水体富营养化评价试验
水体富营养化评价方法
水体富营养化的评价方法
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/ PPT论坛:
加权平均原则基本思路是权与单因素隶属度的乘 积综合反映了样本集因素(ui)对类的隶属情况
2
模糊综合评价法
1.确定评价对象的评价指标: 评价指标的 选取参考《地表水环境质量标准》 (GB3838—2002),同时结合评价体的 现有数据。
3.根据评价指标的隶属函数进行单因素评
价,建立模糊关系矩阵(R);根据各指
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/ PPT论坛:
定义
主成分 分析法
特点
主成分分析法的应用具有其 拘束性,要求变量之间具有 较好的相关性
主成分分析是通过变量变换 把注意力集中在具有最大变 差的那些主成分上,而视变 差不大的主成分为常数予以 舍弃;
主成分分析中的L 阵是唯一的 正交阵;
主成分分析由可观测原变量 (x)直接求得主成分(y), 并可逆。
3
实例分析(以北京三大湖库水源地为例-主成分分析法)
水体富营养化实验
水体富营养化实验地理教研组氮、磷是水生植物生长必需的营养元素,但是,水体所含氮、磷过多,停留时间过长,将使藻类及浮游生物过量生长而引起水体的富营养化。
水体出现富营养化现象时,水中溶解氧迅速减少,水体呈现不同颜色,死亡的动植物腐烂发臭,释放出硫化氢等难闻气体,使水质进一步恶化。
本实验观察水体富营养化造成的污染。
工具与材料量筒,鱼缸,塑料板,量杯。
水藻,含氮、磷的肥料(化肥等)。
活动过程1.用量筒给3只鱼缸内加入等量的水,并分别编号a、b、c。
2.在a号鱼缸中用量杯加入一定量的肥料,b号缸内加入肥料的数量为a号缸内加入量的一半,C号缸内不加肥料(图3-1-3-1)。
3.在3只鱼缸内放入相同数量的水藻,盖上塑料板,放在有阳光照射的地方。
4.观察鱼缸内水藻生长情况,比较三者的不同,至某一鱼缸中水藻全部死亡为止,结果填入表3-1-3-1。
表3-1-3-1富营养化实验观察记录注:每缸加水_毫升,a号缸加肥料_毫升,b号缸加肥料_毫升,C号缸加肥料_毫升。
1.此活动最好在夏天进行,此时光照充足,植物生长迅速,最易观察结果。
2.加入肥料的数量可根据经验确定,以多于水藻生长所需的量为宜,这样结果明显。
3.如果一个池塘里水藻较多,营养物含量较高,在夏天极易发生富营养化现象。
4.由于a号鱼缸加入肥料最多,因此水藻生长最快,发生富营养化后,水藻相继死亡,水质恶化,造成不利后果。
酸雨的监测地理教研组自然降水的pH值一般呈中性,工业污染是酸雨形成的主要原因。
工厂排放烟气中的污染物(如二氧化硫),在氧气和光照、闪电等的作用下,生成酸性物质(如硫酸),随雨水降至地面,就形成酸雨。
酸雨危害极大,不仅影响地面植物生长和损坏建筑物,而且最终会破坏生态平衡。
本实验用pH试纸测定酸雨的pH值。
工具与材料塑料饮料瓶,剪刀,纱布,精密pH试纸,砂纸。
活动过程1.按图3-1-7-1(a)所示,把饮料瓶沿虚线剪开,边缘用砂纸打磨光滑,把上半部分套入下半部分,蒙上纱布,做成简易的雨水收集器,见图3-1-7-1(b)。
富营养化评价方法
富营养化评价方法
富营养化评价方法通常包括以下几个方面:
1. 水质评价:通过监测水体中的氮、磷等养分含量,以及水体的浑浊度、溶解氧含量等指标,来评估水体富营养化的程度。
2. 植物评价:通过调查和监测水体中的水生植物种类、数量和分布情况,以及植物的生长状况和富营养化相关的指标(如叶绿素含量),来评估富营养化对水生植物群落的影响。
3. 浮游植物评价:通过监测水体中的浮游植物种类、数量和分布情况,以及浮游植物的生长状况和富营养化相关的指标(如叶绿素含量),来评估富营养化对浮游植物群落的影响。
4. 湖泊营养状态指数(TN/TP比值):通过测量水体中的总氮(TN)和总磷(TP)的浓度,计算出TN/TP的比值,来评估水体的富营养化状态。
较高的TN/TP比值通常表示水体富营养化程度较高。
5. 富营养化指数(TSI):TSI是一种综合评价指标,通过综合考虑水质、植物和浮游植物等多个方面的指标,来评估水体富营养化的程度。
不同的TSI计算方法会根据具体的指标和参数设定不同的权重。
这些评价方法可以单独或组合使用,根据具体情况选择最合适的评价方法,从而有效评估富营养化的程度。
试验九水体富营养化综合评价
1. 了解全球水体富营养化现状及研究进展; 2. 了解水体富营养化评价方法,并通过对单一因子指标的测定,对模拟水体的富营养 化程度进行评价。 3. 熟悉水体单一污染因子测定方法,包括透明度(SD)、总磷(TP)、总氮(TN)、高锰酸 盐指数(CODMn)和叶绿素 Chla; 4. 培养学生独立开展科学实验的综合设计能力及操作技能; 5. 培养科技论文的写作能力。
实验九 水体富营养化综合评价
随着我国经济高速发展,污染物排放量逐年增加,排放或流失到天然水体中的 N、P 等 营养物质大量增加,水体富营养化严重。据 1986-1990 年对全国 26 个湖泊水质调查资料 分析,我国受污染或者达到中-富营养化的湖泊水域面积已达到淡水水域面积的一半。我国 已是世界上湖泊富营养化最严重的国家之一。
代表第 j 种参数的营养状态指数。根据金相灿等的推荐,各指标权重如下:
权重 Wj
Chla
0.2663
表1 各指标权重
TP
TN
0.2237
0.2183
SD 0.2210
CODMn 0.2210
当(TLIΣ)<30,为贫营养;30<(TLIΣ)≤50,为中营养;50<(TLIΣ)≤60,为轻度富
营养;60<(TLIΣ)≤70,为中度富营养;(TLIΣ)>70,为重度富营养。
TLI(TP)=10(9.436+1.624lnTP)
(3)
TLI(TN)=10(5.453+1.694lnTN)
(4)
TLI(CODMn)=10(0.109+2.661lnCODMn)
(5)
其中:TLI(Chla)-叶绿素a(mg/m3)指数;TLI(SD)-透明度SD(m)指数;TLI(TP)-总磷
水体富营养化评价标准
水体富营养化评价标准水体富营养化是指水体中富含大量营养物质,特别是氮、磷等营养盐,导致水体生物生长异常旺盛,水质恶化,水生态系统失衡的现象。
富营养化不仅影响水质,还对水生态环境造成严重破坏,因此对水体富营养化进行评价具有重要的意义。
本文将从水体富营养化的定义、影响因素、评价指标和方法等方面进行探讨。
一、水体富营养化的定义。
水体富营养化是指由于外源性氮、磷等营养物质的输入过量,导致水体中富含营养物质,从而引发水生态系统失衡,水质恶化的现象。
富营养化的主要表现是水体中藻类、水生植物等生物大量繁殖,引发水华、赤潮等现象,严重影响水体的透明度、溶解氧含量等水质指标,破坏水生态系统的平衡。
二、水体富营养化的影响因素。
1. 氮、磷等营养物质的输入,工业废水、农业化肥、城市污水等都是导致水体富营养化的主要原因,其中以农业面源污染为主要来源。
2. 水体环境条件,水温、光照、流速等环境条件对水体富营养化的发展起着重要作用,适宜的环境条件有利于富营养化的发展。
3. 水体生物群落,水体中的浮游植物、底栖生物等对水体富营养化的发展也有一定影响,它们的数量和种类会影响水体中营养物质的吸收和释放。
三、水体富营养化的评价指标。
1. 溶解氧含量,富营养化会导致水体中藻类大量繁殖,消耗大量溶解氧,导致水体溶解氧含量下降。
2. 叶绿素a含量,叶绿素a是藻类的主要色素,其含量可以反映水体中藻类的数量和分布情况。
3. 透明度,富营养化会导致水体中藻类大量繁殖,使水体透明度下降,影响水生态系统的正常运行。
4. 水华发生频率,水华是富营养化的一种表现形式,通过水华发生频率可以评价水体富营养化的程度。
四、水体富营养化的评价方法。
1. 实地调查,通过实地采样、监测和调查,获取水体中营养盐、叶绿素a含量、水华发生情况等数据,对水体富营养化进行评价。
2. 水质模型模拟,利用水质模型对水体富营养化进行模拟和预测,通过模型模拟可以更加客观地评价水体富营养化的程度。
水体富营养化评价与治理资料
⑵ 营养物质去除难度高。至今还没有任何单一的生物学、化学 和物理措施能够彻底去除废水中的氮、磷营养物质。通常的二级生化 处理方法,只能去除 30%~50%的氮和磷。
深层曝气适用于湖水较深而出现厌氧层的水体。磷容易在厌氧条 件下从底泥中释放出来,采取定期或不定期人为湖底深层曝气充氧, 使水与底泥面之间不出现厌氧层,有利于抑制底泥磷释放,对改善水 质有利。
注水冲稀的一种手段是在有条件的地方,用含磷和氮浓度低的水 注入湖泊,起到稀释营养物质浓度的作用,这对控制水华现象,提高 水体透明度等有一定作用,但营养物绝对量并未减少,不能从根本上 解决问题;另一种手段是换水,这是针对临江湖泊的方案,起到江水 取代湖水,以流动的贫营养水代替停滞的富营养水的目的。
水体富营养化程度的评价指标分为物理指标、化学指 标和生物学指标。物理指标主要是透明度,化学指标包括 溶解氧和氮、磷等营养物质浓度等,生物学指标包括优势 浮游生物种类、生物群落结构与多样性和生物现存量(如 生物量、叶绿素a)等。
目 前 一 般 采 用 的 标 准 是 : 水 体 中 氮 含 量 超 过 0.2~0. 3mg/L, 磷 含 量 大 于 0.01~0.02mg/L, 生 化 需 氧 量 大 于 10mg/L,pH值7~9的淡水中细菌总数每毫升超过10万个 ,表征藻类数量的叶绿素-a含量大于10 umg/L.
水体富营养化评价与治理
2012年8月 武汉东湖 蓝藻水华
赤潮
水体富营养化
水体富营养化(eutrophication)是指在人类活动的影
响下,氮、磷等营养物质大量进入湖泊、河口、海湾等 缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶 解氧量下降,水质恶化,鱼类及其他生物大量死亡的现 象。这种现象在河流湖泊中出现称为水华,在海洋中出
第1.1节 水体富营养化的指标
水体富营养化的指标
富营养化或水体中富含营养物质会对水体的健康和生态产生负面影响。
有几个指标可用于衡量水体中的富营养化程度:
1.叶绿素-a浓度:叶绿素-a是一种存在于藻类和其他水生植物中的色素,其在水体中的
浓度常被用作营养富集的指标。
高水平的叶绿素-a可能表明存在过量的营养物质,这可能导致藻华和其他形式的氧气消耗。
2.总磷和氮浓度:磷和氮是水生植物生长所必需的两种营养素,但过量会导致富营养化。
测量水体中磷和氮的总浓度可以指示营养富集水平。
3.溶解氧(DO)水平:水生生物呼吸需要氧气,水体中溶解氧(DO)水平低可能是富
营养化的标志。
水中过量的营养物质会导致藻类和其他水生植物过度生长,这会在分解时耗尽水中的氧气。
4.pH值:水体的pH值是衡量其酸度或碱度的指标。
水体pH值的变化可能是富营养化的
标志,因为过量的营养物质会改变水的化学平衡。
5.底栖大型无脊椎动物:底栖大型无脊椎动物是生活在水体沉积物中的小动物,对水质变
化敏感。
某些种类的大型无脊椎动物的存在与否可用作富营养化的指标。
富营养化评价方法
富营养化评价方法富营养化是指水体或土壤中营养物质浓度过高,导致水体或土壤生态系统失去平衡的现象。
富营养化的主要原因是人类活动过程中的过度施肥、排污和土地利用变化等。
为了准确评价富营养化程度,科学家们开发了各种富营养化评价方法。
本文将介绍几种常用的富营养化评价方法。
1. 营养盐浓度法营养盐浓度法是最常见也是最直接的富营养化评价方法之一。
通过测量水体或土壤中营养盐的浓度,如氮、磷、钾等,来判断其富营养化程度。
一般来说,氮、磷是水体富营养化的主要指标。
当水体中氮、磷浓度超过一定阈值时,即可判断为富营养化。
2. 叶绿素浓度法叶绿素是植物光合作用的关键物质,也是评价水体富营养化的重要指标之一。
通过测量水体中叶绿素的浓度,可以评估水体中藻类和其他植物的生长情况,从而判断富营养化的程度。
叶绿素浓度法常用于湖泊和水库等水体的富营养化评价。
3. 生物指标法生物指标法是通过观察和统计水体或土壤中的生物群落结构和特征来评价富营养化程度的方法。
常用的生物指标包括浮游植物的种类和数量、底栖动物的丰富度和多样性等。
富营养化水体中,浮游植物种类会增多,底栖动物的丰富度和多样性会降低,这些变化都可以用来评价富营养化的程度。
4. 水质指数法水质指数法是将多个水质指标综合考虑来评价富营养化程度的方法。
常用的水质指标包括溶解氧、浊度、氨氮、硝酸盐氮、总磷等。
通过将这些指标进行加权平均或综合计算,得到一个综合水质指数,从而评价富营养化的程度。
水质指数法可以综合考虑多个指标,更全面地评价富营养化程度。
5. 水质模型法水质模型法是一种基于数学模型的富营养化评价方法。
通过建立数学模型,模拟富营养化过程中的营养物质迁移和转化过程,预测水体中的富营养化程度。
水质模型法需要大量的数据和专业知识来建立模型,但可以提供较为准确的富营养化评价结果。
富营养化评价方法多种多样,可以从不同角度评估富营养化的程度。
不同的评价方法有各自的优缺点,可以根据具体情况选择合适的评价方法。
实验三 水体富营养化程度的评价(共享)
实验三水体富营养化程度的评价(共享)水体富营养化是指水体中的营养物质过度富集,导致生物生长过度而影响水生态系统的稳定性和水质环境。
评价水体富营养化的程度是对水环境进行保护和治理的重要依据。
本实验将介绍几种常用的水体富营养化程度评价方法。
一、总氮和总磷浓度评价法总氮和总磷是导致水体富营养化的主要营养物质。
通过测定水体中的总氮和总磷浓度来判断水体富营养化的程度。
根据国家标准《地表水环境质量标准》(GB 3838-2002)中,对于湖泊、水库、坑塘等静态水体,总氮浓度标准为 1.0 mg/L,超过这一标准即为富营养化。
对于河流等动态水体,总氮浓度标准为 3.0 mg/L,超过这一标准也为富营养化。
二、叶绿素浓度评价法水体富营养化导致水中蓝藻、浮游植物等生物过度生长,促进叶绿素的积累。
通过测定水体中叶绿素 a 浓度来评价水体富营养化的程度。
叶绿素 a 是叶绿体中的主要成分,也是评价水中藻类生物量的指标。
三、营养盐指数评价法营养盐指数(Trophic State Index,TSI)是评价水体富营养化的一种综合指标,它包括水的透明度、浮游植物生物量、总磷和总氮等因素。
TSI 值越大,水体富营养化程度越高。
TSI 是通过测量透明度、总磷和总氮以及浮游植物生物量计算得出,可以根据下表计算TSI 值:|指标(单位)|TSI 分值||:--------:|:--------:||透明度(m)|10(INT (100/S))||总氮(mg/L)|10(INT (100/(1+s))^1.5)||总磷(mg/L)|10(INT (100/(1+p)))||浮游植物(mg/L)|10(INT (100/(1+u)))|其中,s、p、u 分别为总氮、总磷和浮游植物生物量对应的潜在比例。
INT 表示向下取整。
根据国家标准《地表水环境质量标准》(GB 3838-2002)中,TSI 值为 40 以下为清洁水体,40-50为轻度富营养化,50-60为中度富营养化,60 以上为严重富营养化。
水体富营养化实验报告范文
水体富营养化实验报告范文《环境化学》实验报告实验项目:水体富营养化程度评价实验考核标准及得分环境化学实验报告一、实验目的与要求1、了解周边水体的污染状况,进一步认识水体富营养化的形成的原因;2、掌握水体中总磷的测定原理及方法;3、评价水体富营养化的程度。
二、实验方案1、实验原理:在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO43-)。
随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。
再用分光光度仪对吸光度进行测定。
2、实验步骤:(1)、取4ml磷储备溶液(50mg/L)于100ml比色管中,定容至标线,配制成2mg/L的磷标准溶液;(5)、往12支消解管中加入过硫酸钾,旋紧密封盖,依次将消解管插入已达140℃的消解装置恒温体孔中,启动消解15min;(6)、消解结束后,将消解管取出,待管内液体冷却至室温后,用蒸馏水定容至25mL;(7)、向消解管中加入抗坏血酸,混匀30秒后,加入钼酸盐溶液充分混匀;(8)、将上述12支消解管室温下放置15min后,调节分光光度计λ=880nm,测出吸光度,并记下读数。
三、实验结果与数据处理1、标准曲线的绘制(1)标准曲线实测数据:表1标准曲线测定结果表(2)绘制标准曲线:图1总磷标准曲线由于图1总磷标准曲线的R2=0849,标准曲线不存在相关线性,所以要进行标准曲线的校正。
对比同样条件下,所测到水样的吸光度,可初步估算其总磷的浓度在2mg/L以下,再加上图1总磷标准曲线上第5点和第6点偏离很大。
综上分析,可以去除第5个点和第6个点,再进行标准曲线绘制:图1-2校正后的总磷标准曲线2、水样的测定:本组测定的水样为采样点1的水样,共测定S1,S2,S3三组平行样品。
另外测定S4,S5二组平行样品为采样点5的水样。
测定数据如下表:表2水样测定结果表把样品测出的吸光度(y)代入回归方程,得出水样中磷的浓度。
计算示例如下(以水样S1为例):某1=(/式中:某1:磷的含量(mg/L);S11:水样S1的吸光度;某1=(=L最终结果如下表:表3水样总磷含量测定结果四、结论1、实验数据分析由R2=R2〉标准曲线的R2大于,相关性一般。
水体富营养化评价
“水体富营养化评价”资料合集目录一、东平湖水体富营养化评价二、水体富营养化评价试验三、水体富营养化评价的多维正态云法与其他几种方法的对比分析四、水体富营养化评价方法及其应用五、铁岭莲花湖水体富营养化评价六、水体富营养化评价与治理东平湖水体富营养化评价水体富营养化是指水体在自然或人为因素影响下,导致水体中氮、磷等营养盐含量过高,引发水生生物异常繁殖,使得水体生态系统失衡的现象。
东平湖作为我国北方的重要湖泊,其水体富营养化问题备受关注。
本文将对东平湖水体富营养化进行评价。
近年来,东平湖的水体富营养化问题日益严重。
据监测数据显示,东平湖水体中的总磷、总氮含量持续升高,已超过国家标准。
湖泊中的藻类生物量也大幅增加,特别是在夏季,蓝藻大量繁殖,导致水体出现“水华”现象。
这不仅影响了湖泊的景观,还对周边居民的生活和健康造成了威胁。
东平湖水体富营养化的原因是多方面的。
随着周边地区经济的发展,大量含磷、氮的废水排入湖泊,导致营养盐积累。
湖泊周边农业生产中化肥的过量使用,也是导致水体富营养化的重要原因。
气候变化、湖泊水文条件等因素也可能对水体富营养化产生影响。
东平湖水体富营养化对湖泊生态系统造成了严重影响。
水生生物多样性降低,部分敏感物种受到威胁。
水体自净能力下降,水质恶化。
富营养化还可能导致湖泊生态系统崩溃,引发一系列环境问题。
东平湖水体富营养化问题严重,需采取有效措施加以解决。
加强污染源控制,减少含磷、氮废水的排放。
加大环境监测力度,建立水体富营养化预警系统。
开展湖泊生态修复工作,如投放适量生物控藻剂、种植沉水植物等。
加强环境教育,提高公众环保意识。
通过这些措施的实施,有望改善东平湖水体富营养化状况,保护湖泊生态系统的健康。
水体富营养化评价试验水体富营养化是当今全球面临的一个严峻环境问题。
它指的是由于人类活动,特别是农业和工业废弃物的排放,导致水体中营养物质(如氮、磷)过度积累,引发藻类等水生生物过度繁殖,最终导致水质恶化和生态系统崩溃。
水体富营养化程度分析评价
水体富营养化程度分析评价水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
提到富营养化,普遍想到的就是营养盐总磷、总氮超标。
诚然,总磷总氮等营养盐是发生富营养化的必要条件。
如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。
富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。
因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。
尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。
但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态;(3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。
其中的水流流态主要指以流速、水深为要素的水流结构。
一、水体富营养化的主要原因:水体富营养化的根本原因是营养物质的增加。
一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。
受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。
Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。
导致富营养化的营养物按其来源可分为点源和非点源(或面源)。
前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。
水体富营养化程度的评价实验报告
水体富营养化程度的评价实验报告一、实验目的水体富营养化是当前面临的重要环境问题之一,本实验旨在通过对特定水体样本的分析和检测,评价其富营养化程度,为水资源的保护和管理提供科学依据。
二、实验原理水体富营养化主要是由于氮、磷等营养物质的过量输入,导致藻类等水生生物大量繁殖。
评价水体富营养化程度通常基于对水体中营养盐(如总氮、总磷)、叶绿素a 含量、透明度以及化学需氧量(COD)等指标的测定。
三、实验材料与仪器1、水样采集器2、实验室常用玻璃仪器(如容量瓶、移液管、比色管等)3、分光光度计4、消解装置5、总氮、总磷测定试剂盒6、塞氏盘四、实验步骤1、水样采集选择具有代表性的水体,使用水样采集器在不同深度和位置采集水样,混合均匀后装入干净的采样瓶中,尽快带回实验室进行分析。
2、指标测定(1)总氮(TN)的测定采用碱性过硫酸钾消解紫外分光光度法。
取适量水样于消解管中,加入碱性过硫酸钾溶液,在高温高压下消解,冷却后用紫外分光光度计在 220nm 和 275nm 处测定吸光度,计算总氮含量。
(2)总磷(TP)的测定采用钼酸铵分光光度法。
取适量水样加入过硫酸钾溶液进行消解,消解完成后加入钼酸铵试剂和抗坏血酸溶液,显色后用分光光度计在700nm 处测定吸光度,计算总磷含量。
(3)叶绿素 a 的测定水样经过滤后,用丙酮提取叶绿素 a,提取液在分光光度计 663nm和 645nm 处测定吸光度,计算叶绿素 a 的含量。
(4)透明度的测定使用塞氏盘在现场垂直放入水中,直至刚刚看不见盘体,记录深度即为透明度。
(5)化学需氧量(COD)的测定采用重铬酸钾法,在水样中加入一定量的重铬酸钾和硫酸银硫酸溶液,在加热回流条件下反应,然后用硫酸亚铁铵溶液滴定剩余的重铬酸钾,计算化学需氧量。
五、实验结果与分析1、实验数据记录将测定的各项指标数据记录在下表中:|水样编号|总氮(mg/L)|总磷(mg/L)|叶绿素 a(mg/L)|透明度(m)| COD(mg/L)||||||||| 1 |____ |____ |____ |____ |____ || 2 |____ |____ |____ |____ |____ || 3 |____ |____ |____ |____ |____ |2、富营养化评价标准根据相关标准和研究,通常采用以下指标来评价水体富营养化程度:|富营养化程度|总氮(mg/L)|总磷(mg/L)|叶绿素 a (mg/L)|透明度(m)| COD(mg/L)|||||||||贫营养|<02 |<002 |<0005 |>6 |<15 ||中营养| 02 05 | 002 005 | 0005 002 | 3 6 | 15 25 ||富营养|>05 |>005 |>002 |<3 |>25 |3、结果分析(1)将测定的各项指标数据与评价标准进行对比,判断水体的富营养化程度。
水体富营养化评价试验
水污染生物学实验一. 实验目的1. 了解水体富营养化评价方法,并通过对单一因子指标的测定,对模拟水体的富营养化程度进行评价。
2. 回顾水体单一污染因子测定方法,包括透明度(SD)、总磷(TP)、总氮(TN) 和高锰酸盐指数(CODMn)。
3. 掌握叶绿素Chla、TN、TP的测定方法,熟悉实验程序,了解各种仪器的工作原理和操作方法。
二.实验原理1. 叶绿素a的测定原理叶绿素a存在于所有植物中,约占有机物干重的1%~2%,是水体初级生产力和估算水体中浮游植物浓度的重要指标,对叶绿素a进行测定,可以了解水体的生产力和富营养化水平。
叶绿素不溶于水,但溶于乙醇、丙酮、乙醚等有机溶剂。
叶绿素a和b,分别在蓝紫光区和红光区对光谱有两个吸收峰。
因此,可以应用有机溶剂提取叶绿素,在特定波长下进行比色测定。
2.TN的测定原理--碱性过硫酸钾消解紫外分光光度法总氮:指可溶性及悬浮颗粒中的含氮量。
在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按公式求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
3. TP的测定原理总磷是指水体中各种形态的磷的总量,是反映水体所受污染程度和湖库水体富营养化程度的重要指标之一。
本实验采用过硫酸钾高温高压消解法进行预处理,使其中的含磷有机物转化成可溶的磷酸盐,同时也使偏磷酸盐和焦磷酸盐都转化成正磷酸盐,然后于波长700nm处测定吸光度,从标准曲线上查出含磷量。
三.实验仪器紫外分光光度计,高压蒸汽消毒器,10ml、25ml、50ml具塞玻璃磨口比色管,抽滤器,离心机。
环境微生物:水体富营养化的监测与评价
2. 水体富营养化的评价
下表为水体富营养化状态与氮、磷含量关系:一般来讲,
总磷和无机氮分别超过20mg/m3和300mg/m3,就可以认为是危
险状态。
状态
营养
极贫
贫中
中
中富
总磷(mg/m3) (mg/m3)
<5 <200
5~10 200~400
10~30 300~650
3~100 500~1500
优势种。
水体富营养化的评价标准
评价标准 从物理、化学和生物学三方面评价。
美国国家环保局湖泊富营养化阶段标准 经OECD组织湖泊营养分类系统评价
评价水体富营养化的方法是: ① 观察蓝藻等指示生物 ② 测定生物的现存量 ③ 测定原初生产力 ④ 测定透明度 ⑤ 测定氮和磷等导致富营养化的物质
氮含量超过0.2~0.3mg/L , 磷含量大于0.01~0.02mg/L , BOD 大于10mg/L, pH值7~9的淡水中细 菌总数超过10万个/mL,叶绿素 a 含量大于10ug/L。
营养物质—— 氮、磷限制因子在水中的含量决定 了藻类的生物量。
据计算:1g N
10.8g 藻
78g 藻
当水体中含氮量>0.3mg/L
含磷量>0.02mg/L
1g
P
藻类旺盛繁殖
国际经济合作与发展组织(OCED)提出:
N :P < 5时,N是限制性因素; N:P > 12时,P是限制性因素; 5 < N:P < 12时,则N、P均起作用。 当水中无机氮成为限制因子时,则能固氮的蓝细菌常成为
水体富营养化的监 测与评价
水体富营养化的监测 水体富营养化的评价
1. 水体富营养化的监测
水体富营养化程度的评价
实验八水体富营养化程度的评价富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。
在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。
这种自然过程非常缓慢,常需几千年甚至上万年。
而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。
水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。
水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。
局部海区可变成“死海”,或出现“赤潮”。
植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。
每人每天带进污水中的氮约50 g。
生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。
许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。
表8-1 水体富营养化程度划分富营养化程度初级生产率/mg O2·m·日总磷/ µg·L无机氮/ µg·L 极贫0~136 <0.005 <0.200贫-中0.005~0.010 0.200~0.400中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500富410~547 >0.100 >1.500一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。
2. 评价水体的富营养化状况。
二、仪器和试剂1. 仪器(1)可见分光光度计。
(2)移液管:1 mL、2 mL、10 mL。
(3)容量瓶:100 mL、250 mL。
(4)锥型瓶:250 mL。
水体富营养化指标
水体富营养化指标水体富营养化是指水体中含有过多的营养物质,如氮、磷等,导致水体中藻类和其他植物过度生长的现象。
这是由于农业、工业和城市化进程中导致的非点源和点源污染物排放所引起的。
水体富营养化对水环境、生物多样性和人类健康都有负面影响。
为了评估水体富营养化的程度,科学家和环境保护组织通常使用一些指标来衡量。
总体指标总氮(TN)和总磷(TP)是用来评估水体富营养化的两个主要指标。
总氮(TN)是指水体中溶解态氨态氮、硝态氮、铵态氮和有机氮的总和。
它可以通过测定这些不同形式氮的浓度之和来确定。
总磷(TP)是指水体中溶解态磷酸盐、有机磷和无机磷的总和。
与总氮一样,总磷也可以通过测定这些不同形式磷的浓度之和来获得。
评估水体的总氮和总磷浓度是判断水体富营养化程度的重要指标。
生物指标叶绿素a是水体中藻类存在的一个指标。
藻类是水中富营养化的一个重要生物指示物,因为它们是水体中主要的养分利用者,当水体中富含养分时,它们会过度生长并形成大量藻华。
通过测定水体中的叶绿素a含量,可以评估水体蓝藻和其他藻类的生长情况,从而判断水体富营养化的程度。
结构指标叶绿素a和悬浮物浓度之比(chla/TP)是评估水体富营养化的一个指标。
研究表明,当叶绿素a和悬浮物浓度之比高于10时,水体就可能发生富营养化。
这是因为当水体富含养分时,藻类过度生长导致水体变绿,同时也会增加水中悬浮物的含量。
因此,通过比较叶绿素a和悬浮物浓度之比,可以判断水体富营养化程度。
生态指标水体富营养化对生态系统的影响是显著的。
一些生态指标可以用来评估水体富营养化的程度。
例如,水体富营养化会导致溶解氧(DO)的减少,造成水体中的生物氧需要增加。
因此,水中溶解氧水平是评估水体富营养化的一个重要指标。
另外,水体中的浮游植物和底栖动物的丰度和多样性也可以用来评估水体富营养化的程度。
综合指标营养状况指数(TROPH)是一个综合评价水体富营养化的指标。
它是综合考虑总氮、总磷、叶绿素a和透明度等指标得出的。
水体富营养化程度分析评价
水体富营养化程度分析评价水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
提到富营养化,普遍想到的就是营养盐总磷、总氮超标。
诚然,总磷总氮等营养盐是发生富营养化的必要条件。
如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。
富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。
因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。
尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。
但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态;(3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。
其中的水流流态主要指以流速、水深为要素的水流结构。
一、水体富营养化的主要原因:水体富营养化的根本原因是营养物质的增加。
一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。
受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。
Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。
导致富营养化的营养物按其来源可分为点源和非点源(或面源)。
前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。
富营养化程度的评价水中总磷的测定
水体富营养化程度的评价水中总磷的测定(快速消解光度法)富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。
许多参数可作为水体富营养化的指标,常用的是总磷、总氮、叶绿素-a含量和初级生产率等。
本实验通过测定天然水体中的总磷,来判断水体的富营养化程度。
总磷与水体富营养化程度的关系富营养化程度极贫贫-中中中-富富总磷/ mg·L-1<0.005 0.005~0.010 0.010~0.030 0.030~0.100 >0.100[实验目的]1.掌握总磷的测定原理及方法2.评价水体的富营养化状况[实验原理]一般地面水在硫酸的酸性条件下,加入一定量的过硫酸铵为氧化剂,加热或高温高压消解,将各种形态的磷转化成磷酸根离子(PO43-),随后用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。
砷酸盐与磷酸盐一样也能生成钼蓝,0.1μg/mL的砷就会干扰测定。
此外,六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。
[主要仪器和试剂]1.仪器1)多功能水质速测仪,2)电子天平3)快速消解仪4)移液管:1 mL,10 mL,100 mL5)消解管:10 mL2.试剂1)过硫酸钾K2S2O8(固体)(分析纯)或过硫酸铵(固体)(分析纯)2)浓硫酸(分析纯)3)硫酸溶液:1:1(v:v)4)钼酸盐混合试剂:分别称取0.21 g 固体酒石酸锑氧钾(K(SbO)C4H4O6·1/2H2O)和7.8 g 钼酸铵((NH 4)6Mo 7O 24·4H 2O )全部溶解于100 mL 1:1(v:v )硫酸溶液中。
如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。
水体富营养化
太湖
白洋淀
模糊综合评法:
模糊综合评判法是模糊数学中一种函数型指数法,它把污 染物超标值、水质质量分级标准、污染物在总体污染中 的贡献等几个方面联系在一起,形成一种评价函数,它包 含的数学信息广泛,避免了综合指数法不能真实反映水体 污染状况、模式分辨性及可比性差等缺点,因此广泛应用 于水质综合评价中。
综合指数评价法的步骤
1、确定综合评价指标体系,这是综合评价的基础和依 据。 2、收集数据,并对不同计量单位的指标数据进行同度 量处理。 3、确定指标体系中各指标的权数,以保证评价的科学 性。
4、对经过处理后的指标在进行汇总计算出综合评价指 数或综合评价分值。
5、根据评价指数或分值对参评单位进行排序,பைடு நூலகம்由此 得出结论。
富营养化评价指标:
1)水体中含氮量大于0.2~0.3mg/L,含 磷量大于0.01mg/L。 2)生化需氧量大于10mg/L。 3)在淡水中细菌总量达到104个/毫升 。 4)标志藻类生长的叶绿素a浓度大于 10μg/L。
程度划分指标
氮磷比对水华蓝藻优势形成的影响
在太湖蓝藻水华暴发期间,监测了梅梁湾和湖心区水体叶绿素a浓度 和氮磷营养盐结构变化,以探讨N/P比对蓝藻优势形成的影响.结果 表明,N/P比对铜绿微囊藻和斜生栅藻生长的影响并不表现在一个确 定值上,而与水体氮磷的绝对浓度有关,在0.02mg/L磷浓度下,铜绿微 囊藻和斜生栅藻在N/P比为4:1~32:1范围内生长速率均较低 (0.067~0.074,0.018~0.022d-1),说明受到营养盐的限制;当磷浓度 达到0.20mg/L时,铜绿微囊藻在N/P比为32:1时生长速率达到最大值 (0.240d-1),斜生栅藻在N/P比为64:1时生长速率达到最大值(0.380 d-1);而在磷浓度升高到2.00mg/L时,不同N/P比下铜绿微囊藻和斜 生栅藻均达到最大生长速率(0.24~0.25,0.378~0.381d-1),说明氮 磷浓度均比较充足,N/P比对生长速率已经没影响.可见,氮磷浓度比 N/P比对两种藻的生长影响更大.与斜生栅藻相比,铜绿微囊藻对氮 磷营养的生理需求和最大生长速率均相对较低,属K策略物种,易在 低氮磷浓度下形成优势.梅梁湾在水华暴发期间氮浓度一直远低于 水华较轻的湖心区,而磷浓度远高于湖心区,进而导致梅梁湾N/P质 量比(低于20:1)在水华期间一直低于湖心区(124:1),低N/P比是蓝藻 水华暴发导致氮浓度下降,磷浓度升高的结果.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水污染生物学实验
一. 实验目的
1. 了解水体富营养化评价方法,并通过对单一因子指标的测定,对模拟水体的富营养化程度进行评价。
2. 回顾水体单一污染因子测定方法,包括透明度(SD)、总磷(TP)、总氮(TN) 和高锰酸盐指数(CODMn)。
3. 掌握叶绿素Chla、TN、TP的测定方法,熟悉实验程序,了解各种仪器的工作原理和操作方法。
二.实验原理
1. 叶绿素a的测定原理
叶绿素a存在于所有植物中,约占有机物干重的1%~2%,是水体初级生产力和估算水体中浮游植物浓度的重要指标,对叶绿素a进行测定,可以了解水体的生产力和富营养化水平。
叶绿素不溶于水,但溶于乙醇、丙酮、乙醚等有机溶剂。
叶绿素a和b,分别在蓝紫光区和红光区对光谱有两个吸收峰。
因此,可以应用有机溶剂提取叶绿素,在特定波长下进行比色测定。
2.TN的测定原理--碱性过硫酸钾消解紫外分光光度法
总氮:指可溶性及悬浮颗粒中的含氮量。
在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中
有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm 处,分别测出吸光度A220及A275按公式求出校正吸光度A:A=A220-2A275 (1)
按A的值查校准曲线并计算总氮(以NO3-N计)含量。
3. TP的测定原理
总磷是指水体中各种形态的磷的总量,是反映水体所受污染程度和湖库水体富营养化程度的重要指标之一。
本实验采用过硫酸钾高温高压消解法进行预处理,使其中的含磷有机物转化成可溶的磷酸盐,同时也使偏磷酸盐和焦磷酸盐都转化成正磷酸盐,然后于波长700nm处测定吸光度,从标准曲线上查出含磷量。
三.实验仪器
紫外分光光度计,高压蒸汽消毒器,10ml、25ml、50ml具塞玻璃磨口比色管,抽滤器,离心机。
四.实验试剂
1. 测定叶绿素a:碳酸镁,90%乙醇。
2.测定TN: 无氨水,20%NaOH溶液,碱性过硫酸钾溶液,硝酸钾标准溶液,(1+9)盐酸。
3. 测定TP: (1+1)硫酸,10%抗坏血酸溶液,钼酸盐溶液,磷酸盐标准溶液。
五.实验步骤
1.叶绿素a的测定
(1)水样采集后放在阴凉处,避免日光直射,最好立即进行测定的预处理。
如需经过一段时间(4~48h) 才能进行预处理,则应将水样保存在低温避光处,在每升水样中加入1ml 1% 的碳酸镁悬浊液,以防止酸化引起色素溶解。
(2)在抽滤器上装好0.45μm醋酸纤维滤膜,倒入定量体积的水样进行抽滤,抽滤时负压不能过大(约50kPa)。
水样抽完后,继续抽1~2min,以减少滤膜上的水分。
(3)抽滤完毕后,将带有浮游植物的滤膜直接放入10ml 比色管中(即不干燥研磨),加入少量的碳酸镁粉末,再加入90% 乙醇10ml,在常温暗室中提取6~8h。
(4)取出,充分摇匀比色管内含物,用3500r /min 离心10min,上清液再转入比色管中,用 90% 的乙醇定容至 10ml。
(5)用分光度度计在750nm、663nm、 645nm、630nm 波长处,分别测定其吸光度值,并以90%的乙醇作空白吸光度测定。
2.TN的测定
(1)标准曲线的绘制
①分别吸取0、0.50、1.00、2.00、3.00、5.00、7.00、8.00ml硝酸钾标准使用溶液于25ml比色管中,用无氨水稀释至10ml标线。
②加入5ml碱性过流酸价溶液,塞紧磨口塞,用纱布及纱绳裹紧管塞,以防迸溅出。
③将比色管至于压力蒸汽消毒器中,加热0.5h,放气使压力指针回零,然后升温至120-124℃开始计时,使比色管在过热水蒸气中加热
0.5h。
④自然冷却,开阀放气,移去外盖,取出比色管并冷却至室温。
⑤加入(1+9)盐酸1ml,用无氨水稀释至25ml。
⑥在紫外分光光度计上,以无氨水做参比,用10mm石英比色皿分别在波长220nm及275nm处测定吸光度。
用校正的吸光度绘制标准曲线。
(2)样品测定步骤
取10ml水样,按标准曲线绘制步骤②至⑥操作。
然后按校正吸光度,在标准曲线上查出相应的总氮量,在用下列公式计算总氮含量。
总氮(mg/l)=m/V
式中:m--从标准曲线上查的含氮量(µg);
V--所取水样体积(ml)。
3.TP的测定
(1)标准曲线的绘制
①取数支50ml具塞比色管,分别加入磷酸盐标准使用液0、0.50、
1.00、3.00、5.00、10.00、15.00ml,加水至50ml。
②消解:向比色管中加入4ml过硫酸钾溶液,加塞后管口包一小块纱布并用线扎紧,将具塞刻度管放在大烧杯中,至于高压蒸汽消毒器,待锅内压力达1.1kg/cm2时,保持此压力30min后,停止加热,待压力标指针降至零后,取出放冷。
③显色:向比色管中加入1ml 10%抗坏血酸溶液,混匀。
30s后加2ml.钼酸盐溶液充分混匀,防止15min。
④测量:用10mm或30mm比色皿,于700nm波长处,以零浓度溶液做参比,测量吸光度。
(2)样品测定
分别取适量经消解的水样50ml比色管中,用手稀释至标线。
一下按绘制标准曲线的步骤进行显色和测量。
减去空白试验的吸光度,并从标准曲线上查出含磷量。
六.数据处理
1.原始数据
(1)叶绿素a:750nm:-0.011,-0.010,-0.009,平均:-0.01 663nm:0.005,0.013,0.002,平均:0.0067 645nm:-0.001,0.002,0.001 平均:0.00067 630nm: -0.001,0.005,0.001 平均:0.0017
(2)TN: 220nm: 6.549; 275nm:0.627
(3)TP: 700nm: 0.170,0.172,0.194
2.处理结果
(1)叶绿素a(mg/m3)
=[11.64(D663-D750)-2.16(D645-D750)+0.10
(D630-D750)] ·V1/(V·δ)
=[11.64(0.0067-(-0.01))-2.16(0.00067-(-0.01))+0.1(0.0017-(-0.01))。