液压与气压传动3 液压执行元件

合集下载

学习任务2 液压传动系统动力和执行元件的学习

学习任务2  液压传动系统动力和执行元件的学习
强的齿轮泵;在负载大、功率大的场合往往选择柱塞泵。
二、液压执行元件 (液压缸、液压马达)
1.液压缸
(1)活塞式液压缸 1)双杆式液压缸
(1)活塞式液压缸 1)双杆式活塞缸
活塞两端都有一根直径相等的活塞杆 伸出的液压缸称为双杆式活塞缸。
根据安装方式可分为缸筒固定式和活塞杆 固定式两种。
固定缸体时,工作台的往复 运动范围约为有效行程L的3 倍。
二、液压传动系统的组成
1)叶片泵具有结构紧凑、输出流量均匀、运转平稳、噪声小等优点。 2)自吸性和抗污染能力较差,结构复杂,造价高。 3)叶片泵多用于中高压液压系统中。
6.柱塞泵
柱塞泵是靠柱塞在缸体中做 往复运动造成密封容积的变 化来实现吸油与压油的。
柱塞泵的优点:
第一,构成密封容积的零件为圆柱形的柱塞和缸孔,加工方便,可 得到较高的配合精度,密封性能好,在高压下工作仍有较高的容积 效率。
当转子每转一周,每个工作空间要完成 两次吸油和压油, 称为双作用叶片泵。
这种叶片泵由于有两个吸油腔和两个压 油腔,并且各自的中心夹角是对称的,所 以作用在转子上的油液压力相互平衡, 因此双作用叶片泵又称为卸荷式叶片泵。
为了要使径向力完全平衡,密封空间数 (即叶片数)应当是双数。
(3)叶片泵的特点
视频
2.液压泵的主要性能参数 (1)压力 油液的压力是由油液的自重和油液受到外力作用而产生的。
由于油液自重而产生的压力一般很小,可忽略不计。 所以油液的压力为:
p--油液压强N/m2,也称帕(Pa) ; F一作用的外力,N; A-油液表面的承压面积,即活塞的有效作用面积, m2。
1)工作压力 实际工作时输出的压力。 压力取决于负载和管路上的压力损失,与液压泵的流量无关。

(完整版)液压与气压传动知识点重点

(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有3种:动力黏度,运动黏度,相对黏度。

4、液压油分为3大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

《液压与气压传动》(第3版)习题答案刘建明

《液压与气压传动》(第3版)习题答案刘建明

《液压与气压传动》教材(第3版)习题参考答案第1章习题P4 小节习题:(1)机械能、液压能。

(2)动力元件、执行元件、控制调节元件、辅助元件和工作介质。

(3)动力元件。

(4)机械能、机械能。

(5)压力、流量和流动方向。

(6)1.液压传动的优点1)能方便地实现无级调速,且调速范围大。

2)容易实现较大的力和转矩的传递。

液压传动装置的体积小、重量轻、运动惯性小。

3)液压传动装置工作平稳,反应速度快,换向冲击小,便于实现频繁换向。

4)易于实现过载保护,而且工作油液能实现自行润滑,从而提高元件的使用寿命。

5)操作简单,易于实现自动化。

6)液压元件易于实现标准化、系列化和通用化。

2.液压传动的缺点1)液体的泄漏和可压缩性使液压传动难以保证严格的传动比。

2)在工作过程中能量损失较大,传动效率较低。

3)对油温变化比较敏感,不宜在很高或很低的温度下工作。

4)液压传动出现故障时,不易诊断。

P7 小节习题:(1)由于液体内磨擦力的作用,而产生阻止液层间的相对滑动。

(2)动力黏度、运动黏度、相对黏度。

(3)运动黏度,υ,m2/s,mm2/s。

(4)黏度较低。

(5) 40℃运动黏度,mm2/s。

(6)石油型、乳化型和合成型。

(7)水分、空气、微小固体颗粒、胶质状生成物。

(8)a.堵塞过滤器,使液压泵吸油困难,产生噪声,堵塞阀类元件小孔或缝隙,使阀动作失灵。

微小固体颗粒还会加剧零件磨损,擦伤密封件,使泄漏增加。

b.水分和空气混入会降低液压油的润滑能力,加速氧化变质,产生气蚀;还会使液压液压系统出现振动、爬行等现象。

(9)a.严格清洗元件和系统。

b.尽量减少外来污染物。

c.控制液压油的温度。

d.定期检查、清洗和更换滤芯。

e.定期检查和更换液压油。

本章习题1.填空题(1)法向力,N/㎡即pa 。

(2)压力和流量。

(3)绝对压力和相对压力,相对压力。

(4)输入流量。

(5)沿程压力损失和局部压力损失。

(6)功率损失、油液发热、泄漏增加。

《液压与气动技术》网络课程随堂练习题(新)

《液压与气动技术》网络课程随堂练习题(新)

《液压与气动技术》随堂练习题绪论一、单项选择题1. 液压与气压传动是以流体的( B )的来传递动力的。

A.动能 B. 压力能 C. 势能 D. 热能2. 液压与气压传动中的工作压力取决于( C )。

A. 流量B. 体积C. 负载D. 其他二、判断题(在括弧内,正确打“○”,错误打“×”)1. 液压与气压传动中执行元件的运动速度只取决于输入流量的大小,与压力无关。

(○)2. 液压与气压传动中的功率P等于压力p与排量V的乘积。

(×)第一章液压传动基础知识一、单项选择题1. 液压与气压传动的工作原理是基于( D )。

A. 能量守恒定律B. 动量定理C. 质量守恒定律D. 帕斯卡原理2. 流体的粘度随温度变化,对于液体,温度升高,粘度( A )。

A. 下降B. 增大C. 不变D. 其他3. 流体的粘度随温度变化,对于气体,温度升高,粘度( B )。

A. 下降B. 增大C. 不变D. 其他4. 流量连续性方程是( C )在流体力学中的表达形式。

A. 能量守恒定律B. 动量定理C. 质量守恒定律D. 帕斯卡原理5. 伯努利方程是( A )在流体力学中的表达形式。

A. 能量守恒定律B. 动量定理C. 质量守恒定律D. 帕斯卡原理6. 液体流经薄壁小孔的流量与孔口面积的( A )和小孔前后压力差的( B )成正比。

A. 一次方B. 1/2次方C. 二次方D. 三次方7. 牌号L-HL-46的国产液压油,数字46表示在( C )下该牌号液压油的运动粘度为46 Cst。

A. 20℃B. 50℃C. 40℃D. 0℃8. 液压阀,阀的额定流量为q n,额定工作压力为p n,流经阀的额定流量时的压力损失为∆p。

当流经阀的流量为q n/3,其压力损失为( D )。

A. ∆p/3B. ∆p/2C. ∆pD. ∆p/9二、判断题(在括弧内,正确打“○”,错误打“×”)1. 理想流体伯努力方程的物理意义是:在管内作稳定流动的理想流体,在任一截面上的压力能、势能和动能可以互相转换,但其总和不变。

液压与气压传动陈淑梅第三版课后答案

液压与气压传动陈淑梅第三版课后答案

液压与气压传动陈淑梅第三版课后答案1-1什么是液压传动?什么是气压传动?参考答案:液压与气压传动的基本工作原理是相似的,都是以流体的压力能来传递动力的。

以液体(液压油〉为工作介质,靠液体的压力能进行工作称为液压传动。

以压缩空气为工作介质,靠气体压力能进行工作的称为气压传动。

1-2液压与气压传动系统有哪几部分组成?各部分的作用是什么?参考答案: 液压传动系统和气压传动系统主要有以下部分组成:(1)动力元件:液压泵或气源装置,其功能是将原电动机输入的机械能转换成流体的压力能,为系统提供动力。

(2)执行元件:液压缸或气缸、液压马达或气压马达,它们的功能是将流体的压力能转换成机械能,输出力和速度(或转矩和转速),以带动负载进行直线运动或旋转运动。

(3)控制元件:压力流量和方向控制阀,它们的作用是控制和调节系统中流体的压力、流量和流动方向,以保证执行元件达到所要求的输出力(或力矩)、运动速度和运动方向。

(4)辅助元件:保证系统正常工作所需要的辅助装置,包括管道、管接头、油箱或储气罐、过滤器和压力计等。

(5)传动介质:指传递能量的流体,即液压油或压缩空气。

1-3液压与气压传动主要优缺点有哪些?参考答案:液压传动的主要优点:在输出相同功率的条件下,液压转动装置体积小、重量轻、结构紧凑、惯性小、并且反应快。

可在运行过程中实现大范围的无级调速、且调节方便。

传动无间隙,运动平稳,能快速启动、制动和频繁换向。

操作简单,易于实现自动化,特别是与电子技术结合更易于实现各种自动控制和远距离操纵。

不需要减速器就可实现较大推力、力矩的传动。

易于实现过载保护,安全性好;采用矿物油作工作介质,滋润滑性好,故使用寿命长。

液压元件已是标准化、系列化、通用化产品、便于系统的设计、制造和推广应用。

液压传动的主要缺点:(1)油液的泄露、油液的可压缩性、油管的弹性变形会影响运动的传递正确性,故不宜用于精确传动比的场合。

(2)由于油液的粘度随温度而变,从而影响运动的稳定性,故不宜在温度变化范围较大的场合工作。

电子教案与课件液压与气压传动化工第三版第5章液压控制元件

电子教案与课件液压与气压传动化工第三版第5章液压控制元件
力为( 0.3~0.5)MPa。
9
机械工程学院
第五章 液压控制元件
➢ 液控单向阀
• 工作原理
– 当控制油口不通压力 油时,油液只能从 p1→p2;当控制油口 通压力油时,正、反 向的油液均可自由通 过。
– 根据控制活塞上腔的 泄油方式不同分为内 泄式和外泄式。
图5.2 液控单向阀
a)简式 b)复式 1-控制活塞;2-单向阀阀芯;卸载阀小阀芯
23
机械工程学院
第五章 液压控制元件
一、溢流阀
➢ 溢流阀类型
• 按结构形式分 直动型溢流阀和先导型溢流阀
24
机械工程学院
第五章
(1)直动型溢流阀
• 结构原理 直动型溢流阀由阀芯、
阀体、弹簧、上盖、调节杆、调节螺 母等零件组成。阀体上进油口旁接在 泵的出口,出口接油箱。原始状态, 阀芯在弹簧力的作用下处于最下端位 置,进出油口隔断。进口油液经阀芯 径向孔、轴向孔作用在阀芯底端面, 当液压力等于或大于弹簧力时,阀芯 上移,阀口开启,进口压力油经阀口 溢回油箱。此时阀芯受力平衡,阀口 溢流满足压力流量方程。
用外控时,独立油源的流量不得小
于主阀最大通流量的15 %,以保证
换向时间要求。
▪ 电磁阀的回油可以单独引出(外排),也可以在阀体内与主阀回油口
沟通,一起排回油箱(内排)。
▪ 液动阀两端控制油路上的节流阀可以调节主阀的换向速度。
20
机械工程学院
第五章 液压控制元件
滑阀的中位机能
• 三位的滑阀在中位时各油口 的连通方式体现了换向阀的 控制机能,称之为滑阀的中 位机能。
能要好,压力阀阀芯工作的稳定性要好。 • 所控制的参数(压力或流量)要稳定,受外干扰时变化

《液压与气压传动》课后习题答案

《液压与气压传动》课后习题答案

第一章习题答案1-1 填空题1.液压传动是以(液体)为传动介质,利用液体的(压力能)来实现运动和动力传递的一种传动方式。

2.液压传动必须在(密闭的容器内)进行,依靠液体的(压力)来传递动力,依靠(流量)来传递运动。

3.液压传动系统山(动力元件)、(执行元件)、(控制元件)、(辅助元件)和(工作介质)五部分组成。

4.在液压传动中,液压泵是(动力)元件,它将输入的(机械)能转换成(压力)能,向系统提供动力。

5. 在液压传动中,液压缸是(执行)元件,它将输入的(压力)能转换成(机械)能。

6.各种控制阀用以控制液压系统所需要的(油液压力)、(油液流量)和(油液流动方向),以保证执行元件实现各种不同的工作要求。

7.液压元件的图形符号只表示元件的(功能),不表示元件(结构)和(参数),以及连接口的实际位置和元件的(空间安装位置和传动过程)。

8.液压元件的图形符号在系统中均以元件的(常态位)表示。

1-2 判断题1.液压传动不易获得很大的力和转矩。

(X)2.液压传动装置工作平稳,能方便地实现无级调速,但不能快速起动、制动和频繁换向。

(X)3.液压传动与机械、电气传动相配合时,易实现较复杂的自动工作循环。

(✓)4.液压传动系统适宜在传动比要求严格的场合采用。

(X)第二章习题答案2-1 填空题1.液体受压力作用发生体积变化的性质称为液体的(可压缩性),可用(体积压缩系数)或(体积弹性模量)表示,体积压缩系数越大,液体的可压缩性越(大);体积弹性模量越大,液体的可压缩性越(小)。

在液压传动中一般可认为液体是(不可压缩的)。

2.油液粘性用(粘度)表示;有(动力粘度)、(运动粘度)、(相对粘度)三种表示方法;计量单位m2/s是表示(运动)粘度的单位;l m2/s = (10心厘斯。

3.某一种牌号为L-HL22的普通液压油在40。

C时(运动)粘度的中心值为22厘斯(mm2/s)。

4.选择液压油时,主要考虑油的(粘度)。

(选项:成分、密度、粘度、可压缩性)5.当液压系统的工作压力高,环境温度高或运动速度较慢时,为了减少泄漏,宜选用粘度较(高)的液压油。

《液压与气压传动》课程标准

《液压与气压传动》课程标准

湖南科技职业学院国家骨干高职院校项目建设机电一体化专业《液压与气压传动》课程标准课程代码:课程类别:《液压与气压传动》学分:3总学时:48适用专业:机电一体化一、课程定位1、课程性质《液压与气压传动》课程是机电一体化专业的一门专业基础课。

以培养学生从事安装、调试、运用、维护一般液压与气动系统能力为核心。

本课程主要讲述液压与气压基本元件和基本回路的结构、组成、工作原理、功能和典型液压气动系统实例分析本课程包括液压传动和气压传动两部分,课程教学以液压传动为主。

2、课程设计思路本课程采用项目式教学,选择装调机床液压系统和机床气动夹紧系统两个大项目,和九个子项目来组织教学。

每个项目均采用项目分析、任务布置、相关知识、任务完成、拓展应用的过程进行教学设计,做、学、教一体,使课程教学达到项目教学的要求。

二、课程目标1、知识目标:(1)掌握液气压元件结构、原理、功能、符号。

(2)掌握液气压基本回路结构、组成、原理、功能。

(3)掌握典型液气压系统结构、组成、原理、功能。

2、能力目标:(1)能选择液气压元件。

(2)能装调液气压元件。

(3)能装调液气压基本回路。

(4)能装调机床液压系统和机床气动夹紧系统。

(5)能熟练使用《液气压技术手册》。

3、素质目标:(1)严格遵守《液气压技术国家标准》和安全操作规范。

(2)吃苦耐劳、不怕脏、累,积极动手操作。

(3)充分利用网络、图书馆等资讯,自主学习新技术的能力(4)团队协作能力,解决实际问题的能力。

三、课程学习内容与学时分配1、课程教学总体设计本课程选择装调机床液压系统和机床气动夹紧系统两个大项目和九个子项目。

以项目为载体,以任务驱动组织教学,教学做一体,以理论考核、实操考核、作业单考核、素质考核全面评价。

项目教学列表2、教学单元设计本课程所有的教学单元设计见下表教学单元一:教学单元二:四、课程考核导语:本课程在以项目为载体、以任务来驱动的课程教学中,强调实施过程考核,每一项目任务都包括理论、实操、作业工单、素质四个部分,由主讲教师、实训指导教师(企业兼职教师)等来自于学院与企业的人员共同实施考核评价,适当安排学生参与评价。

液压与气压传动系统运行与维护习题集答案

液压与气压传动系统运行与维护习题集答案

四川工程职业技术学院液压与气压传动系统运行与维护习题集机电一体化教研室编制班级:学号:姓名:习题一:液压传动基础一、填空1、液压系统中的两个重要参数是( 压力 )和(流量),液压传动是以运动着液体的(压力能)传递动力的。

2、压力和温度对油液的粘度均有影响,一般来说,压力增大,粘度(增加),温度增加,粘度(减小)。

3、液体在直通和截面突然变化的管道中流动时,均有流量损失,此种能量损失表现为(沿程压力损失)和(局部压力损失)。

4、液压传动系统的基本组成部分为(动力元件),(执行元件),(辅助元件),(控制元件)和(工作介质)。

其中(动力元件)和(执行元件)为能量转换装置。

5.液体在管中流动时,存在(层流)和(紊流)两种流动状态。

液体的流动状态可用(临界雷洛数)来判定。

6.液压系统中的压力,即常说的表压力,指的是(相对)压力。

7.在液流中,由于压力降低到有气泡形成的现象统称为(空穴)现象。

8.液压传动是以(压力能)能来传递和转换能量的。

9.在液压系统中,由于某一元件的工作状态突变引起油压急剧上升,在一瞬间突然产生很高的压力峰值,同时发生急剧的压力升降交替的阻尼波动过程称为(液压冲击)。

10.完成液压知识中下列等式:μ=(ρ)ν;β=(22222=0.17/y p A p A F Q C m s p p Q A νν=+⎧⎫⎪⎪⎪⇒=⎨⎪∆=⎪⎪⎪⎪=⎩⎭节流)。

11.液压油的粘度当工作液温度上升时(下降),而在压力上升时(增加)。

12.液体流动中的压力损失可分为(沿程)压力损失和(局部)压力损失,它们分别用公式(22l p d λρνλ∆=)和(22p ξρνξ∆=) 加以计算。

13、46号液压油在23°C 时的运动粘度为100cst ,那么,它在该温度下的动力粘度为(0.09 )Pa·S(取密度ρ=900kg/m3;1cst (里斯)=1mm2 /s)。

14、雷诺数Re=( d νυν-- 液体流速;d --管道直径;υ---动力粘度)(说明所用符号的含义),它的物理意义是:流体流动时( 惯性 )力与( 内摩擦 )力之比。

液压与气压传动系统的组成

液压与气压传动系统的组成

液压与气压传动系统的组成液压与气压传动系统是现代工程中常用的两种传动系统。

液压传动系统通过液体传递力和能量,而气压传动系统通过气体传递力和能量。

它们在工业生产、机械设备以及汽车等领域都有广泛的应用。

本文将详细介绍液压与气压传动系统的组成。

一、液压传动系统的组成液压传动系统主要由以下几个组成部分构成:1. 液压能源装置:液压能源装置主要由液压泵、液压马达或液压发电机等组成。

液压泵通过机械或电动驱动,将机械能转化为液压能。

液压泵有多种类型,常见的有齿轮泵、柱塞泵和液压泵等。

2. 液压执行元件:液压执行元件主要由液压缸和液压马达等组成。

液压缸将液压能转化为机械能,通过液压缸的伸缩来实现力的传递和工作的执行。

液压马达则将液压能转化为机械能,通过旋转来实现力的传递和工作的执行。

3. 液压控制元件:液压控制元件主要由液压阀、液压缸和液压马达等组成。

液压阀用于控制液压系统的压力、流量和方向等参数,实现对液压系统的控制。

液压缸和液压马达则用于实现对液压执行元件的控制,以实现工作的执行。

4. 液压传动介质:液压传动介质主要是液体,通常使用的是油作为液压传动介质。

液压传动介质具有良好的润滑性和密封性能,能够在液压系统中有效地传递力和能量。

二、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 气压能源装置:气压能源装置主要由气压泵和气压发生器等组成。

气压泵通过机械或电动驱动,将机械能转化为气压能。

气压发生器则通过压缩空气,将空气转化为气压能。

2. 气压执行元件:气压执行元件主要由气缸和气动马达等组成。

气缸将气压能转化为机械能,通过气缸的伸缩来实现力的传递和工作的执行。

气动马达则将气压能转化为机械能,通过旋转来实现力的传递和工作的执行。

3. 气压控制元件:气压控制元件主要由气动阀和气缸等组成。

气动阀用于控制气压系统的压力、流量和方向等参数,实现对气压系统的控制。

气缸则用于实现对气压执行元件的控制,以实现工作的执行。

液压与气压传动第4版含1CD教学课件ppt作者左健民主编第3章液压执行元件

液压与气压传动第4版含1CD教学课件ppt作者左健民主编第3章液压执行元件

液压与气压传动(第4版)第三章液压执行元件⏹第一节液压马达⏹第二节液压缸第一节液压马达液压执行元件是将液压泵提供的液压能转变为机械能的能量转换装置,它包括液压缸和液压马达。

液压马达习惯上是指输出旋转运动的液压执行元件,而把输出直线运动(其中包括输出摆动运动)的液压执行元件称为液压缸。

一液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。

因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。

但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。

首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。

因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。

由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。

液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。

按液压马达的额定转速分为高速和低速两大类。

额定转速高于500r /min 的属于高速液压马达,额定转速低于500r /min 的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式 和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。

通常高速液压马达输出转矩不大(仅几十N ·m 到几百N ·m)所以又称为高速小转矩液压马达。

低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千N ·m 到几万N ·m),所以又称为低速大转矩液压马达。

液压与气压传动第3章习题解

液压与气压传动第3章习题解

第3章液压与气压传动动力元件思考题和习题3.1 容积式液压泵的工作原理是什么?答:其原理是:必须有一个密封容积;并且密封容积是变化的;还要有一个配油装置;油箱与大气相通。

3.2 液压泵装于液压系统中之后,它的工作压力是否就是液压泵标牌上的压力?为什么?答:不一定。

因为系统中压力是由负载来决定的。

3.3 液压泵在工作过程中产生哪些能量损失?产生损失的原因?答:产生两种损失:容积损失和机械损失。

容积损失产生的原因是泵中存在间隙,在压力作用下油液从高压区向低压区泄漏;另外由于油的粘性,转速高阻力大,使油液没充满密封空间。

机械损失是泵零件间,轴承,零件与液体间存在摩擦而产生的损失。

3.4 外啮合齿轮泵为什么有较大的流量脉动?流量脉动大会产生什么危害?答:外啮合齿轮泵在工作过程中,压油腔的工作容积变化率不均匀,齿数越少,其脉动率越大,所以外啮合齿轮泵的瞬时流量脉动大。

流量脉动大引起齿轮泵输出压力脉动大,产生较大的噪声。

3.5 什么是齿轮泵的困油现象?产生困油现象有何危害?如何消除困油现象?其它类型的液压泵是否有困油现象?解:齿轮泵要平稳工作,齿轮啮合的重叠系数必须大于或等于1,即总有两对轮齿同时啮合。

这样一部分油液被围困在两对轮齿所形成的封闭腔之内。

这个封闭容积先随齿轮转动逐渐减少,以后又逐渐增大。

当封闭容积减少时会使被困油液受挤压而产生高压,并从缝隙中流出,导致油液温升增加,轴承等机件也受到附加径向不平衡负载作用。

封闭容积增大时又会造成局部真空,使溶于油中气体分离出来,产生空穴,引起噪声、振动和气蚀,这就是齿轮泵的困油现象。

消除困油现象的方法,通常在齿轮泵的两端盖板上开卸荷槽,使封闭容积减少时通过卸荷槽与压油腔相通,封闭容积增大时通过卸荷槽与吸油腔相通。

其它类型的液压泵也有困油现象,双作用叶片泵在设计合理,安装准确时,在理论上没有困油现象。

3.6 齿轮泵压力的提高主要受哪些因素的影响?可以采取哪些措施来提高齿轮泵的压力?答:影响齿轮泵压力提高主要是端面间隙的泄漏及径向力不平衡。

液压与气压传动3_王积伟教授_东南大学

液压与气压传动3_王积伟教授_东南大学
F pA m p
v qV 4qV A πd 2
第三章 执行元件
π d m 4
(3-11) (3-12)
图3-4 柱塞式液压缸 a)单柱塞缸 b)双柱塞缸 1—缸筒 2—柱塞
式中 d—柱塞直径
东南大学机械工程学院
School of Mechanical Engineering
第三章 执行元件
图3-2 单杆活塞缸 a)向右运动 b)向左运动
School of Mechanical Engineering
东南大学机械工程学院
液压与气压传动
2)单杆活塞缸
单杆活塞缸的推力和速度计算式如下:
第三章 执行元件
π π F1 ( p1 A1 p2 A2 )m p1 D 2 p2 ( D 2 d 2 ) m 4 4
图3-1 双杆活塞缸 a)缸筒固定
东南大学机械工程学院
School of Mechanical Engineering
液压与气压传动
1)双杆活塞缸
第三章 执行元件
π 2 F1 F2 ( p1 p2 ) Am ( p1 p2 ) ( D d 2 )m 4
v1 v2 4qV q V A π( D 2 d 2 )
Part 3.1 液压缸
液压缸是实现直线往复运动的执行元件 。
School of Mechanical Engineering
东南大学机械工程学院
液压与气压传动
Part 3.1.1 液压缸的类型
第三章 执行元件
液压缸按其结构形式,可以分为活塞缸、柱塞缸和伸缩缸等 。
1. 活塞式液压缸
1)双杆活塞缸 图3-1a所示 为缸筒固定的双杆活塞缸, 活塞两侧的活塞杆直径相等 它的进、出油口位于缸筒两 端。当工作压力和输入流量 相同时,两个方向上输出的 推力F和速度v是相等的。其 值为:

液压与气压传动小结

液压与气压传动小结

液压小结第一章液压传动基础知识1、液压与气压传动是研究以有压流体(压力油或压缩空气)为能源介质,来实现各种机械的传动和自动控制的学科。

2、液压和气压传动中工作压力取决于负载,而与流入的流体多少无关。

3、液压与气压传动的活塞的运动速度取决于进入液压(气压)缸(马达)的流量,而与流体压力大小无关。

4、液压传动和气压传动是以流体的压力能来传递动力的。

5、液压与气压传动系统主要由以下几个部分组成:能源装置、执行装置、控制调节装置、辅助装置和传动介质。

6、液压传动的优点:①便于实现无级调速;②在同等功率下体积小、重量轻、惯性小结构紧凑;③温升热量可直接由油液带走;④控制调节简单,操纵省力;⑤易于实现过载保护;⑥反应快、能频繁起动、换向,易于实现回转、直线运动。

7、液压传动的缺点:①油液为工作介质,易泄漏,有污染;②能量损失大,传动效率低;③液压传动对油温敏感,不宜在很低或很高温度下工作;④油液有可压缩性,对负载敏感,难以保证严格的传动比;⑤元件制造精度高,价格高;⑥出现故障时不易查找原因。

8、气压传动与液压传动相比的优点:①介质是空气,来源方便;②粘度小,流动压力损失小;③工作压力低,元件的精度低,容易制造;④维护简单,使用安全;⑤场地、材料、环境的适应能力强。

9、气压传动与电气、液压传动相比的缺点:①气压传动装置的信号传递速度限制在声速范围内,工作频率和响应速度远不如电子装置;②空气的压缩性远大于液压油的压缩性,因此在动作的响应能力、工作速度的平稳性、动作的稳定性方面不如液压传动;③气压传动系统出力较小,气动装置体积大,传动效率低;④因空气无润滑性,元件需另设润滑;⑤气压传动有较大的排气噪声,需加装消声器。

10、液压传动工作介质的体积模量和温度、压力有关:温度增加时,体积模量值减小;压力增大时,体积模量值增大。

11、液体在外力作用下流动(或有流动趋势)时,分子间的内聚力要阻止分子相对运动而产生一种内摩擦力,这种现象叫做液体的粘性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当液压缸所驱动的工作部件质量较大,移动速度较快时,因
动量大,在行程终了时,活塞与端盖发生撞击,造成液压冲击和 噪声,甚至严重影响工作精度和引起整个系统及元件损坏。 大型、高速或要求较高的液压缸中一般要设置缓冲装置。
缓冲装置的工作原理:当活塞行程到终点而接近缸盖时,增大 液压缸回油阻力,使回油腔中产生足够大的缓冲压力,使活 塞减速,从而防止活塞撞击缸盖。
只能从针形节流阀流出。适用范围广。
(3)可变节流缓冲装置:在活塞上有横截面为三角形的轴向斜
槽,节流口间隙在运动过程中是变化的,在缓冲过程中自动改
变节流口大小。缓冲均匀,冲击压力小,制动位置精度高。
5、排气装置
液压系统在开始工作前应使系统中的空气排出。为此可在缸的最高部位 (空气易聚集地方)设置排气装置。排气装置通常有两种:
第三章 液压执行元件
[一般要求] 液压缸的设计计算方法 [重点要求] 1、液压马达的参数计算、工作原理
2、液压缸的类型、结构
[具体要求] 掌握液压马达的参数计算、工作原理;掌握液压缸的类型、 结构;了解液压缸的设计计算方法。
第三章 液压执行元件——液压能机械能的能量转换装置。 液压执行元件 分类:液压马达:输出旋转运动; §3.1 液压马达 液压缸:输出直线(或摆线)运动。
图3-5b),从有杆腔输入时,在活塞所产生的推力F2
和速度v2为
2 2 F2 A2 p1 A1 p2 [( p1 p2 ) D p1d ] 4
由上四式可知,∵A1>A2, ∴ v1<v2;
q 4q v2 A2 ( D 2 d 2 )
又∵ p1 > p2, ∴F1>F2。
部转化为液压马达输出的机械功率,即:
∵ω=2πn
pq Tt
pV ∴理论转矩为: Tt 2
q=Vn
2、液压马达的机械效率ηm和启动机械效率ηm0 由于液压马达内部存在各种摩擦,实际输出的T总要比理论Tt小 些,即:
pV T Tt m m 2
ηm——液压马达机械效率。
可知:差动缸推力比非差动缸小,速度大。 ◎利用此结果,可在不加大油源流量的情况下得到较快的速度。
该连接方式被广泛应用于组合机床的液压动力滑台和其它
机械设备的快速运动中。
注意:从有杆腔进油,也可得大速度。(为什么?)
(二)柱塞缸
柱塞缸相当于将活塞缸的活塞直径变小与活塞杆的直径相同。 工作原理如图3-7a。当柱塞直径d,输入流量q,压力p时,在柱 塞上产生的推力F和速度v为:
(2)当工作压力p<20MPa时:使用无缝钢管缸筒。 (3)当工作压力p>20MPa时:使用铸钢或锻钢缸筒。 缸筒和缸盖连接方式:半环连接(图3-13b)和螺纹连 接(图3-13c)。
图3-13c 螺纹连接
图3-13b 半环连接
2、活塞和活塞杆
(1)活塞和活塞杆的连接方式 连接方式很多,但无论采用何种连接方式,都必须保证连 接可靠。 •常用连接方式:锥销式连接、双螺纹连接、半环式连接(图3-
14);活塞和活塞杆制成整体式(只适用于尺寸较小的场合)。
(2)活塞和活塞杆的材料 活塞:耐磨铸铁; 活塞杆:钢材。
3、密封装置(见第五章第四节)
液压缸的密封装置用以防止油液的泄漏。其设计的好坏重要
影响液压缸的静、动态性能。
◎要求:良好的密封性,尽可能长的寿命、制造简单、拆装方便、 成本低。 密封装置有活塞、活塞杆处的动密封和缸盖等处的静密封。 ◎ 密封件的主要类型: O型、V型、Y型等几种。 4、缓冲装置
R2
图3-8a)为单作用摆动缸
式中 b—叶片宽,R1、R2—叶片底、顶部的回转半径。
(四)其它液压缸 1、增压缸 又称增压器。有单作用和双作用两种,当低压为p1的油液推
动增压缸的大活塞时,大活塞推动与其连成一体的小活塞输出
压力为p2的高压液体,当大活塞直径D,小活塞直径为d时,
D 2 p 2 p1 ( ) Kp1 d
损失,故实际转速n (r/min) 比理想情况低。
q n V V
不稳定状态。
ηv——液压马达的容积效率。
爬行现象:当工作转速过低时,速度不均匀,进入时动时停的
但因低速大转矩马达的排量大(导致尺寸大),在低速下工作
摩擦副的滑动速度也太低,加之马达排量大,泄漏的影响相对 变小,马达本身的转动惯量大,故具有较好的低速稳定性。低 速大转矩马达比高速马达的低速稳定性好。
F pA p

4
d2
柱塞缸通常是成对反向使用(保证双向运动)。
q 4q v A d 2
图3-7a)柱塞缸
特点:柱塞与缸筒无配合要求,缸筒内孔不需精确加工,甚至 可不加工。运动时由缸盖上的导向套来导向,所以适用于行程
较长的场合。
(三)摆动缸 (图3-8a为单作用摆动缸,3-8b为双作用摆动缸)
若把两个方向上的输出速度 v2 和 v1 的比值称为速度比,记 作λv,则有:
v
v2
1 2 v1 [1 (d / D) ]
活塞杆直径越小,λv 越接近于1,活塞两个方向的速度差值也就 越小。反之,活塞两个方向的速度差值也就越大。已知D和λv,可 求得d。
(3)差动进油 如图3-6,左右两腔同时通压力油,形成差动连接,这种缸称 为差动液压缸。
(1)在液压缸最高部位处开排气孔,并用管道连接排气阀进行排气;
(2)在液压缸的最高部位安放排气塞。
一、液压马达的特点及分类
从能量转换的观点来看,液压泵和液压马达是可逆工作的液压元件。 但由于工作条件、性能要求不同,所以还存在许多差别,并不可逆。
1、特点
(1)能正反转;为满足液压马达正反转的要求,其内部结构对称。 (2)应具有最低稳定转速,且需要转速范围足够大,故常采用滚动轴承或
静压滑动轴承;
(3)因它在输入压力油条件下工作,故可不具备自吸能力,但需要一定的 初始密封性,才能提供必要的起动转矩。
•转速由输入的流量大小来决定。
特点:体积小,转动惯量小,动作灵敏。 应用:换向频率较高的场合。 主要用于转速高、转矩小、动作 要求灵敏的场合(低速工作时不稳定)
2、径向柱塞式液压马达
转子与定子之间有一偏心距e,柱塞在压力油的作用下顶住 定子内壁,定子对柱塞的反作用力FF (=pd2/4)分解为FN 和 FT ,分力FT =FFtanф使缸体转动。 在压油区有好几个柱塞,所产生的转矩都使缸体旋转,并输
二、液压缸的组成 典型液压缸见图3-12。 液压缸的基本结构:缸筒和缸盖、活塞和活塞杆、 密封装置、缓冲装置和排气装置五个部分。
1、缸筒和缸盖 (1)当工作压力p<10MPa时:使用铸铁缸筒。 缸筒和缸盖连接方式:法兰连接(图3-13a )。 特点:易于加工和拆装,但外形尺寸大。
图3-13a 法兰连接
式中:K=D2/d2(增压比,代表增压能力)
2、伸缩缸
由两个或多个活塞式液压缸套装而成,前一级活塞缸的活塞是后一级活 塞缸的缸筒。伸缩时可获得很长的工作行程,缩回时可保持很小的结构尺寸,
伸缩缸被广泛用于起重运输车辆。
图3-10 伸缩缸
图3-11 齿轮缸
3、齿轮缸 又称无杆式活塞缸,由一套柱塞缸和一套齿轮齿条传动装置 组成,当压力油推动活塞左右往复运动时,齿条就推动齿轮件 往复旋转,从而齿轮驱动工作部件作周期性的往复旋转运动。
设活塞直径D,活塞杆直径d,当液压缸进、出油腔的压力
p1、p2,输入流量q时,双活塞缸的推力 F 和速度 v 为
F A( p1 p 2 )

4
( D d )( p1 p 2 )
2 2
q 4q v 2 2 A (D d )
受力,故活塞杆的粗细无特别要求。
式中A——活塞的有效工作面积。
(一)活塞式液压缸
1、双杆式活塞缸(图3-4) a)图缸体固定,活塞杆有效长度 l,工作台行程3 l; b)图活塞杆固定,工作台行程2 l, 进出油口可设置在固定不动的
空心活塞杆两端,使油液从活
塞杆中进出。
双杆式两端的活塞杆直径相等,左、右两腔的有效面积就 相等。当分别向左、右腔输入相同压力和相同流量的油液时, 液压缸左、右两个方向的推力和速度相等。
出转矩。
应用:低速、大转矩场合。
三、液压马达的基本参数和基本性能 1、液压马达的排量及其与转矩的关系 液压马达输出转矩大小由负载转矩所决定。工作容腔的大
小是其工作能力的重要标志。
根据排量V的大小,可计算给定压力下液压马达所能输出转 矩,和给定负载转矩下马达的工作压力。 若进、出油口压差为△p,输入流量为q,则输出的理论转矩 为Tt,角速度为ω。若不计损失,液压泵输出的液压功率应当全

q' v3 A2

4q v3 2 d
由上式
2 2 2 F1 A1 p1 A2 p2 [( p1 p2 ) D p2 d ] F3 p1 ( A1 A2 ) p1 d 4 4
q 4q 4q v2 v3 2 2 2 A2 ( D d ) d
又称摆动液压马达。当它通入压力油时,它的主轴能输出小 于360º 的摆动运动,常用于工夹具夹紧装置、送料装置、转位 装置以及需要周期性紧给的系统中。当进出油口压力为p1和p2,
输入流量为q时,输出转矩 T 和角速度ω各为:
b 2 2 T b ( p1 p2 )rdr ( R2 R1 )( p1 p2 ) R1 2 2q 2n b( R22 R12 )
由于存在以上差别,故液压马达和液压泵在结构上相似,但不可替代。
2、分类 (1) 按结构类型分:齿轮式、叶片式、柱塞式和其它型式。 (2) 按其额定转速分:高速(>500r/min)和低速(<500r/min)。
二、液压马达的工作原理 1、叶片式液压马达的工作原理
相关文档
最新文档