led电源知识
LED驱动电源基础知识
输入电压 、频率
驱动器在规定的工作条件下其特定的输入电压。通常 我们所说的全电压是指90-264VAC,也有低压90-130V和 高压176-264V,以便针对不同的国家、地区和客户要求。 也有DC输入,主要有12V,24V,36V,48V等。
输入电压频率是指电网输入电压正弦波的频率,各国 家、地区的频率并不相同,通常使用的频率为50Hz和 60Hz,允许偏差在3Hz,所以我们通常看到有电源标 47~63Hz或50/60Hz,而50~60Hz的写法是不严谨的。
IP等级 是针对电气设备的外壳对异物侵入的防护等级,来源
是国际电工委员会的标准IEC 60529。IP等级的格式为 IPXX,第一个数字代表防固体异物进入的等级,第二个数 字代表防水的程度。
常用的室内电源IP20:防止直径大于12.5mm的固体 外物侵入但不防水;室外电源IP67:完全防止外物及灰尘 侵入且短时浸入1米深的水无碍电源正常工作。
按功能分类:声光控、红外遥控等 按电路结构分类: (1) 工频变压器降压 (2) 阻容降压 (3) 电子变压器降压 (4) 电阻降压 (5) RCC降压式开关电源 (6) PWM控制式开关电源 ……
LED驱动电源主要参数
• 输入电压 、频率 • 功率因数(PF值) • 输入电压调整率 • 转换效率 • 输出电流、电压和功率 • 恒流精度 • 负载调整率 • 启动时间、IP等级、工作温度Ta、存储温度Tc等 • ……
常规电源效率
功率等级 隔离 非隔离
3W
70%
/
5W
76%
85%
7W
82%
88%
10W
8ห้องสมุดไป่ตู้%
90%
30W
86%
LED驱动电源介绍及其特点
隔离式LED次级恒流驱动电路如上图,电路通过变压器及光藕隔离初次级,在次级通过一个电流采取电阻转换为电压信号,与基准电压进行比较,控制光藕的电流,光藕反馈到初级,控制PWM控制器的占空比,调节输出电流.特点:通过与市电隔离可得到一个安全的电压,因为需要比较,基准电路,通过光藕反馈,所以器件较多,开关电源其效率也比较高.实列:PAR38
第10页/共15页
开关电源的其它组成部分
第11页/共15页
PAR38 实例分析
第12页/共15页
总结 LED驱动器分为恒压和恒流,但恒流驱动是最适合LED工作的模式,设计驱动时要设计成恒流模式; 开关电源电路分为隔离与非隔离,隔离能输出安全的电压,但效率可能没有非隔离的高,非隔离线路简单可节省成本,但需要在结构部件做加强绝缘.
第4页/共15页
LED恒流源的分类 1.线性恒流源
第5页/共15页
线性恒流源特点:线性恒流源实质就是通过检测LED上的电流来控制限流电阻,恒流精度较差,损耗大,宽电压效率低,需要用在压差比较小的电路上,但因器件少,可以把线路板做得很小,因为是线性的,所以EMI都相对较好处理.
第6页/共15页
LED恒流源的分类 2.开关电源恒流源 开关电源恒流源是通过检测LED上的电流调节输出电压的占空比,使输出达到恒流.开关电源可分为隔离与非隔离电路,隔离电路又可分为初级恒流和次级恒流两种;
第2页/共15页
LED驱动器的分类 按驱动方式可分为如下: a.恒压驱动:输出电压恒定,输出电流不限; b.恒流驱动:输出电流恒定;不一定要恒压; c.恒压恒流驱动:输出电压恒定,当输出电压减小时,输出电流将恒定,输出电流的变化是(0~恒定电流);
第3页/共15页
如镜前灯,HV-LED;PAR38 ,MR16,球泡灯等;例如早期路灯上用的明纬电源
LED驱动电源介绍
LED电源设计要点
• 符合安规及电磁兼容的要求 安规就是安全规范,目前是指电子产品在设计中必须保持和遵守的 规范。 安规的特点是:安规强调对使用和维护人员的保护,是我们使用 电子产品方便同时,不让电子产品给我们带来危险,同时允许设 备部分或全部功能丧失。安规是使用安全规范来考虑电子产品, 使产品更加安全。 电磁兼容(英文:Electromagnetic Compatibility,简称EMC)是在 电学中研究意外电磁能量的产生、传播和接收,以及这种能量所 引起的有害影响。电磁兼容的目标是在相同环境下,涉及电磁现 象的不同设备都能够正常运转,而且不对此环境中的任何设备产 生难以忍受的电磁干扰之能力。
LED电源技术
直流输入>开关型DC/DC变换器
• 升压型LED驱动器
LED电源技术
市电供电下的LED驱动
目前LED在应用中大多利用交流市电电源供电。由于LED要 求在直流低电压下工作,采用市电电源供电,则需要通过适 当的电路拓扑将其转换为符合LED工作要求的直流电源。 非隔离:是指在负载端和输入端有直接连接,触摸负载有触电 的危险 电容降压 高压芯片恒流 隔离: 隔离是指在输出端和输入端有隔离变压器,安全性 大大好于非隔离 变压器降压 PWM式恒流
LED及其特点
LED的伏安特性
LED是一种可发光 的二极管,除了具有 发光特性外,还具有 普通半导体整流二极 管的特性。 LED的伏安特性曲 线可以划分为正向特 性区、反向特性区和 反向击穿区
LED伏安特性曲线
LED及其特点
LED的伏安特性
OA段:正向死区 VA为开启LED发光的 电压。比如红色(黄色)LED的开启 电压一般为0.2~0.25V。 AB段:工作区在这一区段,一般是随着 电压增加电流也跟着增加,发光亮度 也跟着增大。但在这个区段内要特别 注意,如果不加任何保护,当正向电 压增加到一定值后,那么LED的正向 电压会减小,而正向电流会加大。如 果没有保护电路,会因电流增大而烧 坏发光二极管。 OC段:反向死区 LED加反向电压是不 发光的(不工作),但有反向电流。 这个反向电流很小,一般在几μA之 内 CD段:反向击穿区 LED的反向电压一般 不要超过10V,最大不得超过15V,否 则就会出现反向击穿,导致LED报废。
LED电源原理简介
电源的效率指电能转换为有用输出功率的比例,而功率因数是电源输入电流 和电压之间的相位差。
普通电源和可控电源的比较
1 普通电源
2 可控电源
普通电源固定输出电流或电压,用于常规 应用,如家庭照明。
可控电源能根据需求和环境调整输出电流 和电压,适用于特殊应用,如照明舞台。
LED灯电源的设计要点
1
电磁兼容性
LED灯的工作原理
1
发光二极管(LED)
LED基于固态电子器件,通过半导体材料发光,将电流转化为可见光。
2
半导体结构
LED内部的半导体结构决定了其发光原理,常用的有PN结、MQW结构等。
3
能带结构
通过半导体能带结构,LED激发电子跃迁,产生可见光的发射。
LED灯的驱动方式
恒流驱动
通过恒流驱动,确保LED 灯在不同电压下都能得干扰,避免对其
他电子设备产生干扰。
3
电源稳定性
确保电源输出稳定,以免影响LED灯 的亮度和寿命。
节能环保
提高电源的能效,降低能量消耗,符 合节能环保要求。
LED电源在节能环保方面的作 用和影响
LED电源可通过提高能效和降低能耗,减少对能源的需求,从而在节能环保 方面发挥重要作用,并推动可持续发展。
恒压驱动
恒压驱动适用于LED串联 电路,保持电压恒定以达 到稳定亮度的输出。
可调驱动
可调驱动可根据需要调整 LED灯的亮度和颜色,实 现多种灯效。
电源的分类
线性电源
线性电源基于线性稳压器原理,简单而可靠,但 效率较低。
开关电源
开关电源通过开关器件进行功率转换,效率高, 适用于大功率和高频率应用。
电源的效率和功率因数
如何选用LED驱动电源
如何选用LED驱动电源选择合适的LED驱动电源对于确保LED灯具的性能和寿命非常重要。
在选择LED驱动电源时,需要考虑以下几个因素:1.驱动电源的功率:根据LED灯具的功率需求确定所需的驱动电源功率。
通常情况下,驱动电源的功率应该大于等于LED灯具的功率需求,以确保正常的工作和稳定的性能。
2.驱动电流和电压:根据LED灯具的电流和电压要求选择合适的驱动电源。
LED驱动电源的输出电流应该与LED灯具的工作电流匹配,而输出电压应该与LED灯具的额定电压相匹配。
3.电源效率:选择具有高效率的LED驱动电源可以降低能量消耗,并提高LED灯具的光效和寿命。
通常情况下,驱动电源的效率应该在85%以上。
4.电源可靠性和稳定性:选用具有高品质和可靠性的LED驱动电源对于延长LED灯具的寿命非常重要。
可以选择带有保护功能和稳定性较高的驱动电源,如过压保护、过流保护和短路保护等。
5.防水和防尘性能:根据实际需要选择具有防水和防尘性能的LED驱动电源。
这对于户外和潮湿环境中的LED灯具非常重要。
6.调光功能:如果需要对LED灯具进行调光控制,则需要选择具有调光功能的LED驱动电源。
调光功能可以通过不同的方式实现,如PWM调光、电流调光等。
7.兼容性:确保选择的LED驱动电源与所使用的LED灯具兼容。
LED驱动电源应该能够与LED灯具的尺寸、连接方式和电气特性相匹配。
8.安全认证和符合标准:选择通过安全认证和符合相关标准的LED驱动电源,如CE认证、RoHS认证等,以确保产品的安全性和质量。
9.成本考虑:根据预算限制选择合适的LED驱动电源。
可以通过比较不同品牌和型号的驱动电源的价格和性能来做出选择。
LED驱动电源介绍
LED驱动电源介绍一、基本原理LED是一种直接使用电能产生光的二极管,而LED灯具需要直流驱动电源提供工作电流。
LED驱动电源的基本原理是将交流电转换为直流电,并通过电子元件控制输出电流大小,以满足LED的工作电流要求。
二、分类1.直流电源:直接将市电220V或110V交流电转换为直流电供应给LED灯具。
优点是结构简单、成本低廉,但输出电压不稳定,不适用于较高电压要求的LED照明灯具。
2.交流电源:将市电转换为高频交流电后再通过整流电路得到直流电。
优点是输出电压稳定,适用于大功率LED照明灯具。
缺点是结构复杂、成本较高。
3.恒流驱动电源:通过控制输出电流来驱动LED灯具,可根据灯具的工作电流变化自动调整输出电压。
恒流驱动电源有线性恒流驱动和开关恒流驱动两种形式。
线性恒流驱动的优点是结构简单,但效率较低;开关恒流驱动的优点是高效率,但结构复杂。
三、工作特点1.稳定性:LED驱动电源需要保证输出电流和电压的稳定性,以确保LED灯具的正常工作。
2.高效率:LED驱动电源在转换电能的过程中需要减小能量损耗,提高转换效率,以节省能源。
3.调光性:有些LED照明灯具需要实现调光功能,即可调节亮度。
调光性是LED驱动电源的一项重要特点。
4.防护性:LED驱动电源需要具备过流保护、过压保护和过温保护等功能,以确保安全可靠的工作。
四、应用五、发展趋势随着照明市场的快速发展和节能环保意识的增强,LED驱动电源的需求量持续增加,其发展趋势主要包括以下几个方面:1.高效率与节能:未来LED驱动电源将追求更高的转换效率,以实现节能减排的目标。
2.可调光性:越来越多的LED灯具需要具备可调光性,因此对LED驱动电源的调光性能有更高要求。
3.智能化:随着智能家居的普及,未来LED驱动电源将实现远程无线控制、智能调光、语音控制等功能。
4.小型化:随着LED驱动电源组件的集成化和小型化,未来的LED驱动电源将更加紧凑,提高装配灵活性。
LED驱动电源的知识
Light up your lifeLED驱动电源的知识目前LED均采用直流驱动,因此在市电与LED之间需要加一个电源适配器即LED驱动电源.它的功能是把交流市电转换成合适LED的直流电.根据电网的用电规则和LED的驱动特性要求,在选择和设计LED驱动电源时要考虑到以下几点:1.高可靠性特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大.2.高效率 LED是节能产品,驱动电源的效率要高.对于电源安装在灯具内的结构,尤为重要.因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要.电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的溫升.对延缓LED的光衰有利.3.高功率因素功率因素是电网对负载的要求.一般70瓦以下的用电器,没有强制性指标.虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染.对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求.4.驱动方式现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED 供电.这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点.另一种是直接恒流供电,LED串联或并联运行.它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED运行的问题.这两种形式,在一段时间内并存.多路恒流输出供电方式,在成本和性能方面会较好.也许是以后的主流方向.5.浪涌保护 LED抗浪涌的能力是比较差的,特别是抗反向电压能力.加强这方面的保护也很重要.有些LED灯装在户外,如LED路灯.由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏.因此LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能力. 6.保护功能电源除了常规的保护功能外,最好在恒流输出中增加LED温度负反馈,防止LED温度过高.7.防护方面灯具外安装型,电源结构要防水、防潮,外壳要耐晒.8.驱动电源的寿命要与LED的寿命相适配.9.要符合安规和电磁兼容的要求.随着LED的应用日益广泛,LED驱动电源的性能将越来越适合LED的要求.深圳市南北源光电科技有限公司 |Light up your lifeLED由于环保、寿命长、光电效率高等众多优点,近年来在各行业应用得以快速发展,LED的驱动电源成了关注热点,理论上,LED的使用寿命在10万小时以上,但在实际应用过程中,由于驱动电源的设计及驱动方式选择不当,使LED极易损坏.我们设计LED驱动电源时,有必要知道LED电流、电压特性,由于LED的生产厂家及LED规格不同,电流、电压特性均有差异.现以白光LED典型规格为例,按照LED的电流、电压变化规律,一般应用正向电压为3.0-3.6V左右,典型值电压为3.3V,电流为20mA,当加于LED两端的正向电压超过3.6V 后,正向电压很小的增加,LED的正向电流都有可能会成倍增涨,使LED发光体温升过快,从而加速LED光衰减,使LED的寿命缩短,严重时甚至烧坏LED.根据LED的电压、电流变化特性,对驱动电源的设计提出严格要求.当前很多厂家生产的LED灯类产品(比如护栏、灯杯、投射灯),采用阻、容降压,然后加上一个稳压二极管稳压,向LED供电,这样驱动LED的方式存在极大缺陷,首先是效率低,在降压电阻上消耗大量电能,甚至有可能超过LED所消耗的电能,且无法提供大电流驱动,因为电流越大,消耗在降压电阻上的电能就越大,所以很多产品的LED不敢采用并联方式,均采用串联方式降低电流.其次是稳定电压的能力极差,无法保证通过LED电流不超过其正常工作要求,设计产品时都会采用降低LED两端电压来供电驱动,这样是以降低LED亮度为代价的.采用阻、容降压方式驱动LED,LED的亮度不能稳定,当供电电源电压低时,LED的亮度变暗,供电电源电压高时,LED的亮度变亮些.阻、容降压方式驱动LED的最大优势是成本低.根据LED电流、电压变化特点,采用恒压驱动LED是可行的,虽然常用的稳压电路,存在稳压精度不够和稳流能力较差的缺点,但在某些产品的应用上可能过精确设计,其优势仍然是其它驱动方式无法取代的.采用恒流驱动方式,是比较理想的LED驱动方式,它能避免LED正向电压的改变而引起电流变动,同时恒定的电流使LED的亮度稳定.因此众多厂家选用恒流方式驱动LED.还有一种LED驱动方式是可行的,它即不恒压,也不恒流,但通过电路的设计,当LED正向电压升高时,使驱动电流减小,保证了LED产品的安全.当然正向电压的升高只能在LED承受范围,过高也会损坏LED.理想的LED驱动方式是采用恒压、恒流.但驱动器的成本增加.其实每种驱动方式均有优、缺点,根据LED产品的要求、应用场合,合理选用LED驱动方式,精确设计驱动电源成为关键.LED虽然在节能方面比普通光源的效率高,但是LED光源却不能像一般的光源一样可以直接使用公用电网电压,它必须配有专用电压转换设备,提供能够满足LED额定的电压和电流,才能使LED正常工作,也就所谓深圳市南北源光电科技有限公司 |Light up your life谓的LED专用电源.但由于各种规格不同的LED电源的性能和转换效率各不相同,所以选择合适、高效的LED专用电源,才能真正展露出LED光源高效能的特性.因为低效率的LED电源本身就需要消耗大量电能,所以在给LED供电的过程中就无法凸显LED的节能特点.总之,LED电源在LED工作中的稳定性、节能性、寿命长短,具备重要的作用.LED的电源有哪些分类呢一、LED电源按驱动方式可以分为两大类:A. 恒流式:1、恒流驱动电路驱动LED是很理想的,缺点就是价格较高.2、恒流电路虽然不怕负载短路,但是严禁负载完全开路.3、恒流驱动电路输出的电流是恒定的,而输出的直流电压却随着负载阻值的大小不同在一定范围内变化.4、要限制LED的使用数量,因为它有最大承受电流及电压值.B.稳压式:1、稳压电路确定各项参数后,输出的是固定电压,输出的电流却随着负载的增减而变化.2、稳压电路虽然不怕负载开路,但是严禁负载完全短路.3、整流后的电压变化会影响LED的亮度.4、要使每串以稳压电路驱动LED显示亮度均匀,需要加上合适的电阻才可以.二、LED电源按电路结构可以分为六类:1、常规变压器降压:这种电源的优点是体积小,不足之处是重量偏重、电源效率也很低,一般在45%~60%,因为可靠性不高,所以一般很少用.2、电子变压器降压:这种电源结构不足之处是转换效率低,电压范围窄,一般180~240V,波纹干扰大.3、电容降压:这种方式的LED电源容易受电网电压波动的影响,电源效率低,不宜LED在闪动时使用,因为电路通过电容降压,在闪动使用时,由于充放电的作用,通过LED的瞬间电流极大,容易损坏芯片.4、电阻降压:深圳市南北源光电科技有限公司 |Light up your life这种供电方式电源效率很低,而且系统的可靠也较低.因为电路通过电阻降压,受电网电压变化的干扰较大,不容易做成稳压电源,并且降压电阻本身还要消耗很大部分的能量.5、RCC降压式开关电源:这种方式的LED电源优点是稳压范围比较宽、电源效率比较高,一般可在70%~80%,应用较广.缺点主要是开关频率不易控制,负载电压波纹系数较大,异常情况负载适应性差.6、PWM控制式开关电源:目前来说,PWM控制方式设计的LED电源是比较理想的,因为这种开关电源的输出电压或电流都很稳定.电源转换效率极高,一般都可以高达80%~90%,并且输出电压、电流十分稳定.这种方式的LED 电源主要由四部分组成它们分别是:输入整流滤波部分、输出整流滤波部分、PWM稳压控制部分、开关能量转换部分.而且这种电路都有完善的保护措施,属于高可靠性电源.深圳市南北源光电科技有限公司 |。
led电源原理
led电源原理LED电源原理。
LED(Light Emitting Diode)作为一种新型的照明光源,具有高效节能、长寿命、环保等优点,因此在照明领域得到了广泛的应用。
而LED的工作原理与传统的白炽灯、荧光灯等照明设备有着明显的不同,其中LED电源原理是LED能够正常工作的重要基础。
LED的工作原理是通过半导体材料的发光原理实现的。
当电流通过半导体材料时,激发了半导体内部的电子,使其跃迁到高能级,当电子重新回到低能级时,会释放出能量,这些能量以光的形式发出,从而产生了光效应。
而LED电源的原理主要包括了电源的稳压、驱动和保护等方面。
首先,LED电源需要提供稳定的电压和电流来驱动LED的正常工作。
由于LED本身是一种电压敏感的器件,因此需要一个稳定的电源来保证LED的正常工作。
一般来说,LED电源会采用恒流驱动的方式,即通过电流来控制LED的亮度,从而实现LED的稳定工作。
其次,LED电源还需要具备过压、过流、过温等保护功能。
因为LED本身对于过压、过流等情况非常敏感,一旦出现这些情况,很容易导致LED的损坏。
因此LED电源会在设计上加入过压、过流、过温等保护电路,以保护LED的正常工作。
另外,LED电源还需要具备高效节能的特点。
LED作为一种高效节能的照明光源,LED电源也需要具备高效的转换效率,以减少能量的损耗,从而实现节能的目的。
总的来说,LED电源的原理是通过稳定的电压和电流来驱动LED的正常工作,并且具备过压、过流、过温等保护功能,同时还需要具备高效节能的特点。
随着LED技术的不断发展,LED电源的原理也在不断完善,为LED的应用提供了更加可靠的保障。
辨别LED电源好坏的五个要点
辨别LED电源好坏的五个要点LED因为电源的品质很难检测,有的工厂老化了4小时,有些甚至于老化24--72小时,但是这些老化好的产品往往在出货3--6个月的时间内出现5%左右或者更高比例。
辨识LED电源的品质好坏,从以下几点来做辨识。
驱动芯片:IC驱动电源的核心就是IC,1C的好坏直接影响整个电源,大厂的驱动IC,都是购买晶园寻找大型的封装厂来封装的;而小厂的驱动C技术是直接抄大厂的驱动设计方案找小型的封装厂来封装,无法正常保障整批1的一致性和稳定性,从而导致驱动电源在使用一段时间后莫名其妙的失效。
所以LED电源上的IC,拒绝打磨,以便灯具厂家了解IC 方案和核算驱动的成本,做到合理的价格采购电源产品。
控制芯片可视为电源的大脑,而决定功率、耐温等是变压器。
变压器负责完成"交流电-磁能-直流电”,能量超载就会饱和炸机。
组成变压器的核心是磁芯和线包。
磁芯品质是变压器的核心,但是如同瓷器一般,极难辨别。
简易的外观辨别为:外观脆、密、亮,同时背面打磨气孔者为上品。
使用的磁芯为开模的PC44磁芯,保障电源的高效率线包是由铜线绕组而成,使用铜线的品质是影响变压器的寿命的关键,同样长度的铜包铝线材是纯铜线的1/4价格,由于成本压力导致的,往往变压器生产厂家就会参杂着铜包铝的线包的变压器在里面。
从而导致变压器温度升高的时候烧毁失效,导致电源和整灯失效。
所以很多的灯具,特别的内置电源的灯具,往往会出货6个月左右出现炸机现象。
而怎么辨别这个铜线是纯铜线还是铜包铝呢?使用打火机点然一下,快速烧断即为铜包铝。
也还可以测量线圈阻值来辨识。
第三,电解电容和贴片陶瓷电容输入电解电容的品质和寿命要求可能大家都知道,大家也都非常重视。
但是大家往往会忽视输出电容的品质要求,其实输出电容的寿命对电源的寿命影响很大。
输出端有高达每秒6万次的开关频率,导致电容的寄生电阳发热加大,产生类似水场的物质,电解液升温、爆浆。
推荐输出电解电容,采用LED专用电解,一般型号以L开头。
led恒流驱动电源原理
led恒流驱动电源原理LED恒流驱动电源原理。
LED恒流驱动电源是一种专门用于LED照明的电源,它能够确保LED的电流始终保持在恒定的数值,从而保证LED的亮度和寿命。
LED恒流驱动电源的原理是通过电路控制,使得LED工作时的电流保持不变。
下面将详细介绍LED恒流驱动电源的原理。
首先,LED恒流驱动电源的基本原理是利用电路中的反馈控制,通过对电流进行监测和调节,来保持LED工作时的电流恒定。
在LED恒流电源中,一般会采用电流反馈控制电路,通过检测LED的电流大小,然后通过反馈控制电路来调节电源输出的电流,从而实现LED的恒流驱动。
其次,LED恒流驱动电源的原理还涉及到功率因素校正(PFC)和脉宽调制(PWM)技术。
功率因素校正技术能够提高LED电源的功率因素,减小谐波污染,提高能效;而脉宽调制技术则能够实现对LED电流的精确控制,从而保证LED的亮度稳定。
此外,LED恒流驱动电源还需要考虑温度补偿和过载保护等技术。
LED的工作温度会影响其亮度和寿命,因此LED恒流驱动电源需要考虑温度补偿技术,来保证LED在不同温度下都能够保持恒定的亮度。
同时,LED恒流驱动电源还需要具备过载保护功能,以防止LED因过流而损坏。
总的来说,LED恒流驱动电源的原理是通过电路控制和反馈控制来实现LED的恒流驱动。
在设计LED恒流驱动电源时,需要考虑功率因素校正、脉宽调制、温度补偿和过载保护等技术,以确保LED的亮度和寿命。
LED恒流驱动电源在LED照明中具有重要的作用,能够提高LED的稳定性和可靠性,同时也能够提高LED照明系统的能效和光品质。
全面讲解LED驱动电源方案(精)
全面讲解LED驱动电源方案一、什么是LED?LED(Light Emi tting Diode),又称发光二极管,它们利用固体半导体芯片作为发光材料,当两端加上正向电压,半导体中的载流子发生复合,放出过剩的能量而引起光子发射产生可见光。
二、LED有哪些优点?★高效节能一千小时仅耗几度电(普通60W白炽灯十七小时耗1度电,普通10W节能灯一百小时耗1度电)★超长寿命半导体芯片发光,无灯丝,无玻璃泡,不怕震动,不易破碎,使用寿命可达五万小时(普通白炽灯使用寿命仅有一千小时,普通节能灯使用寿命也只有八千小时)★光线健康光线中不含紫外线和红外线,不产生辐射(普通灯光线中含有紫外线和红外线)★绿色环保不含汞和氙等有害元素,利于回收和利用,而且不会产生电磁干扰(普通灯管中含有汞和铅等元素,节能灯中的电子镇流器会产生电磁干扰)★保护视力直流驱动,无频闪(普通灯都是交流驱动,就必然产生频闪)★光效率高,发热小:90%的电能转化为可见光(普通白炽灯80%的电能转化为热能,仅有20%电能转化为光能)★安全系数高所需电压、电流较小,发热较小,不产生安全隐患,可用于矿场等危险场所★市场潜力大低压、直流供电,电池、太阳能供电即可,可用于边远山区及野外照明等缺电、少电场所。
三、权威预测半导体照明将在未来5-10年内取代现有传统光源。
“未来白光LED将更加便宜,市场总体容量将快速增长。
”许志鹏乐观地指出,据美国能源部预测,2010年前后,美国将有55%的白炽灯和荧光灯被LED替代,可能形成一个500亿美元的大产业。
而日本提出,LED将在今年大规模替代传统白炽灯。
日、美、欧、韩等国均已正式启动LED照明战略计划。
美国能源部预测,到2010年前后,美国将有55%的白炽灯和荧光灯将被嵌在芯片上的发光体---半导体灯替代。
日本计划到2008年用这种半导体灯替代50%的传统照明灯具。
科学家测量发现,在同样亮度下,LED的电能消耗仅为白炽灯的1/10,寿命则是白炽灯的100倍。
LED灯具电源基础知识
直流稳压电源的技术指标可以分为两大类:
一类是特性指标,反映直流稳压电源的固有特性,如输入 直流稳压电源电压、输出电压、输出电流、输出电压调节范 围; 另一类是质量指标,反映直流稳压电源的优劣,包括稳定度、 等效内阻(输出电阻)、纹波电压及温度系数等。
纹波抑制比反映了直流稳压电源对输入端引入的市电电压的抑制能力,当直流 稳压电源输入和输出条件保持不变时,纹波抑制比常以输入纹波电压峰-峰值与输 出纹波电压峰-峰值之比表示,一般用分贝数表示,但是有时也可以用百分数表示, 或直接用两者的比值表示。
(4)温度稳定性K 集成直流稳压电源的温度稳定性是以在所规定的直流稳压电源工作温度Ti最大 变化范围内(Tmin≤Ti≤Tmax)直流稳压电源输出电压的相对变化的百分比值。
2、输出电压
输出电压是指电源把输入电压经过转换后的输出电压,这个是根据需求来 定的。由于LED光源是一种发光半导体,所以其供电电压通常为直流,也 就是DC,LED灯体的输入电压通常是DC12V和DC24V。如接的灯体的电 压是12V,那我们选择电源的输出电压为 12V,接的灯体的电压是24V, 那我们选择电源的输出电压为24V。
压的装置,主要构件是初级线圈、次级线圈和铁心 (磁芯)。
1按相数分类: (1)单相变压器:用于单相负荷和三相变压器组。 (2)三相变压器:用于三相系统的升、降电压。
2按绕组形式分类: (1)双绕组变压器:用于连接电力系统中的两个电压等级。 (2)三绕组变压器:一般用于电力系统区域变电站中,连
接三个电压等级。 (3)自耦变电器:用于连接不同电压的电力系统。也可做
稳压电源—质量指标
LED电源几串几并的计算方法照明知识
LED电源几串几并的计算方法照明知识1.什么是几串几并?几串几并是指将多个LED灯珠通过连接线连接到电源上的一种方式。
其中,“几”指的是LED灯珠串联的数量,“几”指的是LED灯珠并联的数量。
例如,一个LED电源为3串5并,意味着有3个灯珠串联,每个串联电路中有5个灯珠并联。
2.几串几并的计算方法计算几串几并需要考虑以下几个因素:电压、电流和功率。
-电压:每个LED灯珠都有一个额定电压,一般为2V-4V。
在计算几串几并时,需要确定每个串联电路的总电压。
-电流:每个LED灯珠都有一个额定电流,一般为10mA-50mA。
在计算几串几并时,需要确定每个串联电路的总电流。
-功率:功率是电压和电流的乘积,表示每个LED灯珠的功率消耗。
在计算几串几并时,需要确定每个串联电路的总功率。
以下是计算几串几并的步骤:步骤1:确定电压根据LED灯珠的额定电压和串联数量,计算出每个串联电路的总电压。
例如,如果一个LED灯珠的额定电压为3V,且有3个灯珠串联,则每个串联电路的总电压为3V*3=9V。
步骤2:确定电流根据LED灯珠的额定电流和并联数量,计算出每个串联电路的总电流。
例如,如果一个LED灯珠的额定电流为20mA,且有5个灯珠并联,则每个串联电路的总电流为20mA*5=100mA。
步骤3:确定功率根据LED灯珠的额定电压和额定电流,计算出每个灯珠的功率。
例如,如果一个LED灯珠的额定电压为3V,额定电流为20mA,则每个灯珠的功率为3V*20mA=60mW。
根据每个串联电路中灯珠数量,计算出每个串联电路的总功率。
步骤4:计算总电流和总功率根据每个串联电路的总电流和总功率,计算出LED电源的总电流和总功率。
需要注意的是,LED电源的额定功率应该大于等于所有串联电路的总功率之和,以保证电源的正常工作。
以上是LED电源几串几并的计算方法。
在实际应用中,需要根据LED灯珠的额定电压和电流来确定几串几并的参数,以满足照明需求和LED电源的限制条件。
LED驱动电源分类详解
LED驱动电源分类详解LED驱动电源分类详解LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。
LED驱动电源通常可以分为四大类,一是开关恒流源,二是被动式LED 电源,三是阻容降压电源,四是线性IC电源。
1、开关恒流源采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。
开关恒流源又分隔离式电源和非隔离式电源,开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、寿命较短、可靠性较差、价格较高。
开关电源目前大功率LED 照明的主流电源。
2、被动式电源被动式LED驱动电源基于钛酸钡材料偏压特性这一特点,利用其自发的恒流效应,实现LED驱动所需要的恒流状态,电子元器件种类少,可靠性和寿命都很高、效率也很高,还具备容性无功补偿特性。
其缺点是调光精度不如开关恒流源,目前成本还比较高,被动式电源技术也只掌握在极少数厂家,但未来极有可能发展为户外大功率LED照明的主流驱动电源。
3、阻容降压电源采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。
功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。
功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。
市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。
4、线性IC电源采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。
缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。
市面上宣称无(去)电解电容,超长寿命的,大部分是采用线性IC电源。
LED驱动电源介绍
LED驱动电源介绍LED驱动电源是指为LED灯具提供稳定电流或电压的电源装置,其主要功能是将交流电转换为直流电,并对LED灯具进行恒流或恒压控制,以确保LED灯具的正常运行。
下面将从LED驱动电源的分类、工作原理、特点及应用领域等方面进行介绍。
一、分类根据输出电流或电压的稳定性,LED驱动电源可以分为恒流型和恒压型。
1.恒流型:恒流型LED驱动电源是指在输出端保持恒定电流,无论LED串联数量的变化,输出电流保持不变。
这种驱动电源适用于需要恒定电流驱动的LED灯具,如LED灯条、投光灯等。
2.恒压型:恒压型LED驱动电源是指在输出端保持恒定电压,无论LED串联数量的变化,输出电压保持不变。
这种驱动电源适用于需要恒定电压驱动的LED灯具,如LED灯泡、LED模块等。
二、工作原理1.输入电源滤波:LED驱动电源通常采用交流电源输入,首先需要进行电源滤波,以消除输入电源中的干扰和噪声。
2.整流:经过电源滤波后,交流电源被整流电路转换为直流电源,保证后续电路工作的稳定性。
3.能量存储与转换:在LED驱动电源中,通常会采用开关电源的设计,通过开关管与电感器件实现能量的存储与转换。
在开关管导通时,电感器件储存电能;在开关管断开时,储存的电能转移到输出端,为LED灯具提供工作电流或电压。
4.输出电流/电压的控制:为了确保LED灯具的正常工作,驱动电源需要对输出电流或电压进行控制。
恒流型LED驱动电源通常通过反馈电路控制输出端的电流,保持恒定,而恒压型LED驱动电源则通过反馈电路控制输出端的电压,保持恒定。
三、特点1.高效率:LED驱动电源通常采用开关电源的设计,工作效率较高,能够将电能转换为LED灯具所需的电流或电压,减少能量的浪费。
2.安全可靠:LED驱动电源采用多重保护设计,如过载保护、短路保护、过温保护等,能够保障LED灯具的正常工作,提高使用寿命。
3.调光性能好:LED驱动电源通常支持调光功能,可以根据需要调整LED灯具的亮度,满足不同场景和需求。
led电源安规常识
led电源安规常识1.引言1.1 概述概述部分应该对LED电源安规常识的重要性进行介绍,并简要说明本文的结构和内容。
可以参考以下内容:引言LED电源是将交流电转换为直流电以供给LED灯使用的设备。
随着LED照明技术的快速发展,人们对LED电源的安全性和可靠性的要求越来越高。
然而,由于市场上存在各种各样的LED电源产品,质量和安全问题也层出不穷。
因此,有必要了解LED电源的安规常识,以确保使用LED 灯具时的安全和稳定。
本文旨在介绍LED电源的基本知识和安全要求。
首先,我们将介绍LED 电源的基本知识,包括LED电源的工作原理、分类以及常见的电源参数等。
了解这些基本知识对于正确选择和使用LED电源至关重要。
接下来,我们将重点讨论LED电源的安全要求。
LED电源的安全性不仅关乎用户的人身安全,还与设备的可靠性和寿命密切相关。
我们将介绍LED电源安全认证标准,如欧洲的CE认证、美国的UL认证以及中国的CCC认证等,以及相应的安全要求。
此外,我们还将分享一些使用LED 电源时需要注意的安全事项,例如正确接地、避免过载和短路等。
在结论部分,我们将对本文进行总结,并对未来发展的展望进行展示。
了解LED电源的安规常识不仅对于正确选择和使用LED电源非常重要,也对于促进整个LED照明行业的可持续发展至关重要。
通过本文的学习,读者将可以更好地了解LED电源的基本知识和安全要求,为LED照明行业的健康发展做出自己的贡献。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将按照以下结构进行讨论:引言在引言部分,我们将概述LED电源安规的重要性以及本文的目的。
明确了解读者对LED电源安规常识的需求,并介绍本文所包含的内容和结构。
正文在正文部分,我们将分为两个主要部分进行讨论。
2.1 LED电源的基本知识首先,我们将介绍LED电源的基本知识,包括LED灯的原理、工作机制和常见的电源类型。
我们将探讨不同类型的LED电源的优缺点,并详细阐述LED电源的技术参数与性能指标。
LED灯管知识之电源讲解
LED灯管知识讲解--电源篇电源在灯管中是一个非常重要的部件,也称为:驱动,电源的好坏直接影响到灯管的使用寿命。
如果把灯管比做人的话,那么灯珠就是人的身体,而电源就是人的心脏。
可见电源的重要性,所以电源也被行业人士称为LED的灵魂。
电源按接电电压来分有:宽电压电源、窄电压电源;按输入输出来分有:隔离电源、非隔离电源;宽电压电源:所谓宽电压就是指能适应大多数国家的正常工作的电压,一般来说宽电压的范围是:85V-265V。
窄电压电源:所谓窄电压其实是相对而言的,窄电压范围大多是:185-265V。
也有说 85-180V的。
隔离电源:隔离电源通俗的讲就是市电与电源原器件并非直接连接,而是通过变压器变压之后才供电给电子原器件。
安全性能更高,但是由于电路稍微更复杂,所以隔离电源的转换效率相对非隔离电源来说更低一些。
转换效率一般为85%左右。
非隔离电源:与隔离电源相反,非隔离电源就是市电与电源原器件直接相连,容易发生触电的危险,安全性能相对隔离电源来说更低一些,但是转换效率更高一点。
一般可以做到88%的转换效率,最高做到92%左右,但是价格会高出许多,一般没很大必要。
LED电源工作基本原理:一般来说,LED驱动电源主要经过以下3个步奏,1、降压:把接入的220V(或110V)市电降压变成交流的低压电。
2、整流:经过降压后的低压直流电再经过二极管(二极管的特性:单向通导性)转变成不稳定的直流低压电。
3、滤波:通过电容、电感经过多次滤波变成稳定的低压直流电。
4、给LED供电关于电源的几个名词解释:1、功率因数:功率因数就是电压与电流相位差的余弦值。
因为电流与电压都是波性图,一个是正弦图,一个是余弦图;由于2个波形图相差1/4个周期(即:90度),于是形成了PF值,为了提高PF值,需要在电源上增加一个校正电路,所以PF值高的电源成本相对来说也更高。
没有PF校正电路的PF值一般在0.6左右,有PF电路的基本都可以达到0.9左右,甚至更高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型高效而紧凑的白光LED驱动方案无需增加成本、外围元件和印刷电路板空间,新式白光LED驱动拓扑就能够提供业界领先的效率和简单架构的电荷泵。
系统设计人员目前面临一个艰巨的挑战,他们需要利用彩色便携式显示屏来最大限度地提升系统功能和效率,同时又要实现成本和尺寸最小化。
现在已经到了需要为系统设计师提供一种全新的LED驱动拓扑的时候。
白光LED需要大约3.6伏的供电电压才能实现合适的亮度控制。
然而,大多数掌上设备都采用锂离子电池作电源,它们在充满电之后约为4.2伏,安全放完电后约为2.8伏,显然白光LED不能由电池直接驱动。
替代的解决方案是使用升压电路,在需要时提高驱动的电压,从而在整个电池使用周期间内不间断地为LED稳定供电。
LCD显示屏中使用的LED驱动器有两个要求。
首先它们要能准确控制和匹配每一个LED的亮度,这将最大限度地保持显示屏背光的一致性;其次LED驱动器要能够把输入的电池电压升高,这将保证在整个电池的使用周期内能为LED提供足够的驱动电压,从而延长设备的使用时间。
基于电感的LED驱动器通常用于驱动串型连接的LED,此种结构本身就能够提供一致的匹配。
它们还能够提供可变和优化的电压升高比例,因此具有非常高的电源转换效率。
然而,由于外部元件的尺寸和成本,以及讨厌的电磁干扰(EMI),基于电感的LED驱动器方案具有明显的缺陷。
体积庞大的储能电感限制了这种方案在细长和低外观的小型掌上设备中的应用。
另一方面,电荷泵型LED驱动器则提供了一个非常好的解决方案,其外部电路只需使用极小的电容即可。
这使之成为进一步推动消费增长的更小更薄的便携式设备的理想选择。
电荷泵上的各个电流通道使用匹配的电流独立驱动各并行连接的LED,但是,升压比例是离散的,由不同的运行模式(倍增因子)而定。
可用的运行模式数量和当前的电池电压决定了整个电荷泵的电源效率。
常见的电荷泵方案使用二个外部飞电容来提供三种运行模式(1倍,1.5倍,2倍)来进行升压。
随着电池的消耗,这些器件逐次提高升压参数。
在每一种升压模式中,最大输出电压等于输入电池电压乘倍增因子。
超过驱动LED所必需的那部分电压的能量,将在电荷泵或者电流调节器中被消耗掉,这就降低了整个电路的转换效率。
嵌入更多的运行模式有助于在锂电池的整个使用周期内限制过高的电压增益,从而提高效率。
某些电荷泵目前提供第四种运行模式(1.33倍),按照1倍、1.33倍、1.5倍和2倍依次提高输出电压。
实现1.33倍升压的常规方法需要增加器件引脚和外部元件的数量,相应地,需要更多引脚的封装和更大面积的印刷电路板空间,这使整个解决方案的成本远高于只有三种运行模式的器件。
图1通过增加一个1.33倍运行模式,电荷泵方案的效率相当于基于电感的方案按照1倍、1.33倍、1.5倍和2倍顺序来提升电压的电荷泵达到了传统上基于电感的升压转换器的效率(图1),同时还拥有与电荷泵方案相应的低成本和小尺寸的全部好处。
此外,通过使用1.33倍运行模式,过高提升的电压被尽量限制,从而减少电源浪费和由此而产生的热损失(图2)。
图2三模式和四模式中电源浪费对比目前已经有一种创新的、即将获批美国专利的自适应分数电荷泵器件,该器件在保持低成本和三模式(1倍、1.5倍和2倍)器件的简单性的同时可以实现第四种电荷泵运行模式(1.33倍)。
四模式(Quad-Mode TM)电荷泵能够提供更高的效率,同时不必增加外部元件及相关的成本和印刷电路板空间。
此外,1.33倍分数工作模式还可减少电池端的可见电流纹波。
这有助于最大限度地减少整个供电噪声,这在手机等便携式设备中是一个很重要的指标。
图3常规的1.33倍运行模式需要三个外部飞电容常规的1.33倍运行模式(图3)需要三个飞电容,通过使用两相转换(充电和升压)来实现1.33倍升压。
Catalyst Semiconductor的新型1.33倍转换架构(图4)通过增加额外的第三个转换相来完成1.33倍升压,这就消除了通常所需外接的第三个飞电容。
图4新的Catalyst1.33倍运行模式架构消除了第三个飞电容在这种新的1.33倍升压架构中(图4),第一相动作是把飞电容C1和C2串联并通过输入电源为它们充电,第二相动作是把与输入电源相连的电容C1与C2断开并转接至输出端实现升压,与此同时,电容C2因与C1断开而保持浮空状态。
第三相动作是串接C1和C2并串联于输入和输出间实现第二次升压,电容C1在这过程中是被反向接入的,因此,电容C1的正极被连接到输入电源,而电容C2的正极被连接到输出端。
通过这三相操作,C1将被充电到输入电压的三分之一,C2将被充电到输入电压的三分之二,这就可以把输出电压升高到输入电压的三分之四(4/3)倍。
稳态输出电压可通过求解由基尔霍夫电压定理所确定的每相电压方程而得到:第一相:VIN=VC1+VC2(1)第二相:VOUT=VIN+VC1(2)第三相:VOUT=VIN-VC1+VC2(3)将(2)替换到(3):VIN+VC1=VIN-VC1+VC2(4)VC2=2VC1(5)将(5)替换到(1):VC1=1/3VIN(6)将(6)替换到(2):VOUT=4/3VIN(7)Catalyst半导体公司的最新产品CAT3636(图5)已经包含了这种新的四模式(Quad-Mode TM)自适应分数电荷泵交换架构。
CAT3636包含三组共6个LED驱动通道,每组包含两个严格稳流和匹配的通道。
通过一个单线接口(包含地址和数据)逻辑,可以实现完整的功能和调光控制,这就可以对各个LED组进行单独和精确的设置。
在含有主,副显示屏的彩色LCD背光系统或RGB LED组或闪光功能的便携式产品中,这一接口还有助于减少引脚和接口连接数量。
图5CAT3636LED驱动器框图:新的四模式交换架构消除了常规方案所必需的第三个外部飞电容系统设计师现在可以在采用简洁的电荷泵方案的同时享有效率比美与基于电感的方案,并且不需要增加成本、外围元件和印刷电路板面积。
由于采用了兼容RoHS标准的微型3x3mm低外观T QFN封装,Catalyst CAT3636四模式自适应分数电荷泵的推出是适用于目前最新的便携式产品中的LED驱动器的一个飞跃性进步。
分析通用市场中的高亮度LED驱动应用技术目前,最常见的白光LED是通过在蓝色的发光二极管上面涂上黄磷制成的。
此外,还可以将红、绿、蓝三种光互相调配做成白色LED。
LED的发展非常迅速,现在100L/W到120L/W 的白光LED已经可以大量生产了。
但是,LED驱动的发展也存在着很大的挑战,由于LED本身就是线性元件,因此目前主要面临的问题是:第一,正向电压随着电流和温度的变化而变化;第二,不同器件的正向电压会有差异;第三,"色点"会随着电流和温度的变化而漂移;第四,LED必须在规范要求的范围内工作,从而实现可靠工作。
图1中展示的是LED驱动器的基本结构,最左侧为输入部分,驱动器中有两个重要的部分:一个是电源转换,包括非隔离型和隔离型两种;另一个是驱动器,它将输入电压转换成恒流来驱动LED。
驱动器的主要功能就是在工作条件范围内限制电流,无论输入条件和正向电压如何变化。
除了限流之外,在制作驱动器产品的时候,我们也要考虑它的效率、成本、尺寸等诸多因素。
在效率方面,因为人的视觉系统会滤除电流纹波,所以如果开关频率达到100Hz至150Hz,驱动器的"恒定"电流就不需要为直流电平,而是可以采用非线性电流来驱动LED。
这样,不但可以提高效率,还可以简化电路。
图1:LED驱动器的基本结构离线应用典型的离线应用包括电子镇流器、荧光灯代替品、交通信号灯、LED灯泡、街道和停车照明、建筑物照明、标志等。
图2是安森美公司NCP1014/28离线式第二代LED驱动器的电路图,其中,蓝色部分为恒定电流电路,此外还设有最高电压钳制电路,保证输出电压不会超出设计电压范围,确保安全。
NCP1014是一款离线脉宽调制(PWM)开关稳压器,具有集成的高压MOSFET,当采用通用交流线路供电时,最高能够提供8W的输出功率。
其中,NCP1014LED驱动器是完全隔离的交流-直流转换器,针对恒流应用进行了优化。
NCP1014/NCP1028采用350 mA/22V直流变压器设计及700mA/17V的直流配置。
需要说明的是,如果针对230V交流线路使用另一种可选变压器,则该转换器能够提供高达19W(NCP1014)或25W(NCP1028)的功率。
图2:NCP1014/28离线式第二代LED驱动器在一些更大功率的应用中,如大于15W的设计,一般单芯片驱动器会有功率限制,所以可以考虑用分立的方法来实现。
在图3的应用中,用NCP1351加上一个新的MOSFET,做成一个驱动器,它能支持350mA至1A的恒流。
在设计中应用NCP1351,它采用了可变频率控制器,在轻载或无负载状态下,开关频率很低,启动时具有非常低的电流损耗和很高的效率。
此外,在输出部分,还增加了恒流电路和最高电压控制电路。
图3:基于NCP135120W通用输入的应用示例图4是利用NCP4300A的恒流恒压电路,该电路具有以下优势:电流感测电压降仅为简单分立方式的20%;通过负载稳流精度更高,小于3%,且根据元件容限的不同会有差异;具有专门的稳压和稳流环路,可以方便设计者设计参数;仅在最大正向电压超过36V 时需要外挂,采用齐纳器件对NCP4300A进行稳压。
图4:NCP4300恒流恒压反馈控制,用于反激转转器另外还有一种降压的方法,就是非隔离型离线降压电路,这种电路模式可以提高效能。
其峰值电流控制(PCC)拓扑结构工作在深度、连续导电模式下,不但可以更好地进行电流设置,还可以充分利用动态自供电的功能,直接驱动外挂的MOSFET,同样也可以降低整个设计成本。
针对非隔离型LED,在其输入方面要认真考量。
因为输入电压很高,当输出电压很小时,会导致占空比非常窄,所以开关控制器在电流被感测到之前会有200ns至400ns 的前沿消隐。
因此,必须降低开关频率以适应正常操作,使输入电压通过半波整流输入电路时保持在最低值。
电路是否需要PFC稳压,主要在于电流是否为正弦波。
PFC的存在可以帮助改善电网的效率。
在一些照明设备中,凡超过25W的应用,全部需要PFC稳压。
除了之前提到PFC以外,在线性照明、背光效果、街道照明等应用中,还会用到分布式直流架构。
图5中可以看到在PFC后面有一个隔离的DC-DC,形成12V、24V输出,利用PWM对光线明暗进行控制。
图5:分布式直流架构宽输入范围直流-直流LED应用包括:景观照明、内部低压轨道照明、太阳能照明、交通、应急车辆、显示器/屏背光、船舶应用、便携投影仪、替换低压卤素灯、汽车应用等。