工程光学习题集解答第九章_光的电磁理论基础

合集下载

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

工程光学练习题与解答

工程光学练习题与解答

工程光学练习题与解答工程光学练习题与解答光学作为一门应用广泛的工程学科,对于工程师们来说是非常重要的一门课程。

理解光学原理和应用是工程师在设计和制造光学器件和系统时必备的技能。

为了帮助读者更好地理解和掌握工程光学知识,本文将提供一些光学练习题和详细的解答。

1. 一个平行光束垂直入射到一个半径为R的球面透镜上,透镜的焦距为f。

求出该透镜的曲率半径和球面上的光焦点位置。

解答:根据透镜公式,1/f = (n-1)(1/R1 - 1/R2),其中n为透镜的折射率,R1和R2分别为透镜两个球面的曲率半径。

由于球面透镜是对称的,所以R1 = R2 = R。

将入射光束的方向与透镜法线方向垂直,可以得到R = 2f。

由于光线垂直入射到球面透镜上,入射角为0,根据球面折射定律,折射角为0。

因此,光线通过透镜后仍然是平行光束,光焦点位置在无穷远处。

2. 一个凸透镜的焦距为20cm,物距为30cm。

求出像的位置和放大倍数。

解答:根据薄透镜公式,1/f = 1/v - 1/u,其中f为透镜焦距,v为像距,u为物距。

代入已知数据,得到1/20 = 1/v - 1/30。

解方程得到v = 60cm。

根据放大倍数公式,放大倍数为m = -v/u。

代入已知数据,得到m = -60/30 = -2。

由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为2。

3. 一个凹透镜的焦距为-15cm,物距为30cm。

求出像的位置和放大倍数。

解答:由于凹透镜的焦距为负值,所以可以根据薄透镜公式得到1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。

代入已知数据,得到1/-15 = 1/v - 1/30。

解方程得到v = -10cm。

根据放大倍数公式,放大倍数为m = -v/u。

代入已知数据,得到m = -(-10)/30 = 1/3。

由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为1/3。

4. 一个平行光束垂直入射到一个半径为R的球面镜上,镜的焦距为f。

工程光学基础 习题参考答案

工程光学基础 习题参考答案
所以:
1.β = 0, l' = 0, l = −50 2.β = −0.1, l' = −550, l = −55 3.β = −0.2, l' = −60, l = −300 4.β = −1, l'= −100, l = −100 5.β = 1, l' = 0, l = 0 6.β = 5, l' = −200, l = −40 7.β = 10, l' = −450, l = 45 8.β = ∞, l' = +∞, l = −50
n
1.5 10 15
Q L = −∞,∴U = 0
∴U'= I − I'
L'
=
r

1
+
sin I' sin U '

=
100
1
+
1 / 15 sin(1.9166)

=
299.332
则 实 际 光 线 的 像 方 截 距 为 299.332 , 与 高 斯 像 面 的 距 离 为 :
根据公式 n' − n = n'−n (1-20)有: n' − 1 = n'−1 ,可以看出此种情况不存在。
l' l r
r −∞ r
计算第②种情况:易知入射光线经第一面折射后过光轴与反射面的交点。
其余参考题 14。
21、一物体位于半径为 r 的凹面镜前什么位置时,可分别得到:放大 4 倍的实 像,放大 4 倍的虚像、缩小 4 倍的实像和缩小 4 倍的虚像? 解: (1)放大 4 倍的实像
(2)放大四倍虚像 (3)缩小四倍实像 (4)缩小四倍虚像

工程光学习题答案(附试题样本)

工程光学习题答案(附试题样本)

测控09级复习资料工程光学基础教程(课后重点习题答案)测控09级二○一一年六月二日第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

第九章习题答案final

第九章习题答案final

1、电子波有何特征?与可见光有何异同?答:电子波的波长较短,轴对称非均匀磁场能使电子波聚焦。

其波长取决于电子运动的速度和质量,电子波的波长要比可见光小5个数量级。

两者都是波,具有波粒二象性,波的大小、产生方式、聚焦方式等不同。

2、分析电磁透镜对波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响。

答:原理:通电线圈产生一种轴对称不均匀分布的磁场,磁力线围绕导线呈环状。

磁力线上任一点的磁感应强度B可以分解成平行于透镜主轴的分量Bz和垂直于透镜主轴的分量Br。

速度为V的平行电子束进入透镜磁场时在A点处受到Br分量的作用,由右手法则,电子所受的切向力Ft的方向如下图;Ft使电子获得一个切向速度Vt,Vt与Bz分量叉乘,形成了另一个向透镜主轴靠近的径向力Fr,使电子向主轴偏转。

当电子穿过线圈到达B点位置时,Br的方向改变了180度,Ft随之反向,但是只是减小而不改变方向,因此,穿过线圈的电子任然趋向于主轴方向靠近。

结果电子作圆锥螺旋曲线近轴运动。

当一束平行与主轴的入射电子束通过投射电镜时将会聚焦在轴线上一点,这就是电磁透镜电子波的聚焦对原理。

电磁透镜的结构对电磁场有很大的影响。

上图为一种实际常用的带有铁壳以及极靴的电磁透镜示意图。

1)电磁透镜中为了增强磁感应强度,通常将线圈置于一个由软磁材料(纯铁或低碳钢)制成的具有内环形间隙的壳子里,此时线圈的磁力线都集中在壳内,磁感应强度得以加强。

狭缝的间隙越小,磁场强度越强,对电子的折射能力越大。

2)增加极靴后的磁线圈内的磁场强度可以有效地集中在狭缝周围几毫米的范围内,显著提高了其聚焦能力。

3、电磁透镜的像差是怎样产生的,如何来消除或减小像差?答:电磁透镜的像差可以分为两类:几何像差和色差。

几何像差是因为投射磁场几何形状上的缺陷造成的,色差是由于电子波的波长或能量发生一定幅度的改变而造成的。

几何像差主要指球差和像散。

球差是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律造成的,像散是由透镜磁场的非旋转对称引起的。

工程光学第9章光的电磁理论基础

工程光学第9章光的电磁理论基础

1:电场与磁场之间的麦克斯韦方程组:S d t B l d E ∙∂∂-=∙⎰⎰⎰ t B E∂∂-=⨯▽ S d t D J l d H ∙∂∂+=∙⎰⎰⎰)( tD J H∂∂+=⨯▽ ⎰⎰⎰⎰⎰=∙V d S d Dρ ρ=∙D ▽ 0=∙⎰⎰S d B=∙B ▽ 其中,电场强度矢量E 、电位移矢量D 、磁感应强度矢量B 、磁场强度矢量H 。

传导电流密度J 、自由电荷密度ρ2:E 、B 满足的波动微分方程:01-2222=∂∂t E v E ▽ 01-2222=∂∂t B v B ▽ 3:一些公式:在介质中:E D r εε0=(真空中1=r ε) H B rμμ0=(真空中1=r μ)εμ1=v (με和分别为介质的介电常数和磁导率) 真空中:001με=c则:rr Cv με=,n 为介质对电磁波的折射率:n=r r VCμε= Tw ππν22== vT =λ(介质中) ν是振动频率;T 是振动周期;λ是光波波长。

cT =0λ(真空中) νλc o =n 0λλ=Vwk ==λπ2 k 是波失量;大小如前式,称为波数或者空间角频 率由波动微分方程可以得出平面简谐电磁波的波动方程:即平面波波动公式:)cos(wt r k A E -∙=(A 为电场和磁场的振幅矢量)或者:)(wt r k i e A E -∙= ;)](cos[t Vz w A E -= 其中复振幅(表示某一时刻光波在空间的分布))(~r k i e A E ∙=4:平面电磁波的性质:①平面电磁波是横波,电矢量与磁矢量的方向均垂直于波传播方向。

平面电磁波的波动公式为)('wt r k i e A B -∙= )(wt r k i e A E -∙=②0k、、B E 互成右手螺旋系:)()(100E k E k VB ⨯=⨯=εμ0k 是波失量k的单位矢量。

③同相位和B E:εμ1==V B E 。

5:辐射能:辐射强度矢量或坡印亭矢量S用来描述电场能量的传播。

工程光学基础教程 习题参考答案

工程光学基础教程 习题参考答案

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

《电磁场与电磁波》课后习题解答(第九章)

《电磁场与电磁波》课后习题解答(第九章)

第9章习题解答【9.1】 解:因为布儒斯特角满足21tan /B n n θ= 根据已知条件代入即可求得: (a ) 67.56)1/52.1(tan 1==-B θ (b ) 1.53)1/33.1(tan 1==-B θ【9.2】 证明:已知''0021tan cot i tE E θθ=+(9-38)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+=i tn n n n E E θθcos cos 1221210''0 (9-45) 再法向入射情况下,0=i θ根据斯涅尔折射定理i t n n θθsin sin 12=,有,0=t θ 将斯涅尔折射定理和,0==t i θθ代入(9-38)和(9-45)有120''012n E E +=故命题得证。

【9.3】 解:对于法向入射情形,满足反射和折射条件如下:21210'0n n nn E E R +-== (1)120''012n E E T +== (2) 依题意,对于由介质溴化钾和空气,当波从空气射向介质时,设空气的折射率为1n ,介质的折射率为2n ,当波从介质射向空气时,设介质的折射率为1n ,空气的折射率为2n 。

我们统一将空气的折射率为1n ,介质的折射率为2n ,则R 随着波透射的传播方向不同仅相差一个负号,但考虑到我们要分析的是能量损耗,即只与2R 有关,所以不用考虑R 的正负。

对于T ,则分成两种情形:① 当波从空气射向介质时,120''012n n E E p T +=== (3) ② 当波从介质射向空气时,210''012n n E E q T +=== (4) 如下图,波在两个截面上经过无数次反射和折射,能量的损耗由两部分组成,即第一次反射波21R S =,另外一部分为无数次与传播方向反向的方向透射的能量之和,即:++++=+=)3(2)2(2)1(2221S S S R S S S (5) 其中3222)(2322)3(222)2(22)1(2)()()()()()()(-====n n R p q R S R p q R S R p q R S p q R S (6)可以看出该数列为等比为2R 的一个无穷等比数列,将已知条件和式(1)、(3)、(4)、(6)代入(5)后×100%式可以求得能量损耗的百分比。

工程光学第三版下篇物理光学第九章光的电磁理论基础课后习题答案

工程光学第三版下篇物理光学第九章光的电磁理论基础课后习题答案

第九章光的电磁实际根底zc141.一个立体电磁波能够表现为E0,E2cos[2 10( t)],E0,求(1)该 z2x y电磁波的频率、波长、振幅跟原点的初相位?〔2〕拨的传达偏向跟电矢量的振动偏向? 〔3〕响应的磁场B的表白式? z 解:〔1〕立体电磁波EAcos[2(t) , ] c146310m 。

对应有A2,10Hz,2〔2〕波传达偏向沿z 轴,电矢量振动偏向为 y 轴。

B 与E 垂直,传达偏向一样,∴ByBz0〔3〕 8EyCEy610[21014(zcBxt) ] 2z E y 0,E0,E10cos1015( 2t),2.在玻璃中传达的一个线偏振光能够表现z x0.65c试求〔1〕光的频率跟波长;〔2〕玻璃的折射率。

z z 2 15解:〔1〕EAcos[2(t) ]10cos[10( t)]c 0.65c1514∴210v510Hz72/k2/0.65c3.910mncv31081.54c〔2〕n3.910751014n3.在与一平行光束垂直的偏向上拔出一片通明薄片, 薄片的厚度h0.01mm ,折射率n=1.5,假定光波的波长为500nm ,试盘算通明薄片拔出前后所惹起的光程跟相位的变更。

解:光程变更为(n1)h0.005mm0.0051062 500相位变更为2 20(rad)4.地球外表每平方米接纳到来自太阳光的功率为 1.33kw,试盘算投射到地球外表的太阳光的电场强度的巨细。

假定太阳光收回波长为 600nm 的单色光。

1 21 2 IA 2cA 2 0解:∵1 22I 3∴A()10v/mc 085.写出立体波E100exp{i[(2x3y4z)1610t]}的传达偏向上的单元矢量 k。

解:∵EAexp[i(kr t)]krkxkykz xyzk x 2,k y 3,k4zkkxkykz2x3y4z 0 x 0 y 0 z 0 0 02 3 4 k 0x 0y 0z 02929296.一束线偏振光以45度角从氛围入射到玻璃的界面, 线偏振光的电矢量垂直于入射面,试求反射系数跟透射系数。

物理光用与应用光学习题解答(整理后全)

物理光用与应用光学习题解答(整理后全)
第一章 光的电磁波理论
1-1.计算由 E = ( -2i + 2 3 j ) exp éi ( 3 x + y + 6 ´ 108 t ) ù 表示的平面波电矢量的振动方向、
ê ë
ú û
传播方向、相位速度、振幅、频率、波长。 解:由题意: E x = -2e
i ( 3 x + y + 6 ´ 108 t )
解: (1)∵ k = w / v ∵ k = 2p / l ∴ vg = v - l ∴ vg =
d (kv) dv =v+k dk dk
∴ dk = -( 2p / l2 ) dl
dv b 2l =v-l dl c 2 + b 2 l2
2 2
= c +b l 2
b 2 l2 c 2 + b 2 l2
1-4 题用图 - 2( Ex '2 sin a cos a - E y '2 sin a cos a + E x ' E y ' cos 2 a - E x ' E y ' sin 2 a ) E x 0 E y 0 cos j = E 2 E2 sin 2 j x0 y0 ( E x '2 cos 2 a + E y '2 sin 2 a - E x ' E y ' sin 2a ) E 2 + ( E x '2 sin 2 a + E y '2 cos 2 a + E x ' E y ' sin 2a ) E 2 y0 x0
i ( 3 x + y + 6 ´ 108 t )
v v ky = 1

工程光学习题解答光的电磁理论基础

工程光学习题解答光的电磁理论基础

第九 章 光的电磁理论基础1.一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位(2)拨的传播方向和电矢量的振动方向(3)相应的磁场B的表达式 解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65zzE A t t c cπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆=4. 地球表面每平方米接收到来自太阳光的功率为,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

工程光学课程的部分习题和答案

工程光学课程的部分习题和答案

第一章习题1、已知真空中的光速c=3×108 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

物理光学课后习题答案-汇总

物理光学课后习题答案-汇总

级亮条纹位置
, 光束第 10 级亮条纹位置
,所以间距

在杨氏双缝干涉的双缝后面分别放置

,厚度同为 t 的玻璃片后,原来中央极大所
在点被第 5 级亮纹所占据。设 片厚度 t 以及条纹迁移的方向。
nm,求玻璃
解:由题意,得

所以

条纹迁移方向向下。 在杨氏双缝干涉实验装置中,以一个长 30mm 的充
以空气的气室代替薄片置于小孔 前,在观察屏上 观察到一组干涉条纹。继后抽去气室中空气,注入
=
Hz , 波 长 λ
=
=
,原点的初相位 φ0=+π/2;
(2)传播沿 z 轴,振动方向沿 y 轴;(3)由
写出:(1)在 yoz 平面内沿与 y 轴成θ角的 方向传 播的平面波的复振幅;(2)发散球面波和汇聚球面 波的复振幅。
解 :( 1 ) 由
,可得

(2)同理:发散球面波







一平面简谐电磁波在真空中沿正 x 方向传播。其频
解:由公式 ,得光波的波长
, , ,

波长为的钠光照射在双缝上,在距双缝 100cm 的观 察屏上测量 20 个干涉条纹的宽度为,试计算双缝 之间的距离。 解:因为干涉条纹是等间距的,所以一个干涉条纹
=
的宽度为
又由公式 ,得双缝间距离
=

所以
氪同位素 放电管发出的红光波长为 ,波列长 度约为 700mm,试求该光波的波长宽度和频率宽
试计算地球表面上的相干面积。
解:相干面积

频率宽度 Hz。
在图(a)所示的平行平板干涉装置中,若平板的

工程光学基础教程 习题答案(完整)

工程光学基础教程 习题答案(完整)

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

光学工程原理习题解答

光学工程原理习题解答

光学工程原理习题解答(同步配套《光学工程原理》王志坚王鹏刘智颖著国防工业出版社)李洪伟云南师范大学物理与电子信息学院光学工程专业由于个人解答水平有限,不妥和错误之处,敬请读者批评指正。

欢迎大家交流学习Emal:*********************第一章 光的电磁理论1. 由亥姆霍兹方程求平面光波和球面光波在各向同性均匀介质中自由传播的光矢量振幅表达式。

解:由亥姆霍兹方程222200E k E B k B ∇+=∇+=得平面光波复振幅表达式:ik rE Ee ⋅=(光矢量主要指电矢量)同样解微分方程式220E k E ∇+=得球面光波在各向同性均匀介质中自由传播的光矢量振幅表达式:ikE E e r=。

2. 玻璃折射率n =1.5,空气折射率01n =,波长0.5m λμ=的光波由空气射向玻璃,求(1)反射光波在线偏振光时光线的入射角;(2)入射角0140I =时界面的反射率;(3)光波由玻璃折射入空气时的全反射临界角。

解:(1)反射光波在线偏振光时,即光波中只有S 波,没有P 波为线偏振光。

此时的入射角称为起偏角或布儒斯特角,即为B I 。

由布儒斯特定律0tan 1.5B nI n == (2)由菲涅尔公式知S 波的反射系数1'1211221121122sin()cos cos sin()cos cos S s SE I I n I n I r E I I n I n I --==-=++和P 波的反射系数1'1221121122112tan()cos cos tan()cos cos p p pE I I n I n I r E I I n I n I --===++光波在分界面反射和折射时,宏观表现为能量密度之比,称为反射率R 和透射率T 。

能量密度之比正比于2E ,即22S s p pR r R r ==。

对于自然光1()2S P R R R =+ 已知入射角0140I =,玻璃折射率n =1.5,空气折射率01n =,由折射定律解得2I代入上式即可求解。

工程光学基础教程_习题参考答案

工程光学基础教程_习题参考答案

工程光学基础教程_习题参考答案工程光学基础教程_习题参考答案第一章光学基本知识与技术1.1 什么是光学?光学在人类生活中有哪些应用?答:光学是研究光的行为和性质的物理学科。

它涉及到光的产生、传播、变换、干涉、衍射、偏振以及光在介质中的行为等问题。

光学在人类生活中有着广泛的应用,如眼镜、镜头、显示器、照明、医疗器械、天文望远镜等。

1.2 光的波动性是如何描述的?答:光的波动性是指光是一种电磁波,具有振幅、频率、波长等特征。

它可以在空间中传播,并且可以表现出干涉、衍射等波动性质。

光的波动性可以通过波长、频率、振幅等参数进行描述。

1.3 什么是光的干涉?举例说明其应用。

答:光的干涉是指两列或两列以上的光波在空间中叠加时,由于光波的叠加产生明暗相间的干涉条纹的现象。

光的干涉在很多领域都有应用,例如光学干涉仪、双缝干涉实验、全息照相、光学通信等。

1.4 什么是光的衍射?举例说明其应用。

答:光的衍射是指光在遇到障碍物或孔径时,会绕过障碍物或孔径边缘,产生明暗相间的衍射图案的现象。

光的衍射在很多领域也有应用,例如光学透镜、衍射光学器件、全息照相、光学存储等。

1.5 什么是光的偏振?举例说明其应用。

答:光的偏振是指光波的电矢量在振动时,只在某个方向上振动,而在其他方向上振动为零的现象。

光的偏振在很多领域也有应用,例如偏振眼镜、偏振片、偏振光学器件等。

第二章光学透镜与成像2.1 什么是透镜?列举几种常见的透镜及其特点。

答:透镜是一种光学器件,它由一块透明材料制成,可以聚焦或发散光线。

常见的透镜包括凸透镜、凹透镜、平凸透镜、平凹透镜等。

2.2 凸透镜的成像原理是什么?如何计算凸透镜的焦距?答:凸透镜的成像原理是光线经过凸透镜后,平行于主轴的光线会聚于一点,这个点称为焦点。

焦距是指从透镜中心到焦点的距离。

凸透镜的焦距可以通过公式 f=1/v+1/u 进行计算,其中f为焦距,u为物距,v为像距。

2.3 凹透镜的成像原理是什么?如何计算凹透镜的焦距?答:凹透镜的成像原理是光线经过凹透镜后,平行于主轴的光线会朝透镜中心方向会聚于一点,这个点称为虚焦点。

工程光学习题解答第九章-光的电磁理论基础

工程光学习题解答第九章-光的电磁理论基础

工程光学习题解答第九章-光的电磁理论基础————————————————————————————————作者:————————————————————————————————日期:第九 章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx Ey CEy t c πμεπ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

工程光学习题参考解答第十一章_光的电磁理论基础

工程光学习题参考解答第十一章_光的电磁理论基础

(2) n
c v
c n
3108 3.9107 51014
1.54
3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度 h 0.01mm ,折射率 n=1.5, 若光波的波长为 500nm ,试计算透明薄片插入前后所引起的光程和相位的变化。
解:光程变化为 (n 1)h 0.005mm
工程光学习题解答
第十章 光的电磁理论基础
1.
一个平面电磁波可以表示为
Ex
0, Ey
2 cos[2
1014 ( z c
t)
], 2
Ez
0
,求(1)该
电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?
(3)相应的磁场B的表达式?
解:(1)平面电磁波 E Acos[2 ( z t) ] c
波的透射比)。
1 n1 n2
2
1 n1 n2
2
a)
b)
图 10-39 习题 8 图
解:
(1)rs
n1 n1
cos1 cos1
n2 n2
cos2 cos2
rs
'
n1 'cos'1 n1 'cos'1
n2 'cos'2 n2 'cos'2
n2 n2
cos2 cos2
n1 cos1 n1 cos1
工程光学习题解答
的角)?若1 60 度,反射光的方位角又为多少?
解:
(1)1
50,由折射定律2
sin1( n1
sin1 n2
)
30.7
rs
sin(1 sin(1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九 章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h m m∆=-= 相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

解:∵exp[()]E A i k r t ω=- x y z k r k x k y k z ⋅=⋅+⋅+⋅00000000002,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=⋅+⋅+⋅=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试求反射系数和透射系数。

设玻璃折射率为1.5。

解:由折射定律12211221122111122sin sin cos 1.5cos cos 0.3034cos cos 2322cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ==∴=-∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。

解:2222212111222222122111212sin sin 212111.54cos 4sin cos 30.8231cos sin ()(22323cos 4sin cos 0.998cos sin ()cos ()()0.912s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=⨯⨯=⋅==+=⋅=+-+∴==8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反射和折射(折射角为2θ,见图10-39),s 波和p 波的振幅反射系数和投射系数分别为s r 、p r 和s t 、p t 。

若光波从2n 介质入射到1n 介质(见图10-39b )中,入射角为2θ,折射角为1θ,s 波和p 波的反射系数和透射系数分别为's r 、'p r 和's t 、'p t 。

试利用菲涅耳公式证明(1)'s s r r =-;(2)'p p r r =-;(3)'s s s t t τ=;(4)'p p p t t τ=(p τ为p 波的透射比,s τ为s波的透射比)。

解:112211221122221111222211121221121212cos cos (1)cos cos 'cos''cos'cos cos ''cos''cos'cos cos (2)12cos sin 2cos'sin'2cos sin 3,'sin()sin('')sin()s s ss s n n r n n n n n n r r n n n n t t θθθθθθθθθθθθθθθθθθθθθθθθ-=+--===-++===+++∴同()()221122122122122112222221211124sin cos sin cos sin cos 4sin cos 'sin ()sin cos sin ()cos 4sin cos cos sin ()(4)3s s st t n t n θθθθθθθθθθθθθθθθθθθθ⋅==⋅++=⋅=+同()略9. 电矢量方向与入射面成45度角的一束线偏振光入射到两介质的界面上,两介质的折射率分别为121, 1.5n n ==,问:入射角150θ=度时,反射光电矢量的方位角(与入射面所成)b图10-39 习题8图的角)?若160θ=度,反射光的方位角又为多少? 解:11112212121212sin 150sin ()30.7sin()()0.335,0.057sin()()'0.3350.335,'0.057'80.33'(2)0s p s p s s s s p p p s p s n n tg r r tg A A AA r A A A A r A A A tg A r θθθθθθθθθθθαα-=︒==︒--∴=-=-==++==∴==-=-==∴=⇒=-︒=-(),由折射定律入射光由反射系数有合振幅与入射面的夹角同理.421,0.042''()84.3'p s p r A arctg A α=-∴==︒10. 光束入射到平行平面玻璃板上,如果在上表面反射时发生全偏振,试证明折射光在下表面反射时亦发生全偏振。

证明:当入射角为布儒斯特角时,发生全偏振,反射光中只有s 波 第一次反射时,11312,90,,B n n tg n θθθθθ=+=︒==玻空n 第二次反射时,212',''90,''B nn n θθθθθ=+=︒=空B 玻,tg =n 得证。

亦可由,s p r r 求证.11. 光束垂直入射到45度直角棱镜的一个侧面,并经斜面反射后由底二个侧面射出(见图10-40),若入射光强为0I ,求从棱镜透过的出射光强I ?设棱镜的折射率为1.52,且不考虑棱镜的吸收。

图10-40 习题11图解:221223122212300010.52()()0.04261 2.5211 1.52()()0.042611 1.52,sin 1.52sin 4590110.0426110.04260.917n n n n I I I I ρρθθθρτρτ-===+--===++︒=⨯︒⇒>︒∴=∴==-⨯⨯-=经过第一面时,反射比为经过第三面时,反射比为经过第二面时,=45在此面发生全反射,即出射光强为()()12. 一个光学系统由两片分离透镜组成,两透镜的折射率分别为1.5和1.7,求此系统的反射光能损失。

如透镜表面镀上曾透膜,使表面反射比降为0.01,问此系统的光能损失又为多少?设光束以接近正入射通过各反射面。

解()()()()()222223412344)()0.04()()0.040.06711110.80220%0.01'10.010.96,4%R R R R R R R ττ=======∴=----==-=111220此系统有4个反射面,设光束正入射条件下,各面反射率为n -1 1.5-1R =(n +1 1.5+11-1n -1 1.51n +1+11.5光能损失为(初始为I ),损失若反射比降为,则损失13. 一半导体砷化镓发光管(见图10-41),管芯AB 为发光区,其直径3d mm ≈。

为了避免全反射,发光管上部磨成半球形,以使内部发的光能够以最大投射比向外输送。

要使发光区边缘两点A 和B 的光不发生全反射,半球的半径至少应取多少?(已知对发射的0.9nm λ=的光,砷化镓的折射率为3.4) 。

解:sin sin sin 1sin sin 1sin 3.41sin sin sin 3.43.4 3.4 5.12C R rRrRrAB Rr c c R dR r mmθαθαθθθθθθ=⋅∴≤≤==∴<⇒<=>=⨯=设半球半径为,由正弦定理,管芯边缘发光的入射角有最大为,最小为0,0若时仍不能发生全反射,则内所有光均不会发生全反射全反射角14. 线偏振光在玻璃-空气界面上发生全反射,线偏振光的方位角45α=度,问线偏振光以多大角度入射才能使反射光的s 波和p 波的相位差等于45度,设玻璃折射率 1.5n =。

解:()12222114124222112112cos (sin )2sin 1sin 1sin 021,45sin 0.64830.58421.5153.6349.85arcsin 41.811.5C S P tg n tg tg n n n δδθθδθδθθδθθθ=-=⎛⎫+-++= ⎪⎝⎭==︒=∴=︒︒==︒∴全反射时,波与波相位差为,且将代入有或或,而上述答案均可15. 线偏振光在1n 和2n 介质的界面发生全反射,线偏振光的方位角45α=度,证明当cos θ= 时(θ是入射角),反射光波和波的相位差有最大植。

式中21/n n n =。

证明:()()()()()()()()()()221222222222222cos cos2sin1cos,cos22112]12210,11[12]122S Ptgtg tg y xyx x n x x xdydx xdydxx x n x x x x n xxδθθδδδθ-==-==∴=--⋅----=-=---+-=--⋅-=全反射时,波与波相位差为若最大,则最大,令令则有221222111cos(),1nnnnθδ-+-∴=+当时取最大16. 圆柱形光纤(图10-42)其纤芯和包层的折射率分别为1n和2n,且1n>2n。

相关文档
最新文档