算法设计与分析习题课

合集下载

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答算法设计与分析基础课后练习答案习题 4.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求//输入:一个正整数n2//输出:。

step1:a=1;step2:若a*a 5. a.用欧几里德算法求gcd。

b. 用欧几里德算法求gcd,比检查min{m,n}和gcd间连续整数的算法快多少倍?请估算一下。

a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513,105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1.b.有a可知计算gcd欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。

6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint:对于任何形如0 gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次) b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次) gcd(5,8) 习题 1.(农夫过河)P—农夫 W—狼G—山羊C—白菜 2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c//输出:实根或者无解信息 If a≠0D←b*b-4*a*c If D>0temp←2*ax1←(-b+sqrt(D))/temp x2←(-b-sqrt(D))/temp return x1,x2else if D=0 return –b/(2*a) else return “no real roots” else //a=0if b≠0 return –c/b else //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出 b.伪代码算法 DectoBin(n)//将十进制整数n转换为二进制整数的算法 //输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中 i=1while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; }9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1]) //输入:数组A[0..n-1] //输出:the smallest distance d between two of its elements习题1. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗? 解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count 4.(古老的七桥问题) 第2章习题7.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。

算法设计与分析习题解答

算法设计与分析习题解答

第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。

若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。

由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。

必要性。

同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。

2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。

由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。

3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。

证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。

4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。

∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。

当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。

【课后习题及答案】《计算机算法设计与分析(第三版)课后习题答案详解

【课后习题及答案】《计算机算法设计与分析(第三版)课后习题答案详解

精品课程 课后习题答案第 1 章 算 法 概 述习蹬 1- 1函数的渐近表达式求下列函数的渐近表达式:3, f + 10 n ; 1l 匀10·+·2'' ; 分析与解答: 3矿+10n 二. ( ) ( 4 ) ;,l / 10+ 2 擒 = 0 ( 2” ) ; 2.1-t- l 过 一( ){ 1 ) ;lo 耟. ; t = ( ) ( l (1g1.1) ; I O l og 守 =('i ?!), 21 + 1;, 1; l o g n ' ; 10lv g3飞习题 1- 21() . l )和() ( 2 )的区别试论 ( )( l ) 和 () ( 2 )的区别. 分析与觞答:根据符号()的定义易知0 (1 ) = 0( 2)。

用()(1) 或 0 ( 2 ) 表示同一个函数时 ,差别仅在于 其中的祜数因子。

习题 1- 4 按渐近阶排列表达式按照渐近阶从低到高的顺序排列以下表达式,4n \排在哪一位?分析与解答:l ()g n , 3入 20:ri, 2 . n 2/又 义叫 应该3飞 n!。

, 函 数 排列 顺 序 如 下 : 2 .l og t , n23 、20n, 4,i-, 按 浙 近 阶从 低到尚 习题 1- 5箕法效宇( l ) 假设某符法在椋人栽模为”时的计算时间为 T (,t) = 3 X 2又 在某 台计算机上实现井 完成该算 法的时间为1 秒.现有另一台计算机,其运行速度为第一台的 64 倍,那么在这台新 机器 十用 同 一 符 法在 t 秒 内 能 招 轮人规模为多大的间题?( 2) 若上述芬法的计算时间改进为 T ( n )=r/'能解轴入规枑为多大的问烦?( 3) 若 上述算法的计算时间进一步改进为 T (11) = 8 ,f 秒和可能解输人规筷 为多 大的问 题?分析与解答 :其余 条 件不 变 ,则 在新 机 器上用i 秒时间其 余 条 件 不 变 ,那么在新机器上用"赁法 在 t · 秒1引能 解输人规模 为 n l 的问题。

算法设计与分析基础课后习题答案

算法设计与分析基础课后习题答案

Program算法设计与分析基础中文版答案习题5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次..对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.(农夫过河)P—农夫 W—狼 G—山羊 C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBin(n).n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略)对这个算法做尽可能多的改进.算法 MinDistance(A[0..n-1])n-1]a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element., 0 for an array of positive numbers ) to mark the i th position is empty. (“lazy deletion”)第2章习题7.对下列断言进行证明:(如果是错误的,请举例)a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n))b.α>0时,Θ(αg(n))= Θ(g(n))解:a. 这个断言是正确的。

(整理)《计算机算法-设计与分析导论》课后习题答案.

(整理)《计算机算法-设计与分析导论》课后习题答案.

4.1:在我们所了解的早期排序算法之中有一种叫做Maxsort 的算法。

它的工作流程如下:首先在未排序序列(初始时为整个序列)中选择其中最大的元素max ,然后将该元素同未排序序列中的最后一个元素交换。

这时,max 元素就包含在由每次的最大元素组成的已排序序列之中了,也就说这时的max 已经不在未排序序列之中了。

重复上述过程直到完成整个序列的排序。

(a) 写出Maxsort 算法。

其中待排序序列为E ,含有n 个元素,脚标为范围为0,,1n -。

void Maxsort(Element[] E) { int maxID = 0;for (int i=E.length; i>1; i--) { for (int j=0; j<i; j++) {if (E[j] > E[maxID]) maxID = k; }E[i] <--> E[maxID]; } }最坏情况同平均情况是相同的都是11(1)()2n i n n C n i -=-==∑。

几遍浏览序列实现。

排序策略是顺序比较相邻元素,如果这两个元素未排序则交换这两个元素的位置。

也就说,首先比较第一个元素和第二个元素,如果第一个元素大于第二个元素,这交换这两个元素的位置;然后比较第二个元素与第三个元素,按照需要交换两个元素的位起泡排序的最坏情况为逆序输入,比较次数为11(1)()2n i n n C n i -=-==∑。

(b) 最好情况为已排序,需要(n-1)次比较。

4.3: (a)归纳法:当n=1时显然成立,当n=2时经过一次起泡后,也显然最大元素位于末尾;现假设当n=k-1是,命题也成立,则当n=k 时,对前k-1个元素经过一次起泡后,根据假设显然第k-1个元素是前k-1个元素中最大的,现在根据起泡定义它要同第k 个元素进行比较,当k元素大于k-1元素时,它为k个元素中最大的,命题成立;当k元素小于k-1元素时,它要同k-1交换,这时处于队列末尾的显然时队列中最大的元素。

算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。

算法思路:本题可以使用快速选择算法来解决。

快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。

具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。

2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。

3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。

4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。

5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。

6. 递归地重复上述步骤,直到找到第k小的元素。

算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。

(陈慧南 第3版)算法设计与分析——第2章课后习题答案

(陈慧南 第3版)算法设计与分析——第2章课后习题答案

因此 T (n) (n 2 ) (3) a 28, b 3, f n cn3
nlogb a nlog3 28 n3.033 ,则 f (n) c n 2 (nlogb a - ) ,其中可取 =0.04 。符合主定理
的情况 1 ,因此 T (n) (n3.033 )
21 21 当 n n0 时, f n g n ,所以 f n = g n 2 2
(2) f n n 2 logn , g n n log 2 n
2 当 n 4 时, f n n 2 logn n 2 , g n n log 2 n n 。因此可取 n0 4, c 1 ,当
g n
(1) f n 20n logn , g n n+ log 3 n
f n 20n logn 21n , g n n+ log 3 当 n 3 时, logn n log3 n 2n n 因此
因此可取 n0 3, c
f n g n ,所以 f n = g n
2-12 将下列时间函数按增长率的非递减次序排列
3 2
n
, log n , log 2 n , n log n , n ! , log(log(n)) , 2 n , n1 log n , n 2
答: n1 log n
f ( n ) ( n m )
证明:
f (n) am nm am1nm1 a1n a0 F (n) am n m am1 n m1
a1 n a0
由 F (n) 单调性易知,存在 nt 0 ,使得 F (n) 取 n 1 ,且 nt0 nt , F (nt0 ) 0 ,则 当 n nt0 时, F (n) 0 即: f (n) am n m am1 n m1

(陈慧南 第3版)算法设计与分析——第7章课后习题答案

(陈慧南 第3版)算法设计与分析——第7章课后习题答案

③ 其余元素
w[0][2] q[2] p[2] w[0][1] 15
k 1: c[0][0] c[1][2] c[0][2] min k 2 : c[0][1] c[2][2] w[0][2] 22 r[0][2] 2



17000
s[0][2]

0
m[1][3]

min
k k
1: m[1][1] m[2][3] 2 : m[1][2] m[3][3]
p1 p2 p4 p1 p3 p4


10000
s[1][3]

2
m[1][3]

min

k k

0 : m[0][0] m[1][3] 1: m[0][1] m[2][3]
第七章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术 7-1 写出对图 7-19 所示的多段图采用向后递推动态规划算法求解时的计算过程。
3
1
3
1
6
5
0
2
6
6
3
4
4 6
5
2
7
8
3
2
8
5
2
7
解析:
V 5 cost(5,8) 0 d (5,8) 8
V4
cos t(4, 6) minc(6,8) cos t(5,8) 7 cos t(4, 7) minc(7,8) cos t(5,8) 3
k 1: c[0][0] c[1][3] c[0][3] min k 2 : c[0][1] c[2][3] w[0][3] 25

算法设计与分析课后习题

算法设计与分析课后习题

第一章1. 算法分析题算法分析题1-1 求下列函数的渐进表达式(1). 3n^2 + 10n < 3n^2 + 10n^2 = 13n^2 = O(n^2)(2). n^2 / 10 + 2^n当n>5是,n^2 〈2 ^n所以,当n >= 1时,n^2/10 〈2 ^n故:n^2/10 + 2^n < 2 ^n + 2^n = 2*2^n = O(2^n)(3). 21 + 1/n < 21 + 1 = 22 = O(1)(4). log(n^3)=3log(n)=O(log(n))(5). 10log(3^n)= (10log3)n = O(n)算法分析题1—6(1)因为:f(n)=log(n^2) = 2log(n); g(n) = log(n) + 5所以:f(n)=Θ(log(n)+5)=Θ(g(n))(2)因为:log(n) 〈√n ; f(n)= 2log(n);g(n)=√n所以:f(n)= O(g(n))(3)因为:log(n)< n;f(n) = n;g(n) = log(n^2) = 2log(n)所以;f(n)= Ω(g(n))(4)因为:f(n) = nlogn +n; g(n) = logn所以:f(n) =Ω(g(n))(5)因为: f(n)= 10;g(n) = log(10)所以:f(n)=Θ(g(n))(6)因为: f(n)=log^2(n);g(n)= log(n)所以:f(n) ==Ω(g(n))(7)因为: f(n) = 2^n < 100*2^n; g(n)=100n^2; 2^n > n ^2所以:f(n)= Ω(g(n))(8)因为:f(n)= 2^n; g(n)= 3 ^n;2 ^n 〈3 ^n所以:f(n)= O(g(n))习题1-9 证明:如果一个算法在平均情况下的计算时间复杂性为Θ(f(n)),该算法在最坏情况下所需的计算时间为Ω(f(n)).分析与解答:因此,Tmax(N) = Ω(Tavg(N)) = Ω(Θ(f(n)))=Ω(f(n))。

《计算机算法-设计与分析导论》课后习题答案

《计算机算法-设计与分析导论》课后习题答案

它的工作流程如下:首先在未排序序列(初始时为整个序列)中选择其中最大的元素max ,然后将该元素同未排序序列中的最后一个元素交换。

这时,max 元素就包含在由每次的最大元素组成的已排序序列之中了,也就说这时的max 已经不在未排序序列之中了。

重复上述过程直到完成整个序(a) 写出Maxsort 算法。

其中待排序序列为E ,含有n 个元素,脚标为范围为0,,1n-。

void Maxsort(Element[] E) {int maxID = 0;for (int i=E.length; i>1; i--) {for (int j=0; j<i; j++) {if (E[j] > E[maxID]) maxID = k;}E[i] <--> E[maxID];}}最坏情况同平均情况是相同的都是11(1)()2n i n n C n i -=-==∑。

该算法通过连续几遍浏览序列实现。

排序策略是顺序比较相邻元素,如果这两个元素未排序则交换这两个元素的位置。

也就说,首先比较第一个元素和第二个元素,如果第一个元素大于第二个元素,这交换这两个元素的位置;然后比较第二个元素与第三个元素,按照需要交换两个元素的位置;起泡排序的最坏情况为逆序输入,比较次数为11(1)()2n i n n C n i -=-==∑。

(b) 最好情况为已排序,需要(n-1)次比较。

4.3:(a)归纳法:当n=1时显然成立,当n=2时经过一次起泡后,也显然最大元素位于末尾;现假设当n=k-1是,命题也成立,则当n=k时,对前k-1个元素经过一次起泡后,根据假设显然第k-1个元素是前k-1个元素中最大的,现在根据起泡定义它要同第k个元素进行比较,当k元素大于k-1元素时,它为k个元素中最大的,命题成立;当k元素小于k-1元素时,它要同k-1交换,这时处于队列末尾的显然时队列中最大的元素。

综上所述,当n=k时命题成立。

算法设计与分析-课后习题集答案

算法设计与分析-课后习题集答案
10.(1)当 时, ,所以,可选 , 。对于 , ,所以, 。
(2)当 时, ,所以,可选 , 。对于 , ,所以, 。
(3)由(1)、(2)可知,取 , , ,当 时,有 ,所以 。
11. (1)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(2)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(3)因为 , 。当 时, , 。所以,可选 , ,对于 , ,即 。
第二章
2-17.证明:设 ,则 。
当 时, 。所以, 。
第五章
5-4.SolutionType DandC1(int left,int right)
{while(!Small(left,right)&&left<right)
{int m=Divide(left,right);
所以n-1<=m<=n (n-1)/2;
O(n)<=m<=O(n2);
克鲁斯卡尔对边数较少的带权图有较高的效率,而 ,此图边数较多,接近完全图,故选用普里姆算法。
10.
T仍是新图的最小代价生成树。
证明:假设T不是新图的最小代价生成树,T’是新图的最小代价生成树,那么cost(T’)<cost(T)。有cost(T’)-c(n-1)<cost(t)-c(n-1),即在原图中存在一颗生成树,其代价小于T的代价,这与题设中T是原图的最小代价生成树矛盾。所以假设不成立。证毕。
13.template <class T>
select (T&x,int k)
{
if(m>n) swap(m,n);
if(m+n<k||k<=0) {cout<<"Out Of Bounds"; return false;}

(陈慧南 第3版)算法设计与分析——第1章课后习题答案

(陈慧南 第3版)算法设计与分析——第1章课后习题答案
此时i1即在本次循环中先执行swapa0a1将第二个元素与第一个元素互换下面执行perma1n根据假设可知该语句产生以a1为第一个元素余下k1个元素的全排列
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求 //输入:一个正整数n2//输出:。

step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。

6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。

数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。

解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。

(陈慧南 第3版)算法设计与分析——第5章课后习题答案

(陈慧南 第3版)算法设计与分析——第5章课后习题答案

(3) 分析算法的时间复杂度 上述算法的时间复杂度为 n 2
(2) 编写 C 程序实现这一算法;
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 1000 struct point { double x; double y; }p1[N],pxSmall[N],pxLarge[N]; double Distance (point a , point b); double min (double a , double b); bool Compare_Y (point a , point b); bool Compare_X (point a , point b); double minDistance (int l, int r); int main() { int n ; double D ; cin>>n;
int main() { int n, x, *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; cin >> x; if (Triple_search(a, 0, n - 1, x) == -1) cout << "NotFound!" << endl; else cout << Triple_search(a, 0, n - 1, x) << endl; delete []a; return 0; } int Triple_search(int a[], int l, int r, int x) { if (l <= r) { int m1 = l + (r-l)/3; int m2 = l + (r-l)*2/3; if (a[m2]<x) return Triple_search(a, m2 + 1, r, x); else if (a[m1] < x && a[m2] > x) return Triple_search(a, m1 + 1, m2 - 1, x); else if (a[m1] > x) return Triple_search(a, l, m1 - 1, x); else if (a[m1] == x) return m1; else if (a[m2] == x) return m2; } return -1; }

算法设计与分析课后习题答案

算法设计与分析课后习题答案

5. (25%) We want to know how many students are taking both CS2210 and CS2211 this term. Let A and B be the class lists of CS2210 and CS2211. Each of A and B consists of unique student IDs of the corresponding class. To keep it simple, we assume that the two classes have the same number of students, denoted by n. 5.1 Write an algorithm in pseudocode to count the number of students who are taking both CS2210 and CS2211 this term. 5.2 Compute the worst case running time T (n) of your algorithm with respect to the class size n. 5.3 Give the best Big-Oh complexity characterization of T (n). Solution 1: 5.1 Algorithm countCommon(A, B, n) Input: Two integer arrays A and B with both size of n Output: Number of common elements in A and B e ← 0 //number of common elements for i ← 0 to n − 1 do for j ← 1 to n − 1 do if B [j ] = A[i] then e=e+1 break return e 5.2 The worst case occurs when there are no common elements in A and B. In such case, every element in A needs to be compared with every element in B. This algorithm involves a nested “for” loop. We analyze the inner-most “for” loop first. In each iteration of the inner “for” loop, only a number of constant c operations are performed (mainly one comparison). The number of iterations of the inner “for” loop is n. Thus, the total number of operations performed in this loop is cn. As for the outer (or first) “for” loop, the number of iterations is again n. In each iteration of the outer “for” loop, it performs the work of the inner loop. Therefore, the total work done by the outer “for” loop is n × cn = cn2 . Consequently T (n) = cn2 + c′ where c′ is the number of operations for initializing e and returning e at the end. 5.3 T (n) = cn2 + c′ is O (n2 ). (Proof is straightforward.)

算法设计与分析基础第二版课后答案

算法设计与分析基础第二版课后答案

算法设计与分析基础第二版课后答案【篇一:算法设计与分析基础课后习题答案(中文版)】class=txt>习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. hint:根据除法的定义不难证明:?如果 d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n 和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? hint:对于任何形如0=mgcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.2 1.(农夫过河)p—农夫w—狼 g—山羊 c—白菜 2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c//输出:实根或者无解信息if a≠0d←b*b-4*a*c if d0temp←2*ax1←(-b+sqrt(d))/temp x2←(-b-sqrt(d))/temp return x1,x2else if d=0 return –b/(2*a) else return “no real roots” else //a=0 if b≠0 return –c/b else //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述解答: a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步第三步:将ki按照i从高到低的顺序输出b.伪代码算法 dectobin(n)//将十进制整数n转换为二进制整数的算法 //输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组bin[1...n]中 i=1 while n!=0 do { bin[i]=n%2; n=(int)n/2; i++; }while i!=0 do{ print bin[i]; i--; }9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 mindistance(a[0..n-1]) //输入:数组a[0..n-1]//输出:the smallest distance d between two of its elements习题1.31. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗? 解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for s and count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i个元素(1=i=n)b.删除有序数组的第i个元素(依然有序) hints:a. replace the ith element with the last element and decreasethe array size of 1b. replace the ith element with a special symbol that cannot be a value of the arr ay’s element(e.g., 0 for an array of positive numbers ) to mark the ith position is empty. (―lazy deletion‖)第2章习题2.1a. 这个断言是正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T(n) = n(n+1)/2 = O(n2)
递归算法的时间分析

代入法
迭代法 生成函数法

a0+a1+a2+..+an = ?
a
k 0
n
k
递归算法的时间分析
记 : fn ak
k 0 n
即 : f n 1 a f n 1

定义生成函数 : g ( z ) f n z n
若采用贪心法求解,即先尽量找最大可用面值的货币。 设最大可用面值为ct,即:ct≤n<ct+1,t≤k。 设从c0到ct,各种面值的货币各找了{ai}个,即: a0c0+a1c1+..+atct=n,求解目标为∑ai最少。 贪心选择性质: 所做的贪心选择为:atct≤n<(at+1)ct 即:a0c0+a1c1+..+at-1ct-1<ct 最优子结构性质: 做出贪心选择atct后,应使剩余的部分 a0+a1+..+at-1达到最少。
n 1 m 1 m 1, n 1
半数集问题

给定一个自然数n,由n开始可以依次产生半数集set(n) 中的数如下。 (1)n∈set(n); (2)在n的左边加上一个自然数,但该自然数不能超 过最近添加的数的一半; (3)按此规则进行处理,直到不能再添加自然数为止。
例如,set(6)={6,16,26,126,36,136}。半数集set(6)中 有6个元素。 对于给定的自然数n,计算半数集set(n)中的元素个数。
例如,若序列为(3, 6, 2, 5),则s=2。
设mi表示以Xi为结尾的最大递增子序列的长度。 则:mi = 1+max{0,mk | xk<xi,1≤k<i}

最优服务次序问题

设有n 个顾客同时等待一项服务。顾客i 需要的服务时间为ti,1≤i≤n,应如何安 排n 个顾客的服务次序才能使平均等待 时间达到最小?平均等待时间是n 个顾 客等待服务时间的总和除以n。
试设计一个算法,对于给定的2个整数n 和m,用最少的f和g变换次数将n变换为 m。


例如,可以将整数15 用4 次变换将它变 换为整数4:4=gfgg(15)。
整数变换问题
15 7
3 21 22
45
135
9 4
1
10
63
11
66
67
405
最长递增子序列问题 Nhomakorabea给定正整数序列x1, x2, ……, xn。计算其 最长递增子序列的长度s。
n 0
则 : a z g ( z ) a f n z n 1 a f n1 z n
n 0 n 1


(1 az) g ( z ) f 0 z z n
n n 1 n 0


递归算法的时间分析
1 由 : lim (ax) ax 1 n 1 ax i 0
i n
1 z 1 z n 0
n

1 A B g ( z) (1 z )(1 az) 1 z 1 az
1 a 由待定系数法可求得: A ,B 1 a 1 a
递归算法的时间分析
1 1 又由lim (ax)i 得 : zn, (az) n n 1 z n 0 1 az n 0 i 0 n
例如,若数列为(1, 2, 3),则极差为10-8=2。

数字三角形问题

给定一个由n行数字组成的数字三角形如 下图所示。试设计一个算法,计算出从 三角形的顶至底的一条路径,使该路径 经过的数字总和最大。
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
整数变换问题

整数变换问题。关于整数i的变换f和g定 义如下:f(i)=3i;g(i)=└i/2┘。
例如,n=178543,k=4,则结果为13。

删数问题
设X = X1 X2 .. Xi-1 Xi Xi+1 .. Xn 若X1 < X2 .. < Xi-1 < Xi 且Xi > Xi+1
可证明,删除Xi是可得到的最小的数。
石子合并问题

在一个操场的四周摆放着n 堆石子。现 要将石子有次序地合并成一堆。规定每 次只能选2 堆石子合并成新的一堆,合 并的费用为新的一堆的石子数。试设计 一个算法,计算出将n堆石子合并成一堆 的最小总费用。
编辑距离问题
设: A=(A1, A2, …, An) B=(B1, B2, …, Bm)
若An=Bm,则d(A1..n, B1..m)=d(A1..n-1, B1..m-1) 否则,可以通过三种操作将A变换为B: 1、变换An为Bm; 2、删除An; 3、插入An+1=Bm;
找钱问题

设某币值系统为(c0,c1,..ck),c>1,k≥1,要用最 少的币数找出n元钱,能否用贪心算法求解?
g ( z) ( A B a n ) z n
n 0

1 a n a n 1 1 fn A B an a 1 a 1 a a 1
递归算法的非递归化
m f ( m, n ) n f ( m, n 1) f ( m 1, n)
数列极差问题

对由N (N<2000)个正数组成的一个数列,进行 如下操作:每一次删去其中2 个数设为a和b, 然后在数列中加入一个数a*b+1,如此下去直 至只剩下一个数。在所有按这种操作方式最后 得到的数中,最大的数记为max,最小的数记 为min,则该数列的极差M 定义为M = max min。
程序存储问题

设有n个程序{1,2,…, n }要存放在长度为 L的磁带上。程序i存放在磁带上的长度是 li,1≤i≤n。
程序存储问题要求确定这n 个程序在磁 带上的一个存储方案,使得能够在磁带 上存储尽可能多的程序。

删数问题

给定n 位正整数a,去掉其中任意k≤n 个 数字后,剩下的数字按原次序排列组成 一个新的正整数。对于给定的n位正整数 a 和正整数k,设计一个算法找出剩下数 字组成的新数最小的删数方案。
X8 X9
编辑距离问题



设A和B是2个字符串。要用最少的字符操作将字符串A 转换为字符串B。这里所说的字符操作包括 (1)删除一个字符; (2)插入一个字符; (3)将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为 字符串A到B的编辑距离,记为d(A,B)。试设计一个有 效算法,对任给的2个字符串A和B,计算出它们的编辑 距离d(A,B)。 例如,若A=“abcd” ,B=“def” ,则编辑距离为4。


半数集问题
10
5 2 1 1 2 1
4 1
3 1
2 1
1
set (n) 1 set (i )
i 1
n/2
闭区间覆盖问题

设x1, x2, ……, xn是实直线上的n个点。 用固定长度的闭区间覆盖这n个点,至少 需要多少个这样的固定长度闭区间?
X1
X2 X3
X4 X5
X6 X 7
最小重量机器设计问题

设某一机器由n个部件组成,每一种部件 都可以从m个不同的供应商处购得。
设计算法,给出总价格不超过c的最小重 量机器设计。

《算法设计与分析》习题课
复杂性分析

几种基本结构的算法时间频度
T(n) = n = O(n)
for (int i=0; i<n; i++) S(); for (int i=0; i<n; i++) for (int j=0; j<n; j++) S();
T(n) = n2 = O(n2)
for (int i=0; i<n; i++) for (int j=i; j<n; j++) S();
相关文档
最新文档