2016年人教版数学九年级上册第二十三章《旋转》word单元综合测试三

合集下载

人教版初中九年级数学上册第二十三章《旋转》经典测试卷(含答案解析)(3)

人教版初中九年级数学上册第二十三章《旋转》经典测试卷(含答案解析)(3)

一、选择题1.如图,将△ABC 绕点A 旋转,得到△AEF ,下列结论正确的个数是( ) ①△ABC ≌△AEF ;②AC=AE ;③∠FAB=∠EAB ;④∠EAB=∠FAC .A .1B .2C .3D .4B解析:B【分析】 由旋转的性质得到△ABC ≌△AEF ,再由全等三角形的性质逐项判断即可.【详解】∵△ABC 绕点A 旋转得到△AEF ,∴△ABC ≌△AEF ,∴AC=AF ,不能确定AC=AE ,故①正确,②错误;∵∠EAF=∠BAC ,∴∠EAF-∠BAF=∠BAC-∠BAF ,∴即∠EAB=∠FAC ,但不能确定∠EAB 等于∠FAB ,故③错误,④正确;综上所述,结论正确的是①④,共2个.故选:B.【点睛】此题考查了旋转的性质.掌握旋转前后的图形全等是解答此题的关键.2.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP =D .2ABC AEPF S S =四边形C解析:C【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,AP ⊥BC ,∠C=∠B=∠BAP=∠CAP=45°,∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ),∴AE=CF ,EP=PF ,S △AEP =S △CPF ,∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确, ∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误;故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.3.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .2B .3C .3D .32解析:A【分析】 由△ABP 绕点B 顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到2BP ,即可得到答案..【详解】解:解:∵△ABP 绕点B 顺时针旋转90°得到△CBP',而四边形ABCD 为正方形,BA=BC ,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴PP′=2BP=22.故选:A .【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质. 4.已知点(2,3)A ,O 是坐标原点,将线段OA 绕点O 逆时针旋转90︒,点A 旋转后的对应点1A ,则点1A 的坐标是( )A .(2,3)--B .(2,3)-C .(3,2)-D .(3,2)-D 解析:D【分析】根据点(,)x y 绕原点逆时针旋转90°得到的坐标为(,)y x -解答即可.【详解】解:A 、1A 两点是绕原点逆时针旋转90︒得到的,1A ∴的坐标为(3,2)-.故选:D .【点睛】考查由旋转得到的两点的坐标的变换;用到的知识点为:点(,)x y 绕原点逆时针旋转90︒得到的坐标为(,)y x -.5.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1B解析:B【分析】 连接PC ,根据直角三角形斜边上的中线等于斜边的一半求出PC ,利用中点求出CM ,再根据三角形两边之和大于第三边即可求得PM 的最大值.【详解】解:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒,∵P 是A B ''的中点,M 是BC 的中点,∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选:B .【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.6.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°C解析:C【分析】 直接根据四边形AEHB 的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,∴∠BAE =35°,∠E =90°,∠ABD =45°,∴∠ABH =135°,∴∠DHE =360°-∠E -∠BAE -∠ABH =360°-90°-35°-135°=100°.故选C .此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.7.如图:在△ABC中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC绕点C逆时针旋转至△EFC,使点E恰巧落在AB上,连接BF,则BF的长度为()A.3B.2 C.1 D.2A解析:A【解析】试题分析:由题意可知:∠A=60°,AC=EC,所以△ACE是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF,所以△CBF是等边三角形,所以∠CBF=60°,∠FBE=60°+30°=90°,△BEF是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,BF=21-=,故选A.213考点:1.旋转性质;2.直角三角形性质.8.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A.正方形B.矩形C.菱形D.矩形或菱形D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.D解析:D试题分析:根据轴对称图形和中心对称图形的概念,可知:A 既不是轴对称图形,也不是中心对称图形,故不正确;B 不是轴对称图形,但是中心对称图形,故不正确;C 是轴对称图形,但不是中心对称图形,故不正确;D 即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别10.如图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,如图②,移动正方形A 的位置,使正方形B 的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B 面积的( )A .12B .14C .16D .18D 解析:D【分析】设正方形B 的面积为S ,正方形B 对角线的交点为O ,标注字母并过点O 作边的垂线,根据正方形的性质可得OE=OM ,∠EOM=90°,再根据同角的余角相等求出∠EOF=∠MON ,然后利用“角边角”证明△OEF 和△OMN 全等,根据全等三角形的面积相等可得阴影部分的面积等于正方形B 的面积的14,再求出正方形B 的面积=2正方形A 的面积,即可得出答案.【详解】解:设正方形B 对角线的交点为O ,如图1,设正方过点O 作边的垂线,则OE =OM ,∠EOM =90°,∵∠EOF+∠EON =90°,∠MON+∠EON =90°,∴∠EOF =∠MON ,在△OEF 和△OMN 中 EOF MON OE 0MOEF OMN 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S四边形NOEP+S△OEF=S四边形NOEP+S△OMN=S四边形MOEP=14S正方形CTKW,即图1中阴影部分的面积=正方形B的面积的四分之一,同理图2中阴影部分烦人面积=正方形A的面积的四分之一,∵图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,∴正方形B的面积=正方形A的面积的2倍,∴图2中重叠部分面积是正方形B面积的18,故选D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.二、填空题11.如图,P是等边三角形ABC内一点,且PA=4,PB=23,PC=2,以下五个结论:①∠BPC=120°;②∠APC=120°;③S△ABC=143;④AB=28;⑤点P到△ABC三边的距离分别为PE,PF,PG,则有PE+PF+PG=32AB,其中正确的有_________.②④⑤【分析】如图将△APC绕点A顺时针旋转60°得到△AHB连接HP由全等三角形的性质可得AH=AP=4BH=PC=2∠AHB=∠APC 可证△AHP是等边三角形由勾股定理的逆定理可求∠HBP=90解析:②④⑤【分析】如图,将△APC绕点A顺时针旋转60°,得到△AHB,连接HP,由全等三角形的性质可得AH=AP=4,BH=PC=2,∠AHB=∠APC,可证△AHP是等边三角形,由勾股定理的逆定理可求∠HBP=90°,由锐角三角函数可求∠HPB=30°,可得∠AHB=120°=∠APC,∠BPC=150°,可判断①②,由勾股定理可求AB 的长,由等边三角形的面积公式可求△ABC 的面积和PE +PF +PG 的值,即可判断③④⑤.【详解】如图,将△APC 绕点A 顺时针旋转60°,得到△AHB ,连接HP ,∴△APC ≌△AHB ,∠HAP =60°,∴AH =AP =4,BH =PC =2,∠AHB =∠APC ,∴△AHP 是等边三角形,∴HP =4,∠AHP =∠APH =60°,∵HP 2=16,BH 2+BP 2=16,∴HP 2=BH 2+BP 2,∴∠HBP =90°,∵HB=12HP , ∴∠HPB =30°, ∴∠BHP =60°,∠APB =∠HPB +∠APH =90°,∴∠AHB =∠AHP +∠BHP =120°=∠APC ,∴∠BPC =360°−∠APB−∠APC =150°,故①不符合题意,②符合题意,∵∠APB =90°,∴AB =22161227AP BP +=+=,∴S △ABC =23734AB =, 故③不合题意,④符合题意,如图,∵S △ABC =12AB×PG +12AC×PF +12BC×PE =3, ∴12×7×(PG +PF +PE )=3∴PG +PF +PE =3272⨯=32AB , 故⑤符合题意, 故答案为:②④⑤.【点睛】本题是三角形综合题,考查了等边三角形的性质,勾股定理的逆定理,旋转的性质,全等三角形的的性质,三角形的面积公式,添加恰当辅助线构造全等三角形是本题的关键. 12.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.【分析】根据旋转的性质△ABC ≌△EDBBC=BD 求出∠CBD 的度数再求∠BCD 的度数【详解】解:根据旋转的性质△ABC ≌△EDBBC=BD 则△CBD 是等腰三角形∠BDC=∠BCD ∠CBD=180° 解析:15︒【分析】根据旋转的性质△ABC ≌△EDB ,BC=BD ,求出∠CBD 的度数,再求∠BCD 的度数.【详解】解:根据旋转的性质△ABC ≌△EDB ,BC=BD ,则△CBD 是等腰三角形,∠BDC=∠BCD ,∠CBD=180°-∠DBE=180°-30°=150°,∠BCD=12(180°-∠CBD )=15°. 故答案为15°.【点睛】本题考查了旋转的性质,解题时根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转求出即可.13.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.120°【解析】试题分析:若△ABC 以O 为旋转中心旋转后能与原来的图形重合根据旋转变化的性质可得△ABC 旋转的最小角度为180°﹣60°=120°故答案为120°考点:旋转对称图形 解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.14.如图,在边长为1的正方形网格中,()1,7A ,()5,5B ,()7,5C ,()5,1D .线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为______.或【分析】连接两对对应点分别作出连线的垂直平分线其交点即为所求【详解】解:如图所示旋转中心P 的坐标为(33)或(66)故答案为(33)或(66)【点睛】本题主要考查了利用旋转变换进行作图根据旋转的性解析:()3,3或()6,6【分析】连接两对对应点,分别作出连线的垂直平分线,其交点即为所求.【详解】解:如图所示,旋转中心P 的坐标为(3,3)或(6,6).故答案为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.15.如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2.将△BDE 绕点B 逆时针方向旋转后得△BD'E',当点E'恰好落在线段AD'上时,则CE'=_______.【分析】如图连接CE′过B作BH⊥CE′于H根据等腰直角三角形的性质可得AB=BC=BD=BE=2根据旋转的性质可得∠D′BD=∠ABE′D′B=BE′=BD=2根据角的和差关系可得∠ABD′=∠C26【分析】如图,连接CE′,过B作BH⊥CE′于H,根据等腰直角三角形的性质可得AB=BC=22 BD=BE=2,根据旋转的性质可得∠D′BD=∠ABE′,D′B=BE′=BD=2,根据角的和差关系可得∠ABD′=∠CBE′,利用SAS可证明△ABD′≌△CBE′,可得∠D′=∠CE′B=45°,可得出BH=E′H=22BE′2,利用勾股定理可求出CH的长,进而可得CE′的长.【详解】如图,连接CE′,过B作BH⊥CE′于H,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,在△ABD′和△CBE中AB BCABD CBE BD BE''=⎧⎪∠=∠''⎨⎪=⎩∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′2,在Rt△BCH中,CH22BC CH-826-=∴CE′26故答案为26【点睛】本题考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定与性质及勾股定理的应用,熟练掌握旋转的性质是解题关键.16.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是_______.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB绕点O顺时针旋转9解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同.【详解】解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,-1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(-1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(-2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.17.如图,在平面直角坐标系中,点1P 的坐标22,22⎛⎫ ⎪ ⎪⎝⎭,将线段1OP 绕点O 按顺时针方向旋转45°,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45°,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP ,……,n OP (n 为正整数),则点2020P 的坐标是_________.(0-22019)【分析】根据题意得出OP1=1OP2=2OP3=4如此下去得到线段OP3=4=22OP4=8=23…OPn=2n -1再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上进 解析:(0,-22019)【分析】根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 3=4=22,OP 4=8=23…,OP n =2n-1,再利用旋转角度得出点P 2020的坐标与点P 4的坐标在同一直线上,进而得出答案.【详解】解:∵点P 1的坐标为2222⎛ ⎝⎭,将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 1;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…,∴OP n =2n-1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴负半轴上,∴点P 2020的坐标是(0,-22019).故答案为:(0,-22019).【点睛】此题主要考查了点的变化规律,根据题意得出点P 2014的坐标与点P 6的坐标在同一直线上是解题关键.18.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到再结合已知图形可知旋转的角度是∠BOD的大小然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得∴OB=O 解析:90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为: 90.【点睛】本题考查了旋转的性质.解题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.19.如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为_____.2【分析】过点E作EM⊥BD于点M则△DEM为等腰直角三角形根据角平分线以及等腰直角三角形的性质即可得出ME的长度再根据正方形以及旋转的性质即可得出线段BF的长【详解】过点E作EM⊥BD于点M如图所解析:2【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【详解】过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM=2DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=2(2﹣x),2解得x=22﹣2,∴EM=22﹣2,由旋转的性质可知:CF=CE=22﹣2,∴BF=BC+CF=2+22﹣2=22.故答案为:22.【点睛】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段CF的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.20.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,若CD=2,DA=2,那么CC′=____________.4【分析】根据矩形的性质可以得到再由旋转的性质可得最后根据勾股定理即可求得的长度【详解】解:∵CD=2DA=2∴根据矩形的性质可得由旋转的性质可得:∴故答案为4【点睛】本题考查旋转性质及勾股定理的综解析:4【分析】 根据矩形的性质可以得到22AC =,再由旋转的性质可得290AC CAC ︒'=∠=',,最后根据勾股定理即可求得 CC '的长度.【详解】解:∵CD=2,DA=2,∴根据矩形的性质可得222222AC =+=,由旋转的性质可得:290AC AC CAC ==∠'=︒',, ∴()()222222224CC AC AC '+=+'==,故答案为4.【点睛】本题考查旋转性质及勾股定理的综合应用,根据旋转性质得到直角三角形的基础上应用勾股定理求出边的长度是解题关键.三、解答题21.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅.解析:证明见解析.【分析】先根据矩形的性质可得,90AB CD A B ADC =∠=∠=∠=︒,再根据旋转的性质可得,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,从而可得,90CD EF EDC F =∠=∠=︒,然后根据直角三角形的性质、角的和差可得DCE FEH ∠=∠,最后根据三角形全等的判定定理即可得证.【详解】四边形ABCD 是矩形,,90AB CD A B ADC ∴=∠=∠=∠=︒,由旋转的性质得:,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,,90CD EF EDC F ∴=∠=∠=︒,又90,90EDC CEF ∠=︒∠=︒,90CED DCE CED FEH ∴∠+∠=∠+∠=︒,DCE FEH ∴∠=∠,在EDC △和HFE 中,EDC F CD EF DCE FEH ∠=∠⎧⎪=⎨⎪∠=∠⎩,()HFE E AS DC A ∴≅.【点睛】本题考查了矩形的性质、旋转的性质、三角形全等的判定定理等知识点,熟练掌握矩形和旋转的性质是解题关键.22.如图,△ABC 在平面直角坐标系中,每个小正方形网格的边长都是1个单位长度. (1)画出ABC 关于x 轴的对称图形111A B C △,并写出点1A 的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的222A B C △,并写出A 2的坐标. (3)直接写出12B B 的长度.解析:(1)图见详解,A 1(-3,-5);(2)图见详解;A 2(5,3);(3)B 1B 22.【分析】(1)找到A 、B 、C 关于x 轴的对称点A 1、B 1、C 1连接各点即可得到结果,同时得到点A 1的坐标;(2)找到A 、B 、C 绕着O 点旋转90°后的对应点A 2、B 2、C 2连接各点即可得到结果,同时得到点A 2的坐标;(3)利用勾股定理求出B 1B 2的长.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,A 1(-3,-5);(2)如图所示,△A 2B 2C 2即为所求,A 2(5,3);(3)B 1B 2=2233+=32.【点睛】本题考查利用轴对称变换和旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABC 的三个顶点A ,B ,C 都在格点上,将ABC 绕点A 按顺时针方向旋转90°得到AB C ''.(1)在正方形网格中,画出AB C '';(2)求线段CC '的长度.解析:(1)图见解析;(2)2.【分析】(1)先利用网格特点和旋转的性质画出点,C B '',再顺次连接点,,A C B ''即可得; (2)利用旋转的性质、勾股定理即可得.【详解】(1)分以下三步:①先利用网格特点和旋转的性质画出点C ',②再利用旋转的性质可得,90B B A C BC AC CB '=∠'''=∠=︒,由此可画出点B ', ③顺次连接点,,A C B ''即可,如图中AB C ''即为所作:(2)由网格特点和旋转的性质得:4,90AC AC CAC ''==∠=︒, 则2242CC AC AC ''=+=,即线段CC '的长度为42.【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键. 24.如图,正方形ABCD 中,E 是BC 的中点,以点A 为中心,把△ABE 逆时针旋转90°,设点E 的对应点为F .(1)画出旋转后的三角形和点E 经过的路径;(2)若正方形ABCD 的边长为2,求线段EF 的长.解析:(1)见解析;(210【分析】(1)根据旋转的性质即可画出△ABE 绕点A 逆时针旋转90°后的图形以及E 的轨迹; (2)利用勾股定理求出AE ,再利用等腰直角三角形的性质求出EF 即可.【详解】解:(1)旋转后的△ADF 如图所示,点E 的运动路径如图所示:(2)∵四边形ABCD 是正方形,∴AB=BC=2,∠B=90°,∵BE=EC=1,∴AE=22AB BE +=2221+=5,∵△EAF 是等腰直角三角形,∠EAF=90°,AE=AF ,∴EF=2AE=10.【点睛】本题考查作图-旋转变换,正方形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C .(1)请画出ABC ∆向左平移5个单位长度后得到的111A B C ∆;并写出1A 、1B 、1C 的坐标;(2)请画出ABC ∆关于原点对称的222A B C ∆;并写出2A 、2B 、2C 的坐标. 解析:(1)图象见解析,A 1(-4,1),B 1(-1,2)C 1(-2,4);(2)图象见解析,A 2(-1,-1),B 2(-4,-2)C 2(-3,-4).【分析】(1)依据平移的方向和距离,即可得到△A 1B 1C 1,依据图象写出1A 、1B 、1C 的坐标即可;(2)依据中心对称,即可得到△A 2B 2C 2,依据图象写出1A 、1B 、1C 的坐标即可.【详解】解:(1)△A1B1C1如图所示,A1(-4,1),B1(-1,2)C1(-2,4);(2)△A2B2C2如图所示,A2(-1,-1),B2(-4,-2)C2(-3,-4).【点睛】本题主要考查作图-平移变换与旋转变换,求关于原点对称的点坐标,解题的关键是掌握平移变换与旋转变换的定义与性质,并据此得出变换后所得对应点.26.己知,如图,点P是等边△ABC 内一点,∠APB=112°,如果把△APB绕点A旋转,使∠的度数.点 B与点C 重合,此时点P落在点P'处,求PP C'解析:52°【分析】根据旋转的性质得到AP'=AP,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB≌AP'C,∴∠AP'C=∠APB=112°,且AP'=AP,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键. 27.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(0,3),B(-4,4),C(-2,1).(1)将△ABC 绕点O 顺时针旋转90°后得到△A B C ''',请在图中画出△A B C '''.(2)以点O 为对称中心,画出与△ABC 对称的△A B C '''''',并写出A B C ''''''、、的坐标.解析:(1)见解析;(2)见解析,()()()0,3,4,4,2,1A B C ''''''---【分析】(1)如图,分别连接OA 、OB 、OC ,根据网格特征在第一象限内作OA 、OB 、OC 的垂线,并使OA′=OA ,OB′=OB 、OC′=OC ,顺次连接A′、B′、C′,△A′B′C′即为所求;(2)根据关于原点对称的点的坐标特征得出A 、B 、C 坐标,顺次连接A″、B″、C″,△A″B″C″即为所求;进而写出A″、B″、C″即可.【详解】(1)如图,△A′B′C′即为所求.(2)∵△A″B″C″与△ABC 以点O 为对称中心,∴点A 、B 、C 分别与A″、B″、C″关于原点对称,∵A(0,3),B(-4,4),C(-2,1),∴A″(0,-3),B″(4,-4),C″(2,-1),∴△A″B″C″即为所求;【点睛】本题考查了利用旋转变换及中心对称作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.28.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC.(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.解析:(1)如图所示见解析;(2)是平行四边形,面积是6.【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积.【详解】(1)如图所示:所画的三角形与△ABC组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,面积是:123262⨯⨯⨯=.【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定.。

人教版九年级数学上册 第23章 《旋转》 综合测试卷(含答案)

人教版九年级数学上册  第23章   《旋转》    综合测试卷(含答案)

人教版数学九年级上册第23章旋转综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列图形,既是轴对称图形,又是中心对称图形的是( )2. 下列图形中,既是中心对称图形又是轴对称图形的有( )A.4个B.3个C.2个D.1个3. 如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是( )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位长度B.△ABC绕点C顺时针旋转90°,再向下平移1个单位长度C.△ABC绕点C逆时针旋转90°,再向下平移1个单位长度D.△ABC绕点C逆时针旋转90°,再向下平移3个单位长度4. 在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )A.(3,-3) B.(-3,3)C.(3,3)或(-3,-3) D.(3,-3)或(-3,3)5. 如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )A.55°B.60°C.65°D.70°6.如图,为保持原图的模样,应选哪一块拼在图案的空白处( )7. 如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.10°B.20°C.50°D.70°8. 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°9. 如图,将边长为3的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为( )A.3 B. 3C.3- 3 D.3-3 210.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 已知点A的坐标为(-1,3),将点A绕坐标原点顺时针旋转90°,则点A的对应点的坐标为_______.12.如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得的图形,则旋转中心P的坐标是_________.13.如图,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是14.如图,在△ABC中,∠B=45°,∠C=60°,将△ABC绕点A旋转30°后得到△AB1C1,掌握∠BAC1的度数是__________.15. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为____.16. 如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连接AP 并延长交CD于点E,连接PC,则三角形PCE的面积为_________.17.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.若抛物线C1的解析式为y=34(x+2)2-1,那么抛物线C2的解析式为____________________.18.如图所示,将图形①以点O为旋转中心,每次旋转90°,则第2019次旋转后的是图形(在下列各图中选填正确图形的序号即可).三.解答题(共9小题,66分)19.(6分) 如图,把△AOB绕点O逆时针旋转40°可得到△A′OB′.(1)画出旋转后的图形;(2)指出旋转角的度数并找出一组对应边.20.(6分) 如图,已知△ACE,△ABF都是等腰直角三角形,且∠BAF=∠CAE=90°.那么你能利用旋转的知识说明FC=BE吗?21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.22.(6分) 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图①中画出一个面积最小的▱PAQB.(2)在图②中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.23.(6分)直角坐标系内的点P(x2-3x,4)与另一点Q(x-8,y)关于原点对称,试求2020(2x-y)的值.24.(8分) 如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长.25.(8分) ) 如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.26.(10分) 如图,已知点A(2, 3)和直线y=x,(1)点A关于直线y=x的对称点为点B,点A关于原点(0, 0)的对称点为点C;写出点B、C的坐标;(2)若点D是点B关于原点(0, 0)的对称点,判断四形ABCD的形状,并说明理由.27.(10分) 某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE按如图①所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.参考答案:1-5DDADC 6-10BBCCD 11. (3,1) 12. (0,1)13.(2,10)或(-2,0) 14. 105° 15. 15° 16. 9-5 317. y =-34(x -2)2+118. ④19. 解:(1)如图所示(2)旋转角∠AOA′=∠BOB′=40°,OA ,OA′或OB ,OB′或AB ,A′B′是一组对应边 20. 解:∵AE ,AB 绕A 点顺时针旋转90°分别与AC ,AF 重合, ∴△AFC 可看作是△ABE 绕A 点顺时针旋转90°得到的,∴FC =BE 21. 解:(1)①②如图所示(2)连接B 1B 2,C 1C 2得到对称中心M 的坐标为(2,1) 22. 解:(1)如图①所示(2)如图②所示23. 解:由题意得y=-4,x2-3x=8-x,解得x1=4,x2=-2. 当x=4,y=-4时,2020(2x-y)=2020×(2×4+4)=24240;当x=-2,y=-4时,2020(2x-y)=2014×(-4+4)=0.24.解:∵△AOB是等边三角形,∴∠OAB=60∘,∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠PAD=60∘,AD=AP,∴△APD是等边三角形,∴DP=AP,∠PAD=60∘,∵A的坐标是(0, 3),∠OAB的平分线交x轴于点P,∴∠OAP=30∘,AP=√(√3)2+32=2√3,∴DP=AP=2√3,25.解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.26.解:(1)∵A(2, 3),∴点A关于直线y=x的对称点B(3, 2),点A关于原点(0, 0)的对称点C(−2, −3);(2)∵B(3, 2),∴点B关于原点(0, 0)的对称点D(−3, −2),∵点B与点D关于O对称,∴BO=DO,∵点A与点C关于O对称,∴AO=CO,∴四边形ABCD是平行四边形,∵点A关于直线y=x的对称点为点B,点A关于原点(0, 0)的对称点为点C,∴AC=BD,∴平行四边形ABCD是矩形.27. 解:(1)证明:∵∠α+∠EAC=90°,∠NAF+∠EAC=90°,∴∠α=∠NAF.又∵∠B=∠F,AB=AF,∴△ABM≌△AFN(ASA).∴AM=AN(2)四边形ABPF是菱形.理由:∵∠α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠B=∠F=60°,∴∠B+∠BAF=60°+120°=180°,∠F+∠BAF=60°+120°=180°,∴AF∥BC,AB∥EF.∴四边形ABPF是平行四边形.又∵AB=AF,∴四边形ABPF是菱形。

人教版九年级数学上册第二十三章旋转单元综合与测试题(含答案)

人教版九年级数学上册第二十三章旋转单元综合与测试题(含答案)

人教版九年级数学上册第二十三章旋转单元综合与测试题(含答案)第二十三章旋转单元复习与检测题(含答案)一、选择题1、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )2、在平面直角坐标系中,把点P(-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为( )A .(3,2)B .(2,-3)C .(-3,-2)D .(3,-2) 3、下列运动形式属于旋转的是( ) A .在空中上升的氢气球 B .飞驰的火车 C .时钟上钟摆的摆动 D .运动员掷出的标枪4、如图,将△ABC 绕点P 顺时针旋转90°得到△A ′B ′C ′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)5、在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,-3)B .(-3,3)C .(3,3)或(-3,-3)D .(3,-3)或(-3,3) 6、下列命题中的真命题是( )A 全等的两个图形是中心对称图形.B 关于中心对称的两个图形全等.C 中心对称图形都是轴对称图形.D 轴对称图形都是中心对称图形. 7、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.右图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG 可以看成是把菱形ABCD 以点 A 为中心()A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到8、在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在()A .第一象限B .第二象限C .第三象限D .第四象限 9、如图,已知△ABC 与△CDA 关于点O 对称,过O 任作直线EF 分别交AD ,BC 于点E ,F ,下面的结论:①点E 和点F ,点B 和点D是关于中心O 的对称点;②直线BD 必经过点O ;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△A OE 与△COF 成中心对称,其中正确的个数为( )A .2个B .3个C .4个D .5个10、如图,在△ABC 中,∠ACB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为()A .25 B .23 C .4 D .210二、填空题11、若点(a ,1)与(-2,b)关于原点对称,则a b=________.12、如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,则∠EAF 的度数是________.13、已知点A 的坐标为(-1,3),将点A 绕坐标原点顺时针旋转90°,则点A 的对应点的坐标为________.14、将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD=110°,则∠BOC= 。

人教版九年级上册第二十三章旋转单元测试(含答案)(3)

人教版九年级上册第二十三章旋转单元测试(含答案)(3)

人教版九年级上册第二十三章旋转单元测试(含答案)(3)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°【答案】C 解:∵△ABC 是等腰直角三角形,∴∠CAB =45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB +∠BAB′=125°,故选:C .2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒ 【答案】D 解 ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆∴∠BAD=∠CAE=20°∴BAE ∠=+BAC CAE ∠∠=30°+20°=50°故选D3.图中,不能由一个基本图形通过旋转而得到的是( )A.B.C.D.【答案】C解A可以从基本图形转到整体图形;B可以通过旋转将基本图形旋转成整体图形;C不可以通过旋转得到整体图形;D可以通过旋转将基本图形旋转成整体图形。

故选C.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不停地摆动C.时钟上秒针的转动D.电风扇转动的扇叶【答案】A解A 是平移;B是旋转;C是旋转;D是旋转。

故选A5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】D解A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,不符合题意。

故选D。

6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形 B.等腰直角三角形C.平行四边形D.菱形【答案】D解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为()A. B. C. D.【答案】C解:如图:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=60°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°−∠C=90°−60°=30°,∴∠DAE=∠CAF+∠CAE=30°+65°=95°,∴∠BAC=∠DAE=95°.故选:C.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿x 轴依次绕点A、B、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为()A.(30,0)B.(32,0)C.(34,0)D.(36,0)【答案】D 解根据图形,每3个图形为一个循环组,,图⑨的直角顶点在x 轴上,横坐标为, 图⑨的顶点坐标为, 图⑩的直角顶点与图⑨的直角顶点重合,图⑩的直角顶点的坐标为.故选D.9.如图,将ABC △绕点B 顺时针旋转60︒得到DBE ,点C 的对应点E 落在AB 的延长线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=【答案】C 解如图,因为ABC △绕点B 顺时针旋转60︒得到DBE ,所以60ABD CBE ︒∠=∠=,AB=BD ,∠C=∠E所以ADB △是等边三角形,又∠COF=∠EOB所以=60EFC CFO CBE ︒∠=∠=∠因为∠C的大小未知,所以∠COF不能确定,故选:C10.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①②④C.①②③D.①③④【答案】D解:∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,所以①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC,所以②正确;∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE≠∠BDC,所以④错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD 绕点B 逆时针旋转60°,得到△BAE ,∴AE=CD ,∴△AED 的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以③正确.故选:D .二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____;【答案】4解∵点P (4,-5)与点Q (-4,m+1)关于原点对称,∴m+1=5,解得:m=4,故答案是:4.12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.【答案】2解:如图,作AH ⊥BC 于H .由题意得:∠EAD =∠BAC =120°,∠EAC =∠C =30°,∴AE ∥BC ,∵∠ADH =∠B +∠BAD ,∠B =∠BAD =30°,∴∠ADH =60°,BD =AD =AE =2cm ,∴AH cm ),∵BD =AE ,BD ∥AE ,∴四边形ABDE 是平行四边形,∴S 平行四边形ABCD =BD •AH cm 2).故答案为:2.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.【答案】10.解∵ΔABC 绕点A 逆时针旋转60°得到ΔAB 1C 1∴AC=AC 1,∠CAC 1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC 1=90°,AB=8,AC 1=6,∴在RtΔBAC 1中,BC 1的长10=,故答案为:10.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.【答案】5;解:在Rt △ABC 中,∠A=30°,AC=10,∴BC=12AC=5. 根据旋转的性质可知,BC=BC′,所以BC′=5.故答案为5.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.【答案】解:将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,AE AB ∴=.设AB x =,则CD AE x ==,DE x =60DAG ∠=︒,90GAE ∠=︒,30DAE ∴∠=︒,在Rt ADE ∆中,2AE DE =,(2x x ∴=,解得x =故答案为:16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.【答案】150解将△BCD 绕点B 逆时针旋转60°得到△ABD',∴BD=BD',AD'=CD,∴∠DBD'=60°,∴△BDD'是等边三角形,∴∠BDD'=60°,∵BD=1,DC=2,∴DD'=1,AD'=2,在△ADD'中,AD'2=AD2+DD'2,∴∠ADD'=90°,∴∠ADB=60°+90°=150°,故答案为150.三、解答题:(共72分)17.如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.【答案】(1)图形见解析(2)(-1,1)【解析】解:(1)如图所示:(2)如图所示,A 1(-1,1).18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.【答案】(1)等边三角形,理由见解析;(2)5解:(1)BPP ∆’是等边三角形.理由:BP 绕点B 顺时针旋转60︒至BP ',BP BP ∴=',60PBP ∠=︒;BPP ∴∆'是等边三角形.(2)BPP ∆'是等边三角形,60BPP ∴∠'=︒,3PP BP '==,1506090P PC BPC BPP ∠'=∠-∠=-︒=︒;在Rt △P PC ''中,由勾股定理得5P C '=, ∵60ABC BPP ∠=∠'=︒,∴∠ABP =∠CB P ',在△ABP 和CBP ∆'中,AB=BC 'ABP CBP BP BP ⎧⎪∠=∠⎨⎪='⎩, ∴C ABP BP ∆∆≅'(SAS )5PA P C ∴='=.19.如图,在平面直角坐标系中,直线:l y x =+x 轴、y 轴分别交于点A ,B ,将点B 绕坐标原点O 顺时针旋转60︒得点C ,解答下列问题:(1)求出点C 的坐标,并判断点C 是否在直线l 上;(2)若点P 在x 轴上,坐标平面内是否存在点Q ,使得以P 、C 、Q 、A 为顶点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.【答案】(1),点C 在直线l 上,见解析;(2)存在,点Q坐标为:(3+或(3-或3(,或.解:(1)设将点B 绕坐标原点O 顺时针旋转60︒得点C ,直线:l y x =+,令0x =,则y =0y =,则6x =, 则点A 、B 的坐标分别为()6,0、(0,,则6AO =,OB =∵60BOC ∠=︒,OC=OB=∴30AOC ∠=︒,过C 点作CH ⊥OA ,∴OH=3点C 的坐标为(;∵当x=3时,3y x =-+∴点C 的坐标(在直线l 上.(2)存在,理由:点A 、C 的坐标分别为()6,0、(,则AC =P 、C 、Q 、A 为顶点的四边形是菱形如图所示,①当AC 是菱形的一条边时,当点Q 在x 轴上方,当菱形为ACQP 时,则AC AP CQ ===,则点(3Q +;当菱形为''ACQ P 时,点'(3Q -;当点Q 在x 轴下方,同理可得:点(''3,Q ;②当AC 是菱形的对角线时,设点(),0P s ,点(),Q m n ,则AC 的中点即为PQ 的中点,且PA PC =(即22:)PA PC =,9s m ∴+=,0n +=()()22236s s -+=-, 解得:5m =,n =4s =,故点(Q ; 综上,点Q坐标为:(3+或(3-或(3,或(. 20.在Rt △ABC 中,∠ACB=90°,,点D 是斜边AB 上一动点(点D 与点A 、B 不重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接AE ,DE .(1)求△ADE 的周长的最小值;(2)若CD=4,求AE 的长度.【答案】(1)6+(2)3解:(1)∵在Rt △ABC 中,∠ACB=90°,∴,∵∠ECD=∠ACB=90°,∴∠ACE=∠BCD ,在△ACE 与△BCD 中,=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩, ∴△ACE ≌△BCD (SAS ),∴AE=BD ,∴△ADE 的周长=AE+AD+DE=AB+DE ,∴当DE 最小时,△ADE 的周长最小,过点C 作CF ⊥AB 于点F ,当CD⊥AB时,CD最短,等于3,此时,∴△ADE的周长的最小值是;(2)当点D在CF的右侧,∵CF=12AB=3,CD=4,∴∴AE=BD=BF﹣DF=3;当点D在CF的左侧,同理可得,综上所述:AE的长度为3.21.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.【答案】(1)旋转中心为点A;旋转角度为90°或270°;(2)DE= 4;(3)BE与DF是垂直关系.解(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=3,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;旋转角度为90°或270°;(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ADF≌△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD-AE=7-4=3;(3)BE、DF的位置关系为:BE⊥DF.理由如下:延长BE交DF于G,∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°-90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的位置关系为:BE⊥DF.22.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.【答案】BD=5.∠BAD=60°解∵△ACD是等边三角形,∴∠ADC=∠ACD=60°,∵∠ABC=120°,∴∠BAD+∠BCD=180°,∴∠BAD+∠BCA=120°,∵△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,∴∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,∴∠BCA+∠ECD=120°,∴∠BCA+∠ECD+∠ACD=180°,∴B、C、E在同一条直线上.∵DB=DE,∠BDE=60°,∴△BDE为等边三角形,∴∠DBE=60°,∴∠BAD=∠ABC﹣∠DBE=60°,∴BD=BE=BC+CE=BC+AB=3+2=5.23.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.【答案】(1)120°;(2)5.解(1)如图乙所示,∠BCO=60°-15°=45°,∠BOC=180°-45°-45°=90°;(2)如图乙所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,∠A=45°即△ABC是等腰直角三角形.∴OA=OB=12AB=3cm,∵∠ACB=90°,∴CO=12AB=12×6=3(cm),又∵CD1=7(cm),∴OD1=CD1-OC=7-3=4(cm),在Rt△AD1O中,AD1(cm)24.如图,在正方形ABCD中,点M、N是BC、CD边上的点,连接AM、BN,若BM=CN(1)求证:AM⊥BN(2)将线段AM绕M顺时针旋转90°得到线段ME,连接NE,试说明:四边形BMEN是平行四边形;(3)将△ABM绕A逆时针旋转90°得到△ADF,连接EF,当1=BMBC n时,请求出四边形四边形ABCDAMEFSS的值【答案】(1)见解析;(2)见解析;(3)2 21 nn+.解:(1)∵ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,又∵BM=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠BAM+∠BMA=90°,∴∠CBN+∠BMA=90°,∴AM⊥BN;(2)∵将线段AM绕M顺时针旋转90°得到线段ME,∴ME=AM,ME⊥AM,∵△ABM≌△BCN,∴AM=BN,∵AM⊥BN,∴BN=ME,且BN∥ME,∴四边形BMEN是平行四边形;(3)∵将线段AM绕M顺时针旋转90°得到线段ME,将△ABM绕A逆时针旋转90°得到△ADF,∴∠MAF=∠AME=90°,AF=ME=AM∴AF∥ME,∴AMEF是正方形,∵1=BMBC n,可以设BM=a,AB=na,在直角三角形ABM中,AM,∴22221ABCDAMEFS AB nS AM n==+四边形四边形.人教版九年级上册数学第二十三章旋转单元达标测试题(含答案)一、选择题1.下列图形中,是中心对称图形的是()A. 圆B. 等边三角形C. 直角三角形D. 正五边形2.如图,将绕点逆时针旋转70°到的位置,若,则()A. 45°B. 40°C. 35°D. 30°3.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是()A. ∠BAC=αB. ∠DAE=αC. ∠CFD=αD. ∠FDC=α4.将下列图形绕着直线旋转一周正好得到如图所示的图形的是()A. B. C. D.5.下列图形,可以看作中心对称图形的是()A. B. C. D.6.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A. 55°B. 70°C. 125°D. 145°7.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A. 30°B. 90°C. 120°D. 180°8.在平面直角坐标系中,点P(-3,m2+1)关于原点对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A. (﹣4,﹣3)B. (4,3)C. (4,﹣3)D. (﹣4,3)10.在平面直角坐标系xOy中,已知点A(2,3).若将OA绕原点O逆时针旋转180°得到OA’,则点A’在平面直角坐标系中的位置是在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.如图,将线段AB 先向右平移5 个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段AB ,则点 B 的对应点B′的坐标是()A. (-4 , 1)B. (-1, 2)C. (4 ,- 1)D. (1 ,- 2)12.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点的坐标是()A. B. C. D.二、填空题(共10题;共11分)13.在“线段、等腰三角形、四边形、圆”这几个图形中,中心对称图形是________.14.点P(-2,3)关于原点的对称点Q的坐标为________.15.如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则________度.16.一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE 的一边所在的直线与BC垂直,则的度数为________.17.如图,在中,,在同一平面内,将绕点逆时针旋转得到,连接,则的值是________.18.如图,点A、B、C、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转角为________.19.在平面直角坐标系xOy中,若点B与点A(-2,3) 关于点O中心对称,则点B 的坐标为________.20.如图,点C是线段AB的中点,点B是线段CD的中点,线段AB的对称中心是点________,点C关于点B成中心对称的对称点是点________.21.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为________.22.平面直角坐标系中,点P(-2,1)绕点O(0,0)顺时针旋转90°后,点P的对应点将落在第________象限.三、解答题23.直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y 的值.24.如果B(m+1,3m﹣5)到x轴的距离与它到y轴的距离相等,求:(1)m的值;(2)求它关于原点的对称点坐标.25.如图,△ABC中,∠BAC=120o,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60o后到△ECD的位置。

人教版九年级数学上第23章旋转单元测试卷及答案(Word版)

人教版九年级数学上第23章旋转单元测试卷及答案(Word版)

人教版九年级数学上第23章旋转单元测试卷及答案(Word版)一、填空题:〔共23分〕1.如图1,△ABC是等腰直角三角形,D是AB上一点,△CBD经旋转后抵达△ACE的位置,那么旋转中心是;旋转角度是;点B的对应点是;点D的对应点是;线段CB的对应点是;∠B的对应角是;假设点M是CB的13,那么经过上述旋转后,点M移到了.2. 3点12分和3点40分时,时针与分针构成的角各是度和度.3.请你写出5个成中心对称的汉字,填在下面的横线上.4.如图2所示的四个图形中,图形(1)与图形成轴对称;图形(1)与图形成中心对称.(填写契合要求的图形所对应的符号)5.如图3所示,△ABC绕点A逆时针旋转某一角度失掉△ADE,假定∠1=∠2=∠3=20°,那么旋转角为度.6.如图4所示,线段AB=4cm,且CD⊥AB于O,那么阴影局部的面积是.7.如图5①,将字母〝V〞沿平移格会失掉字母〝W〞。

如图5②,将字母〝V〞绕点旋转度后失掉字母N,绕点旋转度后会失掉字母X.(图中E、F区分是其所在线段的中点)8.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相反的三角形组成的正六边形,我们把面积为4的正三角形称为〝希望杯〞,那么图中可数出个不同的〝希望杯〞.9.在直角坐标系中,点A〔2,-3〕关于原点对称的坐标是.10. 在以下图7的四个图案中,既是轴对称图形,又是中心对称图形的有个.图7二、选择题:〔共40分〕11.观察以下图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你细心观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14. 以下图形中,是.中心对称图形的为〔〕ABC D15.以下图形中是中心对称图形的是A B C D16.在以下四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D17.以下图案都是由宁母〝m 〞经过变形、组合而成的.其中不是中心对称图形的是( )18.将下面的直角梯形绕直线 l 旋转一周,可以失掉左边平面图形的 .〔 〕 19.数学课上,教员让同窗们观察如图 8 所示的图形,问:它绕着圆 心 O 旋转多少度后和它自身重合?甲同窗说:45°;乙同窗说:60°; 丙同窗说:90°;丁同窗说:135°。

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。

人教版九年级数学上册《第23章旋转》单元测试卷含答案

人教版九年级数学上册《第23章旋转》单元测试卷含答案

人教版九年级数学上册《第23章旋转》单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,-2)B . (2,3)C .(-2,-3)D . (2,-3)3.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A .20°B .30°C .40°D .50°4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.已知a <0,则点P (﹣a 2,﹣a+1)关于原点的对称点P ′在( )A .第一象限B .第二象限C .第三象限D .第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.四边形ABCD 的对角线相交于O ,且AO=BO=CO=DO ,则这个四边形( ) A .仅是轴对称图形B .仅是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A B CA B C DA.︒30 B.︒9045 C.︒60 D.︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1B.2C.3D.410.如图,在正方形网格中,将∠ABC绕点A旋转后得到∠ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第________象限.13.如图4,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________.15.如图6,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四A边形ABCD=.16.如图,设P是等边三角形ABC内任意一点,∠ACP′是由∠ABP旋转得到的,则PA__________PB+PC(选填“>”、“=”、“<”)17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.三、解答题(共66分)19.如图,在Rt∠OAB中,∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.(9分)如图10,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.21.(9分)已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上. (1)如图11(1), 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中,线段DF与BF的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图11(2)为例说明理由.图1022.如图,在Rt∠ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:∠BCD∠∠FCE;(2)若EF∠CD,求∠BDC的度数.23.如图,将正方形ABCD中的∠ABD绕对称中心O旋转至∠GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.24.如图,∠ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,∠ABC旋转后能与∠FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?答案:一、选择题(每小题3分,共30分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B二、填空题(每小题3分,共24分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∠PA <PB+PC .16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66分)19.(1)解:因为,∠OAB=90°,OA=AB ,所以,∠OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA 1=OA=6,对应角∠A 1OB 1=∠AOB=45°,旋转角∠AOA 1=90°,所以,∠AOB 1的度数是90°+45°=135°.(2)证明:∠∠AOA 1=∠OA 1B 1=90°,∠OA ∠A 1B 1,又∠OA=AB=A 1B 1,∠四边形OAA 1B 1是平行四边形.(3)解:∠OAA 1B 1的面积=6×6=36.20.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=ºº190452⨯= 21.解:(1)解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则22a 2b +a ,2b|<a ,∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,则DG=BE .如图,(2)连接BE ,则DG=BE .如图,∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE ,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.22.(1)证明:∠将线段CD绕点C按顺时针方向旋转90°后得CE,∠CD=CE,∠DCE=90°,∠∠ACB=90°,∠∠BCD=90°﹣∠ACD=∠FCE,在∠BCD和∠FCE中,,∠∠BCD∠∠FCE(SAS).(2)解:由(1)可知∠BCD∠∠FCE,∠∠BDC=∠E,∠BCD=∠FCE,∠∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∠EF∠CD,∠∠E=180°﹣∠DCE=90°,∠∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∠BO=DO,∠BDA=∠DBA=45°,∠∠GEF为∠ABD绕O点旋转所得,∠FO=DO,∠F=∠BDA,∠OB=OF,∠OBM=∠OFN,在∠OMB和∠ONF中,∠∠OBM∠∠OFN,∠BM=FN.24.解:(1)∠BC=BE,BA=BF,∠BC和BE,BA和BF为对应边,∠∠ABC旋转后能与∠FBE重合,∠旋转中心为点B;(2)∠∠ABC=90°,而∠ABC旋转后能与∠FBE重合,∠∠ABF等于旋转角,∠旋转了90度;(3)AC=EF,AC∠EF.理由如下:∠∠ABC绕点B顺时针旋转90°后能与∠FBE重合,∠EF=AC,EF与AC成90°的角,即AC∠EF.。

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图1,已知△ABC,AC=BC,△C=90△,顶点C在直线l上。

人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版九年级数学上册第二十三章旋转单元检测(含答案)一、单选题1.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称2.下列图案中,是中心对称图形的是( )A.B.C.D.3.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.如图所示,ABC V 中,5AC =,中线7AD =,EDC V 是由ADB V 旋转180o 所得,则AB 边的取值范围是( )A .1<AB<29B .4<AB<24C .5<AB<19D .9<AB<196.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .△ABD =△EB .△CBE =△C C .AD △BC D .AD =BC 7.下列图形是中心对称图形,但不是轴对称图形的是( )A .正方形B .等边三角形C .圆D .平行四边形8.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到△COD ,若15AOB ∠=︒,则AOD ∠的度数是( )A .75︒B .60︒C .45︒D .30°9.如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB△A′B′,BC△B′C′C .S △ABC =S △A′B′C′D .△ABC△△A′OC′10.如图,在Rt 直角△ABC 中,△B =45°,AB =AC ,点D 为BC 中点,直角△MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△AE =CF ;△△BDE△△ADF ;△BE+CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题 11.如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.12.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若△CAE=90°,AB=1,则BD=_________.13.如图,直线443y x =+与x 轴轴分别交于A ,B 两点,把AOB ∆绕点A 逆时针旋转90︒后得到''AO B ∆,则点'B 的坐标是______.14.如图所示,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ; 将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋅⋅⋅如此进行下去,直到13C .若()37,P m 在第13段抛物线13C 上,则m =______.三、解答题15.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(1,1)A 、(5,1)B 、(4,4)C .(1)按下列要求作图:△将ABC ∆向左平移5个单位得到111A B C ∆,并写出点1A 的坐标;△将ABC ∆绕原点O 逆时针旋转90°后得到222A B C ∆,并写出点2B 的坐标;(2)111A B C ∆与222A B C ∆重合部分的面积为 (直接写出答案).16.如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,﹣1).(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕点C 逆时针旋转90°,得△A 2B 2C ,画出△A 2B 2C ,并写出点A 2的坐标;(3)直接写出△A 2B 2C 的面积.17.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.18.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由答案1.D2.D3.B4.C 。

人教版九年级数学上册 第23章《旋转》 综合测试卷(含答案)

人教版九年级数学上册   第23章《旋转》   综合测试卷(含答案)

C.(-2,-3) D.(-2,-4)9.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的个数为( )A.2个B.3个C.4个D.5个10.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是_______.12.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°得△A′B′O,则点A的对应点A′的坐标为_____________.三.解答题(共6小题,66分)19.(8分) 直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y 的值.20.(8分) 如图,已知四边形ABCD关于点O成中心对称的图形,试判断四边形ABCD的形状,并说明理由.21.(8分) 如图,四边形ABCD绕某一点旋转后得四边形EFGH,其中点A,B,C,D分别对应点E,F,G,H.(1)请在图中画出旋转中心点O的位置;(2)说出旋转方向和旋转角.22.(10分) 直角坐标系内的点P(x2-3x,4)与另一点Q(x-8,y)关于原点对称,试求2019(2x-y)的值.23.(8分) 在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E、F的坐标;BE. BE。

人教版数学九年级上册:第二十三章 《旋转》单元测试卷(附参考答案)

人教版数学九年级上册:第二十三章 《旋转》单元测试卷(附参考答案)

第二十三章 《旋转》单元测试卷(全卷总分150分,考试时间120分钟)一、选择题(每小题4分,共40分)1.下列现象中属于旋转的是( )A .摩托车在急刹车时向前滑动B .拧开水龙头C .雪橇在雪地里滑动D .电梯的上升与下降2.在下列图案中,不是中心对称图形的是( )A B C D3.如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°第3题图 第6题图 第5题图 第7题图4.点A(3,-1)关于原点的对称点A ′的坐标是( )A .(-3,-1)B .(3,1)C .(-3,1)D .(-1,3)5.如图,已知△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列判断不正确的是( )A .∠ABC =∠A ′B ′C ′ B .∠BOC =∠B ′A ′C ′C .AB =A ′B ′D .OA =OA ′6.如图,把一个直角三角尺绕着30°角的顶点B 顺时针方向旋转,使得点A 与CB 延长线上的点E 重合,连接CD 交AB 于点F ,则∠AFC =( )A .45°B .30°C .60°D .90°7.如图,点O 是▱ABCD 的对称中心,EF 是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABFE 和四边形EFCD 的面积分别记为S 1,S 2,那么S 1,S 2之间的关系为( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定8.如图,直线y =-43x +4与x 轴,y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)第8题图第9题图第10题图9.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)10.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFG,则图中阴影部分的面积为( )A.12B.33C.1-34D.1-33二、填空题(每小题3分,共30分)11.小明、小辉两家所在位置关于学校中心对称,如果小明家距学校2公里,那么他们两家相距公里.12.等边三角形至少旋转度才能与自身重合.13.如图,▱ABCD中,对角线AC,BD相交于点O,则图中成中心对称的三角形共有对.第13题图第14题图第16题图14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为8.15.若点A(3-m,2)在函数y=2x-3的图象上,则点A关于原点对称的点的坐标是.16.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.17.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD的长为.第17题图第18题图第19题图18.如图,E,F分别是正方形ABCD的边BC,CD上的点,BE=CF,连接AE,BF,将△ABE 绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=.19.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG,EG,则∠CGE=.20.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.三、(本大题12分)21.平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.四、(本大题12分)22.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1个单位长度,请解答下列问题:(1)将△ABC向下平移3个单位长度得到△A1B1C1,作出平移后的△A1B1C1;(2)作出△ABC关于点O的中心对称图形△A2B2C2,并写出点A2的坐标.23.如图,已知△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?六、(本大题14分)24.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.25.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.八、(本大题16分)26.如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)若BC=8,DE=6,求△AEF的面积.参考答案: 题号1 2 3 4 5 6 7 8 9 10 选项B B AC B A CD A D11.4.12.120.13.4.14.8.15.(-52,-2). 16.(2,3).17.3.18.90°.19.45°.20.(-1,3).21.解:根据题意,得(x 2+2x)+(x +2)=0,y =-3.∴x 1=-1,x 2=-2.∵点P 在第二象限,∴x 2+2x<0.∴x =-1.∴x +2y =-7.22.解:(1)如图.(2)如图,点A 2的坐标是(-1,-2).23.解:(1)∵△ABD 经旋转后到达△ACE ,它们的公共顶点为A ,∴旋转中心是点A.(2)线段AB 旋转后,对应边是AC ,∠BAC 就是旋转角,也是等边三角形的内角, ∴旋转了60°.(3)∵旋转前后AB ,AC 是对应边,故AB 的中点M 旋转后就是AC 的中点了, ∴点M 转到了AC 的中点.24. 解:(1)根据对称中心的性质,可得对称中心的坐标是D 1D 的中点,∵D 1,D 的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A ,D 的坐标分别是(0,4),(0,2),∴正方形ABCD 与正方形A 1B 1C 1D 1的边长都是4-2=2.∴B ,C 的坐标分别是(-2,4),(-2,2).∵A 1D 1=2,D 1的坐标是(0,3),∴A 1的坐标是(0,1).∴B 1,C 1的坐标分别是(2,1),(2,3).综上可得顶点B ,C ,B 1,C 1的坐标分别是(-2,4),(-2,2),(2,1),(2,3). 25.解:(1)如图.(2)如图.(3)旋转中心的坐标为(0,-2).26.解:(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°.而F 是CB 的延长线上的点,∴∠ABF =90°.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠ADE =∠ABF ,DE =BF ,∴△ADE ≌△ABF(SAS).(3)∵BC =8,∴AD =8.在Rt △ADE 中,DE =6,AD =8,∴AE =AD 2+DE 2=10.∵△ABF 可以由△ADE 绕旋转中心 A 点,按顺时针方向旋转90度得到,∴AE =AF ,∠EAF =90°.1 2AE2=12×100=50.∴S△AEF=。

人教版九年级上册数学 第二十三章 旋转 单元综合卷

人教版九年级上册数学 第二十三章 旋转  单元综合卷

第二十三章旋转单元综合卷一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ).2. 时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是( ).A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为().A.30,2 B.60,2 C.60, D.60,6.将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A.30° B.45° C.60° D.90°8.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ).A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题9. 如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.10.如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________ cm.11.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.12.如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是___cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14. 如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点P n坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题17. 如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证: BE + CF>EF19. 阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP 逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.答案与解析一、选择题1.C2.C3.A4.D5.C6.B7.D8.C二、填空题9.解析 作FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F 是DE 的中点,∴FG ∥CD∴GF=CD=AC=3 EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.10.解析 当点F 在正方形ABCD 的对角线AC 上时,CF=AC ﹣AF ,当点F 不在正方形的对角线上时由三角形的三边关系可知AC ﹣AF <CF <AC+AF ,∴当点F 在正方形ABCD 的对角线AC 上时,C 、F 两点之间的距离最小,∴CF=AC﹣AF=4﹣=32cm . 故答案为:32.11.答案 60°或120°.12.答案 1.13.答案 5.解析 做DF ⊥BC,EG ⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG ≌△DCF,即EG=FC,又因为3ADE s △,所以EG=3,即BC=BF+FC=AD+EG=5.14.答案 32.【解析】由旋转可知△APP ′是等腰直角三角形,所以PP ′=32.15.答案 (1) ,(2)落在x轴正半轴上的点P n坐标是,其中n满足的条件是n=8k(k=0,1,2,…)16.答案 (-1,).三.解答题17.证明:将△APB绕点B沿顺时针方向旋转90°至△CP′B位置(如图),则有△APB≌△CP′B.∴BP′= BP,CP′=AP,∠PBP′=90°,∠APB=∠CP′B.设CP′= AP= k,则BP′= BP=2k,CP= 3k,在Rt△BP′P中,BP′= BP= 2k,∴∠BP′P=45°.=(3k)2= CP2,∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.证明:将△BDE绕点D沿顺时针方向旋转180°至△CDG位置,则有△BDE≌△CDG.∴BE=CG,ED=DG.∵DE⊥DF,即 DF⊥EG.∴EF=FG,在△FCG中CG+CF>FG,即BE+CF>EF.19.解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).20.⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴ DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时, DE=EF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转
(时间:45
一、选择题(每小题3分,共30分)
1.下列运动属于旋转的是( )
A .滚动过程中的篮球
B .一个图形沿某直线对折过程
C .气球升空的运动
D .钟表钟摆的摆动
2.下列图形中,是中心对称图形的为( )
3.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )
A .34°
B .36°
C .38°
D .40°
4.如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD,则旋转的角度是( )
A .150°
B .120°
C .90°
D .60°
5.点P(ac 2,b a
)在第二象限,点Q(a ,b)关于原点对称的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6.如图,已知△EFG 与△E′F ′G ′均为等边三角形,且E(3,2),E ′(-3,-2),通过对图形观察,下列说法正确的是( )
A .△EFG 与△E′F ′G ′关于y 轴对称
B .△EFG 与△E′F ′G ′关于x 轴对称
C .△EFG 与△E′F ′G ′关于原点O 对称
D .以F ,
E ′,
F ′,E 为顶点的四边形是轴对称图形
7.如图所示,已知△ABC 与△CDA 关于点O 对称,过O 任作直线EF 分别交AD ,BC 于点E ,F ,下面的结论:①点E 和点F ,点B 和点D 都是关于中心O 的对称点;②直线BD 必经过点O ;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与
△COF 成中心对称,其中正确的个数为( )
A .2个
B .3个
C .4个
D .5个
8.如图,在△ABO 中,AB ⊥OB ,OB =3,AB =1,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( )
A .(-1,-3)
B .(-1,-3)或(-2,0)
C .(-3,-1)或(0,-2)
D .(-3,-1)
9.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )
A .(5,2)
B .(2,5)
C .(2,1)
D .(1,2)
10.如图,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE =35,且∠ECF=45°,则CF 的长为( )
A .210
B .3 5 C.5310 D.103
5
二、填空题(每小题4分,共24分)
11.若将等腰直角三角形AOB 按如图所示放置,OB =2,则点A 关于原点对称的点的坐标为________.
12.如图,△ABC 中,∠C =30°.将△ABC 绕点A 顺时针旋转60°得△ADE,AE 与BC 交于F ,则∠AFB=________.
13.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为________.
14.如图是2013年第12届沈阳全运会的吉祥物——斑海豹“宁宁”,则图1到图2经历了________变换,图2到图3经历了________变换.
15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB绕点C转动的角度为________.
16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是________.
三、解答题(共46分)
17.(8分)在格纸上按以下要求作图,不用写作法:
(1)作出“小旗子”向右平移6格后的图案;
(2)作出“小旗子”绕O点按逆时针方向旋转90°后的图案.
18.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.
19.(8分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.
(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.
(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.20.(10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
21.(12分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
图1 图2
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
在(2)的条件下,连接DE ,若∠DEC=45°,求α的值.
参考答案
1.D
2.B
3.C
4.A
5.A
6.C
7.D
8.B
9.A 10.A 11.(-1,-1) 12.90°
13.(2,3) 14.轴对称 旋转 15.105° 16.(-1,3)
17.(1)(2)图略.
18.根据题意,得(x 2+2x)+(x +2)=0,y =-3.∴x 1=-1,x 2=-2.∵点P 在第二象限,
∴x 2+2x<0.∴x=-1.∴x+2y =-7.
19.(1)图略.(2)图略.
20.(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC,∠ABE =60°,∵AB ⊥EC ,∴∠ABC =90°.∴∠DBE =∠CBE=30°.在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE,BE =BE ,
∴△BDE ≌△BCE(SAS).(2)四边形ABED 为菱形.理由如下:由(1)得△BDE≌△BCE,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC.∴BA =BE ,AD =EC =ED.又∵BE=CE ,∴四边形ABED 为菱形.
21.(1)30°-12
α.(2)△ABE 为等边三角形.证明:连接AD 、CD 、ED.∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∵∠ABE =60°,∴∠ABD =60°-∠DBE
=∠EBC=30°-12
α.又∵BD=CD ,∠DBC =60°,∴△BCD 为等边三角形,∴BD =CD.又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD(SSS).∴∠BAD=∠CAD=12∠BAC =12
α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12
α.∴∠BAD =∠BEC.在△ABD 与△EBC 中,⎩⎪⎨⎪⎧∠BEC=∠BAD,∠EBC =∠ABD,BC =BD ,
∴△ABD ≌△EBC(AAS).∴AB=BE.又∵∠ABE=60°,∴△ABE 为等边三角形.(3)∵∠BCD=60°,∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴
△DCE 为等腰直角三角形.∴CD=CE =BC.∵∠BCE=150°,∴∠EBC =(180°-150°)2
=15°.又∵∠EBC=30°-12
α=15°,∴α=30°.。

相关文档
最新文档