八年级数学教案:可化为一元一次方程的分式方程
可化为一元一次方程的分式方程(湘教版学案)
1 / 4可化为一元一次方程的分式方程 第一课时预习导学:自主学习,感受新知. 1.分式方程: 的方程叫作分式方程.2.分式的解也叫分式的根.3.解分式方程时一定要 .4.解分式方和的步骤为:(1) (2)(3)互动课堂:合作探究,理解新知. ●知识点一:分式方程的概念 1.下列式子中是分式方程的是( ) A.134131++-x x x B.53212=+x C.13322=--xx xD.53143+=+-x x●知识点二:分式方程的解法2.方程3141=-+x 的解为 . 3.已知x=1是方程xk x 311=+的根,则实数k= . 4.关于x 的方程12=+x m的解是负数,则m 的取值范围是 .5.分式方程xx x -=--23252的解是( ) A.x=-2 B.x=2 C.x=1 D.x=1 或x=26.若代数式2211++x x 与的值相等,则x 的值是( ) A.x=-1 B.x=2 C.x=0 D.x=1 或x=27.不解方程,判断方程1232211-=-++x x x 的根是( ) A.x=1 B.x=-1 C.x=37 D.x=23● 知识点三:增根与验根 8.若方程331-=--x m x x 有增根,则m= . 9. 若关于x 方程132=-+x m x 无解,则m 为 .10. 若关于x 方程4332=-+x a ax 的根为1=x ,则a 应取( )A.1B.3C.-1D.-3课时作业:深化练习,巩固新知 11.解下列方程. (1)(2011.盐城)解方程:2131=---xx x2 / 4(2)(2011.荆州)解方程:13321++=+x x x x12.已知关于x 的方程333112-+=--+x kx x x x x 有增根,求这个增根及k 的值.13.已知: 已知关于x 的方程323-=--x m x x 有正数解,试求m 的取值范围.可化为一元一次方程的分式方程 第二课时◆自学导练1.分式方程与整式方程的区别就在于 中是否含有未知数,分母中含有未知数的方程是 , ,不含有未知数的方程是 .2.解分式方程的基本思路是 . ◆紧跟教材,边学边练知识点一:分式方程的概念1.下列关于x 的方程中,是分式方程的是( ) A.4132xx =-+ B.21=++x a x C.x x 1152=+- D.137=++mx2.下列各式中,不是分式方程的是( ) A.x x x 21+=B.()211=-+x x x C.()64331=-+x D.3221+=-x x x知识点二: 可化为一元一次方程的分式方程的解法 3.分式方程211=+x x 的解是( ) A.x=-1 B.x=1 C.x=-2 D. x=24. 分式方程15122-=-x x x 的解是( ) A.x=0 B.x=1 C.x=32 D.x=235.要使1321---x x x 与的值相等,则x 的值为( ) A.2 B.-2 C.1 D.-1 6.当x= 时,代数式34532+-x x 与的值互为倒数. 7.若关于x 的方程1-=++bax b a 有唯一解,则a,b 应满足的条件是 .知识点三 增根8. 若关于x 的方程kx x -=-233有正数根,则k 的取值范围为 . 9.若分式方程332+=++x mx x 会产生增根, 则m 的值是( ) A.2 B.-2 C.1 D.-1 10.解方程35121--=-+x x x 时,去分母,得( ) A.(x-1)(x-3)+2=1 B.1+2(x-3)=(x-5)(x-1)C. (x-1)(x-3)+2(x-3)=(x-1)(x-5)D.(x-3)+2(x-3)=x-5 ◆课堂作业,探究互动 11.当k 为何值时,分式方程2122-+=--x k x k 无解( ) A.0 B.3 C.0或3 D.不能确定 12.关于x 的方程11=+x a的解是负数,则a 的取值范围是( )1.〈a A B.a 〈1且a ≠0 C.a ≤1 D. a ≤1且a ≠013.方程112132-=++-x kx x 无解,则k = 14.解下列方程: (1).3215122=-+-x x x (2).7310-=x x (3).()224245168+=+-++x xx x x x (4).41312111---=---x x x x15.已知方程3222=++m x mx 的解为x=2,求m 的值.。
八年级数学上册《可化为一元一次方程的分式方程》教案、教学设计
(1)已知两个数的和为15,它们的比值为3:4,求这两个数。
(2)小华和小明去书店买书,小华花费了40元,小明花费的钱数是小华的1.2倍。问:两人一共花费了多少钱?
要求:写出详细的解题步骤,并注明关键点。
3.拓展题:探讨以下问题,将实际问题抽象为分式方程模型,并求解。
3.部分学生对数学学习存在恐惧心理,可能在遇到困难时产生挫败感,需要教师的关心和鼓励。
4.学生在解决实际问题时,可能难以将问题转化为分式方程模型,需要培养建模能力。
针对以上学情,教师在教学过程中应关注以下几点:
1.通过生动有趣的实例,帮助学生理解分式方程的概念,降低学习难度。
2.设计具有层次性的练习题,让学生在巩固基础知识的同时,逐步提高解题能力。
二、学情分析
八年级学生在数学学习上已经具备了一定的基础,对一元一次方程的解法有了较为熟练的掌握。在此基础上,学生对分式方程的学习将面临以下挑战:
1.分式方程的概念与一元一次方程有所不同,学生需要适应这一变化,理解分母不为零的条件。
2.在解分式方程的过程中,学生容易在去分母、合并同类项等步骤上出现错误,需要加强练习和指导。
2.教学过程:
a.让学生独立思考,列出实际问题中的等量关系。
b.引导学生将等量关系转化为分式方程,为新课的学习做好铺垫。
c.通过这个实例,让学生感受到分式方程在实际生活中的应用,激发学生的学习兴趣。
(二)讲授新知
1.教学内容:分式方程的概念、解法步骤,以及与一元一次方程的联系。
2.教学过程:
a.介绍分式方程的定义,强调分母不为零的条件。
八年级数学上册《可化为一元一次方程的分式方程》教案、教学设计
一、教学目标
青岛版数学八年级上册3.7《可化为一元一次方程的分式方程》教学设计1
青岛版数学八年级上册3.7《可化为一元一次方程的分式方程》教学设计1一. 教材分析《可化为一元一次方程的分式方程》是青岛版数学八年级上册3.7的内容。
这部分内容是在学生已经掌握了分式的概念、分式的运算、分式方程的解法等知识的基础上进行学习的。
本节课的主要内容是引导学生理解并掌握可化为一元一次方程的分式方程的解法,培养学生解决实际问题的能力。
教材通过生活中的实际问题引出分式方程,让学生体会数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于分式的相关知识也有一定的掌握。
但是,学生在解决实际问题时,往往不能很好地将实际问题转化为数学问题,对于分式方程的解法也有一定的局限性。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生将实际问题转化为数学问题,并通过举例、讲解等方式,帮助学生理解和掌握分式方程的解法。
三. 教学目标1.理解可化为一元一次方程的分式方程的概念,掌握其解法。
2.能够将实际问题转化为数学问题,并运用所学的知识解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
4.培养学生学习数学的兴趣。
四. 教学重难点1.重点:理解可化为一元一次方程的分式方程的概念,掌握其解法。
2.难点:将实际问题转化为数学问题,并运用所学的知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生理解并掌握分式方程的解法。
2.案例教学法:通过举例、讲解等方式,帮助学生理解和掌握分式方程的解法。
3.问题驱动法:引导学生将实际问题转化为数学问题,并运用所学的知识解决实际问题。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实际问题和相关的例题。
2.教学案例:准备一些生活中的实际问题和相关的例题,用于讲解和练习。
3.教学素材:准备一些与本节课相关的学习素材,以便学生在课后进行自主学习。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,引导学生思考并提出问题。
华师大版八下数学16.3.1可化为一元一次方程的分式方程教学设计
华师大版八下数学16.3.1可化为一元一次方程的分式方程教学设计一. 教材分析华东师范大学版八年级下册数学第16.3.1节“可化为一元一次方程的分式方程”是分式方程这部分内容的一个重要组成部分。
这部分内容是在学生已经掌握了分式的概念、分式的运算、分式方程的解法等知识的基础上进行讲解的。
本节课的主要内容是让学生了解分式方程的定义,学会将分式方程转化为整式方程,并掌握一元一次方程的解法。
教材通过具体的例题和练习题,使学生能够熟练地运用所学知识解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,对分式的概念、运算等有一定的了解。
但是,对于分式方程的转化和解法,学生可能还不够熟练。
因此,在教学过程中,教师需要通过具体的例题和练习题,引导学生掌握分式方程的转化方法,并运用一元一次方程的解法求解。
三. 教学目标1.知识与技能目标:让学生了解分式方程的定义,学会将分式方程转化为整式方程,并掌握一元一次方程的解法。
2.过程与方法目标:通过具体的例题和练习题,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。
四. 教学重难点1.重点:分式方程的定义,将分式方程转化为整式方程的方法,一元一次方程的解法。
2.难点:分式方程的转化和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体的例题和练习题,让学生理解和掌握知识;通过小组合作学习,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教材和教辅资料。
2.课件和教学幻灯片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引入分式方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT或黑板,呈现教材中的例题和练习题,让学生观察和思考。
3.操练(10分钟)教师引导学生通过小组合作学习,共同解决问题。
华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计
华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计一. 教材分析《可化为一元一次方程的分式方程》是华师大版数学八年级下册第16.3节的内容。
本节课的主要内容是让学生掌握分式方程的解法,通过将分式方程转化为整式方程,让学生理解分式方程的解法实质,提高学生解决实际问题的能力。
二. 学情分析学生在八年级上册已经学习了分式的概念、性质和运算,对分式有了一定的认识。
但是,对于分式方程的解法,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生将分式方程转化为整式方程,让学生通过已有的知识解决新的问题。
三. 教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用到实际问题中。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:分式方程的解法。
2.难点:如何将分式方程转化为整式方程,以及如何运用分式方程解决实际问题。
五. 教学方法1.自主学习:让学生在课堂上自主探究分式方程的解法。
2.合作交流:引导学生分组讨论,分享解题心得。
3.实例讲解:通过具体例子,让学生理解分式方程的解法在实际问题中的应用。
六. 教学准备1.课件:制作课件,展示分式方程的解法。
2.练习题:准备一些分式方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,让学生回顾分式的性质和运算。
2.呈现(10分钟)展示分式方程的解法,引导学生将分式方程转化为整式方程。
3.操练(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。
4.巩固(10分钟)讲解一些典型的分式方程案例,让学生进一步理解分式方程的解法。
5.拓展(10分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。
6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的解法及其在实际问题中的应用。
可化为一元一次方程的分式方程》教案
可化为一元一次方程的分式方程》教案教学目标:1、让学生理解分式方程的含义,掌握解可化为一元一次方程的分式方程的一般步骤。
2、使学生了解增根的概念,知道解分式方程需要验根并掌握验根的方法。
3、让学生领会“转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解。
4、培养学生自主探究的意识,提高学生观察能力和分析能力。
一、问题情境导入问题:一艘轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
读题、审题、设元、列方程。
二、实践与探索1:分式方程的概念分析]:设轮船在静水中的速度为x千米/时,根据题意,得frac{80}{x+3}=\frac{60}{x-3}$$方程(1)有何特点?概括]方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程。
提问:你还能举出一个分式方程的例子吗?辨析:判断下列各式哪个是分式方程。
1) $2x+3=5$;(2) $\frac{1}{x+1}+\frac{1}{x-1}=\frac{2}{x^2-1}$;3) $\frac{1}{x-1}$;(4) $\frac{2x+1}{x-2}=\frac{x-1}{x+1}$;(5) $\frac{x}{x-1}=1+\frac{1}{x-1}$根据定义可得:(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程。
学生观察分析后,发表意见,达成共识。
根据分式方程的概念进行判定,加深对分式方程概念的理解。
三、实践与探索2:分式方程的解法1、思考:怎样解分式方程呢?为了解决本问题,请同学们先思考并回答以下问题:1)回顾一下解一元一次方程时是怎么去分母的,从中能否得到一点启发?2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢?方程(1)可以解答如下:方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)=60(x+3)。
可化为一元一次方程的分式方程
可化为一元一次方程的分式方程【教材研学】一、可化为一元一次方程的分式方程的解法1.数字系数分式方程的解法解分式方程的关键是去分母,将分式方程化为整式方程求解.去分母即在方程两边同乘以最简公分母,若分母可以分解因式,应首先分解.由整式方程得到的解,需代人最简公分母中检验,使最简公分母不为零的解,才是原方程的解;使最简公分母为零的解,是原方程的增根,应舍掉.2.含有字母系数的分式方程的解法此类方程与数字系数分式方程的解法基本相同,只是在系数化为1时.要讨论系数是否为零.3.增根增根的产生是由于在去分母时,方程两边同乘的整式恰好为零所致.是方程变形造成的,不是解题错误.方程的增根不是分式方程的根.但是增根是变形后所得到的整式方程的根.4.分式方程有增根与无解的关系不仔细推敲,会认为分式方程无解和分式方程有增根是同一回事.事实上并非如此. 分式方程有增根,指的是解分分式方程求出的根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.比如:方程23132--=--xx x ,可解得:x=3,而x=3是原方程的增根,此方程无解.本题中,分式方程有增根,方程无解,但并不是说只要有增根方程就无解,等大家进入高年级,学习了更多的知识,会发现有增根的分式方程并不全是无解的.问题:若关于x 的方程m x m x =-+3无解,求m 的值。
探究:(1)将分式方程去分母,整理为:(1一m)x=一4 m.①当1一m=0,而4m≠0时方程无解.此时,m=l (依据是形如ax=b的方程在a=0,b≠0时无解)(2)如果方程①的解恰好是原分式方程的增根,原分式方程无解.根据这种思路,可先确定增根后,再求m的值.原方程若有增根,增根为x=3,把x=3代入方程①中,求出m=一3.综上所述,m=1或m=一3时,原分式方程无解.而此分式方程有增根时,m=一3.结论:通过本例可以发现,(1)现阶段学习的分式方程有增根时,一定无解;(2)分式方程无解,可能是因为有增根,也可能是由分式方程转化所得的整式方程ax=b中的a=0、b≠0造成的.三.分式方程的应用1.列分式方程客观世界中存在大量的问题需要用分式方程去解决,当我们掌握好相关的知识和方法后,就可以运用它们分析和解决实际问题.此类题目接近生活,取材广泛,做题时,要注意题目的情境,弄清是行程问题、增长率问题等中的哪一类,当然也有一些跨学科的综合题,比如:杠杆问题等,无论哪一类都要根据相关的基本量寻找关系.2.列分式方程解应用题的一般步骤:①弄清题意;②设未知数,列出有关的代数式;③依题意找等量关系,列出分式方程;④解方程;⑧检验:一方面要检验所求出的解是否为原方程的根,另一方面还要检验所求的解是否符合实际意义;⑥答。
可化为一元一次方程的分式方程(讲课)
PART 02
分式方程的概念和形式
REPORTING
WENKU DESIGN
定义与分类
定义
分式方程是含有分式的方程。
分类
按照分式方程的分母,可以分为有理分式方程和无理分式方程。
分式方程的解法概述
去分母
将分式方程转化为整式方程, 是解分式方程的基本步骤。
转化为一元一次方程
通过去分母,将分式方程转化 为简单的一元一次方程,便于 求解。
表示和求解。
供需关系问题
在市场经济中,分式方程可以用 来描述供需关系,例如需求量等 于价格乘以需求量,可以通过分
式方程来表示和求解。
日常生活中的应用
01
购物问题
在日常生活中,我们经常遇到购物打折、优惠等问题,可以通过建立分
式方程来计算最优的购买方案。
02
旅游行程安排
在旅游行程安排中,分式方程可以用来描述时间、路程和速度之间的关
WENKU DESIGN
物理问题中的应用
速度、时间和距离问题
分式方程在物理中常用于描述速度、时间和距离 过分式方程来表示和求解。
力学问题
在力学中,分式方程可以用来描述力的作用关系,例如在 斜面上物体的运动,可以通过建立分式方程来求解物体的 加速度和斜面的角度。
01
变种一
系数变化型
02
变种二
未知数个数增加型
03
变种三
条件限制型
04
变种四
多步骤运算型
THANKS
感谢观看
REPORTING
https://
电学问题
在电学中,分式方程可以用来描述电流、电压和电阻之间 的关系,例如欧姆定律可以用分式方程来表示和求解。
湘教版初二数学上册可化为一元一次方程的分式方程教案
可化为一元一次方程的分式方程
分式方程的解法思路、步骤、方法
解分式方程一定要验根
教 学 后 记
类型一解可化为一元一次方程的分式方程
例1解方程:
变式题解方程:
教学过程
教师活动
学生活动
类型二利用增根的概念解题
例2当a为何值时,方程 有增根?
类型三已知分式方程的解的取值范畴,求方程中待定系数的取值范畴
例3当m为何值时,关于x的方程 的解是正数?
四、总结反思拓展会升华
【拓展】解方程:
变式题解方程:
课堂小结
(4)如何样检验得出的未知数的值是分式方程的解?
2.什么叫作增根?产生增根的缘故是什么?
做一做:解方程 ,并检验所得x的值是不是那个方程的根.
反思:x=1不是那个方程的根,那么它是哪来的?是哪个步骤带来的?
说明:能够确信去分母化为整式方程后的几个步骤可不能出问题,要去问题是去分母这一步.去分母时,方程两边同乘最简公分母,其中含有未知数,那个最简公分母可能为零.x=1代入本题去分母时所乘的最简公分母中,发觉在x=1时,它的值确实为零,从而使分式方程中有的分母为零而失去意义.因此解分式方程时一定要验根.
二、合作交流 解读探究
【复习回忆】(1)什么叫方程?一元一次方程的标准形式与解答步骤分别是如何样的?
(2)列一元一次方程解应用题有哪几个步骤?
(3)什么叫解方程?什么叫方程的解?
教学过程
教师活动
学生活动
(4)解方程:5x=3(x-2)
【自主探究】让学生独立摸索、尝试解答“情境”中的问题.
1.分式方程的概念
交流:(1)你是如何样设未知数,依照题中什么条件列方程来解答“情境”中的问题的?
可化为一元一次方程的分式方程
可化为一元一次方程的分式方程一元一次方程的分式方程是一类有用的数学方程式,它可以通过将一元多项式分式化来解决复杂的表达式问题。
它的基本形式是:a/b = c,用分数的形式表示。
该方程的本质是变形,我们可以把它化成一元一次方程来解决。
首先,我们可以利用乘法来变换这个分式方程。
首先,我们将二分之一乘以a变成a/2,然后再乘以c,得到a/2 * c = b。
这样,就将分式方程变成一元一次方程a/2 * c - b = 0,即a/2c - b = 0。
接下来,我们可以利用反相法将这个方程进一步化简。
首先,我们可以把a/2c乘以2,变成2a/2c,然后用2a减去2b,得到2a/2c - 2b = 0。
这样,就将分式方程变成了一元一次方程2a - 2b = 0,即2a - 2b = 0。
最后,我们可以将这个方程进一步化简。
首先,我们可以把2a 除以2,变成a,然后用a减去b,得到a - b = 0。
这样,就将分式方程变成了一元一次方程a - b = 0,即a - b = 0,这就是最终的结果。
总之,一元一次方程的分式方程是一类重要的数学方程,它的基本形式是:a/b = c,用分数的形式表示。
我们可以通过乘法和反相法将这个方程变换为一元一次方程,从而解决复杂的表达式问题。
而且,这种变形的方法也可以应用在多元方程的解决中,这样就可以让复杂问题变得更加容易处理。
从上面的讨论可以看出,一元一次方程的分式方程是一类具有重要意义的数学方程式。
它不仅可以用来解决简单的表达式问题,而且也可以应用在多元方程中,让复杂问题变得更加容易处理。
因此,一元一次方程的分式方程受到广泛的应用,不管是在数学领域还是其他领域。
八年级数学备课组集体备课活动 可化为一元一次方程的分式方程
初二年数学备课组集体备课活动(二)时间:2010.3.10 地点:初二年段室参加人员:王惠翠、徐秀贤、吴丽云主持人:王惠翠研究课题:§17.3可化为一元一次方程的分式方程(1)备课记录:一、教学目标(一)知识目标:1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程。
2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法,了解解分式方程验根的必要性。
(二)能力目标:1、经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。
2、培养学生自主探究的意识,提高学生观察能力和分析能力。
(三)情感与价值观目标:1、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
2、培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
二、教学重点:使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程。
教学难点:使学生理解增根的概念,了解增根产生的原因,知道 解分式方程须验根并掌握验根的方法,明确分式方程验根的必要性。
教学方法:探索发现法,学生在教师的引导下,探索分式方程是 如何转化为整式方程,并发现解分式方程验根的必要性。
三、教学过程:(一)问题情境导入问题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
分析:设轮船在静水中的速度是x 千米/时,根据题意,得:3x 603x 80-=+ (1) (二)实践与探索1、分式方程的概念:议一议 方程3x 603x 80-=+有何特征? 教师提出问题,学生思考、讨论后在全班交流。
学生归纳出:该方程的特征是分母中含有未知数。
教师板演:方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.想一想:方程6131x x =++是不是分式方程?分析:确定是不是分式方程,主要看是否符合分式方程的概念,方程中含有分式,并且分母中含有未知数,像这样的方程才属于分式方程. 做一做:在方程①73x -=8+152x -,②1626x -=x ,③281x -=81x x +-,④x-112x -=0中,是分式方程的有( )A .①和②B .②和③C .③和④D .①和④2、分式方程的解法探索:讨论 怎样解分式方程3x 603x 80-=+ 鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生自然会想到去分母来实现这种转变。
湘教版数学八年级上册1.5《可化为一元一次方程的分式方程的解法》说课稿1
湘教版数学八年级上册1.5《可化为一元一次方程的分式方程的解法》说课稿1一. 教材分析《可化为一元一次方程的分式方程的解法》是湘教版数学八年级上册1.5节的内容。
这部分内容是在学生已经掌握了分式的基本性质、分式的运算、分式方程的初步知识的基础上进行学习的。
本节课的主要内容是让学生掌握如何将分式方程化为整式方程,并运用一元一次方程的解法来求解。
通过这部分的学习,让学生能够解决一些实际问题,提高他们的数学应用能力。
二. 学情分析学生在学习这部分内容时,已经有了一定的分式知识基础,但对于如何将分式方程化为整式方程,以及如何运用一元一次方程的解法来求解,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生理解分式方程的化简过程,以及如何将问题转化为一元一次方程来解决。
三. 说教学目标1.知识与技能目标:让学生掌握将分式方程化为整式方程的方法,以及运用一元一次方程的解法来求解分式方程。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:将分式方程化为整式方程的方法,以及一元一次方程的解法。
2.教学难点:如何引导学生理解分式方程的化简过程,以及如何将问题转化为一元一次方程来解决。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何解决分式方程。
2.自主学习:让学生自主探究如何将分式方程化为整式方程。
3.合作交流:学生分组讨论,分享各自的解题方法。
4.教师引导:教师引导学生总结分式方程化简的方法,并讲解一元一次方程的解法。
5.巩固练习:让学生运用所学知识解决一些实际问题。
6.课堂小结:教师引导学生总结本节课的主要内容和收获。
数学教案-可化为一元一次方程的分式方程
数学教案-可化为一元一次方程的分式方程一、教学目标通过本节课的学习,学生应能够: 1. 理解分式方程的概念和基本特征; 2. 把分式方程化为一元一次方程; 3. 解一元一次方程,并应用于实际问题中。
二、教学重点和难点1.教学重点:分式方程的化简和求解;2.教学难点:如何将分式方程化为一元一次方程。
三、教学过程1. 导入新知教师可通过一个简单的问题导入本节课的内容,如下:“小明买了一些苹果,他把其中的一半分给了小红,然后又将剩下的苹果中四分之一分给了小李。
现在他手上还剩下8个苹果,请问他一开始买了多少个苹果?”2. 引入分式方程的概念教师可以简单介绍分式方程的概念和基本特征。
并通过几个简单的例子,让学生大致了解分式方程是如何构成的。
3. 化简分式方程教师可以给出一个分式方程的例子,如下:$$\\frac{3}{x+2} = \\frac{5}{x+1}$$然后指导学生根据等式两边的分子和分母求值来化简方程式。
4. 化为一元一次方程教师可以继续使用上述例子,指导学生通过交叉相乘的方法将分式方程化为一元一次方程。
5. 解一元一次方程教师可以给出化简后的一元一次方程,如下:3(x+1)=5(x+2)然后指导学生利用方程的解法,将方程解出。
6. 实际问题应用教师可以给出一个实际问题,要求学生利用所学知识解决。
如下:“某电商网站为了增加用户粘性,推出了一个会员积分制度。
会员购物满一定金额可以获得相应的积分,并且会员可以使用积分抵扣购物金额。
现在小明是该网站的黄金会员,购物满300元可以获得100积分,而100积分可以抵扣20元。
小明本次购物满300元,使用积分抵扣后只需支付实际金额,问他本次购物需要支付多少元?”7. 总结与拓展教师可以对本节课的内容进行总结,并对分式方程的深层应用进行拓展,如分式方程在几何图形中的应用等。
四、课堂练习1.把下列分式方程化为一元一次方程:$$\\frac{4}{x-1} = \\frac{3}{2x-3}$$2.解下列一元一次方程:2(x−3)+5=4(x+1)3.小明购买了一本数学书,原价100元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学教案:可化为一元一次方程的分式方
程
一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法.
3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
二、教学重点和难点
1.教学重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
2.教学难点:理解解分式方程时产生增根的原因.
三、教学方法
启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.
四、教学手段
演示法和同学练习相结合,以练习为主.
五、教学过程
(一)复习及引入新课
1.提问:什么叫方程?什么叫方程的解?
答:含有未知数的等式叫做方程.
使方程两边相等的未知数的值,叫做方程的解.
2.
解:(1)当时,
左边= ,
右边=0,
∴左边=右边,
(2)
(3)
3、在本章开始我们曾提出一个问题,经过分析得到问题的量为两个分式:,根据量间的关系列出方程:
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.
(二)新课
板书课题:
板书:分式方程的定义.
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.
练习:判断下列各式哪个是分式方程.(投影)
(1) ; (2) ; (3) ;
(4) ; (5)
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.
1、如何求解方程 ?
先由同学讨论如何解这个方程.
在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.如何去掉?方程两边同乘最简公分母.
解:两边同乘以最简公分母x(x-6)得
90(x-6)=60x解这个整式方程得x=18.
如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.
检验:把x=18代入原方程
左边=右边
∴x=18是原方程的解.
2、如何解方程 ?
此题可由学生讨论解决.
解:方程两边同乘最简公分母(x+1)(x-1),得整式方程x+1=2
解整式方程,得x=1.
x=1时原方程的解是否正确?
检验:将x=1代入原方程,可知x=1使分式方程两边的分式分母均为零,这两个分式没意义,因此x=1不是原分式方程的解.
∴原方程无解.
讨论:1、2两题都是方程两边同除最简公分母将分式方程转化为整式方程,为什么2求出的x=1不是原方程的解,而我们又得到了x=1呢?
分析:方程同解原理2指出:方程的两边都乘以不等于零的同一个数,所得的方程与原方程同解.
在解1中,方程两边都乘以x(x-6),接着求出x=18,而当x=18时,2(x+5)=216,所以相当于方程两边都乘以16(≠0),因此所得的整式方程与原方程同解.
在解2中,方程两边都乘以(x+1)(x-1),接着求出x=1,相当于方程两边都乘以零,结果使原方程无意义,这样得到的整式方程与原方程不同解.
像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.
注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.
由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.
例1、解方程
对于例题给学生示范做题的格式、步骤. (投影显示步骤格式)
解:方程两边同乘x(x-2),约去分母,得
5(x-2)=7x解这个整式方程,得
x=5.
检验:把x=-5代入最简公分母
x(x-2)=35≠0,
∴x=-5是原方程的解.
例2、解方程
解:方程两边同乘最简公分母(x-2),约去分母,得
1=x-1-3(x-2).( -3这项不要忘乘)
解这个整式方程,得
x=2.
检验:当x=2时,代入最简公分母(x-2)=0,
∴x=2是增根,
∴原方程无解.
注意:要求学生一定要严格按解题格式步骤完成.
(三)总结
解分式方程的一般步骤:
1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.
2.解这个整式方程.
3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.
(四)练习
教材P.98中1由学生在黑板上写,教师订正.
六、作业
教材P.101中1.
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
七、板书设计
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。