【精品】2018年贵州省遵义三十一中九年级上学期数学期中试卷及解析

合集下载

贵州初三初中数学期中考试带答案解析

贵州初三初中数学期中考试带答案解析

贵州初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中既是轴对称图形又是中心对称图形的是()2.下列方程是一元二次方程的是()A.B.C.D.3.二次函数的图象的顶点坐标是()A.(-2,5)B.(2,-5)C.(2,5)D.(2,5)4.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为()A.B.C.D.5.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为()A.4B.12C.6D.36.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元, 如果平均每月增长率为,则由题意列方程应为()A.B.C.D.7.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.B.C.D.8.如果关于x的一元二次方程有两个不相等的实数根,那么实数k的取值范围是()A.;B.;C.;D..9.如图,是一个简单的数值运算程序.则输入x的值为()A.B.C.D.2710.有一根长60cm的铁丝,用它围成一个矩形,写出矩形面积S()与它的一边长之间的函数关系式为()A.B.C.D.11.如图,两个全等的长方形与,旋转长方形能和长方形重合,则可以作为旋转中心的点有()A.1个B.2个C.3个D.无数个12.已知点三点都在抛物线的图象上,则的大小关系是()A.<<B.<<C.<<D.<<13.已知二次函数的图象如图所示,其对称轴为直线,给出下列结果:(1);(2)>0;(3);(4);(5).则正确的结论是()A.(1)(2)(3)(4)B .(2)(4)(5)C .(2)(3)(4)D .(1)(4)(5)二、填空题1.已知方程x 2-x -1=0有一根为m ,则m 2-m +2014的值为 .2.如图,将△绕着点顺时针旋转后得到△.若∠=40°,∠=110°,则∠的度数是 .3.若点与点关于原点对称,则= .4.如果函数是二次函数,那么K 的值为 .5.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为 .6.在二次函数中,函数值与自变量的部分对应值如下表,则该抛物线的顶点坐标为 ,= .x-2-11234三、解答题1.解方程: (1) (2)2.如图,方格纸中的每个都是边长为1的正方形,将△OAB 绕点O 按顺时针方向旋转90°得到△OA′B′.(1)在给定的方格纸中画出△OA′B′; (2)求出OA ,AA′的长为.3.阅读材料:设一元二次方程ax 2+bx+c =0(a≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-,x 1·x 2=.请根据该材料解题:已知x 1,x 2是方程x 2+6x+3=0的两实数根,求和的值.4.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m . (1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式5.如图所示,在△中,,,将绕点沿逆时针方向旋转得到.(1)线段的长是,的度数是;(2)连接,求证:四边形是平行四边形.6.一家用电器开发公司研制出一种新型的电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销售量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式(不必写出x的取值范围);(2)求出月销售利润z(万元)(利润=售价-成本价)与销售单价x(元)之间的函数关系式(不必写出x的取值范围).(3)若某月利润为350万元时,则该月销售量为多少万件,此时销售单价为多少元?贵州初三初中数学期中考试答案及解析一、选择题1.下列图形中既是轴对称图形又是中心对称图形的是()【答案】B【解析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形,在平面内,把一个图形绕着某个点旋转180°,旋转后的图形与另一个图形完全重合.本题中只有B既是轴对称图形又是中心对称图形.【考点】轴对称图形、中心对称图形.2.下列方程是一元二次方程的是()A.B.C.D.【答案】C【解析】一元二次方程是指:经化简后,只含有一个未知数,且未知数的最高次数为2次的整式方程.A、含有分式;B、化简后不含二次项;C、正确;D、含有两个未知数,最高次数为1次.【考点】一元二次方程的定义3.二次函数的图象的顶点坐标是()A.(-2,5)B.(2,-5)C.(2,5)D.(2,5)【答案】D【解析】对于二次函数的顶点式y=的顶点坐标为(h,k),则本题函数的顶点坐标为(2,5).【考点】二次函数的顶点坐标.4.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为()A.B.C.D.【答案】C【解析】二次函数与x轴的交点坐标分别为(,0)和(,0),则函数的对称轴为直线x=.【考点】二次函数的对称轴.5.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为()A.4B.12C.6D.3【答案】D【解析】根据矩形的性质可得△BOE和△DOF全等,则阴影部分的面积等于△AOB的面积,即为矩形面积的四分之一.【考点】图形的对称6.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元, 如果平均每月增长率为,则由题意列方程应为()A.B.C.D.【答案】D【解析】根据题意可得:七月份的营业额为100万元,八月份的营业额为100(1+x)万元,九月份的营业额为100万元,然后根据第三季度的总和为331万元列出方程.【考点】一元二次方程的应用.7.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.B.C.D.【答案】D【解析】二次函数图象的平移法则为:上加下减,左加右减,根据平移法则即可得出平移后的解析式.【考点】二次函数图象的平移8.如果关于x的一元二次方程有两个不相等的实数根,那么实数k的取值范围是()A.;B.;C.;D..【答案】B【解析】当方程的△=-4ac>0时,方程有两个不相等的实数根,即36-8k>0,解得:k<.【考点】根的判别式9.如图,是一个简单的数值运算程序.则输入x的值为()A.B.C.D.27【答案】B【解析】根据流程图可得:-3=-27,解得:x=4或x=-2.【考点】一元二次方程的解10.有一根长60cm的铁丝,用它围成一个矩形,写出矩形面积S()与它的一边长之间的函数关系式为()A.B.C.D.【答案】C【解析】根据一边长为xcm,周长为60cm可得矩形的另一边长为(30-x)cm,则S=x(30-x).【考点】一元二次方程的应用11.如图,两个全等的长方形与,旋转长方形能和长方形重合,则可以作为旋转中心的点有()A.1个B.2个C.3个D.无数个【答案】A【解析】根据图形可得可以作为旋转中心的点为线段CD的中点.【考点】旋转图形的性质12.已知点三点都在抛物线的图象上,则的大小关系是()A.<<B.<<C.<<D.<<【答案】C【解析】对于开口向上的函数,到对称轴距离越远,则所对应的函数值就越大,本题只要比较点到对称轴的距离大小,就可以得出函数值的大小.【考点】二次函数的性质13.已知二次函数的图象如图所示,其对称轴为直线,给出下列结果:(1);(2)>0;(3);(4);(5).则正确的结论是()A.(1)(2)(3)(4)B.(2)(4)(5)C.(2)(3)(4)D.(1)(4)(5)【答案】D【解析】图象与x轴有两个交点,即-4ac>0,则>4ac,(1)正确;根据图象可得:a>0,b>0,c<0,则abc<0,(2)错误;函数的对称轴为直线x=-1,即-=-1,则2a=b,即2a-b=0,(3)错误;当x=1时,y>0,即a+b+c>0,(4)正确;当x=-1时,y<0,即a-b+c<0,(5)正确.【考点】二次函数的性质二、填空题1.已知方程x2-x-1=0有一根为m,则m2-m+2014的值为.【答案】2015【解析】将x=m代入方程可得;-m-1=0,则-m=1,即-m+2014=1+2014=2015.【考点】一元二次方程的解.2.如图,将△绕着点顺时针旋转后得到△.若∠=40°,∠=110°,则∠的度数是.【答案】30°【解析】根据旋转图形的性质可得:∠A′=∠A=40°,根据△A′B′C的内角和定理可得:∠B′CA′=180°-40°-110°=30°.【考点】旋转图形的性质3.若点与点关于原点对称,则= .【答案】-1【解析】两点关于原点对称,则两点的横纵坐标都互为相反数,则m=-3,n=2,则=-1.【考点】原点对称的性质4.如果函数是二次函数,那么K的值为.【答案】0【解析】试题解析:根据二次函数的定义可得:-3k+2=2且k-3≠0,解得:k=0.【考点】二次函数的定义5.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为.【答案】【解析】试题解析:对于传播问题可得方程为:x(x-1)=2070.【考点】一元二次方程的应用6.在二次函数中,函数值与自变量的部分对应值如下表,则该抛物线的顶点坐标为,= .x-2-101234【答案】(1,-2),-1【解析】试题解析:根据图表可得二次函数的顶点坐标为(1,-2);x=2和x=0时所对应的函数值相同,则m=-1.【考点】二次函数的性质三、解答题1.解方程:(1)(2)【答案】(1);(2)【解析】第一个利用提取公因式法进行计算;第二个利用配方法进行计算.试题解析:(1)x(x-2)=x-2 即x(x-2)-(x-2)=0 (x-2)(x-1)=0解得:(2)-2y=1 -2y+1=2 即则y-1=±解得:【考点】一元二次方程的解法2.如图,方格纸中的每个都是边长为1的正方形,将△OAB绕点O按顺时针方向旋转90°得到△OA′B′.(1)在给定的方格纸中画出△OA′B′;(2)求出OA,AA′的长为.【答案】(1)见解析;(2)OA=5,AA′=5【解析】根据旋转图形的性质画出图形;根据勾股定理求出线段的长度试题解析:(1)△OA′B′的位置如图.(2)OA==5AA′=【考点】旋转图形的性质、勾股定理3.阅读材料:设一元二次方程ax 2+bx+c =0(a≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-,x 1·x 2=.请根据该材料解题:已知x 1,x 2是方程x 2+6x+3=0的两实数根,求和的值.【答案】-;-6.【解析】首先根据题意得出+和的值,然后将所求的代数式进行化简,然后代入进行计算.试题解析:∵,是方程+6x+3的两个根 ∴+=-2=3∴=(+)=-6【考点】韦达定理4.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m . (1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式【答案】(1)开口向下,顶点为(4,),对称轴为x =4;(2)8m ;(3)y=-.【解析】根据函数的顶点坐标求法求出函数的顶点坐标和对称轴;当y=0时,求出x 的值,从而得出答案;根据题意得出函数的顶点坐标,然后将函数解析式设成顶点式,将(0,0)代入求出函数解析式. 试题解析:∴抛物线y=-开口向下,顶点为(4,),,对称轴为x =4.(2)令y =0,得-=0解得x 1=0,x 2=8. ∴球飞行的最大水平距离是8m .(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m . ∴抛物线的对称轴为x =5,顶点为(5,) 设此时对应的抛物线解析式为y=a ,又∵点(0,0)在此抛物线上,∴25a+=0 a=-∴y=-【考点】二次函数的应用5.如图所示,在△中,,,将绕点沿逆时针方向旋转得到.(1)线段的长是 ,的度数是 ;(2)连接,求证:四边形是平行四边形.【答案】(1)6、135°;(2)见解析【解析】根据旋转图形的性质得出答案;根据旋转得出OA ∥然后结合OA=AB=得出平行四边形.试题解析:(1)∵∠OAB=90°,OA=AB, ∴△OAB 为等腰直角三角形,即∠AOB=45°, 根据旋转的性质,对应点到旋转中心的距离相等,即, 对应角∠ =∠AOB=45°,旋转角∠ =90°, ∴∠AOB 1的度数是90°+45°=135° (2)∵∠=∠=90°, ∴OA ∥又OA=AB=,∴四边形是平行四边形.【考点】旋转图形的性质、平行四边形的判定6.一家用电器开发公司研制出一种新型的电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销售量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式(不必写出x的取值范围);(2)求出月销售利润z(万元)(利润=售价-成本价)与销售单价x(元)之间的函数关系式(不必写出x的取值范围).(3)若某月利润为350万元时,则该月销售量为多少万件,此时销售单价为多少元?【答案】(1)y=-2x+100;(2)z=-2x2+136x-1800;(3)该月销售量为50万件,销售单价为25元【解析】根据降价1元,销售量增加2万件得出y与x的函数关系式;根据月销售利润=单价利润×数量得出函数关系式;将z=350代入函数解析式求出x的值,然后结合x的取值范围得出最大值.试题解析:(1)由题意得:y=20+2(40-x)=-2x+100.∴y与x的函数关系式为y=-2x+100;(2)z=(x-18)y=(x-18)(-2x+100)=-2x2+136x-1800,∴z与x的函数关系式为z=-2x2+136x-1800;(3)当z=350时,-2x2+136x-1800=350解得:(1分)因为所以则即此时该月销售量为50万件,销售单价为25元。

【真题】2018年贵州省遵义市中考数学试卷含答案解析(Word版)

【真题】2018年贵州省遵义市中考数学试卷含答案解析(Word版)

2018年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1 5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,(计算结果精确到0.1m,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC 上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.2018年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.10.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18=S△PFD解答即可.【分析】想办法证明S△PEB【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△ADC=S△PBE=×2×8=8,∴S△DFP∴S=8+8=16,阴故选:C.11.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y==2,【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,=×BC×CO=S△AOD=1,∴S△BCO∴S=2,△AOD∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是2.【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,(计算结果精确到0.1m,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160人,扇形统计图中A部分的圆心角是54度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A 的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC 上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S=,此时M坐标为(,3);最大(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

2016-2017学年贵州省遵义三十一中九年级(上)期中数学试卷

2016-2017学年贵州省遵义三十一中九年级(上)期中数学试卷

2016-2017 学年贵州省遵义三十一中九年级(上)期中数学试卷一、选择题(每题3 分,共 36 分)1.( 3 分)以下安全标记图中,是中心对称图形的是()A .B .C .D .2.( 3 分)用配方法解方程 x 2+8x+9=0 ,变形后的结果正确的选项是()2222A .( x+4) =﹣ 7B .( x+4) =﹣ 9C .( x+4) =7D .( x+4) =253.( 3 分)抛物线 y=﹣ 2( x+3) 2﹣ 4 的极点坐标是()A .(﹣ 4, 3)B .(﹣ 4,﹣ 3)C .( 3,﹣ 4)D .(﹣ 3,﹣ 4)4.( 3 分)平面直角坐标系内的点 A (﹣ 2, 3)对于原点对称的点的坐标是()A .(3,2)B .(2,﹣ 3)C .(2, 3)D .(﹣ 2,﹣ 3)5.( 3 分)把抛物线 y=3x 2向左平移 2 个单位,再向上平移 1 个单位,所得的抛物线的分析 式是( )A . y=3( x ﹣ 2)2+1B . y=3( x ﹣2) 2﹣ 1C . y=3 (x+2) 2+1D .y=3( x+2) 2﹣ 16.( 3 分)函数 y=2x 2﹣ 3x+4 经过的象限是( ) A .一,二,三象限 B .一,二象限 C .三,四象限 D .一,二,四象限7.( 3 分)一元二次方程 x 2﹣ 2x+2=0 的根的状况是( ) A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根8.(3 分)最近几年来某市加大了对教育经费的投入,2013 年投入 2500 万元,2015 年将投入 3600万元,该市投入教育经费的年均匀增加率为x ,依据题意列方程, 则以下方程正确的选项是 ( ) A . 2500x 2=3600 B . 2500( 1+x )2=360022C . 2500( 1+x%) =3600D . 2500( 1+x ) +2500( 1+x ) =36009.( 3 分)如图,△ OAB 绕点 O 逆时针旋转 80°到△ OCD 的地点,已知∠ AOB=45 °,则∠AOD 等于( )A . 55°B . 45°C . 40°D . 35°10.( 3 分)已知抛物线 y=ax 2+bx+c 的图象如下图,则一元二次方程ax 2+bx+c=0()A .没有实根D .有两个实根,且一根小于 1,一根大于 211.(3 分)设 A (﹣ 2, y 1 ), B (1, y 2), C ( 2, y 3)是抛物线 y=﹣( x+1) 2+1 上的三点,则 y 1, y 2, y 3 的大小关系为( ) A . y 1>y 2> y 3 B . y 1> y 3> y 2 C . y 3> y 2> y 1 D . y 3>y 1> y 212.( 3 分)已知二次函数 y=ax 2+bx+c ( a ≠0)的图象如图,有以下 5 个结论:2① abc < 0; ② 3a+c > 0; ③ 4a+2b+c > 0; ④ 2a+b=0 ; ⑤ b > 4ac 此中正确的结论的有( )A .1 个B .2 个C .3 个D .4 个二.填空题: (每题4 分,共 24 分)13.( 4 分)抛物线 y=﹣ x 2﹣ x ﹣1 的对称轴是.14.( 4 分)点 A ( a ﹣ 1,﹣ 4)与点 B (﹣ 3, 1﹣ b )对于原点对称,则 a+b 的值为.15.( 4 分)抛物线 y=x 2﹣ 2x ﹣ 3 与 x 轴的交点坐标为 .16.( 4 分)已知二次函数 y=kx 2﹣ 7x ﹣ 7 的图象和 x 轴有交点,则 k 的取值范围.17.( 4 分)已知 x 1,x 2 是一元二次方程 x 2﹣ 2x ﹣ 1=0 的两根,则 + = .18.( 4 分)某商品进货单价为 30 元,按 40 元一个销售能卖 40 个;若销售单价每涨1 元,则销量减少 1 个.为了获取最大收益,此商品的最正确售价应为 元.三.(共 9 小题,共 90 分)19.( 6 分)解方程: x 2﹣ 4x ﹣ 1=0. 2﹣ 6x +2m ﹣ 1=0 有两个相等的实数根,求20.( 8 分)已知对于的一元二次方程x m 的值及方程的根.21.( 8 分)已知二次函数的极点坐标为( 1, 4),且其图象经过点(﹣2,﹣ 5),求此二次函数的分析式.2.22.( 10 分)用长为 20cm 的铁丝,折成一个矩形,设它的一边长为 xcm ,面积为 ycm( 1)求出 y 与 x 的函数关系式.( 2)当边长 x 为多少时,矩形的面积最大,最大面积是多少?23.( 10 分)抛物线 y=﹣ 2x 2+8x ﹣ 6.( 1)求抛物线的极点坐标和对称轴; ( 2) x 取何值时, y 随 x 的增大而减小?( 3) x 取何值时, y=0; x 取何值时, y > 0; x 取何值时, y < 0.24.( 10 分)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生积极捐款.初三年级第一天收到捐钱1000 元,第三天收到 1210 元.(1)求这两天收到捐钱的均匀增加率.(2)依据( 1)中的增加速度,第四天初三年级能收到多少捐钱?25.( 12 分)如图,在平面直角坐标系中,△ABC 的三个极点都在格点上,(1)画出△ ABC 对于 x 轴对称的△ A 1B1C1.(2)画出△ ABC 绕原点 O 旋转 180°后的△ A 2B 2C2.26.( 12 分)如图,在△ OAB 中,∠ OAB=90 °,OA=AB=6 ,将△ OAB 绕点 O 逆时针方向旋转 90°获取△ OA 1B1.(1)线段 A 1B1的长是,∠ AOA 1的度数是;(2)连结 AA 1,求证:四边形 OAA 1B1是平行四边形;(3)求四边形 OAA 1B 1的面积.27.( 14 分)如图,抛物线 y=ax 2+bx +c( a≠0)与 x 轴交于 A (﹣ 4, 0), B( 2, 0),与 y轴交于点 C( 0, 2).(1)求抛物线的分析式;(2)若点 D 为该抛物线上的一个动点,且在直线AC 上方,当以 A ,C,D 为极点的三角形面积最大时,求点 D 的坐标及此时三角形的面积.2016-2017 学年贵州省遵义三十一中九年级(上)期中数学试卷参照答案与试题分析一、选择题(每题3 分,共 36 分)1.( 3 分)( 2014?抚州)以下安全标记图中,是中心对称图形的是()A .B .C .D .【剖析】 依据轴对称图形与中心对称图形的观点求解.【解答】 解: A 、不是中心对称图形,故此选项不合题意;B 、是中心对称图形,故此选项切合题意;C 、不是中心对称图形,故此选项不切合题意;D 、不是中心对称图形,故此选项不合题意; 应选: B .【评论】 本题主要考察了中心对称图形与轴对称图形的观点, 轴对称图形的要点是找寻对称轴,图形两部分沿对称轴折叠后可重合; 中心对称图形是要找寻对称中心,旋转 180 度后与原图重合.2+8x+9=0 ,变形后的结果正确的选项是() 2.( 3 分)( 2015 秋 ?连城县期中) 用配方法解方程 x 2 2 2 2A .( x+4) =﹣ 7B .( x+4) =﹣ 9C .( x+4) =7D .( x+4) =25【剖析】 方程移项后,利用完整平方公式配方即可获取结果.【解答】 解:方程 x 2 +8x+9=0 ,整理得: x 2+8x= ﹣ 9,22配方得: x +8x +16=7,即( x+4) =7 ,应选 C【评论】 本题考察认识一元二次方程﹣配方法,娴熟掌握完整平方公式是解本题的要点.3.( 3 分)( 2011?苍南县校级一模)抛物线y= ﹣ 2(x+3) 2﹣ 4 的极点坐标是()A .(﹣ 4, 3)B .(﹣ 4,﹣ 3)C .( 3,﹣ 4)D .(﹣ 3,﹣ 4) 【剖析】 直接依据极点式的特色写出极点坐标.【解答】 解:因为 y=﹣ 2( x+3) 2﹣ 4 是抛物线的极点式, 依据极点式的坐标特色,极点坐标为(﹣3,﹣ 4).应选 D .【评论】 主要考察了求抛物线的极点坐标的方法.4.( 3 分)(2010?綦江县)平面直角坐标系内的点 A (﹣ 2, 3)对于原点对称的点的坐标是 ()A .( 3, 2)B .(2,﹣ 3)C .(2, 3)D .(﹣ 2,﹣ 3)【剖析】 依据 “平面直角坐标系中随意一点 P (x , y ),对于原点的对称点是(﹣x ,﹣ y )”解答即可.【解答】 解:依据中心对称的性质, 得点 A (﹣ 2,3)对于原点对称的点的坐标是 ( 2,﹣3).应选 B .【评论】 对于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是联合平面直角坐标系的图形记忆.5.( 3 分)( 2016 秋?遵义期中)把抛物线 y=3x 2向左平移 2 个单位,再向上平移 1 个单位, 所得的抛物线的分析式是( )A . y=3( x ﹣ 2)2+1B . y=3( x ﹣2) 2﹣ 1C . y=3 (x+2) 2+1D .y=3( x+2) 2﹣ 1【剖析】 依据二次函数图象的平移规律(左加右减,上加下减)进行解答即可. 22【解答】 解:抛物线 y=3x 向左平移 2 个单位,再向上平移1 个单位 y=3 ( x+2) +1.【评论】 本题考察了抛物线的平移以及抛物线分析式的变化规律:左加右减,上加下减.6.( 3 分)( 2009 秋?滁州校级期末)函数 y=2x 2﹣3x+4 经过的象限是( )A .一,二,三象限B .一,二象限C .三,四象限D .一,二,四象限 【剖析】 利用公式法先求极点坐标,再判断经过的象限.【解答】 解:∵ y=ax 2+bx+c 的极点坐标公式为(, ),∴y=2x 2﹣ 3x+4 的极点坐标为(,),而 a=2> 0,因此抛物线过第一,二象限.应选 B .【评论】 本题考察抛物线的极点坐标和张口方向,确立了.能确立这两样, 抛物线经过的象限就简单7.( 3 分)( 2010?富顺县校级模拟)一元二次方程 x 2﹣ 2x+2=0 的根的状况是()A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根222【解答】 解:∵一元二次方程 x ﹣ 2x+2=0 的二次项系数 a=1,一次项系数 b=﹣ 2,常数项c=2,∴△ =b 2﹣ 4ac=4﹣ 8= ﹣ 4< 0,2∴一元二次方程 x ﹣ 2x+2=0 没有实数根;【评论】 本题考察了一元二次方程 ax 2+bx+c=0( a ≠ 0, a ,b ,c 为常数)的根的鉴别式△ =b 2﹣4ac .当△> 0,方程有两个不相等的实数根;当△ =0,方程有两个相等的实数根;当△<0,方程没有实数根.8.( 3 分)( 2016 春?高邮市校级期末)最近几年来某市加大了对教育经费的投入,2500 万元, 2015 年将投入 3600 万元,该市投入教育经费的年均匀增加率为方程,则以下方程正确的选项是()2013 年投入x ,依据题意列2 2A . 2500x =3600B . 2500( 1+x ) =360022C . 2500( 1+x%) =3600D . 2500( 1+x ) +2500( 1+x ) =3600 2【剖析】设该市投入教育经费的年均匀增加率为x ,依据:2013 年投入资本给× ( 1+x )=2015年投入资本,列出方程即可.【解答】 解:设该市投入教育经费的年均匀增加率为x ,依据题意,可列方程: 2500(1+x ) 2=3600,应选: B .【评论】 本题主要考察依据实质问题列方程的能力,在解决实质问题时,要全面、系统地申清问题的已知和未知, 以及它们之间的数目关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.9(. 3 分)( 2008?无锡)如图,△OAB 绕点 O 逆时针旋转 80°到△ OCD 的地点,已知∠ AOB=45 °,则∠ AOD 等于( )A . 55°B . 45°C . 40°D . 35°【剖析】 本题旋转中心为点 O ,旋转方向为逆时针, 察看对应点与旋转中心的连线的夹角∠ BOD 即为旋转角,利用角的和差关系求解.【解答】 解:依据旋转的性质可知, D 和 B 为对应点,∠ DOB 为旋转角,即∠ DOB=80 °,因此∠ AOD= ∠ DOB ﹣∠ AOB=80 °﹣45°=35 °. 应选: D .【评论】 本题考察旋转两相等的性质: 即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所组成的旋转角相等.10.( 3 分)( 2016 秋 ?遵义期中)已知抛物线y=ax 2+bx+c 的图象如下图,则一元二次方程2+bx +c=0( )axA .没有实根B .只有一个实根C .有两个实根,且一根为正,一根为负D .有两个实根,且一根小于1,一根大于 2【剖析】 第一依据图象求出抛物线y=ax 2+bx+c 的图象与 x 轴的交点横坐标取值范围,从而 写出一元二次方程 ax 2+bx+c=0 的解的状况.【解答】 解:由图可知:抛物线 y=ax 2+bx+c 的图象与 x 轴的交点横坐标的取值范围是 0< x 1<1, 2< x 2< 3,则一元二次方程ax2+bx+c=0 有两个实根,且一根小于1,一根大于2.应选 D.【评论】本题考察的是抛物线与x 轴的交点问题的知识,依据抛物线与x 轴的交点求出一元二次方程的两个根是解答本题的要点,本题难度不大.11.( 3 分)( 2016 秋 ?秀峰区校级期中)设A(﹣ 2, y1),B (1, y2),C(2, y3)是抛物线y=﹣( x+1)2+1 上的三点,则y1, y2, y3的大小关系为()A . y1>y2> y3B. y1> y3> y2C. y3> y2> y1D. y3>y1> y2【剖析】依据二次函数的对称性,可利用对称性,找出点 A 的对称点 A ′,再利用二次函数的增减性可判断y 值的大小.y= ﹣( x+1)2+1,【解答】解:∵函数的分析式是∴对称轴是 x= ﹣ 1,∴点 A 对于对称轴的点 A ′是( 0, y1),那么点 A ′、B 、 C 都在对称轴的右侧,而对称轴右侧y 随 x 的增大而减小,于是 y1> y2> y3.应选 A.【评论】本题考察了二次函数图象上点的坐标的特色,解题的要点是能画出二次函数的大概图象,12.( 3 分)( 2016 秋?秀峰区校级期中)已知二次函数y=ax 2+bx+c( a≠0)的图象如图,有以下 5 个结论:2> 4ac① abc< 0;② 3a+c> 0;③ 4a+2b+c> 0;④ 2a+b=0 ;⑤ b此中正确的结论的有()A.1 个 B.2 个C.3 个D.4 个2交点抛物线与x 轴交点的个数确立解答.【解答】解:张口向下,则a<0,y 轴的与 y 轴交于正半轴,则 c > 0,∵﹣> 0,∴b > 0,则 abc < 0, ① 正确;∵﹣=1 ,则 b=﹣ 2a ,∵a ﹣ b+c < 0,∴3a+c < 0,② 错误;∵b= ﹣ 2a ,∴2a+b=0 ,④ 正确;∴b 2﹣ 4ac > 0,∴b 2> 4ac , ⑤ 正确,应选: D .y=ax 2+bx+c 系数符号由抛物【评论】 本题考察的是二次函数图象与系数的关系,二次函数线张口方向、对称轴、抛物线与 y 轴的交点抛物线与 x 轴交点的个数确立. 二.填空题: (每题4 分,共 24 分)13.( 4 分)( 2012?沈河区模拟)抛物线 y= ﹣ x 2﹣x ﹣ 1 的对称轴是 直线 x=﹣.【剖析】 依据抛物线对称轴公式进行计算即可得解.【解答】 解:对称轴为直线 x= ﹣ =﹣=﹣ ,即直线 x= ﹣故答案为:直线 x= ﹣ .【评论】 本题考察了二次函数的性质,主要利用了对称轴公式,比较简单.14.( 4 分)( 2016 秋?遵义期中)点 A ( a ﹣ 1,﹣ 4)与点 B (﹣ 3, 1﹣b )对于原点对称, 则 a+b 的值为1.【剖析】 依据 “对于原点对称的点,横坐标与纵坐标都互为相反数 ”列方程求出 a 、b 的值,而后相加计算即可得解.【解答】 解:∵点 A ( a ﹣1,﹣ 4)与点 B (﹣ 3, 1﹣ b )对于原点对称, ∴a ﹣ 1=3 , 1﹣ b=4 , 解得 a=4, b=﹣ 3,因此, a+b=4+(﹣ 3)=1. 故答案为: 1.【评论】 本题考察了对于原点对称的点的坐标, 对于原点对称的点, 横坐标与纵坐标都互为相反数.15.( 4 分)( 2015 秋 ?淅川县期末) 抛物线y=x2 ﹣2x ﹣3 与 x轴的交点坐标为( 3,0),(﹣1,0) .【剖析】 要求抛物线与 x 轴的交点,即令y=0 ,解方程.2解得 x=3 或 x= ﹣ 1.2则抛物线 y=x ﹣ 2x ﹣3 与 x 轴的交点坐标是(3, 0),(﹣ 1, 0).【评论】 本题考察了抛物线与 x 轴的交点.求二次函数 y=ax 2+bx+c ( a ,b ,c 是常数, a ≠ 0)与 x轴的交点坐标, 令 y=0,即 ax 2+bx+c=0,解对于 x 的一元二次方程即可求得交点横坐标.16.(4 分)( 2015?铁力市二模)已知二次函数y=kx 2﹣ 7x ﹣ 7 的图象和 x 轴有交点,则 k 的取值范围k ≥﹣ 且 k ≠ 0 .【剖析】 因为二次函数与 x 轴有交点,故二次函数对应的一元二次方程kx 2﹣7x ﹣ 7=0 中, △≥ 0,解不等式即可求出 k 的取值范围,由二次函数定义可知, k ≠0.【解答】 解:∵二次函数 y=kx 2﹣ 7x ﹣ 7 的图象和 x 轴有交点, ∴ ,∴k ≥﹣且 k ≠ 0.故答案为 k ≥﹣ 且 k ≠ 0.【评论】 本题考察了抛物线与 x 轴的交点, 不单要熟习二次函数与x 轴的交点个数与鉴别式的关系,还要会解不等式.17.( 4 分)( 2016?遵义)已知 x 1,x 2 是一元二次方程x 2﹣2x ﹣ 1=0 的两根,则+ = ﹣2 .【剖析】利用韦达定理求得 x 1+x 2=2,x 1?x 2=﹣ 1,而后将其代入通分后的所求代数式并求值.2x 1+x 2=2, x 1?x 2=﹣ 1, ∴+==﹣2.故答案是:﹣ 2.【评论】 本题主要考察了根与系数的关系, 将根与系数的关系与代数式变形相联合解题是一种常常使用的解题方法.18.( 4 分)(2016 秋 ?遵义期中)某商品进货单价为 30 元,按 40 元一个销售能卖 40 个;若销售单价每涨 1 元,则销量减少 1 个.为了获取最大收益, 此商品的最正确售价应为 55 元.【剖析】依据题意,总收益 =销售量×每个收益,设售价为 x 元,总收益为 W 元,则销售量为 40﹣ 1×( x ﹣ 40),每个收益为( x ﹣ 30),据此表示总收益,利用配方法可求最值. 【解答】 解:设售价为 x 元,总收益为 W 元,则 W= ( x ﹣ 30) [ 40﹣1×( x ﹣40) ] =﹣x 2+110x ﹣ 2400=﹣( x ﹣55) 2+100,则 x=55 时,获取最大收益为100 元,故答案为: 55.【评论】 本题考察二次函数的应用、 建立二次函数是解决问题的要点, 搞清楚收益、 销售量、成本、售价之间的关系,属于中考常考题型.三.(共 9 小题,共 90 分)19.( 6 分)( 2011?清远)解方程: x 2﹣ 4x ﹣1=0 .【剖析】 配方法的一般步骤: ( 1)把常数项移到等号的右侧;( 2)把二次项的系数化为 1;( 3)等式两边同时加前一次项系数一半的平方.【解答】 解:∵ x 2﹣ 4x ﹣ 1=0 ,∴ x 2﹣ 4x=1,∴ x 2﹣ 4x+4=1+4,2∴( x ﹣ 2) =5 ,∴x=2 ± ,∴x 1=2 + , x 2=2﹣ .【评论】 本题考察了配方法解一元二次方程,解题时要注意解题步骤的正确应用. 选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.20.( 8 分)( 2016 秋?遵义期中)已知对于的一元二次方程 x 2﹣ 6x+2m ﹣1=0 有两个相等的实数根,求 m 的值及方程的根.【剖析】 第一依据原方程根的状况,利用根的鉴别式求出 m 的值,即可确立原一元二次方程,从而可求出方程的根.2【解答】 解:∵对于 x 的一元二次方程x ﹣ 6x+2m ﹣ 1=0 有两个相等的实数根,22∴△ =b ﹣ 4ac=(﹣ 6) ﹣4× 1×( 2m ﹣ 1) =36﹣ 8m+4=40 ﹣ 8m=0,∴m=5 ,x 2﹣6x +9=0 ,∴对于 x 的一元二次方程是2∴( x ﹣ 3) =0 , 解得 x 1=x 2=3.【评论】 本题考察了根的鉴别式,一元二次方程根的状况与鉴别式△的关系:( 1)△> 0? 方程有两个不相等的实数根; ( 2)△ =0 ? 方程有两个相等的实数根;( 3)△< 0? 方程没有实数根.也考察了一元二次方程的解法.21.( 8 分)( 2014 秋 ?静宁县期末) 已知二次函数的极点坐标为 ( 1,4),且其图象经过点 (﹣ 2,﹣ 5),求此二次函数的分析式.【剖析】 已知二次函数的极点坐标为 ( 1,4),设抛物线的极点式为 y=a ( x ﹣ 1)2+4( a ≠ 0),将点(﹣ 2,﹣ 5)代入求 a 即可. 2【解答】 解:设此二次函数的分析式为y=a ( x ﹣ 1) +4( a ≠0).∴ a (﹣ 2﹣1) 2+4=﹣5,∴ a =﹣ 1,∴ y = ﹣( x ﹣1) 2+4= ﹣x 2+2x +3.【评论】 本题考察了用极点式求抛物线分析式的一般方法,种形式.一定娴熟掌握抛物线分析式的几22.( 10 分)( 2014 秋 ?景洪市校级期末)用长为 20cm 的铁丝,折成一个矩形,设它的一边2长为 xcm ,面积为 ycm .( 1)求出 y 与 x 的函数关系式.( 2)当边长 x 为多少时,矩形的面积最大,最大面积是多少? 【剖析】( 1)已知一边长为 xcm ,则另一边长为( 20﹣2x ).依据面积公式即可解答.(2)把函数分析式用配方法化简,得出y 的最大值.【解答】 解:( 1)已知一边长为 xcm ,则另一边长为( 10﹣ x ).则 y=x ( 10﹣ x )化简可得 y=﹣ x 2+10x2 22(2) y=10x ﹣ x =﹣( x ﹣ 10x)=﹣( x ﹣ 5) +25,因此当 x=5 时,矩形的面积最大,最大为25cm 2.【评论】 本题考察的是二次函数的应用,难度一般,要点要注意配方法的运用.23.( 10 分)( 2016 秋 ?遵义期中)抛物线 y= ﹣ 2x 2+8x ﹣ 6.( 1)求抛物线的极点坐标和对称轴; ( 2) x 取何值时, y 随 x 的增大而减小?( 3) x 取何值时, y=0; x 取何值时, y > 0; x 取何值时, y < 0.【剖析】( 1)依据配方法的步骤要求,将抛物线分析式的一般式转变为极点式,可确立极点坐标和对称轴;( 2)由对称轴 x= ﹣2,抛物线张口向下,联合图象,可确立函数的增减性;( 3)判断函数值的符号,能够令y=0,解一元二次方程求 x ,再依据抛物线的张口方向, 确立函数值的符号与x 的取值范围的对应关系.【解答】 解:( 1)∵ y=﹣ 2x 2+8x ﹣ 6= ﹣ 2( x ﹣ 2) 2+2, ∴极点坐标为( 2, 2),对称轴为直线 x=2 ; (2)∵ a=﹣ 2< 0,抛物线张口向下,对称轴为直线x=2 ,∴当 x > 2 时, y 随 x 的增大而减小;( 3)令 y=0,即﹣ 2x 2+8x ﹣ 6=0,解得 x=1 或 3,抛物线张口向下,∴当 x=1 或 x=3 时, y=0; 当 1< x < 3 时, y >0;当 x < 1 或 x > 3 时, y < 0.【评论】 本题考察了抛物线和 x 轴交点的问题, 对于抛物线极点坐标,与 x 轴的交点坐标的求法及其运用,一定娴熟掌握.24.( 10 分)(2016 秋 ?遵义期中) 宜春三中学校团委爱心社组织学生为高三学生进行献爱心 活动,学生积极捐钱.初三年级第一天收到捐钱 1000 元,第三天收到 1210 元.( 1)求这两天收到捐钱的均匀增加率.( 2)依据( 1)中的增加速度,第四天初三年级能收到多少捐钱? 【剖析】(1)设捐钱的增加率为 x ,则第三天的捐钱数目为 10000( 1+x )2 元,依据第三天 的捐钱数目为 12100 元成立方程求出其解即可. (2)依据( 1)求出的增加率列式计算即可.【解答】 解:( 1)捐钱增加率为 x ,依据题意得:210000( 1+x) =12100,解得: x1=0.1, x2=﹣ 2.1(舍去).则 x=0.1=10% .答:捐钱的增加率为10%.(2)依据题意得: 12100×( 1+10%) =13310(元).答:第四天该校能收到的捐钱是13310 元.【评论】本题考察了一元二次方程的应用,要点是读懂题意,找出题目中的等量关系,列出方程,注意把不合题意的解舍去.25.( 12 分)( 2016 秋 ?遵义期中)如图,在平面直角坐标系中,△ABC 的三个极点都在格点上,(1)画出△ ABC 对于 x 轴对称的△ A 1B1C1.(2)画出△ ABC 绕原点 O 旋转 180°后的△ A 2B 2C2.【剖析】( 1)利用对于 x 轴对称的点的坐标特色写出点A、B、C 的对称点 A1、B1、C1的坐标,而后描点即可获取△ A 1B 1C1;(2)利用对于原点对称的点的坐标特色写出点 A 、 B、 C 的对称点 A 2、B2、 C2的坐标,然后描点即可获取△ A2B2 C2.【解答】解:( 1)如图,△ A 1B 1C1为所作;(2)如图,△ A 2B 2C2为所作.【评论】本题考察了作图﹣旋转变换:依据旋转的性质可知,对应点的连线段的夹角都等于旋转角,对应线段也相等,由此能够经过作相等的角,在角的边上截取相等的线段的方法,找到对应点,按序连结得出旋转后的图形.26.(12 分)( 2016 秋 ?秀峰区校级期中)如图,在△OAB 中,∠ OAB=90 °,OA=AB=6 ,将△OAB 绕点 O 逆时针方向旋转 90°获取△ OA 1B1.(1)线段 A 1B1的长是 6 ,∠ AOA 1的度数是90°;(2)连结 AA 1,求证:四边形 OAA 1B1是平行四边形;(3)求四边形 OAA 1B 1的面积.【剖析】( 1)依据旋转的性质即可直接求解;(2)依据旋转的性质以及平行线的判断定理证明 B 1A 1∥ OA 且 A 1B1=OA 即可证明四边形OAA 1B1是平行四边形;(3)利用平行四边形的面积公式求解.【解答】解:( 1) A1B1 =AB=6 ,∠ AOA 1=90°.故答案是: 6, 90°;(2)∵ A 1B1=AB=6 , OA 1﹣OA=6 ,∠ OA 1B 1=∠OAB=90 °,∠ AOA1=90 °,∴∠ OA 1B1=∠ AOA 1, A 1B 1=OA ,∴B 1A1∥ OA ,∴四边形 OAA 1B1是平行四边形;(3) S=OA ?A 1O=6 × 6=36.即四边形 OAA 1B1的面积是 36.【评论】本题考察了旋转的性质以及平行四边形的判断和面积公式,证明B1A 1∥OA 是关键.27.( 14 分)(2016 秋 ?遵义期中)如图,抛物线 y=ax 2+bx+c( a≠ 0)与 x 轴交于 A(﹣ 4,0),B( 2, 0),与 y 轴交于点 C( 0,2).(1)求抛物线的分析式;(2)若点 D 为该抛物线上的一个动点,且在直线 AC 上方,当以 A ,C,D 为极点的三角形面积最大时,求点 D 的坐标及此时三角形的面积.【剖析】( 1)依据 A 与 B 坐标设出抛物线分析式,将 C 坐标代入即可求出;(2)过点 D 作 DH ⊥ AB 于点 H ,交直线 AC 于点 G ,连结 DC ,AD ,如下图,利用待定系数法求出直线 AC 分析式,设 D 横坐标为 m ,则有 G 横坐标也为 m ,表示出 DH 与 GH ,由 DH ﹣ GH 表示出 DG ,三角形 ADC 面积 =三角形 ADG 面积 +三角形 DGC 面积,表示出头 积与 m 的关系式,利用二次函数性质确立出头积的最大值,以及此时m 的值,即此时 D 的坐标即可.【解答】 解:( 1)依据题意设抛物线分析式为y=a ( x+4)( x ﹣ 2),把 C ( 0,2)代入得:﹣ 8a=2,即 a=﹣,则抛物线分析式为y=﹣(x+4)( x ﹣2) =﹣ x 2﹣ x+2;(2)过点 D 作 DH ⊥ AB 于点 H ,交直线 AC 于点 G ,连结 DC , AD ,如下图,设直线 AC 分析式为 y=kx +t ,则有,解得:,∴直线 AC 分析式为 y= x+2,设点 D 的横坐标为 m ,则 G 横坐标也为 m ,∴DH= ﹣ m 2﹣ m+2, GH= m+2,∴DG= ﹣m 2﹣ m+2﹣ m ﹣ 2=﹣ m 2﹣ m ,∴S △ ADC =S △ ADG +S △CDG = DG?AH + DG ?OH= DG ?AO=2DG= ﹣2﹣ 2m=﹣m (m 2 +4m ) =﹣ [ ( m+2) 2﹣ 4] =﹣ ( m+2) 2+2,当 m=﹣ 2 时, S △ ADC 获得最大值 2,此时 y D2﹣ ×(﹣ 2)+2=2 ,即 D (﹣=﹣×(﹣ 2)2, 2).【评论】 本题考察了抛物线与 x 轴的交点, 二次函数的最值, 以及待定系数法求二次函数分析式,娴熟掌握二次函数的性质是解本题的要点.。

2018年九年级(上)期中数学试题(含答案)- 精品

2018年九年级(上)期中数学试题(含答案)- 精品

2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把dcb a 称作二阶行列式,规定它的运算法则为bc ad dcb a -=.。

2018年贵州省遵义市中考数学真题及答案 精品

2018年贵州省遵义市中考数学真题及答案 精品

贵州省遵义市2018年中考数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(3分)(2018•遵义)如果+30m 表示向东走30m ,那么向西走40m 表示为( ) A . +40m B .﹣40m C .+30m D . ﹣30m考点: 正数和负数.分析: 此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可. 解答: 解:如果+30米表示向东走30米,那么向西走40m 表示﹣40m .故选B . 点评: 此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2018•遵义)一个几何体的三视图如图所示,则这个几何体是( )A.B.C.D.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.解答:解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.3.(3分)(2018•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2018年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答: 解:将3354万用科学记数法表示为:3.354×107.故选:B. 点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3分)(2018•遵义)如图,直线l 1∥l 2,若∠1=140°,∠2=70°,则∠3的度数是( )A . 70°B .80° C .65° D . 60°考点: 平行线的性质;三角形的外角性质.3718684分析: 首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数. 解答: 解:∵直线l 1∥l 2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°, ∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.5.(3分)(2018•遵义)计算(﹣ab2)3的结果是()A.﹣a3b6B.﹣a3b5C.﹣a3b5D.﹣a3b6考点:幂的乘方与积的乘方.3718684分析:利用积的乘方与幂的乘方的运算法则求解即可求得答案.解答:解:(﹣ab2)3=(﹣)3•a3(b2)3=﹣a3b6.故选D.点评:此题考查了积的乘方与幂的乘方.注意掌握指数的变化是解此题的关键.6.(3分)(2018•遵义)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.考点:概率公式;利用轴对称设计图案.3718684分析:由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.解答:解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况,∴使图中黑色部分的图形构成一个轴对称图形的概率是:=.故选A.点评:此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比.7.(3分)(2018•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,D.当x1<x2时,y1<y2y1>y2考点:一次函数图象上点的坐标特征.3718684分析:根据正比例函数图象的性质:当k<0时,y随x的增大而减小即可求解.解答:解:∵y=﹣x,k=﹣<0,∴y随x的增大而减小.故选D.点评:本题考查正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.8.(3分)(2018•遵义)如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a+b<0 B.﹣a<﹣b C.1﹣2a>1﹣2b D.|a|﹣|b|>0考点:实数与数轴.3718684分析:根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答: 解:a 、b 两点在数轴上的位置可知:﹣2<a <﹣1,b >2,∴a+b >0,﹣a >b,故A 、B 错误;∵a <b , ∴﹣2a >﹣2b ,∴1﹣2a >1﹣2b ,故C 正确; ∵|a|<2,|b|>2, ∴|a|﹣|b|<0,故D 错误. 故选C . 点评: 本题考查的是数轴的特点,根据a 、b 两点在数轴上的位置判断出其取值范围是解答此题的关键.9.(3分)(2018•遵义)如图,将边长为1cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )A . cmB . (2+π)cmC . cmD . 3cm考点: 弧长的计算;等边三角形的性质;旋转的性质.3718684分通过观察图形,可得从开始到结束经过两次翻动,求出点B 两析:次划过的弧长,即可得出所经过路径的长度.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∴∠AC(A)=120°,点B两次翻动划过的弧长相等,则点B经过的路径长=2×=π.故选C.点评:本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.10.(3分)(2018•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个考点:二次函数图象与系数的关系.3718684专题:计算题.分析:根据图象得到x=﹣2时对应的函数值小于0,得到N=4a﹣2b+c 的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.解答:解:∵图象开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0,当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.点评:此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c的符号是解题关键.二、填空题(本题共8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.)11.(4分)(2018•遵义)计算:20180﹣2﹣1= .考点:负整数指数幂;零指数幂.3718684分析:根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:20180﹣2﹣1,=1﹣,=.故答案为:.点评:本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.12.(4分)(2018•遵义)已知点P(3,﹣1)关于y轴的对称点Q 的坐标是(a+b,1﹣b),则a b的值为25 .考点:关于x轴、y轴对称的点的坐标.3718684分根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标析:不变可得a+b=﹣3,1﹣b=﹣1,再解方程可得a、b的值,进而算出a b的值.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴a+b=﹣3,1﹣b=﹣1,解得:b=2,a=﹣5,a b=25,故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.(4分)(2018•遵义)分解因式:x3﹣x= x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.3718684分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.14.(4分)(2018•遵义)如图,OC是⊙O的半径,AB是弦,且OC ⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= 52°度.考点:圆周角定理;垂径定理.3718684分析:由OC是⊙O的半径,AB是弦,且OC⊥AB,根据垂径定理的即可求得:=,又由圆周角定理,即可求得答案.解答:解:∵OC是⊙O的半径,AB是弦,且OC⊥AB,∴=,∴∠BOC=2∠APC=2×26°=52°.故答案为:52°.点评:此题考查了垂径定理与圆周角定理.此题比较简单,注意掌握数形结合思想的应用.15.(4分)(2018•遵义)已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是 3 .考点: 根与系数的关系.3718684专题: 计算题.分析: 根据根与系数的关系得到﹣2•x 1=﹣6,然后解一次方程即可.解答: 解:设方程另一个根为x 1,根据题意得﹣2•x 1=﹣6,所以x 1=3.故答案为3. 点评: 本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.16.(4分)(2018•遵义)如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= 9 cm .考点: 三角形中位线定理;矩形的性质.3718684分先求出矩形的对角线AC ,根据中位线定理可得出EF ,继而可得析:出△AEF的周长.解答:解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4cm,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.17.(4分)(2018•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).考点:扇形面积的计算.3718684分若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相析:等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.解答:解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即:=×AC ×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.点评:此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键,难度一般.18.(4分)(2018•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k >0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为(2,4).考点:反比例函数与一次函数的交点问题.3718684分析:把点B的坐标代入反比例函数解析式求出k值,再根据反比例函数图象的中心对称性求出点A的坐标,然后过点A作AE⊥x 轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),然后根据S△AOC=S△COF+S梯形ACFE﹣S△AOE列出方程求解即可得到a的值,从而得解.解答:解:∵点B(﹣4,﹣2)在双曲线y=上,∴=﹣2,∴k=8,根据中心对称性,点A、B关于原点对称,所以,A(4,2),如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C 的坐标为(a,),则S△AOC=S△COF+S梯形ACFE﹣S△AOE,=×8+×(2+)(4﹣a)﹣×8,=4+﹣4,=,∵△AOC的面积为6,∴=6,整理得,a2+6a﹣16=0,解得a1=2,a2=﹣8(舍去),∴==4,∴点C 的坐标为(2,4).故答案为:(2,4).点评:本题考查了反比例函数与一次函数的交点问题,反比例函数系数的几何意义,作辅助线并表示出△ABC的面积是解题的关键.三、解答题(本题共9小题,共88分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.解答时应写出必要的文字说明、证明过程或盐酸步骤.)19.(6分)(2018•遵义)解方程组.考解二元一次方程组.3718684点:专题:计算题.分析:由第一个方程得到x=2y+4,然后利用代入消元法其解即可.解答:解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(8分)(2018•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.3718684分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.21.(8分)(2018•遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F 处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).考点:解直角三角形的应用-仰角俯角问题.3718684分析:首先过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),则在Rt△AEN中,∠AEN=45°,可得EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,可得tan∠BCN==0.75,则可得方程:,解此方程即可求得答案.解答:解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN==0.75,∴,解得:x=1≈1.3.经检验:x=1是原分式方程的解.答:宣传牌AB的高度约为1.3m.点评:此题考查了俯角的定义.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键.22.(10分)(2018•遵义)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有400 人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是135度.(3)在条形统计图中,“非常了解”所对应的学生人数是62 人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.3718684分析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求解;(2)利用360°乘以对应的比例即可求解;(3)利用总人数减去其它的情况的人数即可求解;(4)求得调查的学生总数,则对“校园安全”知识达到“非常了解”和“基本了解”所占的比例即可求得,利用求得的比例乘以1200即可得到.解答:解:(1)参与调查的学生及家长总人数是:(16+4)÷5%=400(人);(2)基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360×=135°;(3)“非常了解”所对应的学生人数是:400﹣83﹣77﹣73﹣54﹣31﹣16﹣4=62;(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)(2018•遵义)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.考点:列表法与树状图法;概率公式.3718684分析:(1)首先设口袋中黄球的个数为x个,根据题意得:=,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.解答:解:(1)设口袋中黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:=;(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分,∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.(10分)(2018•遵义)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)求证:CM=CN ;(2)若△CMN 的面积与△CDN 的面积比为3:1,求的值.考点:矩形的性质;勾股定理;翻折变换(折叠问题).3718684 分析: (1)由折叠的性质可得:∠ANM=∠CNM ,由四边形ABCD 是矩形,可得∠ANM=∠CMN ,则可证得∠CMN=∠CNM ,继而可得CM=CN ;(2)首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案.解答:(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.25.(10分)(2018•遵义)2018年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?考点:一次函数的应用;一元一次不等式组的应用.3718684分析:(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,所以,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:组甲种货车5辆,乙种货车11辆;方案二:组甲种货车6辆,乙种货车10辆;方案三:组甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得,y=1500x+1200(16﹣x),=300x+19200,∵300>0,∴当x=5时,y有最小值,y最小=300×5+19200=20700元;方法二:当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.26.(12分)(2018•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t <2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.考点:相似形综合题.3718684分析:根据勾股定理求得AB=5cm.(1)分类讨论:△AMP∽△ABC和△APM∽△ABC两种情况.利用相似三角形的对应边成比例来求t的值;(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比例求得以t表示的PH的值;然后根据“S=S△ABC﹣S△BPH”列出S与t的关系式S=(t﹣)2+(0<t<2.5),则由二次函数最值的求法即可得到S的最小值.解答:解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC﹣S△BPH,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.点本题综合考查了相似三角形的判定与性质、平行线分线段成比评: 例,二次函数最值的求法以及三角形面积公式.解答(1)题时,一定要分类讨论,以防漏解.另外,利用相似三角形的对应边成比例解题时,务必找准对应边.27.(14分)(2018•遵义)如图,已知抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(4,﹣),且与y 轴交于点C (0,2),与x 轴交于A ,B 两点(点A 在点B 的左边).(1)求抛物线的解析式及A ,B 两点的坐标;(2)在(1)中抛物线的对称轴l 上是否存在一点P ,使AP+CP 的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)在以AB 为直径的⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE 的解析式.考点:二次函数综合题.3718684专题:综合题.分析:(1)利用顶点式求得二次函数的解析式后令其等于0后求得x 的值即为与x轴交点坐标的横坐标;(2)线段BC的长即为AP+CP的最小值;(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.解答:解:(1)由题意,设抛物线的解析式为y=a(x﹣4)2﹣(a≠0)∵抛物线经过(0,2)∴a(0﹣4)2﹣=2解得:a=∴y=(x﹣4)2﹣即:y=x2﹣x+2当y=0时,x2﹣x+2=0解得:x=2或x=6∴A(2,0),B(6,0);(2)存在,如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)∴OB=6,OC=2∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2;(3)如图3,连接ME∵CE是⊙M的切线∴ME⊥CE,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE∵在△COD与△MED中∴△COD≌△MED(AAS),∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=∴D(,0)设直线CE的解析式为y=kx+b∵直线CE过C(0,2),D(,0)两点,则解得:∴直线CE的解析式为y=﹣+2;点评:本题考查了二次函数的综合知识,特别是用顶点式求二次函数的解析式,更是中考中的常考内容,本题难度偏大.。

贵州省遵义市九年级上学期期中数学试卷

贵州省遵义市九年级上学期期中数学试卷

贵州省遵义市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)把一元二次方程化成一般式之后,其二次项系数与一次项分别是()A . 2,-3B . -2,-3C . 2,-3xD . -2,-3x2. (2分)下列命题中的真命题是()A . 对角线互相垂直的四边形是菱形B . 中心对称图形都是轴对称图形C . 两条对角线相等的梯形是等腰梯形D . 等腰梯形是中心对称图形3. (2分) (2018九上·宁波期中) 抛物线的顶点坐标是()A . (1,2)B . (-1,2)C . (1,-2)D . (-1,-2)4. (2分) (2019九上·江阴期中) 下列方程是一元二次方程的是()A . x+2y=1B . x+y2=1C .D . x2﹣2=05. (2分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A . 9B . 11C . 13D . 146. (2分)如图,把△ABC绕点C顺时针旋转35°后,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A . 65°B . 55°C . 35°D . 75°7. (2分) (2019九上·江都月考) 用配方法解方程时,配方后所得的方程为()A .B .C .D .8. (2分)(2016·张家界模拟) 抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= 在同一坐标系内的图象大致为()A .B .C .D .9. (2分)(2017·长春模拟) 如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′是()A . 46°B . 45°C . 44°D . 43°10. (2分)同一坐标平面内,图象不可能由函数y=2x2+1的图象通过平移变换、轴对称变换和旋转变换得到的函数是()A .B . y=2x2+3C . y=-2x2-1D . y=2(x+1)2-111. (2分)如图,矩形ABCD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为()A . 7B . 6C . 5D . 412. (2分) (2017九上·凉山期末) 根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()A . 只有一个交点B . 有两个交点,且它们分别在y轴两侧C . 有两个交点,且它们均在y轴同侧D . 无交点二、填空题 (共6题;共6分)13. (1分) (2019九上·东莞期中) 方程x2-2ax+3=0有一个根是1,a的值是________。

贵州省遵义市九年级数学上学期期中试题(无答案) 新人教版

贵州省遵义市九年级数学上学期期中试题(无答案) 新人教版

贵州省遵义市2018届九年级数学上学期期中试题一、选择题(每小题3分,共36分)1.下列方程是一元二次方程的是 ( )A.x (4-7x 2)=0;B.(3x -3)(x +1)=(x -3)(3x +5)C.2112x x=-; D.4x 2=1-x ; 2.下面的图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.将抛物线y=(x ﹣1)2+3向右平移1个单位,再向上平移3个单位后所得抛物线的表达式为( )A .y=(x ﹣2)2B .y=x 2C .y=x 2+6D .y=(x ﹣2)2+64.如图,将△ABC 绕点P 顺时针旋转90°得到△A′B′C′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)5.若a 是方程2 x 2﹣x ﹣3=0的一个解,则6 a 2﹣3a 的值为( )A .3B .﹣3C .9D .﹣9 6.“十一”期间,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,则这次参加比赛的队伍有( )A. 12支B. 11支C. 9支D. 10支7.在同一直角坐标系中,函数y=a x 2﹣b 与y=ax +b (ab ≠0)的图象大致如图( )A .B .C .D .8.若A(-6,y 1),B(-3,y 2),C(1,y 3)为二次函数y =x 2+4x -5图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 39.某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x ,根据题意,得( )A .5000(1+ x 2)=7200B .5000(1+x )+5000(x+1)2=7200C .5000(x+1)2=7200D .5000+5000(1+x )+5000(x+1)2=720010.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=311.二次函数y=a x2+bx+c(a≠0)对于x的任何值都恒为负值的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<012.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2 B.3 C.4 D.5二、填空题(每小题4分,共24分)13.若函数方程(m﹣2)x|m|+3mx+1=0是关于x的一元二次方程,则m的值为.14.一元二次方程x2﹣7x+3=0的两个实数根分别为x1和x2,则x1x2+ x1+ x2= .15.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.16.已知点P(x,﹣3)和点Q(4,y)关于原点对称,则x+y等于.17.与抛物线y=﹣(x﹣2)2﹣4关于原点对称的抛物线的解析式为.18.如图,将边长为12cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着 AD 方向平移, 得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于.三、解答题19.用适当的方法解下列方程(10分)(1)x2+x﹣12=0 (2)(x+3)2=﹣2(x+3)20.已知关于x的方程x2+2x+a﹣2=0.(8分)(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.已知二次函数y=a x2+bx+c的图象经过点(﹣1,0)、(5,0)、(0、﹣5).(8分)(1)求此二次函数的解析式;(2)当0≤x≤5时,求此函数的最小值与最大值.22.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(10分)(1)降价前商品每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?23.如图,二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(10分) (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.24.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(10分)(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大,最大总量是多少?25.如图,已知抛物线y1=﹣2 x2+2与直线y2=2x+2交于A、B两点(10分)(1)求线段AB的长度;(2)结合图象,请直接写出﹣2 x2+2>2x+2的解集.26.如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(12)(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.27如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(12)(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求求点P的坐标,△AEM的面积。

贵州省遵义市九年级上学期数学期中考试试卷

贵州省遵义市九年级上学期数学期中考试试卷

贵州省遵义市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分)当a________时,关于x的方程(a﹣2)x2+2x﹣3=0是一元二次方程.2. (1分) (2018八上·衢州月考) 周长为12,各边长均为整数的等腰三角形的三边长分别为________.3. (1分) (2016九上·大石桥期中) 若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.4. (1分) (2019九上·海淀期中) 若二次函数的图象上有两点 , 则________ .(填“>”,“=”或“<”)5. (1分) (2017九上·潮阳月考) 如图,△ABC中,∠B=90°,∠C=30°,BC= ,将△ABC 绕顶点A旋转180°,点C落在C′处,则CC′的长为________.6. (1分)(2017·濮阳模拟) 已知二次函数y=x2+(m﹣2)x+1,当x>1时,y随x的增大而增大,则m的取值范围是________.二、解答题 (共6题;共50分)7. (5分)(2018·松滋模拟) 综合题(1)计算:(﹣2010)0+ ﹣2sin60°﹣3tan30°+ ;(2)解方程:x2﹣6x+2=0;(3)已知关于x的一元二次方程x2﹣mx﹣2=0.①若﹣1是方程的一个根,求m的值和方程的另一根;②证明:对于任意实数m,函数y=x2﹣mx﹣2的图象与x轴总有两个交点.8. (5分) (2018九上·临河期中) 二次函数y=ax2+bx+c的对称轴为x=3,最小值为−2,且过(0,1),求此函数的解析式.9. (10分) (2017九上·鸡西期末) 如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:①将△ABC向上平移3个单位长度,画出平移后的△A1B1C1 ,写出A1、C1的坐标;②将△A1B1C1绕B1逆时针旋转90°,画出旋转后的△A2B1C2 ,求线段B1C1旋转过程中扫过的面积(结果保留π).10. (5分)解答题(1)解方程(x﹣2)(x﹣3)=0;(2)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,求m的值取值范围.11. (10分) (2015七下·龙海期中) 3月份阴雨天气,使得商场的一款衣服烘干机脱硝,该商场以150元/台的价格购进这款烘干机若干台,很快售完,商场用相同的进货款再次购进这款烘干机,因价格提高30元,进货量减少了10台.(1)该商场第一次购进这款烘干机多少台?(2)商场以240元/台的售价卖完这两批烘干机,商场获利多少元?12. (15分) (2017九上·临海期末) 已知抛物线y=x2+bx+4经过点(2,-2).(1)求出这个抛物线的解析式;(2)求这个抛物线的顶点坐标.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、解答题 (共6题;共50分)7-1、7-2、7-3、8-1、9-1、10-1、10-2、11-1、11-2、12-1、12-2、。

2018学年贵州省遵义市初中数学中考真题(附答案与试题解析)

2018学年贵州省遵义市初中数学中考真题(附答案与试题解析)

贵州省遵义市2018年中考数学真题试题一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=15.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35° B.55° C.56° D.65°6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差 B.中位数C.众数 D.最高环数7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF 的最小值为.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF 为等腰三角形时,求AP的长.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35° B.55° C.56° D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差 B.中位数C.众数 D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.10.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【分析】想办法证明S△PEB=S△PFD解答即可.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.11.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是 2 .【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37 度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035 .【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8 .【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4 m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160 人,扇形统计图中A部分的圆心角是54 度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF 为等腰三角形时,求AP的长.【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC 与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

贵州遵义市2018年中考数学试题及解析

贵州遵义市2018年中考数学试题及解析

2018年贵州省遵义市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.(3分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15 C.(﹣a2b3)2=a4b6 D.3a2﹣2a2=15.(3分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣ B.y=﹣ C.y=﹣ D.y=12.(3分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4分)计算﹣1的结果是.14.(4分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE 的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE <BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.2018年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x 1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.10.(3分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【分析】想办法证明S△PEB =S△PFD解答即可.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC =S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP =S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.11.(3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO =×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.12.(3分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4分)计算﹣1的结果是 2 .【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37 度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035 .【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.18.(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE 的长为 2.8 .【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4 m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160 人,扇形统计图中A部分的圆心角是54 度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE <BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM =S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

(真题)2018年贵州省遵义市中考数学试卷(有答案)(Word版)AUPPnM

(真题)2018年贵州省遵义市中考数学试卷(有答案)(Word版)AUPPnM

2018年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=15.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b 的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.2018年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )A .4B .﹣4C .3D .﹣3【分析】直接利用根与系数的关系得出x 1+x 2=﹣b ,x 1x 2=﹣3,进而求出答案.【解答】解:∵x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,∴x 1+x 2=﹣b ,x 1x 2=﹣3,则x 1+x 2﹣3x 1x 2=5,﹣b ﹣3×(﹣3)=5,解得:b=4.故选:A .10.(3.00分)如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18【分析】想办法证明S △PEB =S △PFD 解答即可.【解答】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN ,∴S △DFP =S △PBE =×2×8=8,∴S 阴=8+8=16,故选:C .11.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣B .y=﹣C .y=﹣D .y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S △AOD =2,即可得出答案.【解答】解:过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,∵∠BOA=90°,∴∠BOC +∠AOD=90°,∵∠AOD +∠OAD=90°,∴∠BOC=∠OAD ,又∵∠BCO=∠ADO=90°,∴△BCO ∽△ODA , ∴=tan30°=, ∴=, ∵×AD ×DO=xy=3,∴S △BCO =×BC ×CO=S △AOD =1,∴S △AOD =2,∵经过点B 的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C .12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是2.【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160人,扇形统计图中A部分的圆心角是54度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME 面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S=,此时M坐标为(,3);最大(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

2018年贵州省遵义市中考数学试卷含答案解析(Word版)

2018年贵州省遵义市中考数学试卷含答案解析(Word版)

2018年贵州省遵义市中考数学一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1 5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,(计算结果精确到0.1m,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC 上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.2018年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.10.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A .10B .12C .16D .18【分析】想办法证明S △PEB =S △PFD 解答即可.【解答】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN ,∴S △DFP =S △PBE =×2×8=8,∴S 阴=8+8=16,故选:C .11.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣B .y=﹣C .y=﹣D .y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S △AOD =2,即可得出答案.【解答】解:过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,∵∠BOA=90°,∴∠BOC +∠AOD=90°,∵∠AOD +∠OAD=90°,∴∠BOC=∠OAD ,又∵∠BCO=∠ADO=90°,∴△BCO ∽△ODA , ∴=tan30°=, ∴=, ∵×AD ×DO=xy=3,∴S △BCO =×BC ×CO=S △AOD =1,∴S △AOD =2,∵经过点B 的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C .12.(3.00分)如图,四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=5,BC=10,连接AC 、BD ,以BD 为直径的圆交AC 于点E .若DE=3,则AD 的长为( )A .5B .4C .3D .2【分析】先求出AC ,进而判断出△ADF ∽△CAB ,即可设DF=x ,AD=x ,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是2.【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,(计算结果精确到0.1m,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160人,扇形统计图中A部分的圆心角是54度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A 的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC 上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S=,此时M坐标为(,3);最大(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

贵州初三初中数学期中考试带答案解析

贵州初三初中数学期中考试带答案解析

贵州初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列方程中,是一元二次方程的是( ) A .x 2+2x+y="1"B .x 2+﹣1="0" C .x 2="0"D .(x+1)(x+3)=x 2﹣12.抛物线y=3(x ﹣2)2+3的顶点坐标为( ) A .(﹣2,3) B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)3.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .4.将抛物线y=2x 2向左平移1个单位,再向下平移2个单位,得到的抛物线是( )A .y=2(x+1)2+2B .y=2(x ﹣1)2+2C .y=2(x ﹣1)2﹣2D .y=2(x+1)2﹣25.方程x 2﹣2x=0的根是( ) A .x 1=0,x 2=﹣2 B .x 1=0,x 2="2"C .x="0"D .x=26.用配方法解方程3x 2﹣6x+1=0,则方程可变形为( ) A .(x ﹣3)2=B .3(x ﹣1)2=C .(3x ﹣1)2="1"D .(x ﹣1)2=7.若A (﹣3,y 1),B (﹣1,y 2),C (2,y 3)为二次函数y=x 2﹣2x ﹣3的图象上的三点,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 2<y 1 D .y 3<y 1<y 28.贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x ,则下列方程正确的是( )A .6000(1+x )2="4000"B .4000(1+x )2=6000C .4000(1﹣x )2="6000"D .6000(1﹣x )2=40009.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .10.如图所示,二次函数y=ax 2+bx+c 的图象中,王刚同学观察得出了下面四条信息:(1)b 2﹣4ac >0;(2)c >1;(3)2a ﹣b <0;(4)a+b+c <0,其中错误的有( )A .1个B .2个C .3个D .4个二、填空题1.把方程x (x+3)﹣2x+1=5x ﹣1化成一般形式为: .2.方程(x+2)2﹣9=0的解为: .3.抛物线y=﹣2(x ﹣1)2+3可以通过抛物线y= 向 平移 个单位、再向 平移 个单位得到,其对称轴是 .4.中心对称图形的旋转角是 .5.方程x 2+3x+1=0的根的情况是: .6.设x 1、x 2是方程2x 2﹣x ﹣1=0的两个根,则x 1+x 2= ,x 1•x 2= .7.若y=(n 2+n )x 是二次函数,则n= . 8.如图所示,在同一坐标系中,作出①y=3x 2②y=x 2③y=x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .9.请写出一个开口向下,对称轴为直线x=1,且与y 轴的交点坐标为(0,2)的抛物线的解析式 .10.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n 行有n 个点,容易看出,10是三角点阵中前4行的点数和,则300个点是前 行的点数和.三、解答题1.解下列方程(1)x 2﹣5x ﹣6=0 (2)2(x ﹣3)2=8 (3)4x 2﹣6x ﹣3=0(4)(2x ﹣3)2=5(2x ﹣3)2.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点A (﹣2,2),B (0,5),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形.(2)平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),请画出平移后对应的△A 2B 2C 2的图形. (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.3.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即|a|=问:(1)这种分析方法涌透了数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).4.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?贵州初三初中数学期中考试答案及解析一、选择题1.下列方程中,是一元二次方程的是()A.x2+2x+y="1"B.x2+﹣1="0"C.x2="0"D.(x+1)(x+3)=x2﹣1【答案】C.【解析】A:含有两个未知数,不是一元二次方程;B:含有分母,是分式方程,不是整式方程,所以不是一元二次方程;C:符合一元二次方程的定义,是一元二次方程;D:化简后不含二次项,不是一元二次方程;故本题选C.【考点】一元二次方程的定义;方程的定义.2.抛物线y=3(x﹣2)2+3的顶点坐标为()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【答案】B .【解析】抛物线y=3(x ﹣2)2+3的顶点坐标为(2,3).故选B . 【考点】二次函数的性质.3.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .【答案】B .【解析】中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;∵选项A 中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形, ∴选项A 不正确;∵选项B 中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B 正确;∵选项C 中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形, ∴选项C 不正确;∵选项D 中的图形旋转180°后能与原图形重合, ∴此图形是中心对称图形,但它不是轴对称图形, ∴选项D 不正确. 故选:B .【考点】中心对称图形;轴对称图形.4.将抛物线y=2x 2向左平移1个单位,再向下平移2个单位,得到的抛物线是( )A .y=2(x+1)2+2B .y=2(x ﹣1)2+2C .y=2(x ﹣1)2﹣2D .y=2(x+1)2﹣2【答案】D .【解析】∵抛物线y=2x 2向左平移1个单位,再向下平移2个单位后的顶点坐标为(﹣1,﹣2),∴得到的抛物线是y=2(x+1)2﹣2. 故选D .【考点】二次函数图象与几何变换.5.方程x 2﹣2x=0的根是( ) A .x 1=0,x 2=﹣2 B .x 1=0,x 2="2" C .x="0" D .x=2【答案】B .【解析】x (x ﹣2)=0, x=0或x ﹣2=0, 所以x 1=0,x 2=2. 故选B .【考点】解一元二次方程-因式分解法.6.用配方法解方程3x 2﹣6x+1=0,则方程可变形为( ) A .(x ﹣3)2=B .3(x ﹣1)2=C .(3x ﹣1)2="1"D .(x ﹣1)2=【答案】D .【解析】原方程为3x 2﹣6x+1=0,二次项系数化为1,得x 2﹣2x=﹣, 即x 2﹣2x+1=﹣+1,所以(x ﹣1)2=.故选D .【考点】解一元二次方程-配方法.7.若A (﹣3,y 1),B (﹣1,y 2),C (2,y 3)为二次函数y=x 2﹣2x ﹣3的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 2【答案】B .【解析】根据二次函数图象上点的坐标特征,将A (﹣3,y 1),B (﹣1,y 2),C (2,y 3)分别代入二次函数的关系式,∴y 1=9+6﹣3=12,即y 1=12, y 2=1+2﹣3=0,即y 2=0,y 3=4﹣4﹣3=﹣3,即y 3=﹣3, ∵﹣3<0<12, ∴y 3<y 2<y 1. 故选C .【考点】二次函数图象上点的坐标特征.8.贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x ,则下列方程正确的是( )A .6000(1+x )2="4000"B .4000(1+x )2=6000C .4000(1﹣x )2="6000"D .6000(1﹣x )2=4000【答案】B .【解析】设平均年增长的百分率为x ,根据增长后=增长前的×(1+增长率),即可得到2015年的产量是4000(1+x ),2016年的产量是4000(1+x )2,由题意得出题中的等量关系列出方程即可. 【解答】解:设平均年增长的百分率为x ,由题意得 4000(1+x )2=6000 故选B .【考点】由实际问题抽象出一元二次方程.9.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .【答案】D .【解析】∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0时,二次函数开口向上,一次函数经过一、三象限,故C 选项错误; 当a <0时,二次函数开口向下,一次函数经过二、四象限,故A 选项错误; 故选:D .【考点】二次函数的图象;一次函数的图象.10.如图所示,二次函数y=ax 2+bx+c 的图象中,王刚同学观察得出了下面四条信息:(1)b 2﹣4ac >0;(2)c >1;(3)2a ﹣b <0;(4)a+b+c <0,其中错误的有( )A .1个B .2个C .3个D .4个【答案】A .【解析】(1)图象与x 轴有2个交点,依据根的判别式可知b 2﹣4ac >0,正确; (2)图象与y 轴的交点在1的下方,所以c <1,错误;(3)∵对称轴在﹣1的右边,∴﹣>﹣1,又∵a <0,∴2a ﹣b <0,正确;(4)当x=1时,y=a+b+c <0,正确;故错误的有1个. 故选:A .【考点】二次函数图象与系数的关系.二、填空题1.把方程x (x+3)﹣2x+1=5x ﹣1化成一般形式为: . 【答案】x 2﹣4x+2=0.【解析】x (x+3)﹣2x+1=5x ﹣1, x 2+3x ﹣2x+1﹣5x+1=0, x 2﹣4x+2=0,故答案为:x 2﹣4x+2=0.【考点】一元二次方程的一般形式.2.方程(x+2)2﹣9=0的解为: . 【答案】x 1=1,x 2=﹣5. 【解析】(x+2)2=9, ∴x+2=±3, ∴x=﹣2±3,即x 1=1,x 2=﹣5,故答案为:x 1=1,x 2=﹣5.【考点】解一元二次方程-直接开平方法.3.抛物线y=﹣2(x ﹣1)2+3可以通过抛物线y= 向 平移 个单位、再向 平移 个单位得到,其对称轴是 . 【答案】y=﹣2x 2,右,1,上,3,x=1.【解析】确定出y=﹣2(x ﹣1)2+3的顶点坐标,再根据顶点的变化确定出平移方法,然后根据二次函数的性质分别写出开口方向,对称轴,顶点坐标和最值即可.试题解析:∵y=﹣2(x ﹣1)2+3的顶点坐标为(1,3),y=﹣2x 2的顶点坐标为(0,0),∴二次函数y=﹣2(x ﹣1)2+3的图象是由抛物线y=﹣3x 2向右平移1个单位,再向上平移3个单位得到的;对称轴是直线x=1,故答案为:y=﹣2x 2,右,1,上,3,x=1. 【考点】二次函数图象与几何变换.4.中心对称图形的旋转角是 . 【答案】180°【解析】利用中心对称图形的定义解答即可; 【解答】解:中心对称图形的旋转角是180°, 故答案为:180°.【考点】中心对称图形.5.方程x 2+3x+1=0的根的情况是: . 【答案】有两个不相等的实数根【解析】∵b 2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根, 故答案为:有两个不相等的实数根. 【考点】根的判别式.6.设x 1、x 2是方程2x 2﹣x ﹣1=0的两个根,则x 1+x 2= ,x 1•x 2= . 【答案】;﹣【解析】∵x 1、x 2是方程2x 2﹣x ﹣1=0的两个根,∴x 1+x 2=,x 1•x 2=﹣,故答案为:,﹣.【考点】根与系数的关系.7.若y=(n 2+n )x 是二次函数,则n= .【答案】2【解析】根据二次函数定义可得n 2﹣n=2,且n 2+n≠0,解得:n=2, 故答案为:2.【考点】二次函数的定义.8.如图所示,在同一坐标系中,作出①y=3x 2②y=x 2③y=x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .【答案】①③②【解析】试题解析:①y=3x 2,②y=x 2,③y=x 2中,二次项系数a 分别为3、、1,∵3>1>,∴抛物线②y=x 2的开口最宽,抛物线①y=3x 2的开口最窄.故依次填:①③②.【考点】二次函数的图象.9.请写出一个开口向下,对称轴为直线x=1,且与y 轴的交点坐标为(0,2)的抛物线的解析式 . 【答案】x 2+2x+2【解析】设抛物线解析式为y=ax 2+bx+c ,∵开口向下, ∴可取a=﹣1,∵对称轴为直线x=1,∴﹣=1,解得b=2,∵与y 轴的交点坐标为(0,2),∴c=2, ∴抛物线解析式为y=﹣x 2+2x+2, 故答案为:y=﹣x 2+2x+2. 【考点】二次函数的性质.10.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n 行有n 个点,容易看出,10是三角点阵中前4行的点数和,则300个点是前 行的点数和.【答案】24.【解析】由于第一行有1个点,第二行有2个点…第n 行有n 个点…,则前n 行共有(1+2+3+4+5+…+n )个点,然后求它们的和,前n 行共有个点,则=300,整理这个方程,得:n 2+n ﹣600=0,解方程得:n 1=24,n 2=﹣25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300. 故答案为:24.【考点】规律型:图形的变化类.三、解答题1.解下列方程(1)x 2﹣5x ﹣6=0 (2)2(x ﹣3)2=8 (3)4x 2﹣6x ﹣3=0(4)(2x ﹣3)2=5(2x ﹣3)【答案】(1)x=6或x=﹣1;(2)x 1=5,x 2=1;(3)x 1=,x 2=;【解析】(1)因式分解法求解可得; (2)直接开平方法求解可得; (3)公式法求解可得;(4)因式分解法求解可得.试题解析:(1)原方程可化为:(x ﹣6)(x+1)=0, ∴x ﹣6=0或x+1=0, ∴x=6或x=﹣1;(2)方程两边同除以2,得:(x ﹣3)2=4, ∴x ﹣3=±2,∴x ﹣3=2或x ﹣3=﹣2; ∴x 1=5,x 2=1;(3)∵a=4,b=﹣6,c=﹣3∴△=b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84>0, ∴x 1=,x 2=;(4)移项,得:(2x ﹣3)2﹣5(2x ﹣3)=0, ∴(2x ﹣3)〔(2x ﹣3)﹣5〕=0, ∴2x ﹣3=0或2x ﹣8=0, ∴x=或x=4.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.2.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点A (﹣2,2),B (0,5),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形.(2)平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),请画出平移后对应的△A 2B 2C 2的图形. (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.【答案】(1)见试题解析;(2)见试题解析;(3)(3)旋转中心坐标(0,﹣2). 【解析】(1)利用旋转的性质得出对应点坐标进而得出答案; (2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标. 试题解析:(1)如图所示:△A 1B 1C 即为所求; (2)如图所示:△A 2B 2C 2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.3.阅读材料,解答下列问题.例:当a >0时,如a=6则|a|=|6|=6,故此时a 的绝对值是它本身; 当a=0时,|a|=0,故此时a 的绝对值是零;当a <0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a 的绝对值是它的相反数. ∴综合起来一个数的绝对值要分三种情况,即 |a|=问:(1)这种分析方法涌透了 数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).【答案】(1)分类讨论;(2)=;(3)8.【解析】(1)根据数学上的分类讨论思想得出即可; (2)利用利用分类讨论得出即可; (3)利用化简结果得出即可;(4)利用(2)中所求进而化间得出即可. 试题解析:(1)分类讨论; (2)当a >0时,如a=5则;,故此时展开后是它本身,当a=0时,,故此时是零,当a <0时,如a=﹣6,则,故此时的展开后是它的相反数,∴综合起来一个数的绝对值要分三种情况, =;(3);(4)(﹣3≤x≤5)=|x ﹣5|+|x+3| =5﹣x+x+3 =8.【考点】二次根式的性质与化简.4.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件. (1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?【答案】(1)若商场平均每天赢利1200元,每件衬衫应降价10元或20元;(2)每件衬衫降价15元时,商场平均每天赢利最多.【解析】(1)设每件衬衫应降价x 元,根据每件的利润×销售量=平均每天的盈利,列方程求解即可;(2)根据:总利润=单件利润×销售量列出函数关系式,配方成二次函数顶点式可得函数最值情况.试题试题解析:(1)设每件衬衫应降价x 元,则依题意,得:(40﹣x )(20+2x )=1200, 整理,得,﹣2x 2+60x+800=1200, 解得:x 1=10,x 2=20,答:若商场平均每天赢利1200元,每件衬衫应降价10元或20元; (2)设每件衬衫降价x 元时,商场平均每天赢利最多为y ,则y=(40﹣x )(20+2x )=﹣2x 2+60x+800=﹣2(x 2﹣30x )+800=﹣2(x ﹣15)2+1250 ∵﹣2(x ﹣15)2≤0,∴x=15时,赢利最多,此时y=1250元,答:每件衬衫降价15元时,商场平均每天赢利最多. 【考点】二次函数的应用;一元二次方程的应用.。

贵州省遵义市九年级上学期期中数学试卷

贵州省遵义市九年级上学期期中数学试卷

贵州省遵义市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是()A . ﹣3B . 3C . ±2D . ±32. (2分) (2012·丹东) 下列事件为必然事件的是()A . 任意买一张电影票,座位号是偶数B . 打开电视机,正在播放动画片C . 3个人分成两组,一定有2个人分在一组D . 三根长度为2cm,2cm,4cm的木棒能摆成三角形3. (2分) (2016九上·呼和浩特期中) 如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过()A . 第一、二、三、四象限B . 第一、二、三象限C . 第一、二、四象限D . 第二、三、四象限4. (2分)一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,不能选择的是()A . ①B . ②C . ③D . ④5. (2分)若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(3+,y3)三点,则y1、y2、y3的大小关系正确的是()A . y1>y2>y3B . y1>y3>y2C . y2>y1>y3D . y3>y1>y26. (2分) (2015九上·宁海月考) 下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.A . 1个B . 2个C . 3个D . 4个7. (2分)(2017·高邮模拟) 已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为()A . 2B . 3C . 4D . 59. (2分)若⊙O所在平面内一点P到⊙O上的点的最大距离为m,最小距离为n(m>n),则此圆的半径为()A .B .C . 或D . m+n或m-n10. (2分)不等式组(x为未知数)无解,则函数y=(3−a)x2−x+图象与x轴()A . 相交于两点B . 没有交点C . 相交于一点D . 相交于一点或没有交点二、填空题 (共6题;共7分)11. (1分)某暗箱中放有10个球,其中有红球3个,白球和蓝球若干,从中任取一白球的概率为,则蓝球的个数是________个 .12. (1分) (2019九上·张家港期末) 抛物线y=﹣(x﹣4)2+2的最大值为________.13. (1分) (2020九上·兴安盟期末) 如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o ,则∠A的度为________.14. (1分)(2016·兖州模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=BC= ,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是________15. (1分) (2019九上·余杭期中) 已知⊙O的半径OA=r ,弦AB , AC的长分别是 r , r ,则∠BAC的度数为________.16. (2分) (2015八下·滦县期中) 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让向右运动,最后A点与N点重合,则重叠部分面积ycm2与MA长度xcm之间关系式________;自变量的取值范围是________.三、解答题 (共7题;共59分)17. (10分)(2015·丽水) 如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.18. (6分)如图可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向数字1的概率为________;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.19. (5分)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD的一个外角.∠DAE与∠DAC 相等吗?为什么?20. (11分) (2017八下·嘉祥期末) 阅读下列解题过程,并解答后面的问题:如图1,在平面直角坐标系xOy中,A(x1 , y1),B(x2 , y2),C为线段AB的中点,求C点的坐标.解:分布过A、C做x轴的平行线,过B、C做y轴的平行线,两组平行线的交点如图1所示.设C(x0 , y0),则D(x0 , y1),E(x2 , y1),F(x2 , y0)由图1可知:x0= =y0= =∴(,)问题:(1)已知A(﹣1,4),B(3,﹣2),则线段AB的中点坐标为________(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,﹣4),(0,2),(5,6),求点D的坐标.(3)如图2,B(6,4)在函数y= x+1的图象上,A(5,2),C在x轴上,D在函数y= x+1的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.21. (2分) (2018九上·北京期末) 在数学课上,老师提出利用尺规作图完成下面问题:已知:∠A CB是△ABC的一个内角求作:∠APB=∠ACB小路的作法如下:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小路的作法如下:如图,①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在优弧AC上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小路的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是________;(2)∠APB=∠ACB的依据是________.22. (10分) (2017九下·东台期中) 本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.(1)请你帮他们求出该湖的半径;(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到?23. (15分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共59分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018学年贵州省遵义三十一中九年级(上)期中数学试卷
一、选择题(每小题3分,共36分)
1.(3分)下列方程是一元二次方程的是()
A.x(4﹣7x2)=0 B.(3x﹣3)(x+1)=(x﹣3)(3x+5)
C.=1﹣2x D.4x2=1﹣x
2.(3分)下面的图形中既是轴对称图形又是中心对称图形的是()
A.B.C.D.
3.(3分)将抛物线y=(x﹣1)2+3向右平移1个单位,再向上平移3个单位后所得抛物线的表达式为()
A.y=(x﹣2)2 B.y=x2 C.y=x2+6 D.y=(x﹣2)2+6
4.(3分)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()
A.(1,1) B.(1,2) C.(1,3) D.(1,4)
5.(3分)若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为()
A.3 B.﹣3 C.9 D.﹣9
6.(3分)“十一”期间,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,则这次参加比赛的队伍有()
A.12支B.11支C.9支 D.10支
7.(3分)在同一直角坐标系中,函数y=ax2﹣b与y=ax+b(ab≠0)的图象大致如图()A.B.C.D.
8.(3分)若A(﹣6,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5图象上的三点,则y1,y2,y3的大小关系是()
A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3
9.(3分)某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x,根据题意,得()
A.5000(1+x2)=7200
B.5000(1+x)+5000(1+x)2=7200
C.5000(1+x)2=7200
D.5000+5000(1+x)+5000(1+x)2=7200
10.(3分)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()
A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
11.(3分)二次函数y=ax2+bx+c(a≠0)对于x的任何值都恒为负值的条件是()
A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0
12.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()
A.2 B.3 C.4 D.5
二、填空题(每小题4分,共24分)
13.(4分)方程(m﹣2)x|m|+3mx+1=0是关于x的一元二次方程,则m=.
14.(4分)一元二次方程x2﹣7x+3=0的两个实数根分别为x1和x2,则x1x2+x1+x2=.15.(4分)如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.
16.(4分)已知点P(x,﹣3)和点Q(4,y)关于原点对称,则x+y等于.
17.(4分)与抛物线y=﹣(x﹣2)2﹣4关于原点对称的抛物线的解析式为.18.(4分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向向。

相关文档
最新文档