第4章_关联规则
python数据分析课后习题精选全文完整版
python数据分析课后习题B. 数据合并按照合并轴⽅向主要分为左连接、右连接、内连接和外连接C. 预处理过程主要包括数据清洗、数据合并、数据标准化和数据转换,它们之间存在交叉,没有严格的先后关系D. 数据标准化的主要对象是类别型的特征3. (单选题)以下关于缺失值检测的说法中,正确的是(B)。
A. null 和 notnull 可以对缺失值进⾏处理B. dropna⽅法既可以删除观测记录,亦可以删除特征C. fillna⽅法中⽤来替换缺失值的值只能是数据框D. pandas 库中的interpolate 模块包含了多种插值⽅法4. (单选题)关于标准差标准化,下列说法中错误的是(B)。
A. 经过该⽅法处理后的数据均值为0,标准差为1B. 可能会改变数据的分布情况C.Python中可⾃定义该⽅法实现函数:def StandardScaler(data):data=(data-data.mean())/data.std()return dataD. 计算公式为X*=(X-`X)/σ5. (单选题)以下关于pandas数据预处理说法正确的是(D)。
A. pandas没有做哑变量的函数B. 在不导⼈其他库的情况下,仅仅使⽤pandas 就可实现聚类分析离散化C. pandas 可以实现所有的数据预处理操作D. cut 函数默认情况下做的是等宽法离散化6. (单选题)以下关于异常值检测的说法中错误的是(D)。
A. 3σ原则利⽤了统计学中⼩概率事件的原理B. 使⽤箱线图⽅法时要求数据服从或近似服从正态分布C. 基于聚类的⽅法可以进⾏离群点检测D. 基于分类的⽅法可以进⾏离群点检测7. (单选题)有⼀份数据,需要查看数据的类型,并将部分数据做强制类型转换,以及对数值型数据做基本的描述性分析。
下列的步骤和⽅法正确的是(A)。
A. dtypes 查看类型,astype 转换类别,describe 描述性统计B. astype 查看类型,dtypes转换类别,describe描述性统计C. describe查看类型,astype转换类别,dtypes描述性统计D. dtypes 查看类型,describe 转换类别,astype 描述性统计8. (单选题)下列与标准化⽅法有关的说法中错误的是(A)。
机器学习知到章节答案智慧树2023年三亚学院
机器学习知到章节测试答案智慧树2023年最新三亚学院第一章测试1.下面哪句话是正确的()参考答案:增加模型的复杂度,总能减小训练样本误差2.评估模型之后,得出模型存在偏差,下列哪种方法可能解决这一问题()参考答案:向模型中增加更多的特征3.以垃圾微信识别为例,Tom Mitchell的机器学习的定义中,任务T是什么?()参考答案:T是识别4.如何在监督式学习中使用聚类算法()?参考答案:在应用监督式学习算法之前,可以将其类别ID作为特征空间中的一个额外的特征;首先,可以创建聚类,然后分别在不同的集群上应用监督式学习算法5.想要训练一个ML模型,样本数量有100万个,特征维度是5000,面对如此大数据,如何有效地训练模型()?参考答案:对训练集随机采样,在随机采样的数据上建立模型;使用PCA算法减少特征维度;尝试使用在线机器学习算法6.机器学习兴起于()。
参考答案:1990年;1980年7.监督学习包括是()。
参考答案:分类;回归8.机器学习可以对电子商务产品评价进行好评与差评分类。
()参考答案:对9.机器学习必备知识包括数学基础、心理学基础、算法设计基础、商业模式基础。
()参考答案:错10.机器学习是一门多学科交叉专业,涵盖____、____、近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。
参考答案:null第二章测试1.关于k-NN算法,以下哪个选项是正确的?参考答案:可用于分类和回归2.k-NN算法在测试时间而不是训练时间上进行了更多的计算。
参考答案:对3.假设算法是k最近邻算法,在下面的图像中,____将是k的最佳值。
参考答案:104.一个kNN分类器,该分类器在训练数据上获得100%的准确性。
而在客户端上部署此模型时,发现该模型根本不准确。
以下哪项可能出错了?注意:模型已成功部署,除了模型性能外,在客户端没有发现任何技术问题参考答案:可能是模型过拟合5.以下是针对k-NN算法给出的两条陈述,其中哪一条是真的?1、我们可以借助交叉验证来选择k的最优值2、欧氏距离对每个特征一视同仁参考答案:1和26.你给出了以下2条语句,发现在k-NN情况下哪个选项是正确的?1、如果k的值非常大,我们可以将其他类别的点包括到邻域中。
基于关联规则挖掘的用户购物行为分析
基于关联规则挖掘的用户购物行为分析第一章:引言随着电商的崛起,越来越多的人开始选择在网上购物。
这为商家提供了更多的销售渠道和更多机会获取用户数据。
而随着数据的积累和增长,很多商家已经意识到了这些数据所携带的信息和价值。
因此,在商家中广泛地运用了数据挖掘技术去挖掘其中的有用信息,以获得更好的商业价值。
本文基于关联规则挖掘技术,对用户购物行为进行分析。
第二章:相关技术介绍关联规则是一种常用的挖掘技术,它可以用来发现数据中的相关关系。
关联规则挖掘可以将不同的数据集中有用的关联规则挖掘出来,以发现数据信息的潜在关联。
关联规则挖掘可帮助企业更好地理解顾客行为,或发现组合方案或垂直潜在的市场机会,并可在竞争中获取更可观的利润。
第三章:数据来源本文所分析的数据集来源于某电商网站的销售数据,数据包含用户ID、购买商品ID、购买日期、购买数量等信息。
第四章:数据预处理与分析针对数据预处理,采用的方法主要有以下两个方面:1. 数据清洗在本文中,由于存在一些大量的异常数据,所以需要进行数据清洗。
具体的,本文采用了数据清洗方法删除掉了一定范围内的异常数据并对不规范的数据进行了清洗和处理。
2. 数据分析经过数据清理后,本文分别对购买量前十的商品以及购买次数前十的用户进行了分析。
结果如下所示:购买量前十的商品:编号商品名称购买量1 商品1 2002 商品2 1503 商品3 1004 商品4 805 商品5 606 商品6 507 商品7 408 商品8 309 商品9 2010 商品10 10购买次数前十的用户:编号用户ID 购买次数1 用户1 502 用户2 303 用户3 204 用户4 105 用户5 56 用户6 37 用户7 28 用户8 19 用户9 110 用户10 1通过上述两个表格可以得出,购买量前十的商品和购买次数前十的用户和WEB网站普遍情况一致,都是集中在比较少的几个商品和比较少的几个用户。
第五章:关联规则分析为了找出数据集中潜在的关联规则,用Apriori算法对数据进行处理。
数据挖掘概念与技术原书第3版课后练习题含答案
数据挖掘概念与技术原书第3版课后练习题含答案前言《数据挖掘概念与技术》(Data Mining: Concepts and Techniques)是一本经典的数据挖掘教材,已经推出了第3版。
本文将为大家整理并提供第3版课后习题的答案,希望对大家学习数据挖掘有所帮助。
答案第1章绪论习题1.1数据挖掘的基本步骤包括:1.数据预处理2.数据挖掘3.模型评价4.应用结果习题1.2数据挖掘的主要任务包括:1.描述性任务2.预测性任务3.关联性任务4.分类和聚类任务第2章数据预处理习题2.3数据清理包括以下几个步骤:1.缺失值处理2.异常值检测处理3.数据清洗习题2.4处理缺失值的方法包括:1.删除缺失值2.插补法3.不处理缺失值第3章数据挖掘习题3.1数据挖掘的主要算法包括:1.决策树2.神经网络3.支持向量机4.关联规则5.聚类分析习题3.6K-Means算法的主要步骤包括:1.首先随机选择k个点作为质心2.将所有点分配到最近的质心中3.重新计算每个簇的质心4.重复2-3步,直到达到停止条件第4章模型评价与改进习题4.1模型评价的方法包括:1.混淆矩阵2.精确率、召回率3.F1值4.ROC曲线习题4.4过拟合是指模型过于复杂,学习到了训练集的噪声和随机变化,导致泛化能力不足。
对于过拟合的处理方法包括:1.增加样本数2.缩小模型规模3.正则化4.交叉验证结语以上是《数据挖掘概念与技术》第3版课后习题的答案,希望能够给大家的学习带来帮助。
如果大家还有其他问题,可以在评论区留言,或者在相关论坛等平台提出。
电子商务专业导论知到章节答案智慧树2023年天津商业大学
电子商务专业导论知到章节测试答案智慧树2023年最新天津商业大学第一章测试1.下列不属于商务活动范畴的是( )。
参考答案:借用物品2.以下不属于电子商务企业的是( )。
参考答案:格力电器3.基于Web的电子商务系统可划分为三层结构,分别是( )。
参考答案:软件支撑平台;电子商务应用层;基础设施层4.电子商务已融入国民经济方方面面,按领域可划分为()。
参考答案:产业电商;零售电商;生活服务电商;跨境电商5.我国颁布和实施与电子商务活动相关的法律与法规有()。
参考答案:关于加强网络信息保护的决定;电子签名法;电子商务法;关于维护互联网安全的决定第二章测试1.电子数据交换技术主要负责()。
参考答案:数据安全2.京东商城后台核心技术是()。
参考答案:电子交换技术3.目前,大多数电子商务网站采用的开发技术是()。
参考答案:C++4.京东商城提供的应用场景包括()。
参考答案:第三方电商平台;订单管理;物流配送;自营品牌5.京东商城提供的产品形态包括()。
参考答案:Web商城;手机APP;营销战略;微店第三章测试1.大数据背景下,电子商务企业成功的三步是()。
参考答案:数据--分析--价值2.下列哪个不属于大数据存储技术()。
参考答案:虚拟化技术3.产品分析中根据用户的购买活动进行()分析,从而个性化推荐,精准营销。
参考答案:时间序列;预测;关联规则4.电子商务大数据分析后能优化企业运营体系,如()。
参考答案:促销设计;店铺设计;竞争对手分析5.对于电商行业来讲,数据分析的核心公式是销售额=流量*转化率*客单价,其中流量是电商的生命和根本。
参考答案:对第四章测试1.日本“黑袋子”案例的主要创新点是()。
参考答案:客户精准分析2.供应链管控的工作主要包括()。
参考答案:供应商管理;风险管控;产品采购;物流合作3.运营策划的工作主要包括()。
参考答案:产品策略设计;平台策略设计;营销策略设计4.电子商务专业相关课程中会涉及到的开发语言包括()。
(完整版)数据挖掘概念课后习题答案
(完整版)数据挖掘概念课后习题答案第 1 章1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使⽤你熟悉的现实⽣活的数据库,给出每种数据挖掘功能的例⼦。
特征化是⼀个⽬标类数据的⼀般特性或特性的汇总。
例如,学⽣的特征可被提出,形成所有⼤学的计算机科学专业⼀年级学⽣的轮廓,这些特征包括作为⼀种⾼的年级平均成绩(GPA:Grade point a ve r s ge) 的信息,还有所修的课程的最⼤数量。
区分是将⽬标类数据对象的⼀般特性与⼀个或多个对⽐类对象的⼀般特性进⾏⽐较。
例如,具有⾼GPA 的学⽣的⼀般特性可被⽤来与具有低GPA 的⼀般特性⽐较。
最终的描述可能是学⽣的⼀个⼀般可⽐较的轮廓,就像具有⾼GPA 的学⽣的75%是四年级计算机科学专业的学⽣,⽽具有低GPA 的学⽣的65%不是。
关联是指发现关联规则,这些规则表⽰⼀起频繁发⽣在给定数据集的特征值的条件。
例如,⼀个数据挖掘系统可能发现的关联规则为:m a j or(X,“c omput i ng s c i e nc e”) ?owns(X, “pe r s ona l c omput e r”)[s uppor t=12%,c on f i d e nc e=98%]其中,X 是⼀个表⽰学⽣的变量。
这个规则指出正在学习的学⽣,12%(⽀持度)主修计算机科学并且拥有⼀台。
个⼈计算机。
这个组⼀个学⽣拥有⼀台个⼈电脑的概率是98%(置信度,或确定度)分类与预测不同,因为前者的作⽤是构造⼀系列能描述和区分数据类型或概念的模型(或,⽽后者是建⽴⼀个模型去预测缺失的或⽆效的、并且通常是数字的数据值。
它们的功能)相似性是他们都是预测的⼯具:分类被⽤作预测⽬标数据的类的标签,⽽预测典型的应⽤是预测缺失的数字型数据的值。
聚类分析的数据对象不考虑已知的类标号。
对象根据最⼤花蕾内部的相似性、最⼩化类之间的相似性的原则进⾏聚类或分组。
形成的每⼀簇可以被看作⼀个对象类。
模式识别与数据挖掘期末总结
模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。
2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。
3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。
(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。
(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。
确定了挖掘任务后,就要决定使用什么样的算法。
(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。
如果模式不满足要求,需要重复先前的过程。
6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。
7.分类过程由两步构成:模型创建和模型使用。
8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。
划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。
数据挖掘——探索数据的奥秘智慧树知到课后章节答案2023年下青岛工学院
数据挖掘——探索数据的奥秘智慧树知到课后章节答案2023年下青岛工学院青岛工学院第一章测试1.数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
()A:对 B:错答案:对2.下面哪些是时空数据的应用()。
A:气象学家使用人造卫星和雷达观察飓风 B:从多媒体数据库中发现有趣的模式 C:机动车辆管理者把GPS安装在汽车上,以便更好地监管和引导车辆 D:动物学家把遥感设备安装在野生动物身上,以便分析生态行为答案:气象学家使用人造卫星和雷达观察飓风;机动车辆管理者把GPS安装在汽车上,以便更好地监管和引导车辆;动物学家把遥感设备安装在野生动物身上,以便分析生态行为3.数据挖掘生命周期的数据理解阶段,起于原始数据收集,止于熟悉数据、识别数据质量问题。
()A:对 B:错答案:错4.以下关于数据挖掘规律的描述中,不正确的是()。
A:业务知识是数据挖掘过程每一步的中心 B:对所有领域的每个数据挖掘问题,总有模式可循。
C:数据准备超过数据挖掘过程的3/4 D:给定应用的正确模型只能通过实验发现答案:数据准备超过数据挖掘过程的3/45.关于数据挖掘生命周期的部署阶段,说法正确的是()。
A:部署阶段要完成模型的创建 B:执行部署步骤的通常是数据分析师 C:部署通常是数据挖掘项目的终点 D:建立模型的目的不能仅仅是增加对数据的了解答案:部署阶段要完成模型的创建6.“8,000”和“10,000”表示:()。
A:数据 B:信息 C:知识 D:智慧答案:数据7.“8,000米是飞机飞行最大高度”与“10,000米的高山”表示:()。
A:数据 B:知识 C:信息 D:智慧答案:信息8.“飞机无法飞过高山”表示:()。
A:知识 B:智慧 C:数据 D:信息答案:知识9.数据取样时,除了要求抽样时严把质量关外,还要求抽样数据必须在足够范围内有代表性。
电子科大数据挖掘作业1-6
数据挖掘课后习题数据挖掘作业1——6第一章绪论1)数据挖掘处理的对象有哪些?请从实际生活中举出至少三种。
1、关系数据库2、数据仓库3、事务数据库4、高级数据库系统和数据库应用如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是 Web 数据信息。
实际生活的例子:①电信行业中利用数据挖掘技术进行客户行为分析, 包含客户通话记录、通话时间、所开通的服务等,据此进行客户群体划分以及客户流失性分析。
②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文学家发现其他未知星体。
③市场业中应用数据挖掘技术进行市场定位、消费者分析、辅助制定市场营销策略等。
2)给出一个例子,说明数据挖掘对商务的成功是至关重要的。
该商务需要什么样的数据挖掘功能?它们能够由数据查询处理或简单的统计分析来实现吗?以一个百货公司为例,它可以应用数据挖掘来帮助其进行目标市场营销。
运用数据挖掘功能例如关联规则挖掘,百货公司可以根据销售记录挖掘出强关联规则,来诀定哪一类商品是消费者在购买某一类商品的同时,很有可能去购买的,从而促使百货公司进行目标市场营销。
数据查询处理主要用于数据或信息检索,没有发现关联规则的方法.同样地,简单的统计分析没有能力处理像百货公司销售记录这样的大规模数据。
第二章数据仓库和OLAP技术1)简述数据立方体的概念、多维数据模型上的OLAP操作。
●数据立方体数据立方体是二维表格的多维扩展,如同几何学中立方体是正方形的三维扩展一样,是一类多维矩阵,让用户从多个角度探索和分析数据集,通常是一次同时考虑三个维度.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据。
●多维数据模型上的OLAP操作a)上卷(roll—up):汇总数据通过一个维的概念分层向上攀升或者通过维规约b)下卷(drill—down):上卷的逆操作由不太详细的数据到更详细的数据,可以通过沿维的概念分层向下或引入新的维来实现c)切片和切块(slice and dice)投影和选择操作d)转轴(pivot)立方体的重定位,可视化,或将一个3维立方体转化为一个2维平面序列2)OLAP多维分析如何辅助决策?举例说明。
商业数据分析(第3版)第4章
• 组平均聚类法,通过计算两个聚类所有成对观察值的平均相似 性来确定两个聚类的相似性。
• 中位数聚类类似于组平均聚类法,只不过它在计算两个聚类所 有成对观察值相似性的基础上,取其中位数作为聚类的依据。
© 2019 Cengage. All Rights Reserved.
聚类分析
表4.2 0-1 变量观察相似矩阵的比较
© 2019 Cengage. All Rights Reserved.
聚类分析
表4.2 0-1 变量观察相似矩阵的比较 • 匹配系数相似矩阵:
© 2019 Cengage. All Rights Reserved.
引言
• 观测又叫记录,是指与单个实体有关的变量记录值的集合,经常表现 为电子表格或数据库中的一行一行的数值。
• 无监督学习方法:描述性数据挖掘技术,其目标是使用变量的值识别 观察之间的关系。
• 被认为是高维描述性数量解析 • 不需要清晰地说出结果(或者是客观上知晓的结果),不需要界定测量的精
度,取而代之的是诉诸于定性评价,比如无监督学习方法得到的结论与专家 判断在多大程度上吻合。
描述性数据挖掘
第4章
© 2019 Cengage. All Rights Reserved.
引言
数据挖掘技术在商业领域应用的增长,主要得自于三个方面:
• 产生和电子追踪的数据量爆发式增加 • 数据电子储存的能力扩张 • 计算机分析数据的承载功能大大增强
© 2019 Cengage. All Rights Reserved.
• 树状图:每一步聚合得到的嵌套类的描述。
云计算环境下的多维数据存储及查询技术研究
云计算环境下的多维数据存储及查询技术研究第一章:引言近年来,随着互联网的迅猛发展,数据规模以惊人的速度增长,数据种类也变得越来越繁多。
很多企业都面临着海量数据的存储与查询问题,为了解决这一问题,越来越多的企业采用了云计算技术,将数据存储在云服务器上。
云计算环境下多维数据的存储和查询技术在这种情况下就显得尤为重要。
本文将探讨云计算环境下的多维数据存储和查询技术的研究进展。
第二章:云计算环境下的多维数据存储技术2.1 云存储概念云存储是基于云计算的技术,它通过将数据存储在云服务器上,以提高数据的可用性和安全性。
云存储具有数据可扩展性、多地备份、灵活性、无需备份维护等优点。
2.2 多维数据存储技术多维数据存储是为了存储多维数据,提高数据查询效率而设计的,它可以有效地存储和查询大量的数据。
多维数据存储主要有两种形式:关系型数据库和非关系型数据库。
2.2.1 关系型数据库关系型数据库具有良好的事务处理能力和数据处理能力。
关系型数据库中的数据以表格的形式进行存储,每个记录都是一个独立的数据单元。
当我们需要进行数据查询时,只需要操作 SQL 语句即可。
2.2.2 非关系型数据库非关系型数据库的主要特点是具备良好的可扩展性和灵活性。
它采用键值对(Key-Value)、文档(Document)、列族存储(Column Family)、图形(Graph)等数据结构,用于存储和管理非结构化数据,可有效地管理多维数据。
第三章:云计算环境下的多维数据查询技术3.1 数据查询技术数据查询是指在数据库管理系统中,通过合理的查询语句,快速地获取有价值的数据信息。
在多维度中,是无法通过简单的单一维度查询方式得到既可靠又简洁的信息。
3.2 多维数据查询技术多维数据查询技术是通过 OLAP(On-Line Analytical Processing)技术来实现的,它主要是一种基于统计数学的分析技术。
多维数据查询技术可以理解为是对知识管理,数据挖掘、商务智能的继承和拓展,在前者的基础上,它增强了对时间,空间,属性等多维数据的分析能力和灵活性,使得多维数据分析技术的应用更加广泛。
工业互联网平台建设与工业大数据应用方案
工业互联网平台建设与工业大数据应用方案第一章工业互联网平台概述 (3)1.1 工业互联网平台概念 (3)1.2 工业互联网平台架构 (3)1.3 工业互联网平台发展趋势 (3)第二章平台建设基础 (4)2.1 平台建设需求分析 (4)2.2 平台技术选型 (5)2.3 平台安全体系建设 (5)第三章网络设施建设 (6)3.1 工业网络架构设计 (6)3.1.1 网络层次划分 (6)3.1.2 网络拓扑结构 (6)3.1.3 网络协议选择 (6)3.1.4 网络安全设计 (6)3.2 工业网络设备选型 (6)3.2.1 功能指标 (7)3.2.2 设备兼容性 (7)3.2.3 设备可靠性 (7)3.2.4 设备安全性 (7)3.2.5 交换机 (7)3.2.6 路由器 (7)3.2.7 光纤收发器 (7)3.3 工业网络运维管理 (7)3.3.1 网络监控 (7)3.3.2 故障处理 (7)3.3.3 网络优化 (7)3.3.4 安全防护 (8)3.3.5 设备维护 (8)3.3.6 人员培训 (8)第四章平台数据采集与整合 (8)4.1 数据采集技术 (8)4.2 数据整合方法 (8)4.3 数据清洗与预处理 (9)第五章工业大数据存储与管理 (9)5.1 存储技术选型 (9)5.1.1 分布式存储技术 (9)5.1.2 NoSQL数据库 (9)5.1.3 关系型数据库 (9)5.2 数据管理策略 (10)5.2.2 数据清洗与转换 (10)5.2.3 数据安全与权限管理 (10)5.3 数据备份与恢复 (10)5.3.1 数据备份 (10)5.3.2 数据恢复 (10)第六章工业大数据分析与挖掘 (10)6.1 数据分析方法 (10)6.2 数据挖掘算法 (11)6.3 分析与挖掘应用场景 (11)第七章工业互联网平台应用开发 (12)7.1 应用开发框架 (12)7.2 应用开发流程 (12)7.3 应用案例分享 (13)第八章平台运维与优化 (13)8.1 平台运维策略 (13)8.1.1 运维组织架构 (13)8.1.2 运维流程规范 (14)8.1.3 运维工具和平台 (14)8.1.4 运维培训和认证 (14)8.2 平台功能优化 (14)8.2.1 硬件资源优化 (14)8.2.2 软件功能优化 (14)8.2.3 数据存储优化 (14)8.2.4 网络功能优化 (14)8.3 平台故障处理 (14)8.3.1 故障分类 (14)8.3.2 故障监测 (14)8.3.3 故障处理流程 (15)8.3.4 故障应对措施 (15)8.3.5 故障总结与改进 (15)第九章工业大数据应用方案 (15)9.1 产品质量优化 (15)9.1.1 概述 (15)9.1.2 数据采集与处理 (15)9.1.3 数据分析方法 (15)9.1.4 应用案例 (15)9.2 生产效率提升 (16)9.2.1 概述 (16)9.2.2 数据采集与处理 (16)9.2.3 数据分析方法 (16)9.2.4 应用案例 (16)9.3 设备健康管理 (16)9.3.1 概述 (16)9.3.3 数据分析方法 (16)9.3.4 应用案例 (17)第十章工业互联网平台建设与大数据应用展望 (17)10.1 工业互联网平台发展趋势 (17)10.2 工业大数据应用前景 (17)10.3 工业互联网与大数据产业融合 (18)第一章工业互联网平台概述1.1 工业互联网平台概念工业互联网平台是指在工业领域,以云计算、大数据、物联网、人工智能等新一代信息技术为基础,整合工业生产、运营、管理和服务等环节的数据资源,实现工业全要素、全流程、全生命周期互联互通、协同优化的网络平台。
大数据分析与挖掘课后习题参考答案
dataFrame=spark.createDataFrame(df)
splits=[min(df['f1']),4.8,5.4,max(df['f1'])]
bucketizer = Bucketizer(splits=splits, inputCol='f1', outputCol='Buc_f1')
其中分层抽样更适合微信小程序受众人群的调查。首先对于某微信小程
序,受程序功能的影响,在不同特征上例如性别,年龄,兴趣等可能存在一定
程度的偏斜。按分层抽样的原理,可以根据不同的特征将总体分成子组,然后
从这些子组中选择样本进一步调查。
8
相对于第二种的随机抽样,第一种按比例分组抽样,所得各组样本的比
例为:
后数据的取值范围。
如题表 2-1 所示,从某个毕业班抽取出的 10 个同学的个人情况数据,包含
4 项特征:成绩绩点、身高、体重、工作月薪。利用两种以上的方法对每个
特征进行预处理。
题表 2-1
序号 成绩绩点 身高(m) 体重(斤) 工作月薪(元/月)
1
3.2
1.78
130
6000
2
3.5
1.76
122
第 2 章 习题
1.
2.
3.
4.
5.
6.
7.
8.
如果在没经过预处理的数据集合上进行数据挖掘的话,会有哪些问题?
假设原始数据服从正态分布,那么经过 z -score 变换后的标准分大于 3 的概
率有多大?
试分析 Spark 预处理 MaxabsScaler、MinMaxScaler 的处理方法,并给出处理
大数据行业数据挖掘与分析方案
大数据行业数据挖掘与分析方案第1章引言 (3)1.1 研究背景与意义 (3)1.2 研究目标与内容 (3)第2章大数据行业概述 (4)2.1 行业发展现状 (4)2.2 行业市场规模与增长趋势 (4)2.3 行业竞争格局 (4)第3章数据来源与采集 (4)3.1 数据来源概述 (4)3.2 数据采集方法与工具 (5)3.3 数据预处理技术 (5)第4章数据挖掘算法与应用 (6)4.1 常见数据挖掘算法概述 (6)4.2 分类算法及其应用 (6)4.3 聚类算法及其应用 (6)第5章数据分析方法与模型 (7)5.1 描述性统计分析 (7)5.1.1 频率分析 (7)5.1.2 统计量度分析 (7)5.1.3 分布特征分析 (7)5.1.4 异常值分析 (7)5.2 关联规则分析 (7)5.2.1 Apriori算法 (7)5.2.2 FPgrowth算法 (7)5.2.3 关联规则评估 (7)5.3 预测模型构建 (7)5.3.1 线性回归模型 (8)5.3.2 决策树模型 (8)5.3.3 神经网络模型 (8)5.3.4 集成学习模型 (8)5.3.5 模型评估与优化 (8)第6章用户行为分析与挖掘 (8)6.1 用户行为数据概述 (8)6.2 用户行为分析指标体系 (8)6.2.1 用户活跃度指标 (8)6.2.2 用户行为深度指标 (9)6.2.3 用户价值指标 (9)6.2.4 用户满意度指标 (9)6.3 用户画像构建 (9)6.3.1 数据收集 (9)6.3.2 数据预处理 (9)6.3.3 特征提取 (9)6.3.4 标签 (9)6.3.5 用户画像应用 (10)第7章产品推荐系统设计与优化 (10)7.1 推荐系统概述 (10)7.2 协同过滤算法 (10)7.2.1 用户协同过滤 (10)7.2.2 物品协同过滤 (10)7.2.3 协同过滤算法的优化 (10)7.3 深度学习在推荐系统中的应用 (10)7.3.1 神经协同过滤 (11)7.3.2 序列模型 (11)7.3.3 注意力机制 (11)7.3.4 多任务学习 (11)第8章大数据行业应用案例 (11)8.1 金融行业应用 (11)8.1.1 贷款风险评估 (11)8.1.2 智能投资顾问 (11)8.1.3 信用卡欺诈检测 (11)8.2 零售行业应用 (11)8.2.1 客户细分与精准营销 (12)8.2.2 库存管理优化 (12)8.2.3 个性化推荐系统 (12)8.3 医疗行业应用 (12)8.3.1 疾病预测与防控 (12)8.3.2 个性化治疗方案 (12)8.3.3 医疗资源优化配置 (12)8.3.4 药物研发 (12)第9章数据挖掘与分析在行业中的价值 (12)9.1 优化决策过程 (12)9.1.1 提高决策效率 (12)9.1.2 降低决策风险 (13)9.1.3 提升决策质量 (13)9.2 提升企业竞争力 (13)9.2.1 产品与服务优化 (13)9.2.2 市场营销策略改进 (13)9.2.3 运营管理优化 (13)9.3 促进产业创新与发展 (13)9.3.1 技术创新 (13)9.3.2 业务模式创新 (13)9.3.3 产业链优化 (13)第10章挑战与展望 (14)10.1 数据挖掘与分析的挑战 (14)10.1.1 数据质量和完整性 (14)10.1.2 数据安全和隐私保护 (14)10.1.3 算法和模型优化 (14)10.2 技术发展趋势 (14)10.2.1 人工智能技术的融合 (14)10.2.2 分布式计算和存储技术 (14)10.2.3 边缘计算技术 (14)10.3 行业应用前景展望 (14)10.3.1 智能决策支持 (14)10.3.2 金融风险管理 (15)10.3.3 智能医疗与健康 (15)10.3.4 智能城市 (15)第1章引言1.1 研究背景与意义信息技术的飞速发展,大数据时代已经来临。
智慧树知到《大数据工具应用》章节测试答案
绗竴绔?1銆?011骞撮害鑲敗鐮旂┒闄㈡彁鍑虹殑澶ф暟鎹畾涔夋槸锛氬ぇ鏁版嵁鏄寚鍏跺ぇ灏忚秴鍑轰簡甯歌鏁版嵁搴撳伐鍏疯幏鍙栥€佸偍瀛樸€佺鐞嗗拰锛? 锛夎兘鍔涚殑鏁版嵁闆嗐€?A:璁$畻B:璁块棶C:搴旂敤D:鍒嗘瀽绛旀: 鍒嗘瀽2銆佺敤4V鏉ユ鎷ぇ鏁版嵁鐨勭壒鐐圭殑璇濓紝涓€鑸槸鎸囷細Value銆乂elocity 銆乂olume鍜岋紙锛夈€?A:VarietyB:VainlyC:VagaryD:Valley绛旀: Variety3銆佸ぇ鏁版嵁鍒嗘瀽鍥涗釜鏂归潰鐨勫伐浣滀富瑕佹槸锛氭暟鎹垎绫汇€侊紙锛夈€佸叧鑱旇鍒欐寲鎺樺拰鏃堕棿搴忓垪棰勬祴銆?A:鏁版嵁缁熻B:鏁版嵁璁$畻C:鏁版嵁鑱氱被D:鏁版嵁娓呮礂绛旀: 鏁版嵁鑱氱被4銆佹柊娴拰浜笢鑱斿悎鎺ㄥ嚭鐨勫ぇ鏁版嵁鍟嗗搧鎺ㄨ崘锛屾槸鐢变含涓滅洸鐩帹閫佸埌褰撳墠娴忚鏂版氮缃戠珯鐨勭敤鎴风殑椤甸潰涓婄殑銆?A:瀵?B:閿?绛旀: 閿?5銆佺洰鍓嶇殑澶ф暟鎹鐞嗘妧鏈彧鑳藉鐞嗙粨鏋勫寲鏁版嵁銆?A:瀵?B:閿?绛旀: 閿?绗簩绔?1銆佹垜浠父鐢ㄧ殑寰蒋Office濂椾欢涓殑Access鏁版嵁搴撹蒋浠剁殑鏁版嵁搴撴枃浠舵牸寮忓悗缂€鍚嶆槸锛? 锛夈€?A:mdfB:mdbC:dbfD:xls绛旀: mdb2銆佸ぇ澶氭暟鏃ュ織鏂囦欢鐨勫悗缂€鍚嶆槸锛? 锛夈€?A:txtB:csvC:xmlD:log绛旀: log3銆佹湰璇剧▼閲嶇偣浠嬬粛鐨剋eka杞欢鐨勪笓鏈夋枃浠舵牸寮忔槸锛? 锛夈€?A:MongoDBB:ARFFC:valueD:key map绛旀: ARFF4銆佹暟鎹竻娲楀伐浣滅殑鐩殑涓昏鏄瑙e喅鏁版嵁鐨勫畬鏁存€с€佸敮涓€鎬с€佸悎娉曟€у拰锛? 锛夈€?A:涓撲笟鎬?B:鎺掍粬鎬?C:涓€鑷存€?D:鍏变韩鎬?绛旀: 涓€鑷存€?5銆佸叓鐖奔杞欢鐨勨€滆嚜瀹氫箟閲囬泦鈥濆伐浣滄柟寮忎笅锛岄渶瑕佸湪杞欢閲岃緭鍏ヤ竴涓紙锛夋潵浣滀负閲囬泦鐨勭洰鏍囥€?A:鐢佃瘽鍙风爜B:鍏抽敭璇?C:缃戦〉鍦板潃D:鐢ㄦ埛鍚?绛旀: 缃戦〉鍦板潃6銆佸叓鐖奔杞欢鐨勯噰闆嗚鍒欏彲浠ラ€氳繃鏂囦欢鐨勫舰寮忔潵瀵煎叆鎴栬€呭鍑猴紝杩欑鏂囦欢鐨勫悗缂€鍚嶆槸锛? 锛夈€?A:otdB:jpgC:pngD:gif绛旀: otd7銆丒xcel鍙互閫氳繃鈥滄暟鎹湁鏁堟€р€濇寜閽搷浣滄潵瑙勮寖鏁版嵁杈撳叆鐨勮寖鍥淬€?A:瀵?B:閿?绛旀: 瀵?8銆丒xcel涓嶈兘瀵煎叆txt鎴朿sv鏍煎紡鐨勬枃浠躲€?A:瀵?B:閿?绛旀: 閿?9銆佸叓鐖奔杞欢鍙兘瀵硅蒋浠跺唴寤轰簡鈥滅畝鏄撻噰闆嗏€濊鍒欑殑缃戠珯閲囬泦鏁版嵁銆?A:瀵?B:閿?绛旀: 閿?10銆佸叓鐖奔杞欢杩涜鑷畾涔夐噰闆嗘椂锛岄渶瑕佷簡瑙e缃戦〉鐨勯〉闈㈢粨鏋勩€?A:瀵?B:閿?绛旀: 瀵?绗笁绔?1銆佷娇鐢―BSCAN绠楁硶瀵归涪灏捐姳鏁版嵁闆嗭紙Iris.arff锛夎繘琛岃仛绫伙紝灏唀psilon鍙傛暟璁剧疆涓?.2锛? minPoints鍙傛暟璁剧疆涓?锛屽拷鐣lass灞炴€э紝閭d箞灏嗗舰鎴愶紙锛変釜绨囥€?A: 1B: 2C: 3D: 4绛旀: 32銆佷娇鐢‥M绠楁硶瀵瑰ぉ姘旀暟鎹泦锛坵eather.numeric.arff锛夎繘琛岃仛绫伙紝灏唍umClusters璁剧疆涓?锛屽嵆绨囨暟涓?锛屽叾浠栧弬鏁颁繚鎸侀粯璁ゅ€硷紝蹇界暐class灞炴€э紝浠庣粨鏋滀腑鍙煡锛屼笅鍒楅€夐」涓紝锛? 锛夋槸閿欒鐨勩€?A: 妯″瀷鐨勬渶澶т技鐒朵及璁″€兼槸-7.18B: 杩欑粍鏁版嵁鐢ㄧ畻娉曡凯浠?5娆?C: 绗洓涓皣鐨勫厛楠屾鐜囨槸0.14D: 绗洓涓皣鐨勫疄渚嬫暟涓?绛旀: 绗洓涓皣鐨勫疄渚嬫暟涓?3銆佷娇鐢⊿impleKMeans绠楁硶瀵瑰ぉ姘旀暟鎹泦锛坵eather.numeric.arff锛夎繘琛岃仛绫伙紝淇濇寔榛樿鍙傛暟锛屽嵆3涓皣浠ュ強娆ф皬璺濈銆傞€夋嫨play灞炴€т负蹇界暐灞炴€э紝浠庣粨鏋滀腑鍙煡锛屼笅鍒楅€夐」涓紝锛? 锛夋槸閿欒銆?A: 杩欑粍鏁版嵁鐢ㄧ畻娉曡凯浠e洓娆?B: 浜х敓浜嗕笁涓腑蹇冪偣C: 鑱氬悎涓?涓皣锛屽垎鍒湁7锛?锛?涓疄渚?D: 骞虫柟鍜岃宸负8.928绛旀: 杩欑粍鏁版嵁鐢ㄧ畻娉曡凯浠e洓娆?4銆佷娇鐢ㄧ嚎鎬у洖褰掞紙LinearRegression锛夊垎绫诲櫒鍜岀敤M5P鍒嗙被鍣ㄥcpu.arff鍒嗗埆杩涜鍒嗙被锛岀敱鍏惰緭鍑虹殑璇樊鎸囨爣鍙煡锛? 锛夈€?A: LinearRegression鐨勬爣鍑嗚宸瘮M5P鐨勬爣鍑嗚宸皬B: LinearRegression鐨勫钩鍧囩粷瀵硅宸瘮M5P鐨勫钩鍧囩粷瀵硅宸皬C: LinearRegression鐨勭浉瀵硅宸瘮M5P鐨勭浉瀵硅宸皬D: LinearRegression鐨勫钩鍧囨柟鏍硅宸瘮M5P鐨勫钩鍧囨柟鏍硅宸ぇ绛旀: LinearRegression鐨勫钩鍧囨柟鏍硅宸瘮M5P鐨勫钩鍧囨柟鏍硅宸ぇ5銆佸垹鍘籧pu.arff鏁版嵁鏂囦欢涓殑CACH灞炴€у悗锛屼娇鐢∕5P鍒嗙被鍣ㄦ瀯寤烘柟妗堬紝鍦ㄧ粨鏋滀腑锛屽埌杈綥M2鐨勫疄渚嬫暟鏈夛紙锛変釜銆?A: 165B: 21C: 23D: 30绛旀: 216銆佹牴鎹甁48鍒嗙被鍣ㄨ缁僿eather.nominal.arff鎵€鐢熶骇鐨勫喅绛栨爲锛屽綋outlook=sunny锛泃emperature=cool锛沨umidity =high锛泈indy=TRUE鏃讹紝鍒嗙被鐨勭粨鏋滄槸锛?锛夈€?A: YesB: NoC: 娌℃湁缁撴灉D: 鏃犳硶鍒嗙被绛旀: No7銆佹牴鎹甁48鍒嗙被鍣ㄨ缁僫ris.arff鎵€鐢熶骇鐨勫喅绛栨爲锛屽綋sepallength=4.4锛泂epalwidth=3.0锛沺etallength=1.3锛沺etalwidth=0.2鏃讹紝鍒嗙被鐨勭粨鏋滄槸锛? 锛夈€?A: Iris-setosaB: Iris-versicolorC: Iris-virginicaD: 鏃犳硶鍒嗙被绛旀: Iris-setosa8銆佸叧浜嶹eka绂绘暎鍖栬鏄庢纭殑鏄紙锛夈€?A: 绂绘暎鍖栨槸灏嗘暟鍊煎睘鎬ц浆鎹负瀛楃涓插瀷灞炴€?B: 鏈夌洃鐫g鏁e寲鏈変袱绉嶇瓑瀹藉拰绛夐鏂规硶C: 绛夊绂绘暎鍖栨槸浣垮疄渚嬪垎甯冨潎鍖€鐨?D: 绂绘暎鍖栧寘鎷棤鐩戠潱绂绘暎鍖栧拰鏈夌洃鐫g鏁e寲绛旀: 绂绘暎鍖栧寘鎷棤鐩戠潱绂绘暎鍖栧拰鏈夌洃鐫g鏁e寲9銆佷互涓嬶紙锛変笉鏄疻eka鐨勬暟鎹被鍨嬨€?A: numericB: nominalC: stringD: decimal绛旀: decimal10銆佸叧浜嶹eka鐨勬枃浠剁被鍨嬫弿杩伴敊璇殑鏄紙锛夈€?A: Weka鍙互鎵撳紑鏂囦欢鏍煎紡鏈?arff銆?csv銆?xlsxB: Weka澶勭悊鐨勬暟鎹泦绫讳技浜庡叧绯绘暟鎹簱妯瀹炰緥锛岀珫琛屽睘鎬?C: arff鏄疉SCII鏂囦欢锛屽彲浠ョ敤Word绛夋枃鏈紪杈戝櫒鎵撳紑鏌ョ湅D: @relation 瀹氫箟鏁版嵁闆嗗悕绉帮紝@data涔嬪悗鍛堢幇瀹炰緥锛屾瘡涓€琛屽氨鏄竴涓疄渚?绛旀: Weka鍙互鎵撳紑鏂囦欢鏍煎紡鏈?arff銆?csv銆?xlsx11銆佷互涓嬪睘浜庡叧鑱斿垎鏋愮殑鏄紙锛夈€?A: CPU鎬ц兘棰勬祴B: 璐墿绡垎鏋?C: 鑷姩鍒ゆ柇楦㈠熬鑺辩被鍒?D: 鑲$エ瓒嬪娍寤烘ā绛旀: 璐墿绡垎鏋?12銆佸ぇ鏁版嵁鏃朵唬鐨勫埌鏉ワ紝浣挎垜浠棤娉曚汉涓哄湴鍘诲彂鐜版暟鎹腑鐨勫ゥ濡欙紝涓庢鍚屾椂锛屾垜浠洿搴旇娉ㄩ噸鏁版嵁涓殑鐩稿叧鍏崇郴锛岃€屼笉鏄洜鏋滃叧绯汇€傚叾涓紝鏁版嵁涔嬮棿鐨勭浉鍏冲叧绯诲彲浠ラ€氳繃浠ヤ笅锛? 锛夌畻娉曠洿鎺ユ寲鎺樸€?A: K-meansB: Bayes NetworkC: C4.5D: Apriori绛旀: Apriori13銆佹煇瓒呭競鐮旂┒閿€鍞邯褰曟暟鎹悗鍙戠幇锛屼拱鍟ら厭鐨勪汉寰堝ぇ姒傜巼涔熶細璐拱灏垮竷锛岃繖绉嶅睘浜庢暟鎹寲鎺樼殑锛? 锛夐棶棰樸€?A: 鍏宠仈瑙勫垯鍙戠幇B: 鑱氱被C: 鍒嗙被D: 鑷劧璇█澶勭悊绛旀: 鍏宠仈瑙勫垯鍙戠幇14銆佸湪杩涜鑷姩閫夋嫨灞炴€ф椂锛屽繀椤昏绔嬩袱涓璞★紝鍏朵腑纭畾浣跨敤浠€涔堟柟娉曚负姣忎釜灞炴€у瓙闆嗗垎閰嶄竴涓瘎浼板€肩殑瀵硅薄鏄笅闈㈢殑锛? 锛夈€?A: 鎼滅储鏂规硶B: 灞炴€ц瘎浼板櫒C: 鍏冨垎绫诲櫒D: 瑙勫垯鎸栨帢绛旀: 灞炴€ц瘎浼板櫒15銆佷互涓嬪睘浜庡睘鎬х┖闂寸殑鎼滅储鏂规硶鐨勬槸锛?锛夈€?A: GainRatioAttributeEvalB: BestFirstC: PrincipalComponentsD: SymmetricalUncertAttributeEval绛旀: BestFirst16銆佸湪weka杞欢鎺㈢储鑰呯晫闈腑锛屽埄鐢╒isualize鏍囩椤甸€氳繃鏇存敼鍚勪釜鍙傛暟鏉ヨ繘琛屾暟鎹泦鐨勫彲瑙嗗寲灞炴€ц缃悗锛岄渶瑕佸崟鍑讳互涓嬶紙锛夋寜閽紝鎵€鏈夋洿鏀规墠浼氱敓鏁堛€?A: Select AttributeB: SubSampleC: UpdateD: Fast scrolling绛旀: Update17銆佺粰瀹氬叧鑱旇鍒橝B锛屾剰鍛崇潃锛氳嫢A鍙戠敓锛孊涔熶細鍙戠敓銆?A:瀵?B:閿?绛旀: 閿?18銆佹敮鎸佸害鏄閲忓叧鑱旇鍒欓噸瑕佹€х殑涓€涓寚鏍囥€?A:瀵?B:閿?绛旀: 瀵?19銆丷anker鏂规硶鏃㈠彲浠ョ敤浜庡崟涓睘鎬ц瘎浼板櫒锛屽張鍙互鐢ㄤ簬灞炴€у瓙闆嗚瘎浼板櫒銆?A:瀵?B:閿?绛旀: 閿?20銆佸埄鐢╳eka杞欢杩涜鏁版嵁鍙鍖栨椂锛岀敤鎴峰彲浠ラ€夋嫨绫诲埆灞炴€у鏁版嵁鐐圭潃鑹诧紝濡傛灉绫诲埆灞炴€ф槸鏍囩О鍨嬶紝鍒欐樉绀轰负褰╄壊鏉°€?A:瀵?B:閿?绛旀: 閿?绗洓绔?1銆佽礉鍙舵柉缃戠粶涓殑鑺傜偣浠h〃锛? 锛夈€?A:鍙橀噺B:闅忔満杩囩▼C:闅忔満鍙橀噺D:闅忔満鍑芥暟绛旀: 闅忔満鍙橀噺2銆佽礉鍙舵柉缃戠粶涓紝鑺傜偣闇€缁欏嚭姒傜巼鍒嗗竷鎻忚堪锛屽浜庣鏁e瀷闅忔満鍙橀噺鑰岃█锛屽彲浠ョ敤锛? 锛夌殑褰㈠紡琛ㄧず銆?A:鏉′欢姒傜巼瀵嗗害鍑芥暟B:姝f€佸垎甯?C:鏉′欢姒傜巼琛?D: 鍧囧寑鍒嗗竷绛旀: 鏉′欢姒傜巼琛?3銆佽礉鍙舵柉缃戠粶涓妭鐐逛箣闂寸殑杈逛唬琛紙锛夈€? A:闅忔満鍏崇郴B:姒傜巼鍥犳灉C:缁勫悎鍏崇郴D:闅忔満缁撴灉绛旀: 闅忔満鍏崇郴4銆佽礉鍙舵柉缃戠粶淇濆瓨鐨勬枃浠舵牸寮忔槸( )銆?A:XML BIFB:DOCXC: TXTD:XLS绛旀: XML BIF5銆佷笅闈紙锛変笉鏄弽鍚戜紶鎾缁忕綉缁滅殑缁撴瀯銆? A:杈撳叆灞?B:闅愬惈灞?C:璁$畻灞?D:杈撳嚭灞?绛旀: 璁$畻灞?6銆佺缁忕綉缁滀腑鐨勮妭鐐逛唬琛紙锛夈€?A:婵€鍔卞彉閲?B:婵€鍔卞嚱鏁?C:闅忔満鍙橀噺D:闅忔満鍑芥暟绛旀: 婵€鍔卞嚱鏁?7銆佷笅鍒楋紙锛変笉鏄父瑙佺殑婵€鍔卞嚱鏁般€?A:绾挎€у嚱鏁?B:Sigmoid鍑芥暟C:闃堝€煎嚱鏁?D:姝e鸡鍑芥暟绛旀: 姝e鸡鍑芥暟8銆佸湪璐濆彾鏂綉缁滅紪杈戠晫闈㈡椂锛屽鏋滆妭鐐圭殑鍚嶇О娌℃硶瀹屽叏鏄剧ず锛岄渶瑕佷粠锛? 锛夎彍鍗曢」杩涜璋冩暣銆?A:Tools|SetDataB:View|Zoom OutC:View|Zoom InD:Tools|Layout绛旀: Tools|Layout9銆乄EKA涓€夋嫨绁炵粡缃戠粶鍒嗙被鍣ㄦ搷浣滄椂锛屽簲璇ラ€夋嫨锛? 锛夈€?A:rules鏉$洰涓嬬殑PARTB:functions鏉$洰涓嬬殑SGD鍒嗙被鍣?C:functions鏉$洰涓嬬殑MultilayerPerceptron鍒嗙被鍣?D:榛樿鐨勫垎绫诲櫒绛旀: functions鏉$洰涓嬬殑MultilayerPerceptron鍒嗙被鍣?10銆佷笅闈㈠叧浜嶱ackage Manager瀹夎鍚庣殑鐩綍璇存槑涓嶆纭殑鏄紙锛夈€?A:doc瀛愮洰褰曞瓨鏀続PI鏂囨。
数据仓库与数据挖掘考试习题汇总(优.选)
数据仓库与数据挖掘考试习题汇总(优.选)第⼀章1、数据仓库就是⼀个⾯向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建⽴⽅法的数据,它为访问数据仓库提供了⼀个信息⽬录,根据数据⽤途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两⼤类:联机事务处理和联机分析处理。
4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切⽚、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同⾓度、不同侧⾯观察数据仓库中的数据,从⽽深⼊理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,⽽MOLAP是基于多维数据结构组织的OLAP实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。
7、数据仓库系统的体系结构根据应⽤需求的不同,可以分为以下4种类型:两层架构、独⽴型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是⼀个集成的、⾯向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策⽀持服务和仓库仓库之间以⼀个接近实时的速度交换数据和业务规则。
10、从应⽤的⾓度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和⾃动决策为主。
第⼆章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。
2、抽取、转换、加载过程的⽬的是为决策⽀持应⽤提供⼀个单⼀的、权威数据源。
因此,我们要求ETL过程产⽣的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取⽤于最初填充数据仓库,增量抽取⽤于进⾏数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度⾼低的⼀个衡量。
金融数学简要概述
金融数学金融数学(FinancialMathematics),又称数理金融学、数学金融学、分析金融学,是利用数学工具研究金融,进行数学建模、理论分析、数值计算等定量分析,以求找到金融学内在规律并用以指导实践。
金融数学也可以理解为现代数学与计算技术在金融领域的应用,因此,金融数学是一门新兴的交叉学科,发展很快,是目前十分活跃的前沿学科之一。
目录概述必备工具现状及发展研究科目人才现状主要研究内容数据挖掘图书《金融数学》概述必备工具现状及发展研究科目人才现状主要研究内容数据挖掘图书《金融数学》•目录概述金融数金融数学学是一门新兴学科,是“金融高技术”的重要组成部分。
研究金融数学有着重要的意义。
金融数学总的研究目标是利用我国数学界某些方面的优势,围绕金融市场的均衡与有价证券定价的数学理论进行深入剖析,建立适合我国国情的数学模型,编写一定的计算机软件,对理论研究结果进行仿真计算,对实际数据进行计量经济分析研究,为实际金融部门提供较深入的技术分析咨询。
金融数学是在两次华尔街革命的基础上迅速发展起来的一门数学与金融学相交叉的前沿学科。
其核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。
套利、最优与均衡是金融数学的基本经济思想和三大基本概念。
在国际上,这门学科已经有50 多年的发展历史,特别是近些年来,在许多专家、学者们的努力下,金融数学中的许多理论得以证明、模拟和完善。
金融数学的迅速发展,带动了现代金融市场中金融产品的快速创新,使得金融交易的范围和层次更加丰富和多样。
这门新兴的学科同样与我国金融改革和发展有紧密的联系,而且其在我国的发展前景不可限量。
必备工具21世金融数学纪数学技术和计算机技术一样成为任何一门科学发展过程中的必备工具。
美国花旗银行副总裁柯林斯(Collins)1995年3月6日在英国剑桥大学牛顿数学科学研究所的讲演中叙述到:“在18世纪初,和牛顿同时代的著名数学家伯努利曾宣称:‘从事物理学研究而不懂数学的人实际上处理的是意义不大的东西。
大数据与人工智能知到章节答案智慧树2023年哈尔滨商业大学
大数据与人工智能知到章节测试答案智慧树2023年最新哈尔滨商业大学第一章测试1.在数据量单位中,1PB等于()。
参考答案:1024TB2.大数据的最终价值体现()。
参考答案:实践3.人工智能起源于()。
参考答案:50-60年代4.被称为XCON的“专家系统”是由()发明。
参考答案:卡内基梅隆大学5.大数据具有4V特点包括()。
参考答案:高速;多样;精确;大量6.自然语言处理包括()。
参考答案:解码;编码7.在大数据时代,经常使用的数据量衡量单位为TB。
参考答案:错8.模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。
参考答案:对9.机器学习主要研究如何使计算机能够模拟或实现人类的学习功能。
参考答案:对10.在分布式人工智能系统中,每一个Agent又是一个全自治系统。
参考答案:错第二章测试1.数据的多样性包括()。
参考答案:数据格式的多样性;数据用途的多样性;数据来源的多样性2.最普通也是最常见的数据类型是()。
参考答案:文本3.将不同数据源的数据自动收集到一个装置中是指()。
参考答案:数据获取4.数据分析,是指从海量的数据中利用数据挖掘的方法,获取有用的有价值的数据信息。
参考答案:对5.数据量测方法有()。
参考答案:非接触式;接触式6.直接附加存储的英文缩写是()。
参考答案:DAS7.企业的数据处理大致分为()。
参考答案:操作性处理;分析性处理8.数据仓库特点包括()。
参考答案:面向主题;集成性;时变性;历史性;企业范围9.分箱方法包括()。
参考答案:等深分箱法;等宽分箱法;用户自定义区间10.数据规约的途径包括()。
参考答案:数据采样;属性选择第三章测试1.学习与发现是指机器的知识学习和规律发现。
参考答案:对2.系统与建造包括()。
参考答案:智能系统的分类;实现语言工具与环境;硬/软件体系结构;设计方法3.遗传算法采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
《大数据导论》复习资料
《大数据导论》课程期末复习资料《大数据导论》课程讲稿章节目录:第1章大数据概述(1)大数据的概念(2)大数据的特征(3)大数据的数据类型(4)大数据的技术(5)大数据的应用第2章大数据采集与预处理(1)大数据采集(2)大数据预处理概述(3)数据清洗(4)数据集成(5)数据变换(6)数据规约第3章大数据存储(1)大数据存储概述(2)数据存储介质(3)存储系统结构(4)云存储概述(5)云存储技术(6)新型数据存储系统(7)数据仓库第4章大数据计算平台(1)云计算概述(2)云计算平台(3)MapReduce平台(4)Hadoop平台(5)Spark平台第5章大数据分析与挖掘(1)大数据分析概述(2)大数据分析的类型及架构(3)大数据挖掘(4)大数据关联分析(5)大数据分类(6)大数据聚类(7)大数据分析工具第6章大数据可视化(1)大数据可视化概述(2)大数据可视化方法(3)大数据可视化工具第7章社交大数据(1)社交大数据(2)国内社交网络大数据的应用(3)国外社交网络大数据的应用第8章交通大数据(1)交通大数据概述(2)交通监测应用(3)预测人类移动行为应用第9章医疗大数据(1)医疗大数据简介(2)临床决策分析应用(3)医疗数据系统分析第10章大数据的挑战与发展趋势(1)大数据发展面临的挑战(2)大数据的发展趋势一、客观部分:(单项选择、多项选择)(一)、单项选择1.以下不是NoSQL数据库的是()A.MongoDBB。
HBaseC.CassandraD。
DB2★考核知识点:NoSQL与NewSQL主流系统参考讲稿章节:3.7附1.1。
1(考核知识点解释):目前市场上主要的NoSQL数据存储工具有:BigTable、Dynamo 、Hbase、MongoDB、CouchDB、Hypertable还存在一些其他的开源的NoSQL数据库,Neo4j、Oracle Berkeley DB、Apache Cassandra等另外,NewSQL数据库。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-4-16 数据仓库与数据挖掘 11
4.2 引例
定义4.8 关联规则的最小支持度和最小可信 度 关联规则的最小支持度也就是衡量频繁集 的最小支持度 (Minimum Support) ,记为 supmin,它用于衡量规则需要满足的最低 重 要 性 。 规 则 的 最 小 可 信 度 (Minimum Confidence)记为confmin,它表示关联规 则需要满足的最低可靠性。
2015-4-16
数据仓库与数据挖掘
25
4.3.2 FP-growth算法
函 数 insert_tree([p|P] , T) 的 运 行 如 下 。 如 果 T 有 一 个 子 结 点 N , 其 中 N.itemname=p.item-name ,则将 N 的 count 域值 加 1 ;否则,创建一个新节点 N ,使它的 count为1,使它的父节点为T,并且使它的 node_link和那些具有相同item_name的域 串起来。如果P非空,则递归调用 insert_tree(P,N)。
2015-4-16
数据仓库与数据挖掘
3
4.1 概述
关联规则 (Association Rule Mining)挖掘 是数据挖掘中最活跃的研究方法之一 最早是由R.Agrawal等人提出的 其目的是为了发现超市交易数据库中不同 商品之间的关联关系。 一个典型的关联规则的例子是: 70% 购买 了牛奶的顾客将倾向于同时购买面包。 经典的关联规则挖掘算法: Apriori 算法和 FP-growth算法
数据仓库与数据挖掘 12
2015-4-16
4.2 引例
定义4.7 关联规则的可信度 对于关联规则 R:XY,其中XI,YI, 并 且 XY= , 规 则 R 的 可 信 度 (Confidence) 是指包含 X 和 Y 的交易数 与包含X的交易数之比
support(X Y) confidence (X Y) support(X)
数据仓库与数据挖掘 7
2015-4-16
4.2 引例
定义4.3 项集的支持度 对于项集X,XI,设定count(XT)为 交易集D中包含X的交易的数量
项集 X 的支持度 support(X) 就是项集 X 出现的概率,从而描述了X的重要性。
count(X T ) support(X) |D|
2015-4-16
4.2 引例
定义4.1 项目与项集 设 I={i1,i2,…,im} 是 m 个不同项目的集 合,每个ik(k=1,2,……,m)称为一 个项目(Item)。 项目的集合 I 称为项目集合 (Itemset) , 简称为项集。其元素个数称为项集的 长度,长度为 k 的项集称为 k- 项集 (kItemset)。
2015-4-16
数据仓库与数据挖掘
23
4.3.2 FP-growth算法
针对Apriori算法的固有缺陷,J. Han等提出了不 产生候选挖掘频繁项集的方法:FP-树频集算法。 采用分而治之的策略,在经过第一遍扫描之后, 把数据库中的频集压缩进一棵频繁模式树(FPtree),同时依然保留其中的关联信息,随后再 将FP-tree分化成一些条件库,每个库和一个长度 为1的频集相关,然后再对这些条件库分别进行挖 掘。当原始数据量很大的时候,也可以结合划分 的方法,使得一个FP-tree可以放入主存中。实验 表明,FP-growth对不同长度的规则都有很好的 适应性,同时在效率上较之Apriori算法有巨大的 提高。
4.4.2 SQL Server 2005中的关联 规则挖掘
定义4.13 频繁项头表 每个项前缀子树(Item Prefix Subtree)的节点有三个域: item-name,count,node_link。item-name记录了该 节点所代表的项的名字。count记录了所在路径代表的交 易中包含此节点项目的交易个数。node_link指向下一个 具有同样的item-name域的节点,要是没有这样一个节点, 就为null。
2015-4-16
数据仓库与数据挖掘
22
4.3.2 FP-growth算法
定义4.12 频繁项头表 频繁项头表(Head Table)的每个表项由两个域组成:项目 名称item-name和指针node_link。node_link指向FPtree中具有与该表项相同item-name的第一个节点。
数据仓库与数据挖掘 9
2015-4-16
4.2 引例
定义4.5 关联规则 关联规则(Association Rule)可以表示 为一个蕴含式: R:XY
2015-4-16
数据仓库与数据挖掘
10
4.2 引例
定义4.6 关联规则的支持度 对于关联规则 R:XY,其中XI,YI, 并 且 XY= , 规 则 R 的 的 支 持 度 (Support) 是交易集中同时包含 X 和 Y 的交易数与所有交易数之比。 count(X Y) support(X Y) |D|
数据仓库与数据挖掘 24
2015-4-16
4.3.2 FP-growth算法
第一部分:根据一个输入交易记录集建立一棵FP-tree, 其操作步骤如图4.4所示。 输 入:交易记录集D,最小支持度supmin。 输 出:FP-tree。(1)扫描数据库D一遍,得到频繁项 的集合F和每个频繁项的支持度。把F按支持度递降排序, 结果记为L。(2)创建FP-tree的根节点,记为T,并且 标记为“null”。然后对DB中的每个交易做如下的步骤: 根据L中的顺序,选出并排序Trans中的频繁项。把Trans 中排好序的频繁项列表记为[p|P],其中p是第一个元素, P是列表的剩余部分。调用insert_tree([p|P],T)。
2015-4-16 数据仓库与数据挖掘 13
关联规则的简单例子
2015-4-16
数据仓库与数据挖掘
14
顾客购买记录的数据库D,包含6个事务。 项集I={网球拍,网球,运动鞋,羽毛球}。考虑 关联规则(频繁二项集):网球拍与网球, 事务1,2,3,4,6包含网球拍,事务1,2,6同时 包含网球拍和网球,支持度(X^Y)/D=0.5, 置信度(X^Y)/X=0.6。若给定最小支持度α = 0.5,最小置信度β = 0.6,认为购买网球 拍和购买网球之间存在关联。
2015-4-16
数据仓库与数据挖掘
15
4.2 引例
定义4.9 强关联规则 如 果 规 则 XY 满 足 : support(XY)supmin 且 confidence(XY)confmin ,称关联规则 XY为强关联规则,否则称关联规则XY 为弱关联规则。在挖掘关联规则时,产生 的关联规则要经过 supmin 和 confmin 的衡 量,筛选出来的强关联规则才能用于指导 商家的决策。
数据仓库与数据挖掘 26
2015-4-16
4.4 相关研究与应用
分类: 基于规则中涉及到的数据的维数,关 联规则可以分为单维的和多维的。 基于规则中数据的抽象层次,可以分 为单层关联规则和多层关联规则。 基于规则中处理的变量的类型不同, 关联规则可以分为布尔型和数值型。
2015-4-16 数据仓库与数据挖掘 27
数据仓库与数据挖掘 4
2015-4-16
4.2 引例
假定某超市销售的商品包括:bread、 bear、cake、cream、milk和tea
交易号TID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 顾 客 购 买 商 品Items bread cream milk tea bread cream milk cake milk milk tea bread cake milk bread tea beer milk tea bread tea bread cream milk tea bread milk tea 数据仓库与数据挖掘 5
数据仓库与数据挖掘 18
2015-4-16
4.3.1 Apriori算法
2015-4-16
数据仓库与数据挖掘
19
4.3.1 Apriori算法
apriori_gen(Lk-1, supmin)算法
2015-4-16
数据仓库与数据挖掘
20
4.3.1 Apriori算法
has_infrequent_subset(c, Lk-1)算法
2015-4-16 数据仓库与数据挖掘 6
4.2 引例
定义4.2 交易 每笔交易 T(Transaction) 是项集 I 上的一个 子集,即TI,但通常TI。 对应每一个交易有一个唯一的标识 —— 交 易号,记作TID 交易的全体构成了交易数据库D,或称交易 记录集D,简称交易集D。 交易集D中包含交易的个数记为|D|。
数据仓库与数据挖掘
第4章 关联规则
数理学院 唐志刚
2015-4-16
1
啤酒与尿布的故事说起
按常规思维,尿布与啤酒风马牛不相 及,若不是借助数据挖掘技术对海量 交易数据进行挖掘和分析,沃尔玛是 不可能发现数据内在这一有价值的规 律的。
2015-4-16
数据仓库与数据挖掘
2
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。 但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个 笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家 所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确 了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物 篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里 集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上, 沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发 现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和 分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式: 在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们 中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因 是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们 在买尿布后又随手带回了他们喜欢的啤酒。