西安电子科技大学《算法设计与分析》随课上机作业题
算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法分析与设计作业参考答案

算法分析与设计作业参考答案《算法分析与设计》作业参考答案作业⼀⼀、名词解释:1.递归算法:直接或间接地调⽤⾃⾝的算法称为递归算法。
2.程序:程序是算法⽤某种程序设计语⾔的具体实现。
⼆、简答题:1.算法需要满⾜哪些性质?简述之。
答:算法是若⼲指令的有穷序列,满⾜性质:(1)输⼊:有零个或多个外部量作为算法的输⼊。
(2)输出:算法产⽣⾄少⼀个量作为输出。
(3)确定性:组成算法的每条指令清晰、⽆歧义。
(4)有限性:算法中每条指令的执⾏次数有限,执⾏每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩⼩到⼀定的程度就可以容易地解决;(2)该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质;(3)利⽤该问题分解出的⼦问题的解可以合并为该问题的解;(4)该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦问题。
3.简要分析在递归算法中消除递归调⽤,将递归算法转化为⾮递归算法的⽅法。
答:将递归算法转化为⾮递归算法的⽅法主要有:(1)采⽤⼀个⽤户定义的栈来模拟系统的递归调⽤⼯作栈。
该⽅法通⽤性强,但本质上还是递归,只不过⼈⼯做了本来由编译器做的事情,优化效果不明显。
(2)⽤递推来实现递归函数。
(3)通过Cooper 变换、反演变换能将⼀些递归转化为尾递归,从⽽迭代求出结果。
后两种⽅法在时空复杂度上均有较⼤改善,但其适⽤范围有限。
三、算法编写及算法应⽤分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]交换a[j]、a[j+1];分析该算法的时间复杂性。
答:排序算法的基本运算步为元素⽐较,冒泡排序算法的时间复杂性就是求⽐较次数与n 的关系。
(1)设⽐较⼀次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计⼀个分治算法计算⼀棵⼆叉树的⾼度。
算法设计与分析习题解答

算法设计与分析习题解答第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。
若f=Ο(g),则必然存在常数c1>0和n0,使得?n≥n0,有f≤c1*g(n)。
由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。
必要性。
同理,若g=Ω(f),则必然存在c2>0和n0,使得?n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。
2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得?n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。
由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。
3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。
证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得?n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。
4)log(n!)= Θ(nlogn)证明:由于log(n!)=∑=ni i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。
由于对所有的偶数n 有,log(n!)= ∑=ni i 1log ≥∑=nn i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。
计算机算法设计和分析习题及答案解析

计算机算法设计与分析习题及答案一.选择题1、二分搜索算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是 A ;A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是 A ;A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是B ;A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是 C ;A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是 D ;A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是D ;A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是D ;A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形; BA、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为B ;A、On2nB、OnlognC、O2nD、On13.分支限界法解最大团问题时,活结点表的组织形式是B ;A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是B;A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是A ;A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是C ;A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素 DA.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略BA.递归函数 B.剪枝函数 C;随机数函数 D.搜索函数19. D是贪心算法与动态规划算法的共同点;A、重叠子问题B、构造最优解C、贪心选择性质D、最优子结构性质20. 矩阵连乘问题的算法可由 B 设计实现;A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法21. 分支限界法解旅行售货员问题时,活结点表的组织形式是 A ;A、最小堆B、最大堆C、栈D、数组22、Strassen矩阵乘法是利用A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法23、使用分治法求解不需要满足的条件是 A ;A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解24、下面问题 B 不能使用贪心法解决;A 单源最短路径问题B N皇后问题C 最小生成树问题D 背包问题25、下列算法中不能解决0/1背包问题的是 AA 贪心法B 动态规划C 回溯法D 分支限界法26、回溯法搜索状态空间树是按照 C 的顺序;A 中序遍历B 广度优先遍历C 深度优先遍历D 层次优先遍历27.实现合并排序利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法28.下列是动态规划算法基本要素的是D ;A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质29.下列算法中通常以自底向下的方式求解最优解的是 B ;A、分治法B、动态规划法C、贪心法D、回溯法30.采用广度优先策略搜索的算法是A ;A、分支界限法B、动态规划法C、贪心法D、回溯法31、合并排序算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法32、背包问题的贪心算法所需的计算时间为 BA、On2nB、OnlognC、O2nD、On33.实现大整数的乘法是利用的算法C ;A、贪心法B、动态规划法C、分治策略D、回溯法34.0-1背包问题的回溯算法所需的计算时间为AA、On2nB、OnlognC、O2nD、On35.采用最大效益优先搜索方式的算法是A;A、分支界限法B、动态规划法C、贪心法D、回溯法36.贪心算法与动态规划算法的主要区别是B;A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解37. 实现最大子段和利用的算法是B ;A、分治策略B、动态规划法C、贪心法D、回溯法38.优先队列式分支限界法选取扩展结点的原则是 C ;A、先进先出B、后进先出C、结点的优先级D、随机39.背包问题的贪心算法所需的计算时间为 B ;A、On2nB、OnlognC、O2nD、On40、广度优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法41. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的 B ;A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解42.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 B ;A 、On2nB 、OnlognC 、O2nD 、On43. 以深度优先方式系统搜索问题解的算法称为 D ;A 、分支界限算法B 、概率算法C 、贪心算法D 、回溯算法44. 实现最长公共子序列利用的算法是B ;A 、分治策略B 、动态规划法C 、贪心法D 、回溯法45. Hanoi 塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B46. 动态规划算法的基本要素为 CA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 47. 能采用贪心算法求最优解的问题,一般具有的重要性质为: AA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用48. 回溯法在问题的解空间树中,按 D 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先49. 分支限界法在问题的解空间树中,按 A 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先50. 程序块 A 是回溯法中遍历排列树的算法框架程序;A.B. C. D. 51. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO 分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO 分支限界法与优先队列式分支限界法;1.算法的复杂性有 时间 复杂性和 空间 ;2、程序是 算法用某种程序设计语言的具体实现;3、算法的“确定性”指的是组成算法的每条 指令 是清晰的,无歧义的;4. 矩阵连乘问题的算法可由 动态规划 设计实现;5、算法是指解决问题的 一种方法 或 一个过程 ;6、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 ;7、问题的 最优子结构性质 是该问题可用动态规划算法或贪心算法求解的关键特征;8、以深度优先方式系统搜索问题解的算法称为 回溯法 ;9、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步; Hanoi 塔A. void hanoiint n, int A, int C, int B{ if n > 0{ hanoin-1,A,C, B;moven,a,b; hanoin-1, C, B, A; }} B. void hanoiint n, int A, int B, int C { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }D. void hanoiint n, int C, int A, int B { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } } void backtrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1; swapxt, xi; } } void backtrack int t { if t>n outputx;elsefor int i=0;i<=1;i++ { xt=i; if legalt backtrackt+1; } }void backtrack int t { if t>n outputx; else for int i=0;i<=1;i++ { xt=i; if legalt backtrackt-1; } }voidbacktrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1;}}10、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划 ,需要排序的是回溯法 ,分支限界法 ;11、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题 ;12、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;13、矩阵连乘问题的算法可由动态规划设计实现;14.贪心算法的基本要素是贪心选择性质和最优子结构性质 ;15. 动态规划算法的基本思想是将待求解问题分解成若干子问题 ,先求解子问题 ,然后从这些子问题的解得到原问题的解;16.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质;17、大整数乘积算法是用分治法来设计的;18、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法 ;19、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;20.快速排序算法是基于分治策略的一种排序算法;21.动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质 ;22.回溯法是一种既带有系统性又带有跳跃性的搜索算法;23.分支限界法主要有队列式FIFO 分支限界法和优先队列式分支限界法;24.分支限界法是一种既带有系统性又带有跳跃性的搜索算法;25.回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数 ;26.任何可用计算机求解的问题所需的时间都与其规模有关;27.快速排序算法的性能取决于划分的对称性 ;28.所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到 ;29.所谓最优子结构性质是指问题的最优解包含了其子问题的最优解 ;30.回溯法是指具有限界函数的深度优先生成法 ;31.用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为 Ohn ;32.回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;33.用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构;34.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构;35.旅行售货员问题的解空间树是排列树 ;三、算法填空1.背包问题的贪心算法void Knapsackint n,float M,float v,float w,float x{//重量为w1..n,价值为v1..n的 n个物品,装入容量为M的背包//用贪心算法求最优解向量x1..nint i; Sortn,v,w;for i=1;i<=n;i++ xi=0;float c=M;for i=1;i<=n;i++{if wi>c break;xi=1;c-=wi;}if i<=n xi=c/wi;}2.最大子段和: 动态规划算法int MaxSumint n, int a{int sum=0, b=0; //sum存储当前最大的bj, b存储bjfor int j=1; j<=n; j++{ if b>0 b+= aj ;else b=ai; ; //一旦某个区段和为负,则从下一个位置累和 ifb>sum sum=b;}return sum;}3.贪心算法求活动安排问题template<class Type>void GreedySelector int n, Type s, Type f, bool A{A1=true;int j=1;for int i=2;i<=n;i++if si>=fj{ Ai=true;j=i;}else Ai=false;}4.快速排序template<class Type>void QuickSort Type a, int p, int r{if p<r{int q=Partitiona,p,r;QuickSort a,p,q-1; //对左半段排序QuickSort a,q+1,r; //对右半段排序}}5. 回溯法解迷宫问题迷宫用二维数组存储,用'H'表示墙,'O'表示通道int x1,y1,success=0; //出口点void MazePathint x,int y{//递归求解:求迷宫maze从入口x,y到出口x1,y1的一条路径mazexy=''; //路径置为if x==x1&&y==y1 success=1; //到出口则成功else{if mazexy+1=='O' MazePathx,++y;//东邻方格是通路,向东尝试if success&&mazex+1y=='O' MazePath++x,y;//不成功且南邻方格是通路,向南尝试if success&&mazexy-1=='O' MazePathx,--y;//不成功且西邻方格是通路,向西尝试if success&&mazex-1y=='O' MazePath--x,y;//不成功且北邻方格是通路,向北尝试}if success mazexy=''; //死胡同置为}四、算法设计题1. 给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x,返回其在数组中的位置,如果未找到返回-1;写出二分搜索的算法,并分析其时间复杂度;template<class Type>int BinarySearchType a, const Type& x, int n{//在a0:n中搜索x,找到x时返回其在数组中的位置,否则返回-1Int left=0; int right=n-1;While left<=right{int middle=left+right/2;if x==amiddle return middle;if x>amiddle left=middle+1;else right=middle-1;}Return -1;}时间复杂性为Ologn2. 利用分治算法写出合并排序的算法,并分析其时间复杂度void MergeSortType a, int left, int right{if left<right {//至少有2个元素int i=left+right/2; //取中点mergeSorta, left, i;mergeSorta, i+1, right;mergea, b, left, i, right; //合并到数组bcopya, b, left, right; //复制回数组a}}算法在最坏情况下的时间复杂度为Onlogn;3.N皇后回溯法bool Queen::Placeint k{ //检查xk位置是否合法for int j=1;j<k;j++if absk-j==absxj-xk||xj==xk return false;return true;}void Queen::Backtrackint t{if t>n sum++;else for int i=1;i<=n;i++{xt=i;if 约束函数 Backtrackt+1;}}4.最大团问题void Clique::Backtrackint i // 计算最大团{ if i > n { // 到达叶结点for int j = 1; j <= n; j++ bestxj = xj;bestn = cn; return;}// 检查顶点 i 与当前团的连接int OK = 1;for int j = 1; j < i; j++if xj && aij == 0 // i与j不相连{OK = 0; break;}if OK { // 进入左子树xi = 1; cn++;Backtracki+1;xi = 0; cn--; }if cn+n-i>bestn { // 进入右子树xi = 0;Backtracki+1; }}5. 顺序表存储表示如下:typedef struct{RedType rMAXSIZE+1; //顺序表int length; //顺序表长度}SqList;编写对顺序表L进行快速排序的算法;int PartitionSqList &L,int low,int high //算法10.6b{//交换顺序表L中子表L.rlow..high的记录,枢轴记录到位,并返回其所在位置, //此时在它之前后的记录均不大小于它.int pivotkey;L.r0=L.rlow; //用子表的第一个记录作枢轴记录pivotkey=L.rlow.key; //枢轴记录关键字while low<high //从表的两端交替地向中间扫描{while low<high&&L.rhigh.key>=pivotkey --high;L.rlow=L.rhigh; //将比枢轴记录小的记录移到低端while low<high&&L.rlow.key<=pivotkey ++low;L.rhigh=L.rlow; //将比枢轴记录大的记录移到高端}L.rlow=L.r0; //枢轴记录到位return low; //返回枢轴位置}void QSortSqList &L,int low,int high{//对顺序表L中的子序列L.rlow..high作快速排序int pivotloc;if low<high //长度>1{pivotloc=PartitionL,low,high; //将L.rlow..high一分为二QSortL,low,pivotloc-1; //对低子表递归排序,pivotloc是枢轴位置 QSortL,pivotloc+1,high; //对高子表递归排序}}void QuickSortSqList &L{//对顺序表L作快速排序QSortL,1,L.length; }。
算法设计与分析上机题

算法设计与分析上机题第二单元8594 有重复元素的排列问题;9718 整数因子分解;11088 整数划分的扩展问题;17082 两个有序数序列中找第k小第三单元8596 最长上升子序列;***8601最大长方体问题;10303 数字三角;11077 最长公共子字符串;11078 不能移动的石子合并第四单元8602 区间相交问题;11079 可以移动的石子合并第五单元8600 骑士问题;8603 子集和问题;17085 工作分配问题;11089 多机最佳调度抽选概率:第二三单元,9选3第四五单元,6选2机选,这15题必做题中共抽5题,还要从选做题中抽1题,共呈现6题给考生吗?第二单元8594 有重复元素的排列问题;#include <iostream>#include <stdio.h>#include <stdlib.h>using namespace std;int total=0;int Findsame(char list[],int k,int i) {int mark=0;int j;for(j=k; j<i; j++){if(list[j] == list[i]){mark = 1;break;}}if(mark==1){return 1;}else{return 0;}}//交换元素void Swap(char &a,char &b){char temp;temp=a;a=b;b=temp;}//递归全排列void Perm(char list[],int k,int m){//产生list[k:m]的所有排列if(k==m) // 开始index == 结束index {int i;for(i=0; i<m; i++){//只剩下1个元素printf("%c",list[i]);}printf("\n");total++;}else //还有多个元素带排列,递归产生排列{int i;for(i=k; i<m; i++){if (Findsame(list,k,i))//判断第i个元素是否在list[k,i-1]中出现过continue;/*int mark = 0;for(int j = k; j < i; j ++) {if(list[j] == list[i]) {mark = 1;break;}}if(1 == mark)continue;*/Swap(list[k],list[i]);Perm(list,k+1,m);Swap(list[k],list[i]);}}}int main(){int n;scanf("%d",&n);char list[n];scanf("%s",list);Perm(list,0,n);printf("%d",total);return 0;}9718 整数因子分解;#include <iostream>using namespace std;#include <stdio.h>#include <stdlib.h>int total=0;void count(int n){if(n==1){total++;}else{int i;for(i=2;i<=n;i++) {if(n%i==0){count(n/i); }}}}int main(){int n;scanf("%d",&n);count(n);printf("%d",total);}11088 整数划分的扩展问题;/*题目求:(1)正整数n划分为若干正整数之和,最大加数不超过m的划分数(2)正整数n划分为不超过m个正整数之和的划分数(3)正整数n划分为若干正奇整数之和的划分数(4)正整数n划分为互不相同正整数之和的划分数约定:整数划分无顺序,比如对7划分,认为2 2 3和3 2 2和2 3 2为同一种划分。
(完整版)算法设计与分析考试题及答案

一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2。
算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3。
某一问题可用动态规划算法求解的显著特征是____________________________________.4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X和Y的一个最长公共子序列_____________________________.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6。
动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7。
以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________.9。
动态规划算法的两个基本要素是___________和___________。
10。
二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1。
写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3。
若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4。
使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法分析与设计试题及答案

算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
算法分析与设计作业及参考答案

算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
西电最优化上机报告(大作业)

上机报告一.最速下降法算法简述:1.在本例中,先将最速下降方向变量赋一个值,使其二范数满足大于ε的迭代条件,进入循环。
2.将函数的一阶导数化简,存在一个矩阵,将其hesse矩阵存在另一个矩阵。
依照公式求出α,进而求出下一任迭代的矩阵初值。
循环内设置一个计数功能的变量,统计迭代次数。
3.求其方向导数的二范数,进行判别,若小于ε,则跳出循环,否则将继续迭代。
4.显示最优解,终止条件,最小函数值。
心得体会:最速下降法的精髓,无疑是求梯度,然后利用梯度和hesse矩阵综合计算,求解下一个当前最优解。
但是,要求函数是严格的凸函数,结合严格凸函数的大致图像,这就给初值的选取提供了一点参考。
例如在本例中,由于含有两个变量的二次方之和,结合大致图像,想当然的,初值的选取应当在原点附近;又因为变量的二次方之和后面,还减去了变量的一次形式和一次混合积,所以初值的选取应该再向第一象限倾斜。
综合以上考量,第一次选取(1,1)作为初值,判别精度方面,取到千分位,暂定为0.001。
运行以后,结果显示迭代了25次,最优解为(3.9995,1.9996),终止条件为5.4592e-04,目标函数为-8.0000。
这个结果已经相当接近笔算结果。
整体的运行也比较流畅,运算速度也比较快。
第二次取值,决定保留判别精度不变,将初值再适当向第一象限倾斜,取(2,2)作为初值,运行后,显示只迭代了11次!最优结果显示(3.9996,1.9997),终止条件为3.6204e-04,最优解-8.0000。
可见,最优结果更接近理想值,终止条件也变小了,最关键的是,迭代次数减少至第一次的一半以下!这说明以上初选取的方向是对的!第三次再进行初值细化,判别精度仍然不变,初值取(3,3)。
结果令人兴奋,只迭代了四次!最优解已经显示为(4.0000,2.0000),终止条件为2.4952e-04,目标函数-8.0000。
第四次,判别精度不变,取初值(4,4)。
《算法分析与设计》作业答案

《算法分析与设计》作业1、考虑,10≤≤i x 而不是x i ∈{0,1}的连续背包问题。
一种可行的贪婪策略是:按价值密度非递减的顺序检查物品,若剩余容量能容下正在考察的物品,将其装入;否则,往背包内装如此物品的一部分。
(a) 对于n=3,w=[100,10,10],p=[20,15,15],以及c=105,上述装入法获得结果是什么?(b)证明这种贪婪算法总能获得最优解。
(c) 用伪代码描述此算法。
答:(a )利用贪婪算法,按价值密度考察的背包为w2,w3,w1;背包w2和w3重20,还可以容纳85,由于10≤≤i x ,背包w1还可以装入x1=0.85,则背包内物品总价值为15+15+20*0.85=47.(b )假设已按价值密度排好序,考察w1,w2,……,wi ,……,对应的价值为p1,p2,……,pi,……如果装到pi-1再装pi 时,恰好要取xi 个wi 。
(,10≤≤i x ) 因为比它价值密度大的都已装载完,所以此时获得的为最优解。
(c )算法描述如下: template <class T>int ContainerLoading( int x[], T w[], T c, int n ) {int *t = new int[n+1]; IndirectSort(w, t, n); for( int i=1; i<=n; i++) x[i] = 0;for(i=1; i<=n && w[t[i]]<=c; i++){ x[t[i]] = 1; c += w[t[i]]; } delete []t; }2、证明当且仅当二分图没有覆盖时,下述算法找不到覆盖。
m=0; //当前覆盖的大小对于A中的所有i,New[i]=Degree[i]对于B中的所有i,Cov[i]=falsewhile(对于A中的某些i,New[i]>0) {设v是具有最大的New[i]的顶点;C[m++]=v;for(所有邻接于v的顶点j) {If(!Cov[j]) {Cov[j] = true;对于所有邻接于j的顶点,使其New[k]减1}}}if (有些顶点未被覆盖) 失败else 找到一个覆盖2)给出一个具有覆盖的二分图,使得上述算法找不到最小覆盖。
西电算法设计大作业

算法设计大作业寻找多数元素班级:021151学号:02115037姓名:隋伟哲(1)问题提出:令A[1,2,…n]是一个整数序列,A中的整数a如果在A中出现的次数多余⎣n/2⎦,那么a称为多数元素。
例如在序列1,3,2,3,3,4,3中,3是多数元素,因为在7个元素中它出现了四次。
有几个方法可以解决这个问题。
蛮力方法是把每个元素和其他各个元素比较,并且对每个元素计数,如果某个元素的计数大于⎣n/2⎦,就可以断定它是多数元素,否则在序列中就没有多数元素。
但这样比较的次数是n(n-1)/2=Θ(错误!未找到引用源。
),这种方法的代价太昂贵了。
比较有效的算法是对这些元素进行排序,并且计算每个元素在序列中出现了多少次。
这在最坏情况下的代价是Θ(n 错误!未找到引用源。
).因为在最坏情况下,排序这一步需要Ω(n 错误!未找到引用源。
)。
另外一种方法是寻找中间元素,就是第⎡n/2⎤元素,因为多数元素在排序的序列中一定是中间元素。
可以扫描这个序列来测试中间元素是否是多数元素。
由于中间元素可以在Θ(n)时间内找到,这个方法要花费Θ(n)时间。
有一个漂亮的求解方法,它比较的次数要少得多,我们用归纳法导出这个算法,这个算法的实质是基于下面的观察结论。
观察结论:在原序列中去除两个不同的元素后,原序列的多数元素在新序列中还是多数元素。
这个结论支持下述寻找多数元素候选者的过程。
将计数器置1,并令c=A[1]。
从A[2]开始逐个扫描元素,如果被扫描的元素和c相等。
则计数器加1,否则计数器减1.如果所有的元素都扫描完并且计数器的值大于0,那么返回c作为多数元素的候选者。
如果在c和A[j](1<j<n)比较式计数器为0,那么对A[j+1,…n]上的过程调用candidate过程。
算法的伪代码描述如下。
(2)算法Input: An array A[1…n] of n elements;Output: The majority element if it exists; otherwise none;1. c←candidate(1);2. count←0;3. for j←1 to n4. if A[j]=c then count←count+1;5. end for;6. if count>⎣n/2⎦ then return c;7. else return none;candidate(m)1. j←m; c←A[m]; count←1;2. while j<n and count>03. j←j+1;4. if A[j]=c then count←count+1;5. else count←count-1;6. end while;7. if j=n then return c;8. else return candidate(j+1);(3)代码//Majority.cpp#include<iostream>using namespace std;int Candidate(int *A, int n, int m);int Majority(int *A, int n);int main(){int n;cout << "please input the number of the array: ";cin >> n;int *A;A = (int *) malloc(n*sizeof(int) );cout << "please input the array: ";for (int i = 0; i < n; i++)cin >> A[i];if (Majority(A, n) != 'N')cout << "the majority is: " << Majority(A, n);elsecout << "the majority element do not exist! ";free(A);cin.get();cin.get();return 0;}int Majority(int *A, int n){int c = Candidate(A, n, 0), count = 0;for (int j = 0; j < n; j++)if (A[j] == c)count += 1;if (count > n / 2)return c;else return'N';}int Candidate(int *A, int n, int m){int j = m, c = A[m], count = 1;while (j < n && count>0){j += 1;if (A[j] == c)count += 1;else count -= 1;}if (j == n)return c;else return Candidate(A, n, j + 1); }(4)运行结果(5)设计实例首先输入数据的个数n=7,然后依次读入n个数(1,3,2,3,3,4,3)。
《算法设计与分析》- 课内上机实验题目及其解答

1 × 23 × 4 = 92
12 × 3 × 4 = 144
西安邮电大学计算机学院
动态规划
西安邮电大学计算机学院
动态规划
西安邮电大学计算机学院
动态规划
算法伪代码
西安邮电大学计算机学院
西安邮电大学计算机学院
递归与分治策略
【问题分析】
(1)数组的生成:许多同学采用固定数组的做法,实际上采用随机数组 是一个比较好的做法,一是可以生成随机数字,便于测试代码;二是相对
于固定长度数组可以很方便地生成任意长度的数组。如下:
西安邮电大学计算机学院
递归与分治策略
(2)算法分析:给同学们的资料上面的算法如下所示:
西安邮电大学计算机学院
贪心算法
算法伪代码
西安邮电大学计算机学院
贪心算法
西安邮电大学计算机学院
贪心算法
(2)小结:本题目大部分同学设计正确,也有部分同学考虑不够全面,
特别是一些边界值没有考虑。测试用例仍然是老问题。
西安邮电大学计算机学院
算法设计与分析
回溯法
西安邮电大学计算机学院
回溯法
基本题 1:最小重量机器设计问题(第 4 版教材
令 TriArray 表示数字三角形转换成的二维矩阵, ResArray[ i ][ j ]为结果数组,表示第 i 层第 j 个数字到最低端的最优解。 则有递推式:
ResArray[ i - 1 ][ j ] = max{ ( TriArray[ i - 1 ][ j ] + ResArray[ i ][ j ] ),
《算法设计与分析》试卷及答案

《算法设计与分析》试卷1一、多项选择题(每空2分, 共20分):1.以下关于算法设计问题的叙述中正确的是__________。
A.计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B.利用计算机无法解决非数值问题C.计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中, 主要进行的是判断、比较, 而不是算术运算D、算法设计与分析主要研究对象是非数值问题, 当然也包含某些数值问题2.算法的特征包括_________。
A.有穷性B、确定性C.输入和输出D.能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制, 应与其它环节交织在一起其中正确的顺序是__________。
A.①②③④⑤⑥B.①③⑤②④⑥C.②④①③⑤⑥D.⑥①③⑤②④4.以下说法正确的是__________。
A.数学归纳法可以证明算法终止性B.良序原则是证明算法的正确性的有力工具C. x = 小于或等于x的最大整数(x的低限)D. x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C上所用的次数, 则递归方程为__________, 其初始条件为__________, 将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数, 则有递归方程为__________, 其中F1=F2=__________。
A.Fn=Fn-1+Fn-2 B、h(n)= 2h(n-1)+1C.1 D、h(1)= 1E、h(n)=2n-1F、06.在一个有向连通图中(如下图所示), 找出点A到点B的一条最短路为____ ______。
A.最短路: 1→3→5→8→10, 耗费: 20B、最短路:1→4→6→9→10, 耗费:16C.最短路: 1→4→6→9, 耗费: 12D.最短路: 4→6→9→10, 耗费: 13二、填空(每空2分, 共20分):1.快速排序法的基本思想是重新排列关键字, 把一个文件分成两个文件, 使得第一个文件中所有元素均小于第二个文件中的元素;然后再对两个子文件进行同样的处理。
《算法设计与分析》考试题目及答案(2)

《算法设计与分析》考试题⽬及答案(2)《算法分析与设计》期末复习题⼀、选择题1.应⽤Johnson 法则的流⽔作业调度采⽤的算法是(D ) A. 贪⼼算法 B. 分⽀限界法 C.分治法 D. 动态规划算法塔问题如下图所⽰。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )HanoiA. void hanoi(int n, int A, int C, int B) {if (n > 0) { hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);3. 动态规划算法的基本要素为(C ) A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质 C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤4. 算法分析中,记号O 表⽰(B ),记号Ω表⽰(A ),记号Θ表⽰(D )。
A.渐进下界 B.渐进上界 C.⾮紧上界 D.紧渐进界E.⾮紧下界5. 以下关于渐进记号的性质是正确的有:(A ) A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ?=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==?= C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n)O(g(n))g(n)O(f (n))=?=6. 能采⽤贪⼼算法求最优解的问题,⼀般具有的重要性质为:(A )A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质D. void hanoi(int n, int C, int A, int B){if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤7. 回溯法在问题的解空间树中,按(D )策略,从根结点出发搜索解空间树。
《算法设计与分析实用教程》习题参考解答

《算法设计与分析实用教程》习题参考解答《算法设计与分析实用教程》参考解答1-1 加减得1的数学游戏西西很喜欢数字游戏,今天他看到两个数,就想能否通过简单的加减,使最终答案等于1。
而他又比较厌烦计算,所以他还想知道最少经过多少次才能得到1。
例如,给出16,9:16-9+16-9+16-9-9-9+16-9-9=1,需要做10次加减法计算。
设计算法,输入两个不同的正整数,输出得到1的最少计算次数。
(如果无法得到1,则输出-1)。
(1)若输入两个不同的正整数a,b均为偶数,显然不可能得到1。
设x*a与y*b之差为“1”或“-1”,则对于正整数a,b经n=x+y-1次加减可得到1。
为了求n的最小值,令n从1开始递增,x在1——n中取值,y=n+1-x:检测d=x*a+y*b,若d=1或-1,则n=x+y-1为所求的最少次数。
(2)算法描述// 两数若干次加减结果为1的数学游戏#includevoid main(){long a,b,d,n,x,y;printf(" 请输入整数a,b: ");scanf("%ld,%ld",&a,&b);if(a%2==0 && b%2==0){ printf(" -1\n");return;}n=0;while(1){ n++;for(x=1;x<=n;x++){ y=n+1-x;d=x*a-y*b;if(d==1 || d==-1) // 满足加减结果为1{ printf(" n=%ld\n",n);return;}}}}请输入整数a,b: 2012,19961请输入整数a,b: 101,20136061-2 埃及分数式算法描述分母为整数分子为“1”的分数称埃及分数,试把真分数a/b 分解为若干个分母不为b 的埃及分数之和。
(1)寻找并输出小于a/b 的最大埃及分数1/c ;(2)若c>900000000,则退出;(3)若c ≤900000000,把差a/b-1/c 整理为分数a/b ,若a/b 为埃及分数,则输出后结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
confidenceHigh()
= 0.5948351426485464
Example values after creating PercolationStats(2, 100000)
mean()
= 0.6669475
stddev()
= 0.11775205263262094
confidenceLow()
// does the system percolate?
public static void main(String[] args) // test client, optional
}
约定行 i 列 j 下标在 1 和 N 之间,其中(1, 1)为左上格点位置:如果 open(), isOpen(), or isFull()不在这个规定
-2-
问题。 在一个著名的科学问题中,研究人员对以下问题感兴趣:如果将格点以概率 p 独立地设置为 open 格点(因此以概率 1-p 被设置为 blocked 格点),系统渗透的概率是多少? 当 p = 0 时,系统不会渗出; 当 p=1 时,系统渗透。 下图显示了 20×20 随机网格(左)和 100×100 随机网格(右)的格点空置概率 p 与 渗滤概率。
⋯,
⋯
假设 T 足够大(例如至少 30),以下为渗滤阈值提供 95%置信区间:
1.96 √
,
1.96 √
我们创建数据类型 PercolationStats 来执行一系列计算实验,包含以下 API。
public class PercolationStats { public PercolationStats(int N, int T)
安装 Java 编程环境。按照以下各步指令,在你的计算机上(操作系统 Mac OS X (/mac)· Windows (/windows)· Linux (/linux)安装 Java 编程环境。执行这些指令后,在你的 Java classpath 下会有 stdlib.jar and algs4.jar。前者 包含库:从标准输入读数据、向标准输出写数据以及向标准绘制绘出结果,产生随机数、 计算统计量以及计时程序;后者包含了教科书中的所有算法。
-3-
蒙特卡洛模拟(Monte Carlo simulation). 要估计渗透阈值,考虑以下计算实验: • 初始化所有格点为 blocked。 • 重复以下操作直到系统渗出: o 在所有 blocked 的格点之间随机均匀选择一个格点 (row i, column j)。 o 设置这个格点(row i, column j)为 open 格点。 • open 格点的比例提供了系统渗透时渗透阈值的一个估计。
}
// perform T independent computational experiments
// sample mean of percolation threshold // sample standard deviation of percolation threshold // returns lower bound of the 95% confidence interval // returns upper bound of the 95% confidence interval // test client, described below
给定由随机分布的绝缘材料和金属材料构成的组合系统:金属材料占多大比例才能使组合 系统成为电导体? 给定一个表面有水的多孔景观(或下面有油),水将在什么条件下能够 通过底部排出(或油渗透到表面)? 科学家们已经定义了一个称为渗透(percolation)的抽 象过程来模拟这种情况。
模型。 我们使用 N×N 网格点来模型一个渗透系统。 每个格点或是 open 格点或是 blocked 格点。 一个 full site 是一个 open 格点,它可以通过一连串的邻近(左,右,上,下)open 格 点连通到顶行的一个 open 格点。如果在底行中有一个 full site 格点,则称系统是渗透的。 (对于绝缘/金属材料的例子,open 格点对应于金属材料,渗透系统有一条从顶行到底行的 金属路径,且 full sites 格点导电。对于多孔物质示例,open 格点对应于空格,水可能流过, 从而渗透系统使水充满 open 格点,自顶向下流动。)
on an N-by-N grid public double mean() public double stddev() public double confidenceLo() public double confidenceHi() public static void main(String[] args)
Example values after creating PercolationStats(200, 100)
mean()
= 0.5929934999999997
stddev()
= 0.00876990421552567
confidenceLow()
= 0.5912745987737567
confidenceHigh()
《算法设计与分析》实验教学大纲
课程编号:CS5102 课程名称:算法设计与分析 学分/学时:2.5/40 适用专业:计算机科学与技术
物联网工程 先修课程:离散数学,数据结构
JAVA 程序设计
英文名称:Design and Analysis of Algorithms 课程性质:专业选修 建议开设学期:5
的范围,则抛出 IndexOutOfBoundsException 例外。如果 N ≤ 0,构造函数应该抛出 IllegalArgumentException 例外。构造函数应该与 N2 成正比。所有方法应该为常量时间加上 常量次调用合并-查找方法 union(), find(), connected(), and count()。
注:这个问题的实验由 Bob Sedgewick 和 Kevin Wayne 设计开发(Copyright © 2008)。更多 信息可参考 /home/。
(二)几种排序算法的实验性能比较
实现插入排序(Insertion Sort,IS),自顶向下归并排序(Top-down Mergesort,TDM), 自底向上归并排序(Bottom-up Mergesort,BUM),随机快速排序(Random Quicksort, RQ),Dijkstra 3-路划分快速排序(Quicksort with Dijkstra 3-way Partition,QD3P)。在你的 计算机上针对不同输入规模数据进行实验,对比上述排序算法的时间及空间占用性能。要 求对于每次输入运行 10 次,记录每次时间/空间占用,取平均值。
使用 weighted quick-union 算法(WeightedQuickUnionUF.java from algs4.jar)实现 Percolation 数据 类型。进行实验表明当 N 加倍时对运行时间的影响;使用近似表示法,给出在计算机上的 总时间,它是输入 N 和 T 的函数表达式。
在 N ≤ 0 或 T ≤ 0 时,构造函数应该抛出 ng.IllegalArgumentException 例外。
-4-
此外,还包括一个 main( )方法,它取两个命令行参数 N 和 T,在 N×N 网格上进行 T 次独 立的计算实验(上面讨论),并打印出均值μ、标准差σ和 95% 渗透阈值的置信区间。 使 用标准库中的标准随机数生成随机数; 使用标准统计库来计算样本均值和标准差。
当 N 足够大时,存在阈值 p*,使得当 p <p*,随机 N× N 网格几乎不会渗透,并且当 p> p*时,随机 N× N 网格几乎总是渗透。 尚未得出用于确定渗滤阈值 p*的数学解。你的任务是编写一个计算机程序来估计 p*。
Percolation 数据类型。模型化一个 Percolation 系统,创建含有以下 API 的数据类型 Percolation。
二、实验课程目标与毕业要求
通过本课程的学习使学生系统掌握算法设计与分析的基本概念和基本原理,理解排序、 搜索、图处理和字符串处理的算法设计理论及性能分析方法,掌握排序、搜索、图处理和字 符串处理的数据结构与算法实现技术。课程强调算法的开发及 Java 实现,理解相应算法的 性能特征,评估算法在应用程序中的潜在性能。
= 0.5947124012262428
Example values after creating PercolationStats(200, 100)
mean()
= 0.592877
stddev()
= 0.009990523717073799
confidenceLow()
= 0.5909188573514536
public class Percolation {
public Percolation(int N)
// create N-by-N grid, with all sites blocked
public void open(int i, int j)
// open site (row i, column j) if it is not already
开课单位:计算机学院
一、实验简介
本实验要求学生能够综合运用排序、搜索、图处理和字符串处理的基础算法和数据结构, 将算法理论、算法工程和编程实践相结合开发相应的软件,解决科学、工程和应用环境下的 实际问题。使学生能充分运用并掌握算法设计与分析的方法以及算法工程技术,为从事计算 机工程和软件开发等相关工作打下坚实的基础。