.-5B.-3C.-1D.56.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( ) A.1 B.2 C.3 D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( ) A.70千米/时 B.75千米/时 C.80千米/时 D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( ) A.2314 B.3638C.42D.44二、填空题(每小题3分,共24分) 11.方程3x -3=0的解是 .12.若-x n +1与2x 2n -1是同类项,则n = .13.已知多项式9a+20与4a-10的差等于5,则a的值为.14.若方程x+2m=8与方程2x-13=x+16的解相同,则m=.15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b,如:1⊕5=-2×1+3×5=13,则方程x⊕4=0的解为.16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元.18.图①是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.三、解答题(共66分)19.(15分)解下列方程:(1)4x-3(12-x)=6x-2(8-x);(2)2x-13-2x-34=1;(3)12x+2⎝⎛⎭⎪⎫54x+1=8+x.20.(8分)已知3+a2与-13(2a-1)-1互为相反数,求a的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.D 3.C 4.A 5.A 6.C 7.B 8.B 9.A10.C 解析:设图②中白色区域的面积为8x,灰色区域的面积为3x,由题意,得8x+3x=33,解得x=3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x=1 12.2 13.-5 14.7215.x=616.30 17.1500 18.100019.解:(1)x=-20.(5分)(2)x=72.(10分)(3)x=3.(15分)20.解:由题意,得3+a2+⎣⎢⎡⎦⎥⎤-13(2a-1)-1=0,(4分)解得a=5.(8分)21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分) 答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分) 23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分) 答:甲班有50名同学,乙班有42名同学.(12分) 24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分) (3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)《第三章 一元一次方程》单元检测试卷(三)一.填空。

【数学】人教版七年级数学上册第三章一元一次方程单元测试(含答案)

【数学】人教版七年级数学上册第三章一元一次方程单元测试(含答案)

人教版七年级数学上册第三章一元一次方程单元测试(含答案)一、单选题1.下列方程是一元一次方程的是( ) A.4x+2y=3 B.y+5=0 C.x 2=2x ﹣l D.1y+y=2 2.在下列方程中①221x x +=,②139x x -=,③102x =,④123233-=,⑤2133y y -=+是一元一次方程的有( )个. A .1B .2C .3D .43.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1 B.由,得C.由,得D.由,得2x ﹣3x=14.下列选项中,移项正确的是( ) A .方程8x 6-=变形为x 68-=+ B .方程5x 4x 8=+变形为5x 4x 8-= C .方程3x 2x 5=+变形为3x 2x 5-=- D .方程32x x 7-=+变形为x 2x 73-=+ 5.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.如果关于 的方程 - 无解,那么 满足( ). A. B.C. D.任意实数8.方程去分母后正确的结果是( )A. B. C.D.9.若 是方程 的解,则代数式 的值为( ) A.-5B.-1C.1D.510.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.511.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x 千米,则列方程正确的是( ) A.()()254254x x +=- B.2556x x += C.6255x x += D.6255255x x+=+- 12.甲、乙两人去买东西,他们所带钱数的和为120元,甲花去30元,乙花去20元,两人余下的钱数之比为3:2,则甲、乙两人所带的钱数分别是 ( ) A .70,49 B .65,48C .72,48D .73,47二、填空题13.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 14.方程320x -+=的解为________.15.已知a 、b 、c 、d 为有理数,现规定一种新运算a b ad bc c d=-,如131(5)321125=⨯--⨯=--,那么当2422(1)7x =+时,则x 的值为_____.16.今有浓度分别为 3%、8%、11%的甲、乙、丙三种盐水 50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为 7%的盐水 100 千克,则丙种盐水最多可用_________千克 三、解答题17.解方程:(1)8x-2=0;(2)2x-5=4x+318.解方程:(1)51312423-+--=x x x;(2)30.4110.50.3---=x x19.已知A=2x2+mx﹣m,B=3x2﹣mx+m.(1)求A﹣B;(2)如果3A﹣2B+C=0,那么C的表达式是什么?(3)在(2)的条件下,若x=4是方程C=20x+5m的解,求m的值.20.如图,在数轴上点O为原点,A点表示数a,B点表示数b,且a、b满足|a+2|+|b-4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点.点M从点A出发,速度为每秒1个单位长度;点N从点B 出发,速度为点A的3倍,它们同时向左运动.①当运动2秒时,点M、N对应的数分别是、.②当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)21.某公司要生产若干件新产品,需要加工后才能投放市场.现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工多用20天,红星厂每天可以加工16个,巨星厂每天可以加工24个.公司需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这家公司要生产多少件新产品?(2)公司制定产品加工方案如下:可由每个厂家单独完成,也可由两个厂共同合作完成.在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并负担每天的补助费5元.请你帮公司选择一种既省钱又省时的加工方案人教版七年级上册第三章一元一次方程单元测试卷(1)一、选择题1.下列方程是一元一次方程的是( )A.x2+x=2B.5x+2=5x+3C.x-9=3D.=2答案 C2.方程x-2=2-x的解是( )A.x=1B.x=-1C.x=2D.x=0答案 C3.如果5(x-2)与x-3互为相反数,那么x的值是( )A.7B.C.D.答案 B4.下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=bD.若x=y,则=答案 D5.如图所示,两个天平都平衡,则3个“球体”的重量等于个正方体的重量.( )A.3B.4C.5D.6答案 C6.下列变形正确的是( )A.由7x=4x-3移项,得7x-4x=3B.由-=1+-去分母,得2(2x-1)=1+3(x-3)C.由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1D.由2(x+1)=x+7去括号、移项、合并同类项,得x=5答案 D7.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( )A.880元B.800元C.720元D.1080元答案 A8.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1.②移项,得4x+x-2x=1+4. ③合并同类项,得3x=5. ④系数化为1,得x=.经检验知,x=不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( ) A.①B.②C.③D.④答案 B9.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ) A.60元B.80元C.120元D.180元答案 C10.陈老师打算购买气球装扮学校“六一儿童节”活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置的需要,购买时应以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19元B.18元C.16元D.15元答案 C11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是 A .(1+50%)x ×80%=x –28 B .(1+50%)x ×80%=x +28 C .(1+50%x )×80%=x –28D .(1+50%x )×80%=x +28答案B12.七年级一班的马虎同学在解关于x 的方程3a –x =13时,误将–x 看成+x ,得方程的解x =–2,则原方程正确的解为 A .–2B .2C .–D .答案B二、填空题121213.一个数x的2倍减去7,得36,列方程为.答案2x-7=3614.如果方程x2m-1-3=0是关于x的一元一次方程,那么方程的解为.答案x=315.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= .答案16.写出一个解为x=2的一元一次方程(只写一个即可) .答案x-2=0(答案不唯一)17.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.答案2818.相邻的5个自然数的和为45,则这5个自然数分别为.答案7、8、9、10、1119.用一根长18米的铁丝围成一个长是宽的2倍的长方形框架,其面积为平方米. 答案1820.小明解方程-=-3,在去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,则原方程正确的解为.答案x=-13三、解答题21.解方程.(1)3x+1=9-x;(2)-=1-.答案(1)x=2.(2)x=.22.某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折出售将赚20元,问这种商品的标价是多少元?答案设该商品的标价为x元.根据题意得75%x+25=90%x-20,解得x=300.答:这种商品的标价为300元.23.小亮和他哥哥在离家2千米的同一所学校上学,小亮的哥哥以4千米/小时的速度步行去学校,小亮因找不到数学课本耽误了15分钟,然后骑自行车以12千米/小时的速度去追他哥哥.请问到校前小亮能追上他哥哥吗?若能,则小亮追上他哥哥时,他们距学校多远?若不能,请说明理由.答案能追上.理由如下:设小亮走了x个小时才追上他哥哥,根据题意得4×+4x=12x,解得x=,即小亮走了个小时才追上他哥哥.小亮追上他哥哥时走了12×=1.5(千米),又因为1.5<2,所以到校前小亮能追上他哥哥.此时他们距学校2-1.5=0.5(千米).24.贡江新区位于贡江南岸,由长征出发地体验区、文教体育综合区、贡江新城三大板块组成,与贡江北岸老城区相呼应,构建成“一江两岸”的城市新格局.为建设市民河堤漫步休闲通道,贡江新区现有一段长为180米的河堤整治任务由A、B两个工程队先后接力完成,A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程如下:甲:12x+8(20-x)=180;乙:+-=20.根据甲、乙最新人教版七年级第一学期期末模拟数学试卷及答案一、选择题1.下列调查中适合采用普查的是( )A. 调查市场上某种白酒中塑化剂的含量B. 调查鞋厂生产的鞋底能承受的弯折次数C. 了解某城市居民收看新闻联播的情况D. 了解某火车的一节车厢内感染禽流感病毒的人数2.下图中的几何体是由哪个平面图形旋转得到的()3.-0.2的倒数是()A.0.2B.C.-5D.54.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,若∠AOB=155∘,则∠COD=().A.155°B.65°C.45°D.25°5.一个长方形的周长为a,长为b,则长方形的宽为( )A. a−2bB. −2bC.D.6.有一个底面半径为10cm,高为30cm的圆柱形大杯中存满了水,把水倒入一个底面直径为10cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为()A. 12cmB. 10cmC. 6cmD. 5cm7.如图,用一个平面去截正方体,截掉了正方形的一个角,且截面经过原正方体三条棱的中点,剩下几何体的展开图应该是( )8.如图,正方形ABCD是一个边长为30米的花坛,甲从A出发以65米/分的速度沿A→B→C→D→A→…方向行走,乙从B出发以75米/分的速度沿B→C→D→A→B→…方向行走,若甲乙同时出发,那么乙第一次追上甲时,他们位于正方形花坛的( ).A.AB边上B.DA边上C.BC边上D. CD边上二、填空题9.2018年我国高铁运营里程有了新的突破,全国高铁运营里程将达到29000公里,29000用科学记数法可以表示为 .10.张明随机抽查了学校七年级63名学生的身高(单位:cm),他准备绘制频数分布直方图,这些数据中最大值是185,最小值是147,若以4为组距(每组两个端点之间的距离叫做组距),则这些数据可分成____组.11.如图,数轴上点Q,点P,点R,点S和点T分别表示五个数,如果点R和点T表示的数互为相反数,那么这五个点所表示的数中,点________对应的数绝对值最大.12.某商场将一件玩具按进价提高50%后标价,销售时按标价打八折销售,结果相对于进价仍获利20元,则这件玩具的进价是元.13.已知线段AB=10cm,点C是直线AB上一点, BC=4cm,若M是AB的中点, N是BC的中点,则线段MN的长度是 cm.14.如图,是由10个完全相同的小正方体堆成的几何体。

【3套试卷】人教版七年级上册数学第三章一元一次方程单元测试题(含答案).doc

【3套试卷】人教版七年级上册数学第三章一元一次方程单元测试题(含答案).doc

人教版七年级上册第三章一元一次方程单元测试卷(1)一、选择题1.下列方程是一元一次方程的是( )A.x2+x=2B.5x+2=5x+3C.x-9=3D.=2答案 C2.方程x-2=2-x的解是( )A.x=1B.x=-1C.x=2D.x=0答案 C3.如果5(x-2)与x-3互为相反数,那么x的值是( )A.7B.C.D.答案 B4.下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=bD.若x=y,则=答案 D5.如图所示,两个天平都平衡,则3个“球体”的重量等于个正方体的重量.( )A.3B.4C.5D.6答案 C6.下列变形正确的是( )A.由7x=4x-3移项,得7x-4x=3B.由-=1+-去分母,得2(2x-1)=1+3(x-3)C.由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1D.由2(x+1)=x+7去括号、移项、合并同类项,得x=5答案 D7.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( )A.880元B.800元C.720元D.1080元答案 A8.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1.②移项,得4x+x-2x=1+4.③合并同类项,得3x=5.④系数化为1,得x=.经检验知,x=不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( ) A.① B.② C.③ D.④答案 B9.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元答案 C10.陈老师打算购买气球装扮学校“六一儿童节”活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置的需要,购买时应以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19元B.18元C.16元D.15元答案 C11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是A.(1+50%)x×80%=x–28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x–28 D.(1+50%x)×80%=x+28答案B12.七年级一班的马虎同学在解关于x的方程3a–x=13时,误将–x看成+x,得方程的解x=–2,则原方程正确的解为 A .–2B .2C .–D .答案B二、填空题13.一个数x 的2倍减去7,得36,列方程为 . 答案 2x-7=36 14.如果方程x 2m-1-3=0是关于x 的一元一次方程,那么方程的解为 .答案 x=315.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= . 答案16.写出一个解为x=2的一元一次方程(只写一个即可) . 答案 x-2=0(答案不唯一)17.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m 3,每立方米收费2元;若用水超过20 m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水 m 3. 答案 2818.相邻的5个自然数的和为45,则这5个自然数分别为 . 答案 7、8、9、10、1119.用一根长18米的铁丝围成一个长是宽的2倍的长方形框架,其面积为 平方米. 答案 18 20.小明解方程-=-3,在去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,则原方程正确的解为 . 答案 x=-13三、解答题21.解方程. (1)3x+1=9-x;1212(2)-=1-.答案(1)x=2.(2)x=.22.某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折出售将赚20元,问这种商品的标价是多少元?答案设该商品的标价为x元.根据题意得75%x+25=90%x-20,解得x=300.答:这种商品的标价为300元.23.小亮和他哥哥在离家2千米的同一所学校上学,小亮的哥哥以4千米/小时的速度步行去学校,小亮因找不到数学课本耽误了15分钟,然后骑自行车以12千米/小时的速度去追他哥哥.请问到校前小亮能追上他哥哥吗?若能,则小亮追上他哥哥时,他们距学校多远?若不能,请说明理由.答案能追上.理由如下:设小亮走了x个小时才追上他哥哥,根据题意得4×+4x=12x,解得x=,即小亮走了个小时才追上他哥哥.小亮追上他哥哥时走了12×=1.5(千米),又因为1.5<2,所以到校前小亮能追上他哥哥.此时他们距学校2-1.5=0.5(千米).24.贡江新区位于贡江南岸,由长征出发地体验区、文教体育综合区、贡江新城三大板块组成,与贡江北岸老城区相呼应,构建成“一江两岸”的城市新格局.为建设市民河堤漫步休闲通道,贡江新区现有一段长为180米的河堤整治任务由A、B两个工程队先后接力完成,A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程如下:甲:12x+8(20-x)=180;乙:+-=20.根据甲、乙人教版七年级上册第三章一元一次方程单元测试卷(1)一、选择题1.下列方程是一元一次方程的是( )A.x2+x=2B.5x+2=5x+3C.x-9=3D.=2答案 C2.方程x-2=2-x的解是( )A.x=1B.x=-1C.x=2D.x=0答案 C3.如果5(x-2)与x-3互为相反数,那么x的值是( )A.7B.C.D.答案 B4.下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=bD.若x=y,则=答案 D5.如图所示,两个天平都平衡,则3个“球体”的重量等于个正方体的重量.( )A.3B.4C.5D.6答案 C6.下列变形正确的是( )A.由7x=4x-3移项,得7x-4x=3B.由-=1+-去分母,得2(2x-1)=1+3(x-3)C.由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1D.由2(x+1)=x+7去括号、移项、合并同类项,得x=5答案 D7.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( )A.880元B.800元C.720元D.1080元答案 A8.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1.②移项,得4x+x-2x=1+4.③合并同类项,得3x=5.④系数化为1,得x=.经检验知,x=不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( )A.①B.②C.③D.④答案 B9.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ) A.60元B.80元C.120元D.180元答案 C10.陈老师打算购买气球装扮学校“六一儿童节”活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置的需要,购买时应以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19元B.18元C.16元D.15元答案 C11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是 A .(1+50%)x ×80%=x –28 B .(1+50%)x ×80%=x +28 C .(1+50%x )×80%=x –28D .(1+50%x )×80%=x +28答案B12.七年级一班的马虎同学在解关于x 的方程3a –x =13时,误将–x 看成+x ,得方程的解x =–2,则原方程正确的解为 A .–2B .2C .–D .答案B二、填空题13.一个数x 的2倍减去7,得36,列方程为 . 答案 2x-7=36 14.如果方程x 2m-1-3=0是关于x 的一元一次方程,那么方程的解为 .答案 x=315.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= .121216.写出一个解为x=2的一元一次方程(只写一个即可) .答案x-2=0(答案不唯一)17.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.答案2818.相邻的5个自然数的和为45,则这5个自然数分别为.答案7、8、9、10、1119.用一根长18米的铁丝围成一个长是宽的2倍的长方形框架,其面积为平方米. 答案1820.小明解方程-=-3,在去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,则原方程正确的解为.答案x=-13三、解答题21.解方程.(1)3x+1=9-x;(2)-=1-.答案(1)x=2.22.某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折出售将赚20元,问这种商品的标价是多少元?答案设该商品的标价为x元.根据题意得75%x+25=90%x-20,解得x=300.答:这种商品的标价为300元.23.小亮和他哥哥在离家2千米的同一所学校上学,小亮的哥哥以4千米/小时的速度步行去学校,小亮因找不到数学课本耽误了15分钟,然后骑自行车以12千米/小时的速度去追他哥哥.请问到校前小亮能追上他哥哥吗?若能,则小亮追上他哥哥时,他们距学校多远?若不能,请说明理由.答案能追上.理由如下:设小亮走了x个小时才追上他哥哥,根据题意得4×+4x=12x,解得x=,即小亮走了个小时才追上他哥哥.小亮追上他哥哥时走了12×=1.5(千米),又因为1.5<2,所以到校前小亮能追上他哥哥.此时他们距学校2-1.5=0.5(千米).24.贡江新区位于贡江南岸,由长征出发地体验区、文教体育综合区、贡江新城三大板块组成,与贡江北岸老城区相呼应,构建成“一江两岸”的城市新格局.为建设市民河堤漫步休闲通道,贡江新区现有一段长为180米的河堤整治任务由A、B两个工程队先后接力完成,A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程如下:甲:12x+8(20-x)=180;乙:+-=20.根据甲、乙人教版七年级数学上册第三章一元一次方程单元测试题(含答案)一、选择题1.已知关于x的一元一次方程2(x-1)+3a=3的解为x=4,则a的值是()A.-1 B.1 C.-2 D.-32.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等.如图1,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()图13.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C.2×16x=22(27-x) D.2×22x=16(27-x)4.程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是()图2A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人5.某服装的进货价为80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x的值为()A.5 B.6 C.7 D.86.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖出这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏7.甲、乙两名运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s内,两人相遇的次数为()A.5 B.4 C.3 D.2二、填空题8.定义新运算:a※b=a2+b,例如3※2=32+2=11.已知4※x=20,则x=________.9.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.10.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A地区的物资比发往B地区的物资的1.5倍少1000件,则发往A地区的生活物资为________件.11.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.12.已知派派的妈妈和派派今年共36岁,再过5年,派派妈妈的年龄比派派年龄的4倍还大1岁,当派派的妈妈40岁时,派派的年龄为________岁.13.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7·为例进行说明:设0.7·=x ,由0.7·=0.7777…可知,10x =7.7777…,所以10x -x =7,解方程,得x =79,于是0.7·=79.将0.36··写成分数的形式是________.14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.图3三、解答题15.解方程:4x -3=2(x -1).16.花解方程:x -32-2x +13=1.17.《孙子算经》中有这样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何.”大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家.请解答上述问题.18.小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?19.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.求:(1)每套课桌椅的成本; (2)商店的利润.20.如图4,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上的数的和都相等.尝试 (1)求前4个台阶上的数的和是多少; (2)求第5个台阶上的数x 是多少.应用 求从下到上前31个台阶上的数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.图41. A 2. A. 3. D. 4. A. 5. B. 6. A. 7. B. 8. 4. 9. 4. 10. 3200. 11. 53. 12. 12 13.411. 14.[答案] 1515.解:4x -3=2(x -1),4x -3=2x -2,4x -2x =-2+3,2x =1,x =12.16.解:去分母,得3(x -3)-2(2x +1)=6. 去括号,得3x -9-4x -2=6. 移项,得3x -4x =6+9+2. 合并同类项,得-x =17. 系数化为1,得x =-17. 17.解:设城中有x 户人家. 由题意得x +13x =100,解得x =75.答:城中有75户人家.18.解:设这本名著共有x 页.根据题意,得 36+14(x -36)=38x.解得x =216.答:这本名著共有216页. 19.解:(1)设每套课桌椅的成本为x 元.由题意得60(100-x)=7人教版七年级上册第三章《一元一次方程》单元过关测试卷一、选择题(每小题3分,共24分)1、下列方程中是一元一次方程的是 ( ) A 、2x =3y B 、x =0 C 、 x 2+12(x -1)=1 D 、x1-2=x 2、已知等式523+=b a ,则下列等式中不一定成立的是 ( ) A 、;253b a =- B 、;6213+=+b a C 、;523+=bc ac D 、.3532+=b a 3、若x =2是方程k (2x -1)=kx +7的解,那么k 的值是 ( ) A 、 1B 、-1C 、7D 、-74、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. A 、3年后 B 、3年前 C 、9年后 D 、不可能5、在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( )A .80B .98C .108D .206.6、一项工程甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是 ( ) A 、44014050x +=+ B 、44014050x +=⨯ C 、440150x += D 、 4401114050x ++=()7、为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费,超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该居民五月份实际用水( )A . 18立方米B . 8立方米C . 28立方米D . 36立方米8、某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ) A 、不赔不赚 B 、赚9元 C 、赔18元 D 、赚18元 二、填空题(每小题3分,共18分) 9、方程的解是______________.10、当=x __________时,代数式24+x 与93-x 的值互为相反数. 11、如果单项式5a m -1b n-5与a 2m +1b-n + 3是同类项,则mn = .12、一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试题,得了70分,他一共做对了 题.13、一列火车匀速通过500米长的隧道,从火车头进入隧道和火车尾出隧道共用30秒,火车整体在隧道里的运行时间是20秒,则火车的长度为 .14、某商品标价为每件900元,按九折降价后再让利40元销售,仍可获利10%。

【精选3套】人教版七年级数学上册第三章一元一次方程单元测试 (含答案).doc

【精选3套】人教版七年级数学上册第三章一元一次方程单元测试 (含答案).doc

人教版七年级数学上册第三章一元一次方程单元测试题(含答案)一、选择题1.已知关于x的一元一次方程2(x-1)+3a=3的解为x=4,则a的值是()A.-1 B.1 C.-2 D.-32.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等.如图1,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()图13.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C.2×16x=22(27-x) D.2×22x=16(27-x)4.程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是()图2A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人5.某服装的进货价为80元/件,标价为200元/件,商店将此服装打x 折销售后仍获利50%,则x 的值为( )A .5B .6C .7D .86.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖出这两件商品总的盈亏情况是( )A .亏损20元B .盈利30元C .亏损50元D .不盈不亏7.甲、乙两名运动员在长为100 m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( )A .5B .4C .3D .2二、填空题8.定义新运算:a ※b =a 2+b ,例如3※2=32+2=11.已知4※x =20,则x =________. 9.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.10.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 地区的物资比发往B 地区的物资的1.5倍少1000件,则发往A 地区的生活物资为________件.11.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.12.已知派派的妈妈和派派今年共36岁,再过5年,派派妈妈的年龄比派派年龄的4倍还大1岁,当派派的妈妈40岁时,派派的年龄为________岁.13.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7·为例进行说明:设0.7·=x ,由0.7·=0.7777…可知,10x =7.7777…,所以10x -x =7,解方程,得x =79,于是0.7·=79.将0.36··写成分数的形式是________.14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.图3三、解答题15.解方程:4x -3=2(x -1).16.花解方程:x -32-2x +13=1.17.《孙子算经》中有这样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何.”大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家.请解答上述问题.18.小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?19.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.求:(1)每套课桌椅的成本; (2)商店的利润.20.如图4,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上的数的和都相等.尝试 (1)求前4个台阶上的数的和是多少; (2)求第5个台阶上的数x 是多少.应用 求从下到上前31个台阶上的数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.图41. A 2. A. 3. D. 4. A. 5. B. 6. A. 7. B. 8. 4. 9. 4. 10. 3200. 11. 53. 12. 12 13.411. 14.[答案] 1515.解:4x -3=2(x -1),4x -3=2x -2,4x -2x =-2+3,2x =1,x =12.16.解:去分母,得3(x -3)-2(2x +1)=6. 去括号,得3x -9-4x -2=6. 移项,得3x -4x =6+9+2. 合并同类项,得-x =17. 系数化为1,得x =-17. 17.解:设城中有x 户人家. 由题意得x +13x =100,解得x =75.答:城中有75户人家.18.解:设这本名著共有x 页.根据题意,得 36+14(x -36)=38x.解得x =216.答:这本名著共有216页. 19.解:(1)设每套课桌椅的成本为x 元.由题意得60(100-x)=7【期末模拟专项复习】人教版数学七年级(上)第三章:一元一次方程单元综合训练一.选择题1.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.102.若代数式3x﹣7和6x+13互为相反数,则x的值为()A.B.C.D.3.若代数式2x2+3x+5的值是8,则代数式4x2+6x﹣7的值是()A.﹣1B.1C.﹣9D.94.下列解方程过程中,变形正确的是()A.由5x﹣1=3得5x=3﹣1B.由﹣75x=76得x=﹣C.由x﹣3(x+4)=5得x﹣3x﹣4=5D.由2x﹣(x﹣1)=1得2x﹣x=05.某机关单位2018年3月份的三公经费为a万元,为响应中央倡导的“八项规定”、“六项禁令”,开始减少三公经费,4月份比3月份减少10%,5月份又比4月份减少15%,则5月份的三公经费是()A.(a﹣10%)(a﹣15%)万元B.(1﹣90%)(1+85%)a万元C.(1﹣10%)(1﹣15%)a万元D.(1﹣10%+15%)a万元6.下列各式属于一元一次方程的是()A.3x+1B.3x+1>2C.y=2x+1D.3x+1=2 7.一张试卷共有25道选择题,做对一道题得4分,不做或做错一道题倒扣1分,某同学做了全部的试题,共得了70分,他做对的题数为()A.17B.18C.19D.208.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为()A.xy B.x+y C.x+10y D.10x+y9.将方程=1﹣去分母,得()A.2(x﹣1)=1﹣3(5x+2)B.4x﹣1=6﹣15x+2C.4x﹣1=6﹣15x﹣2D.2(2x﹣1)=6﹣3(5x+2)10.某款服装进价80元/件,标价x元/件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动.按促销方式销售两件该款服装,商店仍获利32元,则x的值为()A.125B.120C.115D.110二.填空题11.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为.12.某校七年级学生有a人,已知七、八、九年级学生人数比为2:3:3,则该校学生共有人.13.当a=3时,代数式的值是.14.若代数式2x+3的值为7,则代数式4x﹣5的值为.15.若m2﹣2m=1,则2m2﹣4m+1007的值是,已知x﹣3y=﹣3,则5﹣x+3y的值是.16.已知y=4是方程﹣m=5(y﹣2)的解,则(3m+1)2的值为.17.七、八年级学生分别到李中水上森林公园和施耐庵纪念馆参加社会实践活动,共648人,到李中水上森林公园的人数是到施耐庵纪念纪念馆人数的2倍多48人.设到施耐庵纪念馆的人数为x,可列方程为.18.按图示的程序计算,若开始输入的x为正整数,最后输出的结果为67,则x 的值是.三.解答题19.解方程:(1)10x﹣12=5x+15 (2)20.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?21.金秋十月,厦门市某中学组织七年级学生去某综合实践基地进行秋季社会实践活动,每人需购买一张门票,该综合实践基地的门票价格为每张24元,如果一次购买500张以上(不含500张)门票,则门票价格为每张22元,请回答下列问题:(1)列式表示n个人参加秋季社会实践活动所需钱数;(2)某校用13200元可以购买多少张门票;(3)如果我校490人参加秋季社会实践,怎样购买门票花钱最少?22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C →D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s 后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示);(2)求点P原来的速度.(3)判断E点的位置并求线段DE的长.24.某制衣厂计划若干天完成一批服装的订货任务.如果每天生产服装50套,则差30套而不能完成任务;如果每天生产服装60套,则可提前1天完成任务,且超额20套,问这批服装的订货任务有多少套?计划多少天完成?25.新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题.(1)一本数学课本的高度是多少厘米?(2)讲台的高度是多少厘米?(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x的代数式表示)(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.参考答案一.选择题1.解:移项,得2x﹣3x=6+4整理,得﹣x=10,系数化为1,得x=﹣10.故选:C.2.解:∵代数式3x﹣7和6x+13互为相反数,∴3x﹣7=﹣(6x+13),移项,得3x+6x=﹣13+7,合并同类项,得9x=﹣6,系数化为1,得x=﹣.故选:D.3.解:由题意可知:2x2+3x+5=8,∴2x2+3x=3,∴4x2+6x﹣7=2(2x2+3x)﹣7=﹣1,故选:A.4.解:选项A,移项没有变号,故变形不正确;选项B等号的左边除以了﹣75,而等号的右边除以了﹣76,故变形错误;选项C去括号时,4没有乘﹣3,故变形错误;选项D的变形正确.故选:D.5.解:∵某机关单位2018年3月份的三公经费为a万元,4月份比3月份减少10%,∴4月份的三公经费为(1﹣10%)a万元,∵5月份又比4月份减少15%,∴5月份的三公经费是:(1﹣10%)(1﹣15%)a万元.故选:C.6.解:A、3x+1是代数式,故此选项错误;B、3x+1>2,是不等式,故此选项错误;C、y=2x+1,是一次函数,故此选项错误;D、3x+1=2属于一元一次方程,故此选项正确.故选:D.7.解:设他做对的题数为x道,则做错的题数为(25﹣x)道,根据题意得:4x﹣(25﹣x)=70,解得:x=19,即他做对的题数为19,故选:C.8.解:个位数字是x,十位数字是y,这个两位数可表示为10y+x.故选:C.9.解:方程两边都乘以6,得:2(2x﹣1)=6﹣3(5x+2),故选:D.10.解:依题意有x+0.6x﹣80×2=32,解得x=120.故选:B.二.填空题(共8小题)11.解:根据题意得:a+3≠0,解得:a≠﹣3,|a|﹣2=1,解得:a=3或a=﹣3,即a=3,故答案为:3.12.解:设该校共有x人.•x=ax=x=4a故答案为4a.13.解:当a=3时,原式==4,故答案为:414.解:根据题意得:2x+3=7,即2x=4,则4x﹣5=2×4﹣5=3,故答案为:3.15.解:当m2﹣2m=1时,∴2m2﹣4m+1007=2+1007=1009,当x﹣3y=﹣3时,原式=5﹣(x﹣3y)=5+3=8,故答案为:1009,8.16.解:由题意,得﹣m=5(4﹣2),解得,m=﹣.(3m+1)2=225故答案为:225.17.解:设到施耐庵纪念馆的人数为x,则到李中水上森林公园的人数为(2x+48),根据题意得:x+2x+48=648.故答案为:x+2x+48=648.18.解:∵最后输出的结果是67,∴3x+1=67,解得x=22,当3x+1=22,解得x=7,当3x+1=7,解得x=2,当3x+1=2时,x=(不合题意).故答案为:2或7或22.三.解答题(共7小题)19.解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.20.解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有:+=5+10,解得x=18千米.故小张的车速为18千米每小时.21.解:(1)0<n≤500时,所需钱数为24n,n>500时,所需钱数为:22n;(2)设购买x张门票∵24×500=12000<13200,∴可以购买的门票超过500张;即22x=13200解得:x=600答:用13200可以购买600张门票(3)490×24=11760,501×22=11022,∵11022<11760,∴购买510张门票更省钱.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:(1)2x.故答案是:2x;(2)根据题意得:3(x+3)+3×2x=24(5分)解得x=答:点P原来的速度为cm/s;(3)此时点E在AD边上,且DE=2.24.解:设这批服装的订货任务有x套,根据题意得:﹣1=.解得:x=580.∴=,解得:x═11.答:这批服装的订货任务有580套,计划11天完成.25.解:(1)由题意可得,一本数学课本的高度是:(88﹣86.5)÷3=1.5÷3=0.5(厘米),答:一本数学课本的高度是0.5厘米;(2)讲台的高度是:86.5﹣3×0.5=86.5﹣1.5=85(厘米),即讲台的高度是85厘米;(3)整齐叠放在桌面上的x本数学课本距离地面的高度是:(85+0.5x)厘米;(4)余下的数学课本距离地面的高度:85+(56﹣18)×0.5=85+38×0.5=85+19=104(厘米),即余下的数学课本距离地面的高度是104厘米.【期末模拟专项复习】人教版数学七年级(上)第三章:一元一次方程单元综合训练一.选择题1.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.102.若代数式3x﹣7和6x+13互为相反数,则x的值为()A.B.C.D.3.若代数式2x2+3x+5的值是8,则代数式4x2+6x﹣7的值是()A.﹣1B.1C.﹣9D.94.下列解方程过程中,变形正确的是()A.由5x﹣1=3得5x=3﹣1B.由﹣75x=76得x=﹣C.由x﹣3(x+4)=5得x﹣3x﹣4=5D.由2x﹣(x﹣1)=1得2x﹣x=05.某机关单位2018年3月份的三公经费为a万元,为响应中央倡导的“八项规定”、“六项禁令”,开始减少三公经费,4月份比3月份减少10%,5月份又比4月份减少15%,则5月份的三公经费是()A.(a﹣10%)(a﹣15%)万元B.(1﹣90%)(1+85%)a万元C.(1﹣10%)(1﹣15%)a万元D.(1﹣10%+15%)a万元6.下列各式属于一元一次方程的是()A.3x+1B.3x+1>2C.y=2x+1D.3x+1=2 7.一张试卷共有25道选择题,做对一道题得4分,不做或做错一道题倒扣1分,某同学做了全部的试题,共得了70分,他做对的题数为()A.17B.18C.19D.208.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为()A.xy B.x+y C.x+10y D.10x+y9.将方程=1﹣去分母,得()A.2(x﹣1)=1﹣3(5x+2)B.4x﹣1=6﹣15x+2C.4x﹣1=6﹣15x﹣2D.2(2x﹣1)=6﹣3(5x+2)10.某款服装进价80元/件,标价x元/件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动.按促销方式销售两件该款服装,商店仍获利32元,则x的值为()A.125B.120C.115D.110二.填空题11.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为.12.某校七年级学生有a人,已知七、八、九年级学生人数比为2:3:3,则该校学生共有人.13.当a=3时,代数式的值是.14.若代数式2x+3的值为7,则代数式4x﹣5的值为.15.若m2﹣2m=1,则2m2﹣4m+1007的值是,已知x﹣3y=﹣3,则5﹣x+3y的值是.16.已知y=4是方程﹣m=5(y﹣2)的解,则(3m+1)2的值为.17.七、八年级学生分别到李中水上森林公园和施耐庵纪念馆参加社会实践活动,共648人,到李中水上森林公园的人数是到施耐庵纪念纪念馆人数的2倍多48人.设到施耐庵纪念馆的人数为x,可列方程为.18.按图示的程序计算,若开始输入的x为正整数,最后输出的结果为67,则x 的值是.三.解答题19.解方程:(1)10x﹣12=5x+15 (2)20.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?21.金秋十月,厦门市某中学组织七年级学生去某综合实践基地进行秋季社会实践活动,每人需购买一张门票,该综合实践基地的门票价格为每张24元,如果一次购买500张以上(不含500张)门票,则门票价格为每张22元,请回答下列问题:(1)列式表示n个人参加秋季社会实践活动所需钱数;(2)某校用13200元可以购买多少张门票;(3)如果我校490人参加秋季社会实践,怎样购买门票花钱最少?22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C →D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s 后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示);(2)求点P原来的速度.(3)判断E点的位置并求线段DE的长.24.某制衣厂计划若干天完成一批服装的订货任务.如果每天生产服装50套,则差30套而不能完成任务;如果每天生产服装60套,则可提前1天完成任务,且超额20套,问这批服装的订货任务有多少套?计划多少天完成?25.新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题.(1)一本数学课本的高度是多少厘米?(2)讲台的高度是多少厘米?(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x的代数式表示)(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.参考答案一.选择题1.解:移项,得2x﹣3x=6+4整理,得﹣x=10,系数化为1,得x=﹣10.故选:C.2.解:∵代数式3x﹣7和6x+13互为相反数,∴3x﹣7=﹣(6x+13),移项,得3x+6x=﹣13+7,合并同类项,得9x=﹣6,系数化为1,得x=﹣.故选:D.3.解:由题意可知:2x2+3x+5=8,∴2x2+3x=3,∴4x2+6x﹣7=2(2x2+3x)﹣7=﹣1,故选:A.4.解:选项A,移项没有变号,故变形不正确;选项B等号的左边除以了﹣75,而等号的右边除以了﹣76,故变形错误;选项C去括号时,4没有乘﹣3,故变形错误;选项D的变形正确.故选:D.5.解:∵某机关单位2018年3月份的三公经费为a万元,4月份比3月份减少10%,∴4月份的三公经费为(1﹣10%)a万元,∵5月份又比4月份减少15%,∴5月份的三公经费是:(1﹣10%)(1﹣15%)a万元.故选:C.6.解:A、3x+1是代数式,故此选项错误;B、3x+1>2,是不等式,故此选项错误;C、y=2x+1,是一次函数,故此选项错误;D、3x+1=2属于一元一次方程,故此选项正确.故选:D.7.解:设他做对的题数为x道,则做错的题数为(25﹣x)道,根据题意得:4x﹣(25﹣x)=70,解得:x=19,即他做对的题数为19,故选:C.8.解:个位数字是x,十位数字是y,这个两位数可表示为10y+x.故选:C.9.解:方程两边都乘以6,得:2(2x﹣1)=6﹣3(5x+2),故选:D.10.解:依题意有x+0.6x﹣80×2=32,解得x=120.故选:B.二.填空题(共8小题)11.解:根据题意得:a+3≠0,解得:a≠﹣3,|a|﹣2=1,解得:a=3或a=﹣3,即a=3,故答案为:3.12.解:设该校共有x人.•x=ax=x=4a故答案为4a.13.解:当a=3时,原式==4,故答案为:414.解:根据题意得:2x+3=7,即2x=4,则4x﹣5=2×4﹣5=3,故答案为:3.15.解:当m2﹣2m=1时,∴2m2﹣4m+1007=2+1007=1009,当x﹣3y=﹣3时,原式=5﹣(x﹣3y)=5+3=8,故答案为:1009,8.16.解:由题意,得﹣m=5(4﹣2),解得,m=﹣.(3m+1)2=225故答案为:225.17.解:设到施耐庵纪念馆的人数为x,则到李中水上森林公园的人数为(2x+48),根据题意得:x+2x+48=648.故答案为:x+2x+48=648.18.解:∵最后输出的结果是67,∴3x+1=67,解得x=22,当3x+1=22,解得x=7,当3x+1=7,解得x=2,当3x+1=2时,x=(不合题意).故答案为:2或7或22.三.解答题(共7小题)19.解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.20.解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有:+=5+10,解得x=18千米.故小张的车速为18千米每小时.21.解:(1)0<n≤500时,所需钱数为24n,n>500时,所需钱数为:22n;(2)设购买x张门票∵24×500=12000<13200,∴可以购买的门票超过500张;即22x=13200解得:x=600答:用13200可以购买600张门票(3)490×24=11760,501×22=11022,∵11022<11760,∴购买510张门票更省钱.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:(1)2x.故答案是:2x;(2)根据题意得:3(x+3)+3×2x=24(5分)解得x=答:点P原来的速度为cm/s;(3)此时点E在AD边上,且DE=2.24.解:设这批服装的订货任务有x套,根据题意得:﹣1=.解得:x=580.∴=,解得:x═11.答:这批服装的订货任务有580套,计划11天完成.25.解:(1)由题意可得,一本数学课本的高度是:(88﹣86.5)÷3=1.5÷3=0.5(厘米),答:一本数学课本的高度是0.5厘米;(2)讲台的高度是:86.5﹣3×0.5=86.5﹣1.5=85(厘米),即讲台的高度是85厘米;(3)整齐叠放在桌面上的x本数学课本距离地面的高度是:(85+0.5x)厘米;(4)余下的数学课本距离地面的高度:85+(56﹣18)×0.5=85+38×0.5=85+19=104(厘米),即余下的数学课本距离地面的高度是104厘米.人教版七年级数学上册第三章一元一次方程单元测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.下列方程中,解是x=5的方程是( )A.2x-1=x B.x-3=2C.3x=x+5 D.x+3=-22.下面是小玲同学在一次课堂测验中利用等式的性质进行的变形,其中正确的是( )A .由-13x -5=4,得13x =4+5 B .由5y -3y +y =9,得(5-3)y =9C .由x +7=26,得x =19D .由-5x =20,得x =-5203.方程7(3-x )-5(x -3)=8去括号,下列正确的是( )A .21-x -5x +15=8B .21-7x -5x -15=8C .21-7x -5x +15=8D .21-x -5x -15=84.将方程x 2-x -16=6去分母,正确的是( ) A .3x -(x -1)=6B .x -(x -1)=6C .6x -2(x -1)=36D .3x -(x -1)=365.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x 公顷沙漠改造为绿洲,则可列方程为( )A .54+x =80%×108B .54+x =80%(108-x )C .54-x =80%(108+x )D .108-x =80%(54+x )6.某船顺流航行的速度为30 km/h ,逆流航行的速度为20 km/h ,则水流的速度为( )A .5 km/hB .10 km/hC .25 km/hD .50 km/h 二、填空题(本大题共5小题,每小题4分,共20分)7.若2(x -1)+3=x ,则x 的值是________.8.若2减去3m +45的差为6,则m =________. 9.若式子6⎝ ⎛⎭⎪⎫12x -4+2x 与7-⎝ ⎛⎭⎪⎫13x -1的值相等,则x =________.10.一列匀速行驶的高铁列车在行进途中经过一条长1200米的隧道,已知列车从车头开始进入隧道到车尾离开隧道共需8秒.出隧道后与另一列长度和速度都相同的列车相遇,从车头相遇到车尾离开仅用了2秒,则该列车的长度为________米.11.明代数学家程大位的《算法统宗》中有这样一个问题(如图1),其大意为:有一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)图1三、解答题(本大题共6小题,共56分)12.(8分)解方程:(1)2(2x -3)-3=2-3(x -1);(2)x -33-1=-2x +42.13.(8分)小彬的练习册上有一道解方程的题,其中一个数字被墨水污染了,成了5x -14=2-2-x 3(“),他翻了书后的答案,知道这个方程的解为x =-1,于是他把被墨水污染的数字求了出来,请你把小彬的计算过程写出来.14.(8分)当x 取何值时,式子x -12+2x +16的值比x -13的值大1?15.(10分)某水果销售店用1000元购进甲、乙两种水果共140千克,这两种水果的进价、售价如下表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,则获得的利润是多少元?16.(10分)在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时小明与爸爸的对话(如图2),试根据图中的信息,解答下列问题:图2(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱,并说明理由.17.(12分)甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A,B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A,B两工地的运费分别是140元/吨,150元/吨,乙仓库运到A,B两工地的运费分别是200元/吨,80元/吨,本次运送水泥总运费为25900元,求甲仓库运到A工地水泥的吨数.(运费:元/吨表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下表中用含x的式子表示出其他未知量:(2)用含x的式子表示运送甲仓库100吨水泥的运费为__________元(写出化简后的结果);(3)请根据题目中的相等关系和以上分析列出方程,并写出调运方案.1.B 2. C 3.C. 4. D 5. B 6. A 7.-1 8.[答案] -8 9.[答案] 6 10.[答案] 400 11.[答案] 4612.解:(1)2(2x -3)-3=2-3(x -1), 4x -6-3=2-3x +3, 4x +3x =2+3+3+6, 7x =14, x =2.(2)去分母,得2(x -3)-6=3(-2x +4). 去括号,得2x -6-6=-6x +12. 移项、合并同类项,得8x =24. 系数化为1,得x =3.13.解:设被墨水污染的数字为a. 把x =-1代入方程, 得5×(-1)-14=3×(-1)+a 2-2-(-1)3,解得a =2.答:被墨水污染的数字是2.14.解:根据题意,得x -12+2x +16=x -13+1,3x -3+2x +1=2x -2+6, 5x -2=2x +4,x =2.所以当x 取2时,式子x -12+2x +16的值比x -13的值大1.15.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意,得 5x +9(140-x)=1000, 解得x =65,所以140-x =75.答:购进甲种水果65千克,乙种水果75千克. (2)(8-5)×65+(13-9)×75=495(元).答:获得的利润为495元.16.解:(1)设成人人数为x ,则学生人数为12-x, 则35x +352人教版七年级数学(上册)第3章一元一次方程单元检测(解析版)一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列各方程中,属于一元一次方程的是( ) A .x +2y =0 B .x 2+3x +2=0C .2x ﹣3=+2D .x +1=0 2.(3分)将方程=变形为=的理论依据是( )A .合并B .等式的性质C .等式的性质2D .分数的基本性质3.(3分)根据等式性质5=3x ﹣2可变形为( ) A .﹣3x =2﹣5B .﹣3x =﹣2+5C .5﹣2=3xD .﹣3x =﹣5﹣24.(3分)已知x =2是方程2(x ﹣3)+1=x +m 的解,则m ﹣1的值是( ) A .3B .﹣3C .﹣4D .45.(3分)下列方程中,解是x =2的是( ) A .2x ﹣2=0B .x =4C .4x =2D .﹣1=6.(3分)已知x =y ,下列等式不一定成立的是( ) A .ax =ayB .ax +b =ay +bC .ax ﹣x =ay ﹣xD .7.(3分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色是多少克?( ) A .10B .15C .20D .258.(3分)下列变形属于移项的是( ) A .若,则B .3x 2y +3x 2y 2+5x 2y =(3x 2y +5x 2y )+3x 2y 2C .若3x =1,则x =D .若3x ﹣4=5x +5,则3x ﹣5x =5﹣4 9.(3分)解方程时,去分母后正确的是( )A.4x+2﹣10x+1=10B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10D.4x+1﹣10x+1=110.(3分)甲、乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是()A.12.5km B.15km C.17.5km D.20km二.填空题(共6小题,满分24分,每小题4分)11.(4分)方程x+11=9的解是.12.(4分)已知x与x的3倍的和比x的2倍少6,列出方程为.13.(4分)关于y的两个一元一次方程y+3m=32与y﹣4=1的解相同,那么m的值为.14.(4分)某商品降价20%后售价为20元,则该商品的原价为.15.(4分)若与是同类项,则x=.16.(4分)一条山路,某人从山下往山顶走3小时,还差1千米才到山顶,若从山顶走到山下,只用150分钟,已知下山速度是上山速度的1.5倍,则上山速度为.三.解答题(共8小题,满分66分)17.(12分)解方程(1)2x+3=x+5(2)0.5x﹣0.7=6.5﹣1.3x(3)8x=﹣2(x+4)(4)18.(7分)用76cm长的铁丝做一个长方形,要使长是22cm,宽应当是多少cm?19.(7分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?20.(7分)一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求飞机在静风中的速度.21.(7分)小明的母亲今年38岁,2年前小明的母亲的年龄是小明年龄的3倍,小明今年几岁?(设小明今年x岁)22.(8分)有一个两位数,它的十位上的数比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.23.(9分)某数为x,根据下列条件列方程.。

人教版初中数学七年级上册第三章《一元一次方程》单元检测题(含答案)

人教版初中数学七年级上册第三章《一元一次方程》单元检测题(含答案)
把方程 x=1 两边同乘 2,即可变形为 x=2,故其依据是等式的性质 2; 故选:B. 【点睛】 本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字 母,等式仍成立;2、等式的两边同时乘以或除以同一个不为 0 数或字母,等式仍成立. 12. 或 【解析】 【分析】 由已知可以知道|x-3|=1,则得到 x+3=±1,因而原方程就可以转化成两个一元一次方程,x+3=1 和 x+3=-1 解这两个方程就可以求出原方程的解. 【详解】 移项得:|x-3|=5-4 ∴|x-3|=1 ∴x-3=±1 即 x-3=1 或 x-3=-1
【分析】
先去括号,然后移项,合并同类项,最后系数化为 1,可求出 x 的值.
【详解】
解:去括号得:
,
移项,合并同类项得:
,
系数化为 1 得: , 故选 A. 【点睛】 本题主要考查解方程,解决本题的关键是要熟练掌握解方程的步骤和方法. 10.A 【解析】 【分析】 求出各项中方程的解,即可作出判断. 【详解】 ① 解得 x=-3,不合题意; ② x+2=± 5,
9.方程
的解是( ).
A.
B. - C.
D. -
10.下列方程的解是 的有( )


③ A. 1 个
B. 2 个
④ C. 3
D. 4 个
11.把方程 x=1 变形为 x=2,其依据是
A. 等式的性质 1 B. 等式的性质 2
C. 分数的基本性质 二、填空题
D. 乘法分配律
12.关于方程
的解为___________________________.
17.已知
,代数式
的值比

人教版数学七年级上册第三章一元一次方程单元测试试卷(word版,带答案)

人教版数学七年级上册第三章一元一次方程单元测试试卷(word版,带答案)

七年级上册第三章一元一次方程单元测试试卷姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、 x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.12、若关于的方程是一元一次方程,则这个方程的解是()A. B. C. D.3、已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是( )A.x=-4 B.x=-3 C.x=-2 D.x=-14、若方程:与的解互为相反数,则a的值为()A.- B. C. D.-15、已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.6、若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()A.0 B.2 C.0或2 D.-27、某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)8、已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y =0.其中一元一次方程的个数是()A.2 B.3 C.4 D.59、在如图的某月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A.27 B.51 C.69 D.7210、某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元 B.250元 C.280元 D.300元二、填空题(共6题)11、已知3x-8与2互为相反数,则x= ________.12、若关于的方程是一元一次方程,则________.13、关于x的方程9x-2=kx+7的解是自然数,则整数k的值为________ 、________ 、________ .14、若定义f(x)=3x-2,如f(-2)=3×(-2)-2=-8.下列说法中:①当f(x)=1时,x=1;②对于正数x,f(x)>f(-x)均成立;③f(x-1)+f(1-x)=0;④当且仅当a=2时,f(a-x)=a-f(x).其中正确的是______.(填序号)15、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=_____;(2)当y=﹣2时,n的值为_____.16、《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.三、解答题(共8题)17、解方程:(1)x﹣7=10﹣4(x+0.5) (2)=1.18、设为整数,且关于的一元一次方程.(1)当时,求方程的解;(2)若该方程有整数解,求的值.19、如果方程的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.20、关于的方程,分别求为何值时,原方程:(1)有唯一解(2)有无数多解(3)无解21、定义☆运算.观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.22、阅读理解题:你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将直接写成分数形式为_____________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.23、为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元 2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.24、马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少?(2)当标价总额是多少元时,甲乙超市实付款一样?七年级上册第三章一元一次方程单元测试试卷答案一、选择题1、 B2、 A3、 B4、 A5、 A6、 A7、 D8、 B9、 D10、 A二、填空题11、 212、 013、 0;6;814、①②④15、 3x; 116、 9x-11=6x+16三、解答题17、(1);(2)x=.18、(1);(2)或,或.19、x=10;a=-4;11.20、(1)m≠3时方程有唯一解;(2)当m=3,n=-4时方程有无数多解;(3)当m=3, n≠-4时方程无解.21、(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-5.22、(1)(2)见解析23、 8.2 km24、(1)甲264元;乙270元;(2)625。

七年级数学(上册)第三章《一元一次方程》测试卷(含答案)

七年级数学(上册)第三章《一元一次方程》测试卷(含答案)

七年级数学(上册)第三章《一元一次方程》测试卷(含答案)一、选择题(30分)1、下列方程属于一元一次方程的是( )A. 011=-x; B. y x 316=+; C. 3m =2; D. 01422=+-y y 2、下列说法正确的是( )A. 若ac=bc ,则a=b ;B. 若cb c a =,则a=b ; C. 若22b a =,则a=b ; D. 若631=-x ,则x =-2 3、方程-4x =1的解是( )A. 41-=x ;B. x =-4;C. 41=x ; D. x =4 4、方程4431212-=+--x x 去分母,得到的方程时( ) A. 2(2x -1)-1+3x =4 ; B. 2(2x -1)-1+3x =-16 ;C. 2(2x -1)-(1+3x )=-4 ;D. 2(2x -1)-(1+3x )=-165、若23-m 的值比312-m 的值大1,则m 的值是( ) A. 15; B. 13; C. -13; D. -15;6、已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )A. 2;B. 3;C. 4;D. 5;7、轮船在河流中来往航行于A 、B 两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km ,求A 、B 两码头间的距离,若设A 、B 两码头间距离为x ,则所列方程为( ) A. 3937+=-x x ; B. 997+=x x ; C. 937x x =+; D. 3937-=+x x ; 8、某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润不低于5﹪,则最多打( )A. 6折;B. 7折;C. 8折;D. 9折;9、2015年的5月份中有5个星期五,它们的日期之和为75,则5月3日是( )A. 星期六;B. 星期四;C. 星期五;D. 星期日;10、某商场出售某种高端品牌家电,若按标价打八折销售该家电一件,则可获利润500元,其利润率为20﹪,现在如果按同一标价打九折销售该家电一件,那么获得的利润为( )A. 562.5元;B. 875元;C. 550元;D. 750元;二、填空题(24分)11、如果7x=5x+4,那么7x - =4.12、若方程152=-x 和方程0331=--x a 的解相同,则a = . 13、小明在做解方程的作业时,不小心将方程中的一个常数污染了看不清,被污染的方程是:=-y y 21212,怎么办?小明想了想,便看了书后答案,此方程的解是:y =53-,很快补好了这个常数,这个常数应是 。

七年级数学上册第三章《一元一次方程》测试题-人教版(含答案)

七年级数学上册第三章《一元一次方程》测试题-人教版(含答案)

七年级数学上册第三章《一元一次方程》测试题-人教版(含答案)一、单选题1.运用等式性质进行的变形,正确的是( )A .如果a b =,那么a c b c +=-B .如果a b c c =,那么a b =C .如果a b =,那么a b c c = D .如果23a a =,那么3a = 2.解方程3162x x +-=利用等式性质去分母正确的是( ) A .133x x --=B .633x x --=C .633x x -+=D .133x x -+= 3.已知x =3是关于x 的方程23mx nx =-的解,则24n m -的值是( ) A .2 B .-2 C .1 D .﹣1 4.如图给出的是2021年3月份的日历表,任意圈出一竖列上相邻的三个数,这三个数的和不可能是( )A .69B .54C .27D .40 5.几个人共同种一批树苗,如果每人种6棵,则少4棵树苗;如果每人种5棵,则剩下3棵树苗未种,若设参与种树的人数为x 人,则下面所列方程中正确的是( ) A .5x -3=6x -4 B .5x +3=6x +4 C .5x +3=6x -4 D .5x -3=6x +4 6.已知单项式13m a b +与12n b a --可以合并同类项,则m ,n 分别为( ) A .1,2 B .3,2 C .1,0 D .3,0 7.若关于x 的一元一次方程23132x k x k ---=的解是x =-1,则k 的值是( ) A .27 B .311- C .1 D .08.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x 岁,可列方程为( )A .243(4)x x +=-B .243(4)x x -=-C .23(4)x x =-D .243x x -= 9.如图,数轴上的点O 和点A 分别表示0和10,点P 是线段OA 上一动点.点P 从点O 出发沿O A →的方向以每秒2个单位的速度向A 运动,B 是线段OA 的中点,设点P 运动时间为t 秒(t 不超过5秒).若点P 在运动过程中,当2PB =时,则运动时间t 的值为______.A .72秒B .32秒C .3秒或7秒D .32秒或72秒 10.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分一个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31001003x x --=B .()31001003x x +-= C .10031003x x --= D .10031003x x -+= 二、填空题11.把方程3y x -=改写成用含x 的式子表示y 的形式,则y =_______.12.如图,四个一样大的小矩形拼成一个大矩形,如果大矩形的周长为12cm ,那么小矩形的周长为______cm .13.已知方程21(2)60n m x +++=是关于x 的一元一次方程,若此方程的解为正整数,且m 为整数,则22m =______.14.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.15.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x 立方米的木材做桌面,可列方程________.三、解答题16.解下列方程:(1)4118332x x -=-; (2)0.50.7 6.5 1.3x x -=-; (3)12(36)365x x -=-; (4)1231337x x -+=-.17.已知关于x 的方程2312a x -=,在解这个方程时,粗心的小琴同学误将3x -看成了3x +,从而解得3x =,请你帮他求出正确的解.18.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.19.学校要购入两种记录本,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本,总花费为460元.(1)求购买B 种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱20.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?21.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1多152件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?参考答案1.B2.B3.A4.D5.C6.A7.C8.B9.D10.D11.x +312.613.18或32或50或12814.7.5折15.()50x 430010x ⨯=-16.(1)23x =-;(2)4x =;(3)20x =-;(4)6723x =. 17.解:∵3x =是2312a x +=的解,∵23312a +⨯=, 解得,32a =, 则原方程可化为:323122x ⨯-=, 解得,3x =-.即原方程的解是3x =-.18.设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2),解得:x =3,∵4+(5−x )=6,∵大正方形的面积为36cm 2.答:大正方形的面积为36cm 2.19.(1)设B 种记录本的数量为x ,则A 种记录本的数量为(220)x +本由题意可列方程为:3(220)2460x x ++=解得:50x =(本)答:购买B 种记录本的数量为50本;(2)由题(1)的结论可得:购买A 种记录本的数量为25020120⨯+=(本)因此,按促销活动购买这些记录本需花费为:120380%50290%378⨯⨯+⨯⨯=(元) 则学校此次可节省的钱为:46037882-=(元)答:学校此次可以节省82元.20.设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x , 由题意可得:330.50.520360x x ++-=,解得:5x =, 经检验,5x =是原方程的根,∵315x =答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h . 21.解:(1)设第一次购进甲种商品x 件,则购进乙种商品(12x +15)件,根据题意得:22x +30(12x+15)=6000,解得:x =150, ∵12x+15=90. 答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.。

七年级上数学第三章一元一次方程测试卷及答案

七年级上数学第三章一元一次方程测试卷及答案

七年级上第三章一元一次方程测试卷及答案(总分:120分 时间:120分钟)一、填空题(每题3分,共30分)1.关于x 的方程(k-1)x-3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.3.若x=3是方程2x-10=4a 的解,则a=______. 4.(1)-3x+2x=_______. (2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 6.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 7.某服装成本为100元,定价比成本高20%,则利润为________元.8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 9.当m 值为______时,453m 的值为0. 10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军. 二、选择题(每题3分,共30分) 11.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D .2y-3=1是一元一次方程12.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0C .13x-3=1xD .3x-2=4x-714.下列各组方程中,解相同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )44.1.120201220201244.1.1202012202012x xx x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311D .017.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .16 18.解方程1432x x---=1去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1 C .2(x-1)-3(4-x )=6 D .2x-2-12-3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( ) A .280千米,240千米 B .240千米,280千米 C .200千米,240千米 D .160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( ) A . 120x=(x+2)x B .1202x x =+ 120120120120.3.322C D x x x x-==+++ 三、解方程(共28分)21.(1)53-6x=-72x+1; (5分) (2)y-12(y-1)=23(y-1); (5分)(3)34 [43(12x-14)-8]= 32x+1;(5分) (4)0.20.110.30.2x x-+-=.(5分)22.(8分)若关于x 的方程2x-3=1和2x k-=k-3x 有相同的解,求k 的值.四、应用题(每题8分,共32分)23.(8分)某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3•间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?24.(8分)如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、•每条对角线上三个数的和相等,问图中的m 是多少?25.(8分)先阅读下面的材料,再解答后面的问题.现代社会对保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算器键盘字母排列分解,其中Q 、W 、E 、…、N 、M 这26个字母依次对应1、2、3…、25、26这26个自然数(见下表):给出一个变换公式:`(,126,3)32`17(,126,3)31`8(,126,32)3xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数被整除是自然数被除余1是自然数被除余 将明文转换成密文,如:4→423++17=19,即R 变为L :11→1113++8=12,即A 变为S .将密文转换成明文,如:21→3×(21-17)-2=10,即X 变为P ; 13→3×(13-8)-1=14,即D 变为F ; (1)按上述方法将明文NET 译为密文;(2)若按上述方法将明文译成的密文为DMN ,请找出它的明文.26.(8分)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的23,若提前购票,则给予不同程序的优惠,在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,•共售出零售票数的一半,如果在六月份内,团体票按每张16元出售,•并计划在六月份售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?答案:1.≠1 2.x=-533.-1 4.(1)-x (2)-4m 5.99-a 6.22 7.20 • •8.•0.7x=10009.5410.5 11.D 12.A 13.D 14.C 15.C 16.B 17.C 18.C19.B(点拨:设水路x千米,有方程40 2440x x+=+3)20.C21.(1)x=415(2)y=7 (3)x=-29114(4)22.4103x k=-=23.设学校有x间教室,依题意得方程20(x+3)=24(x-1),解得x=21(间).24.设相应的方格中数为x1,x2,x3,x4,如图,由已知得m+x1+x2=m+x3+x4=x1+x3+13=x2+19+x4,由此得2m+x1+x2+x3+x4=13+19+x1+x2+x3+x4.∴2m=13+19,即m=16.25.(1)25→2523++17=26 N变为N3→33=1 E变为Q5→513++8=10 T变为P(2)13→3×(13-8)-1=14 D变为F2→3×(2-0)=6 W变为Y25→3×(25-17)-2=22 N变为C26.设总票数a张,六月份零售标价为x元/张,依题意,得12×35×23a+16×12×13a=16×415a+16ax∴x=19.2,故六月份零售票应按每张19.2元定价.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册第三章一元一次方程单元测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.下列方程中,解是x =5的方程是( ) A .2x -1=x B .x -3=2 C .3x =x +5D .x +3=-22.下面是小玲同学在一次课堂测验中利用等式的性质进行的变形,其中正确的是( ) A .由-13x -5=4,得13x =4+5B .由5y -3y +y =9,得(5-3)y =9C .由x +7=26,得x =19D .由-5x =20,得x =-5203.方程7(3-x )-5(x -3)=8去括号,下列正确的是( ) A .21-x -5x +15=8 B .21-7x -5x -15=8 C .21-7x -5x +15=8 D .21-x -5x -15=84.将方程x 2-x -16=6去分母,正确的是( )A .3x -(x -1)=6B .x -(x -1)=6C .6x -2(x -1)=36D .3x -(x -1)=365.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x 公顷沙漠改造为绿洲,则可列方程为( )A .54+x =80%×108B .54+x =80%(108-x )C .54-x =80%(108+x )D .108-x =80%(54+x )6.某船顺流航行的速度为30 km/h ,逆流航行的速度为20 km/h ,则水流的速度为( )A .5 km/hB .10 km/hC .25 km/hD .50 km/h二、填空题(本大题共5小题,每小题4分,共20分) 7.若2(x -1)+3=x ,则x 的值是________. 8.若2减去3m +45的差为6,则m =________.9.若式子6⎝ ⎛⎭⎪⎫12x -4+2x 与7-⎝ ⎛⎭⎪⎫13x -1的值相等,则x =________. 10.一列匀速行驶的高铁列车在行进途中经过一条长1200米的隧道,已知列车从车头开始进入隧道到车尾离开隧道共需8秒.出隧道后与另一列长度和速度都相同的列车相遇,从车头相遇到车尾离开仅用了2秒,则该列车的长度为________米.11.明代数学家程大位的《算法统宗》中有这样一个问题(如图1),其大意为:有一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)图1三、解答题(本大题共6小题,共56分) 12.(8分)解方程:(1)2(2x -3)-3=2-3(x -1); (2)x -33-1=-2x +42.13.(8分)小彬的练习册上有一道解方程的题,其中一个数字被墨水污染了,成了5x -14=2-2-x 3(“),他翻了书后的答案,知道这个方程的解为x =-1,于是他把被墨水污染的数字求了出来,请你把小彬的计算过程写出来.14.(8分)当x 取何值时,式子x -12+2x +16的值比x -13的值大1?15.(10分)某水果销售店用1000元购进甲、乙两种水果共140千克,这两种水果的进价、售价如下表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,则获得的利润是多少元?16.(10分)在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时小明与爸爸的对话(如图2),试根据图中的信息,解答下列问题:图2(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱,并说明理由.17.(12分)甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A,B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A,B两工地的运费分别是140元/吨,150元/吨,乙仓库运到A,B两工地的运费分别是200元/吨,80元/吨,本次运送水泥总运费为25900元,求甲仓库运到A工地水泥的吨数.(运费:元/吨表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下表中用含x的式子表示出其他未知量:(2)用含x的式子表示运送甲仓库100吨水泥的运费为__________元(写出化简后的结果);(3)请根据题目中的相等关系和以上分析列出方程,并写出调运方案.1.B 2. C 3.C. 4. D 5. B 6. A 7.-1 8.[答案] -8 9.[答案] 6 10.[答案] 400 11.[答案] 4612.解:(1)2(2x -3)-3=2-3(x -1), 4x -6-3=2-3x +3, 4x +3x =2+3+3+6, 7x =14, x =2.(2)去分母,得2(x -3)-6=3(-2x +4). 去括号,得2x -6-6=-6x +12. 移项、合并同类项,得8x =24. 系数化为1,得x =3.13.解:设被墨水污染的数字为a. 把x =-1代入方程, 得5×(-1)-14=3×(-1)+a 2-2-(-1)3,解得a =2.答:被墨水污染的数字是2.14.解:根据题意,得x -12+2x +16=x -13+1,3x -3+2x +1=2x -2+6, 5x -2=2x +4,x =2.所以当x 取2时,式子x -12+2x +16的值比x -13的值大1.15.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意,得 5x +9(140-x)=1000, 解得x =65,所以140-x =75.答:购进甲种水果65千克,乙种水果75千克. (2)(8-5)×65+(13-9)×75=495(元).答:获得的利润为495元.16.解:(1)设成人人数为x ,则学生人数为12-x, 则35x +352人教版七年级数学上册第三章一元一次方程单元测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.下列方程中,解是x =5的方程是( ) A .2x -1=x B .x -3=2 C .3x =x +5D .x +3=-22.下面是小玲同学在一次课堂测验中利用等式的性质进行的变形,其中正确的是( ) A .由-13x -5=4,得13x =4+5B .由5y -3y +y =9,得(5-3)y =9C .由x +7=26,得x =19D .由-5x =20,得x =-5203.方程7(3-x )-5(x -3)=8去括号,下列正确的是( ) A .21-x -5x +15=8 B .21-7x -5x -15=8 C .21-7x -5x +15=8 D .21-x -5x -15=84.将方程x 2-x -16=6去分母,正确的是( )A .3x -(x -1)=6B .x -(x -1)=6C .6x -2(x -1)=36D .3x -(x -1)=365.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x 公顷沙漠改造为绿洲,则可列方程为( )A .54+x =80%×108B .54+x =80%(108-x )C .54-x =80%(108+x )D .108-x =80%(54+x )6.某船顺流航行的速度为30 km/h ,逆流航行的速度为20 km/h ,则水流的速度为( )A .5 km/hB .10 km/hC .25 km/hD .50 km/h二、填空题(本大题共5小题,每小题4分,共20分) 7.若2(x -1)+3=x ,则x 的值是________. 8.若2减去3m +45的差为6,则m =________.9.若式子6⎝ ⎛⎭⎪⎫12x -4+2x 与7-⎝ ⎛⎭⎪⎫13x -1的值相等,则x =________. 10.一列匀速行驶的高铁列车在行进途中经过一条长1200米的隧道,已知列车从车头开始进入隧道到车尾离开隧道共需8秒.出隧道后与另一列长度和速度都相同的列车相遇,从车头相遇到车尾离开仅用了2秒,则该列车的长度为________米.11.明代数学家程大位的《算法统宗》中有这样一个问题(如图1),其大意为:有一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)图1三、解答题(本大题共6小题,共56分) 12.(8分)解方程:(1)2(2x -3)-3=2-3(x -1);(2)x -33-1=-2x +42.13.(8分)小彬的练习册上有一道解方程的题,其中一个数字被墨水污染了,成了5x -14=2-2-x 3(“),他翻了书后的答案,知道这个方程的解为x =-1,于是他把被墨水污染的数字求了出来,请你把小彬的计算过程写出来.14.(8分)当x 取何值时,式子x -12+2x +16的值比x -13的值大1?15.(10分)某水果销售店用1000元购进甲、乙两种水果共140千克,这两种水果的进价、售价如下表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,则获得的利润是多少元?16.(10分)在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时小明与爸爸的对话(如图2),试根据图中的信息,解答下列问题:图2(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱,并说明理由.17.(12分)甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A,B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A,B两工地的运费分别是140元/吨,150元/吨,乙仓库运到A,B两工地的运费分别是200元/吨,80元/吨,本次运送水泥总运费为25900元,求甲仓库运到A工地水泥的吨数.(运费:元/吨表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下表中用含x的式子表示出其他未知量:(2)用含x的式子表示运送甲仓库100吨水泥的运费为__________元(写出化简后的结果);(3)请根据题目中的相等关系和以上分析列出方程,并写出调运方案.1.B 2. C 3.C. 4. D 5. B 6. A 7.-1 8.[答案] -8 9.[答案] 6 10.[答案] 400 11.[答案] 4612.解:(1)2(2x -3)-3=2-3(x -1), 4x -6-3=2-3x +3, 4x +3x =2+3+3+6, 7x =14, x =2.(2)去分母,得2(x -3)-6=3(-2x +4). 去括号,得2x -6-6=-6x +12. 移项、合并同类项,得8x =24. 系数化为1,得x =3.13.解:设被墨水污染的数字为a. 把x =-1代入方程, 得5×(-1)-14=3×(-1)+a 2-2-(-1)3,解得a =2.答:被墨水污染的数字是2.14.解:根据题意,得x -12+2x +16=x -13+1,3x -3+2x +1=2x -2+6, 5x -2=2x +4,x =2.所以当x 取2时,式子x -12+2x +16的值比x -13的值大1.15.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意,得 5x +9(140-x)=1000, 解得x =65,所以140-x =75.答:购进甲种水果65千克,乙种水果75千克. (2)(8-5)×65+(13-9)×75=495(元).答:获得的利润为495元.16.解:(1)设成人人数为x ,则学生人数为12-x, 则35x +352人教版数学七年级上册第三章一元一次方程单元测试卷一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是( ) A.x+3=y+2 B.x+3=3-xC.=1D.x 2-1=02.方程3x-1=5的解是( ) A.x=B.x=C.x=18D.x=23.下列方程变形中,正确的是( ) A.方程3x-2=2x+1,移项,得3x-2x=-1+2 B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1 C.方程t=,未知数系数化为1,得t=1 D.方程 -=1化成3x=64.日历中同一竖列相邻三个数的和不可能是( ) A.78 B.26 C.21 D.455.方程-x= -+1去分母得( )A.3(2x+3)-x=2(9x-5)+6B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 6.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球质量为( ) A .10 g B .15 g C .20 g D .25 g7.若“☆”是新规定的某种运算符号,设x ☆y=xy+x+y ,则2☆m=-16中,m 的值为( ) A .8 B .-8 C .6 D .-68.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5 m 栽1棵,则树苗缺21棵;如果每隔6 m 栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x二、填空题(每小题4分,共16分)9.已知x=2是关于x的方程ax-5x-6=0的解,则a=.10.已知|x+1|+(y+3)2=0,则(x+y)2的值是.11.当m=时,单项式x2m-1y2与-8x m+3y2是同类项.12.将一个底面半径为6 cm,高为40 cm的“瘦长”的圆柱钢材压成底面半径为12 cm的“矮胖”的圆柱形零件,则它的高变成了cm.三、解答题(共52分)13.(16分)解下列方程:(1)---1;(2)-=0.5.14.(8分)当m为何值时,式子2m--的值与式子-的值的和等于5?15.(8分)一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.(10分)某地为了打造风光带,将一段长为360 m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道?17.(10分)某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?参考答案一、选择题1.B判断方程是否为一元一次方程,只需两步:(1)判断是否是方程;(2)对方程化简,化简后判断是否只含有一个未知数(元),并且未知数的最高次数是1次.2.D3.D4.B日历中同一竖列相邻三个数的和必须是3的倍数,所以不可能是26.5.D6.A7.D根据题意,得2☆m=2m+2+m=-16,3m=-18,m=-6.8.A设原有树苗x棵,由题意得5(x+21-1)=6(x-1).故选A.二、填空题 9.810.16 根据绝对值和平方的非负性,可知x+1=0,且y+3=0,解得x=-1,y=-3,所以(x+y )2=16. 11.4 根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.10 设高变成了x cm,根据题意,得π×122×x=π×62×40,解得x=10.所以圆柱的高变成了10cm .三、解答题13.解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12. 去括号,得8x-4-20x+2=6x+3-12, 移项、合并同类项,得-18x=-7.系数化为1,得x=. (2)原方程可化为 -=0.5, 即-=0.5. 去分母,得5x-(1.5-x )=1, 去括号,得5x-1.5+x=1,移项,合并同类项,得6x=2.5, 系数化为1,得x=.14.解:根据题意,得2m- --=5.解这个方程,得m=-7.所以当m=-7时,式子2m- -的值与式子-的值的和等于5.15.解:设飞机在静风中的速度为x 千米/时,则 (人教版七年级数学上册第三章一元一次方程单元测试(含答案)一、单选题1.下列方程是一元一次方程的是( ) A.4x+2y=3 B.y+5=0 C.x 2=2x ﹣l D.1y+y=2 2.在下列方程中①221x x +=,②139x x -=,③102x =,④123233-=,⑤2133y y -=+是一元一次方程的有( )个.A .1B .2C .3D .43.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1 B.由,得C.由,得D.由,得2x ﹣3x=14.下列选项中,移项正确的是( ) A .方程8x 6-=变形为x 68-=+ B .方程5x 4x 8=+变形为5x 4x 8-= C .方程3x 2x 5=+变形为3x 2x 5-=- D .方程32x x 7-=+变形为x 2x 73-=+ 5.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.如果关于 的方程 - 无解,那么 满足( ). A. B.C. D.任意实数8.方程去分母后正确的结果是( )A. B. C.D.9.若 是方程 的解,则代数式 的值为( ) A.-5B.-1C.1D.510.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.511.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x 千米,则列方程正确的是( ) A.()()254254x x +=- B.2556x x += C.6255x x += D.6255255x x+=+- 12.甲、乙两人去买东西,他们所带钱数的和为120元,甲花去30元,乙花去20元,两人余下的钱数之比为3:2,则甲、乙两人所带的钱数分别是 ( ) A .70,49 B .65,48C .72,48D .73,47二、填空题13.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 14.方程320x -+=的解为________.15.已知a 、b 、c 、d 为有理数,现规定一种新运算a b ad bc c d=-,如131(5)321125=⨯--⨯=--,那么当2422(1)7x =+时,则x 的值为_____.16.今有浓度分别为 3%、8%、11%的甲、乙、丙三种盐水 50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为 7%的盐水 100 千克,则丙种盐水最多可用_________千克 三、解答题17.解方程:(1)8x-2=0;(2)2x-5=4x+3 18.解方程:(1)51312423-+--=x x x ;(2)30.4110.50.3---=x x 19.已知A =2x 2+mx ﹣m ,B =3x 2﹣mx +m . (1)求A ﹣B ;(2)如果3A ﹣2B +C =0,那么C 的表达式是什么?(3)在(2)的条件下,若x =4是方程C =20x +5m 的解,求m 的值.20.如图,在数轴上点O 为原点,A 点表示数a ,B 点表示数b ,且a 、b 满足|a+2|+|b-4|=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)如果M 、N 为数轴上两个动点.点M 从点A 出发,速度为每秒1个单位长度;点N 从点B出发,速度为点A的3倍,它们同时向左运动.①当运动2秒时,点M、N对应的数分别是、.②当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)21.某公司要生产若干件新产品,需要加工后才能投放市场.现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工多用20天,红星厂每天可以加工16个,巨星厂每天可以加工24个.公司需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这家公司要生产多少件新产品?(2)公司制定产品加工方案如下:可由每个厂家单独完成,也可由两个厂共同合作完成.在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并负担每天的补助费5元.请你帮公司选择一种既省钱又省时的加工方案人教版七(上)数学第三章一元一次方程单元测试一、选择题:(每小题3分共30分)1.下列关于的方程一定是一元一次方程的是()A. B. C. D.2.下列的值是方程的解的是()A. B. C. D.3.下列关于等式与方程的说法,正确的是()A.含有运算符号的式子是等式 B.含有“=”的式子是方程C.方程一定是等式 D.等式一定是方程4.把方程移项,得()A. B. C. D.5.如果7a-5与3-5a互为相反数,则a的值为()A.0B.1C.-lD.26.方程的解是()A.4B.-4C.D.7.解方程时,去分母正确的是()A. B. C. D.8.方程的解是()A. B. C. D.9.有一张桌子配4张椅子,现有90立方米,1立方米可做木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用立方米的木料做桌子,则依题意可列方程为A. B. C. D.10.A、B两地相距900km,一列快车以200/km h的速度从A地匀速驶往B地,到达B 地后立刻原路返回A地,一列慢车以75/km h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km时,行驶的时间是()A.283h B.445h C.285h D.4h二、填空题:(每小题3分共18分)11.将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.12.成人票、学生票共1000张票,若设学生票有x张,则成人票有______张,若成人票8元,学生票5元,这1000张票共花费6950元,根据此题意,可列方程______.13.已知,两镇相距,甲、乙二人同时从,两镇出发,相向而行.甲骑电动车每小时行,乙骑自行车每小时行,甲、乙二人经过__________小时相遇.14.某种商品按进价提高50%后标价,又打八折销售,售价为每件360元,若设进价是x元,则可列方程____________________.15.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x米,那么长为_______米。

相关文档
最新文档