9.3 一元一次不等式组(含答案)-
9.3(1) 一元一次不等式组
x 1 x 2
数轴表示
解集(即公共部分)
-1
0
1
2
3
1 x 2
x 1 x 2
-1
0
1
2
3
x 2
x 1 x 2
-1
0
1
2
3
x 1
无解
x 2 x 1
-1
0
1
2
3
你会了吗?试试看 例1:解下列不等式组
x2 x2
(一)概念
1. 由几个一元一次不等式所组成的不等式组叫做一 元一次不等式组
2. 几个一元一次不等式的解集的公共部分,叫做由它们 所组成的一元一次不等式组的解集. 3. 求不等式组的解集的过程,叫做解不等式组.
(二)解简单一元一次不等式组的方法:
(1) 求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 即求出了不等式组的解集 (找不到公共部分则不等式组无解)
请举一些既满足不等式①又满足不等式② 的x的取值.
你能确定所有x的取值吗?
3 x5
探索与观察
3 x5
① ②
中x的取值范围与组成它的不等式① 、 ②的解集有什么联系?
x 3 运用数轴,探索不等式组 x 5
动手操作: 在同一数轴上分别表示出不等式① 、②的解集。
-2
-1
0
1
2
3
2 x 1 x 1 ⑴ x 8 4x 1
解: 解不等式①,得, 解不等式②,得, ① ②
x2 x3
2 x 3 x 11 ⑵ 2x 5 1 2 x 3
解: 解不等式①,得,x 解不等式②,得,
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册
解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
9.3一元一次不等式组
知识要点:
1、掌握一元一次不等式组的不同形式,理解不等式组的解集的涵义。
2、会利用数轴准确的确定一元一次不等式组的解集。
体会数形结合的思想。
本节测试
(基础题)解下列不等式组:
(1)⎩⎨
⎧②<-①>-x x x 8270153
(2)⎩⎨
⎧≤②
->+-①--243213x x x x (3)⎩⎨
⎧≤≤②
++①+-x x x x 36275245
(4)⎩⎨
⎧②
>-①->-3
43421x x x
答案 解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴找它们的解集的公共部分,这个公共部分就是不等式组的解集.
(1)解不等式①,得x >5 解不等式②,得x >-2
在同一个数轴上表示出不等式①、②的解集如图9-12所示:
∴ 这个不等式组的解集是x >5
(2)解不等式①,得x ≤-21,解不等式②,得x <23
在数轴上表示出不等式①、②的解集如图9-13所示:
∴ 这个不等式组的解集是x ≤-21
(3)解不等式①,得x ≤3 解不等式②,得x ≥1
在数轴上表示出不等式①、②的解集如图9-14所示:
∴这个不等式组的解集是1≤x≤3
(4)解不等式①,得x<-3
7
解不等式②,得x>3
在数轴上表示出不等式①、②的解集如图9-15所示:
∴这个不等式组无解.
说明:(1)用数轴表示不等式组的解集,要时刻牢记:大于向右画,小于向左画;有等号画实心圆点,无等号画空心圆圈.
(2)对于由两个一元一次不等式组成的不等式组,熟练以后,可直接根据它的四种基本情况确定不等式的解集.。
2020-2021学年人教版七年级下册数学 9.3一元一次不等式组(应用题)(含答案)
9.3一元一次不等式组(应用题篇)一、单选题1.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生( )A .4人B .5人C .6人D .5人或6人 2.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )A .B .C .D . 3.在平面直角坐标系中,若点 ,(2P m m +)在第二象限,且m 为负整数,则点P 坐标为( ) A .()1,3- B .()1,1- C .()1,1- D .()2,0- 4.生物小组要在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度()x C ︒的范围是3538x ≤≤,B 种菌苗的生长温度()y C ︒的范围是3436x ≤≤,那么温箱里的温度()T C ︒应该设定的范围是( )A .3538T ≤≤B .3536T ≤≤C .3436T ≤≤D .3638T ≤≤ 5.用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A .()()6418064185x x x x ⎧-+⎪⎨-+≤⎪⎩>B .()()()()418610418615x x x x >⎧+--⎪⎨+--≤⎪⎩C .()()()()614180614185x x x x ⎧--+⎪⎨--+⎪⎩><D .()()()()418610418615x x x x ⎧+--⎪⎨+--⎪⎩>< 6.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10B.11C.12D.137.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()A.33B.42C.55D.548.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x千米,那么x的取值范围是( )A.1<x≤11B.7<x≤8C.8<x≤9D.7<x<810.如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7二、填空题11.某校计划组织七年级师生外出研学,若学校租用30座的客车x辆,则有15人无法乘坐;若租用45座的客车则可少租用2辆,且最后一辆车还没坐满.那么乘坐最后一辆45座客车的师生人数是_______人(用含x 的代数式表示),师生总人数可能为_________.12.某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.问宾馆一楼的房间有_______间.13.我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了___辆公共汽车.14.如图,用如图①中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图①的竖式和横式两种无盖纸盒.若295305a b <+<,用完这些纸板做竖式纸盒比横式纸盒多30个,则a =_____,b =_____.15.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院护安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了________名护士护理新冠病人.三、解答题16.2020年春节新冠肺炎疫情期间,小明妈妈手工制作了一些抗疫英雄的人偶,待小明开学后送给同班同学.如果每组分10个,那么余5个;如果前面的组每个组分13个,那么最后一个组虽然分有人偶,但不足4个.小明所在班级有多少个组?小明妈妈一共做了多少个人偶?17.安庆外国语为创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?18.列方程组或不等式解决实际问题某汽车专卖店销售A ,B 两种型号的新能源汽车,上周和本周的销售情况如下表:(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?参考答案1.C2.A3.B4.B5.D6.C7.C8.C9.B10.B11.-15x+150 255人或285人12.1013.814.225,75.15.616.小明所在班级有5个组,小明妈妈一共做了人偶55个.17.(1)文学书的单价为8元,科普书的单价为12元;(2)至多还能购进466本科普书18.(1)每辆A型车的售价为18万元,B型车的售价为26万元;(2)有两种购车方案:购进A 型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆。
人教版数学七年级下册9.3一元一次不等式组应用题课件
计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载
40人和10件行李,乙种汽车每辆最多能载30人和20件行李。
(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你
选择最省钱的一种租车方案。
甲
车辆数
x
车载人数
(2)
40x 10x
30(8 20(8
x) x)
290 100
5≤x≤6
第九章 不等式与不等式组
9.3 一元一次不等式组应用题
例1 把一些书分给几名同学,如果每人分三本,那么余8本; 如果前面的每名同学分5本,那么最后一人就分不到3本,请问 这些书有多少本?共有多少人? 设共有x人,则这些书有(3x+8)本. 分析:
练习1:初一(1)班有若干学生住宿,若每 间住4人,则有20人没宿舍住;若每间住8人, 则有一间不空也不满,试求该班宿舍间数及 住宿人数?
练习1:初一(1)班有若干学生住宿,若每间住4人,则有20人 没宿舍住;若每间住8人,则有一间不空也不满,试求该班宿舍 间数及住宿人数? 分析:
住宿人数=4×宿舍数量+20 0<最后一间宿舍人数<8 4x 20 8(x 1) 0 4x 20 8(x 1) 8 5 x7
每个小组原先每天生产多少件产品?
甲汽车载行李件数+乙汽车载行李件数≥行李总数
解:(1)租用甲种汽车x辆,则租用乙种汽车(8-x)辆. 由题意得:
40x 30(8 x) 290 10x 20(8 x) 100
解得:5≤x≤6
∵x取整数 ∴x=5,6
即有两种方案: 方案一:租用甲种汽车5辆,乙种汽车3辆; 方案二:租用甲种汽车6辆,乙种汽车2辆.
9.3一元一次不等式组的解法(第一课时)
铜陵市义安区朱村中学 慈龙英
一、情境引入: 问题:用每分钟可抽30t的抽水机来抽污 水管道里积存的污水,估计积存的污水超 过1200t而不足1500t,那么将污水抽完所 用时间的范围是什么?
你能列出上面的不等式并将其解集在数 轴上表示出来吗?
情境问题: 用每分钟可抽30t的抽水机来抽污水管
2x 1
x
3
的解集在数
0(
)
五、强化训练
3解下列不等式组:
(1) x 1< 3 x ①
x
1>
3
②
(2) x 1>3 ①
x
1<3
4
x
②
解:(1)由①得X>-0.5 解:(2)由①得 X>4
由②得X>2
由②得X<0.4
o
o
0 0.5
2
不等式组的解集为x>2
不 组
等
式
x x
2 1
0 0
x 2 0
x
1
0
x 2 0
x
1
0
x 2 0
x
1
0
解集 无解 -1<X<2 X<-1 X>2
归纳:不等式组的解法是分开解, 借数轴,集中判。
变式训练,更上层楼:
解不等式组,并把解集表示在数轴上。
合作探究三:
具体分析如下:
用数轴来表示一元一次不等式组的解集,
知
2020-2021学年七年级数学人教版下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)
2021年度人教版七年级数学下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)1.已知关于x的不等式组的整数解共有3个,且(a+2)x<1的解集为x>,则a可取()个整数.A.3B.2C.1D.02.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3 B.4C.6D.13.若关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b 组成的有序数对(a,b)共()个.A.3B.4C.5D.64.不等式组的最小整数解是()A.5B.0C.﹣1D.﹣25.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣5<a<﹣4B.a<﹣4C.﹣5≤a<﹣4D.﹣5<a<6.求不等式组的最大整数解为()A.0B.﹣1C.1D.﹣27.当3≤5﹣3x<9时,不等式组的非负整数解为()A.3B.2C.1D.08.若关于x的不等式仅有四个整数解,则a的取值范围是()A.1≤a≤2B.1≤a<2C.1<a<2D.a<29.不等式组的整数解的个数为()A.2B.3C.4D.510.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是.11.已知关于x的不等式组的整数解有且只有2个,则m的取值范围是.12.不等式组的正整数解为.13.不等式组的最小整数解是.14.不等式组的负整数解是.15.不等式组的所有整数解的和是.16.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批书有本.17.已知关于x的不等式组的所有整数解的和为﹣9,m的取值范围是.18.不等式组的非负整数解的个数是.19.已知关于x的不等式组的整数解共有3个,则a的取值范围是.20.对于任意实数p、q,定义一种运算p※q=p﹣q+pq﹣2,等式的右边是通常的加减和乘法运算,例如:4※5=4﹣5+4×5﹣2=17.请根据上述定义解决问题:若关于x的不等式组有5个整数解,则m的取值范围是.21.若关于x的不等式组的所有整数解的和是15,则m的取值范围是.22.求关于x的不等式组的所有整数解之和.23.解不等式组:把解集在数轴上表示出来,并写出所有整数解.24.解不等式组:,并求出最小整数解与最大整数解的和.25.已知关于x的不等式组.(1)如果这个不等式组无解,求k的取值范围;(2)如果这个不等式组有解,求k的取值范围;(3)如果这个不等式组恰好有2021个整数解,求k的取值范围.26.解不等式组,并写出其所有的整数解.27.若关于x的不等式组有且只有四个整数解,求实数a的取值范围.参考答案1.解:解不等式组,解不等式①得x≥a+2,解不等式②得x<3,∵原不等式只有3个整数解∴这3个整数解分别为2,1,0﹣1<a+2≤0∴﹣3<a≤﹣2,∵(a+2)x<1的解集为x>,∴a+2<0,∴a<﹣2,∴满足所有条件的a的取值范围是﹣3<a<﹣2,∴a一个整数也取不到,故选:D.2.解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得到﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.3.解:,由①得:x≥,由②得:x≤,不等式组的解集为:≤x≤,∵整数解仅有1,2,,∴0<≤1,2≤<3,解得:0<a≤3,4≤b<6,∴a=1,2,3,b=4,5,∴整数a,b组成的有序数对(a,b)有(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)共6个,故选:D.4.解:解不等式x+3>1,得:x>﹣2,解不等式x﹣1≤4,得:x≤5,故不等式组的解集为:﹣2<x≤5,则该不等式组的最小整数解为:﹣1,故选:C.5.解:不等式组整理得:,解得:a<x<,由不等式组的整数解共有6个,得到整数解为﹣4,﹣3,﹣2,﹣1,0,1,则a的范围为﹣5≤a<﹣4.故选:C.6.解:,解不等式①得:x<1,解不等式②得:x<﹣,∴不等式组的解集为x<﹣,则其最大整数解为﹣2,故选:D.7.解:由3≤5﹣3x<9解得,﹣<x≤,方程组,解①得:x<2,解②得x<4.则不等式组的解集是x<2.故非负整数解是0,故选:D.8.解:,解①得:x>a﹣1,解②得:x≤4,则不等式组的解集是:a﹣1<x≤4.不等式组有四个整数解,则是1,2,3,4.则0≤a﹣1<1.解得:1≤a<2.故选:B.9.解:,由①得:x>﹣1,由②得:x≤4,故不等式组的解集为:﹣1<x≤4,则不等式组的整数解为:0,1,2,3,4共5个,故选:D.10.解:解不等式2x﹣1>3x+2,得:x<﹣3,∵不等式组的解集是x<﹣3,∴m≥﹣3.故答案为m≥﹣3.11.解:由2x﹣1<4得x<,由x﹣m>0得x>m,则不等式组的解集是m<x<.不等式组有2个整数解,则整数解是1,2.则0≤m<1.故答案是:0≤m<1.12.解:,解①得x<2,解②得x≥﹣1,故不等式组的解集为﹣1≤x<2,故不等式组的正整数解为1.故答案为1.13.解:,解①得x>2,解②得x≥﹣1,则不等式的解集是x>2.则最小整数解是3.故答案为3.14.解:解不等式3x≤x+2得,x≤1,解不等式x+7>﹣4x﹣3得,x>﹣2,∴不等式组的解集为﹣2<x≤1,∴负整数解为﹣1,故答案为﹣1.15.解:,由①得:x≤3,由②得:x>1,∴1<x≤3,则所有整数解为2,3,之和为5,故答案为5.16.解:设共有x名小朋友,则共有(3x+8)本书,依题意得:,解得:5<x<6,又∵x为正整数,∴x=6,∴3x+8=26.故答案为:26.17.解:解不等式3x+m<0,得:x<﹣,∵x>﹣5,∴不等式组的解集为﹣5<x<﹣,∵不等式的所有整数解的和为﹣9,∴不等式组的整数解为﹣4、﹣3、﹣2或﹣4、﹣3、﹣2,﹣1,0,1,则﹣2<﹣≤﹣1或1<﹣≤2,解得3≤m<6或﹣6≤m<﹣3,故答案为:3≤m<6或﹣6≤m<﹣3.18.解:,解不等式①得:x>﹣2,解不等式②得x≤3,∴不等式组的解集为﹣2<x≤3,非负整数解为0,1,2,3共4个,故答案为4.19.解:不等式组整理得:,解得:a≤x≤2,由不等式组的整数解共有3个,得到整数解为0,1,2,则a的范围为﹣1<a≤0.故答案为:﹣1<a≤0.20.解:∵,∴,解不等式①得:x<4,解不等式②得:x≥,∴不等式组的解集是≤x<4,∵不等式组有5个整数解,∴﹣2<≤﹣1,解得:﹣6.5<m≤﹣4.5,故答案为:﹣6.5<m≤﹣4.5.21.解:解不等式组得:m<x≤6,∵所有整数解的和是15,15=6+5+4,∴x=6,5,4,因此不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,﹣1,﹣2,﹣3,∴3≤m<4或﹣4≤m<﹣3;故答案为:3≤m<4或﹣4≤m<﹣3.22.解:,解不等式①得,x<3,解不等式②得,x≥1,所以,不等式组的解集是1≤x<3,所以,不等式组的整数解有1、2,它们的和为1+2=3.23.解:,解不等式①得x<3,解不等式②得x>﹣1,∴不等式组的解集为﹣1<x<3,数轴表示为:整数解为:0,1,2.24.解:,由①得:x≤8,由②得:x>﹣3,∴不等式组的解集为﹣3<x≤8,∴x的最小整数为﹣2,最大整数为8,∴x的最小整数解与最大整数解的和为6.25.解:(1)根据题意得:﹣1≥1﹣k,解得:k≥2.(2)根据题意得:﹣1<1﹣k,解得:k<2.(3)∵不等式恰好有2021个整数解,∴﹣1<x<2021,∴2020≤1﹣k<2021,解得:﹣2020<k≤﹣2019.26.解:,解不等式①得:x>﹣4,解不等式②得:x≤﹣1,所以不等式组的解集为:﹣4<x≤﹣1.∴不等式组的整数解有﹣3,﹣2,﹣1.27.解:,由不等式①,得x>2,由不等式②,得x<,∴该不等式组的解集是2<x<,∵关于x的不等式组有且只有四个整数解,∴6<≤7,解得,18<a≤21。
9.3.1一元一次不等式组
例1. 求下列不等式组的解集:在同一数轴上表示出两个不等 式的解集,并写出不等式组的解集
x 3, (1) x 7. x 2, ( 2) x 3 . x 2, (3) x 5 . x 0, ( 4) x 4 .
解:原不等式组的解集为
3 x 7 8
小结
你有哪些收获?说出来,大家共同分享
你还有什么疑惑?提出来,我们一起讨
论
作业
第141页:2(1.4.5和2.3.6)、A:7题
解:原不等式组无解.
x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
9.3 一元一次不等式组(1)
学习目标
1、理解有关不等式组的概念。 2、会解由两个一元一次不等式组成的不等 式组。
解不等式的基本步骤
1、去分母 (不等式的性质二) 2、去括号 (乘法分配律) 3、移项 (不等式的性质一) 4、合并同类项 (整式加减性质) 5、化系数为1 (不等式性质二,三)
① ②
(1)分别解不等式组中的各个不等式 , (2)再求出这几个不等式解集的公共部分.
不等式组的解集情况:
选择题: x≥2, (1)不等式组 x 的解集是( D ) ≤2 A. x ≥2, B. x≤2, C. 无解,
x 0.5, (2)不等式组 的整数解是( x≤1
0
最新 同步练习9.3一元一次不等式组 练习卷 2021-2022学年人教版数学七年级下册
9.3 一元一次不等式组(练习卷)-2022年人教新版数学七年级下册一.选择题(共12小题)1.已知关于x的不等式组只有四个整数解,则实数a的取值范围()A.﹣3≤a<﹣2B.﹣3≤a≤﹣2C.﹣3<a≤﹣2D.﹣3<a<﹣22.不等式组的整数解有()A.0个B.1个C.2个D.3个3.若关于x的一元一次不等式组的解集为,且关于y的方程的解为非负整数,则符合条件的所有整数m的和为()A.2B.7C.11D.104.如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.3B.4C.5D.65.把不等式组的解集表示在数轴上,下列符合题意的是()A.B.C.D.6.平面直角坐标系中,点A(2x﹣6,x+1)在第二象限,x的取值范围在数轴上表示为()A.B.C.D.7.已知一种新运算定义为:a⊙b=a•b﹣|a﹣2|,则不等式组的非正整数解有()A.1个B.2个C.3个D.4个8.不等式组的最大整数解是()A.﹣3B.﹣2C.﹣1D.09.对于任意的实数m和n,定义一种运算m※n=mn﹣m﹣n+2,例如:2※3=2×3﹣2﹣3+2=3.根据上述定义,不等式组的解集在数轴上表示为()A.B.C.D.10.从﹣3,﹣1,,1,2这五个数中随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的一元一次方程ax+3=5﹣x有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2B.﹣C.﹣3D.11.某班数学兴趣小组对不等式组讨论得到以下结论:①若a=5,则不等式组的解集为2<x≤5;②若a=1,则不等式组无解;③若不等式组无解,则a的取值范围为a<2;④若不等式组有且只有两个整数解,则a的值可以为5.1,以上四个结论,正确的序号是()A.①②③B.①③④C.①②④D.①②③④12.若不等式组的最小整数解是a,最大整数解是b,则a+b=()A.2B.1C.4D.0二.填空题(共5小题)13.如果关于x的不等式组的整数解只有1,2,3,那么a的取值范围是,b的取值范围是.14.满足﹣<x<的所有整数x的和是.15.不等式组的解集是.16.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是.A.7B.9C.11D.1317.已知不等式组的解集为x>﹣1,则k的取值范围是.三.解答题(共3小题)18.(1)解方程组;(2)解不等式(组).19.对x,y定义一种新运算F(x,y)=(ax+by)(x+3y)(其中a,b均为非零常数).例如:F(1,1)=4a+4b;已知F(3,1)=0,F(0,1)=﹣9.(1)求a,b的值;(F(3t+1,t)≥k;(2)若关于F的不等式组恰好只有1个整数解,求k的取值范围.20.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,1)=4,T(4,﹣2)=7.①求a、b的值;②若关于m的不等式组恰好有4个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x、y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?10.2直方图-课堂练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是() A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<2.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,•7,6,第五组的频率是0.2,故第六组的频率是() A .0.2B .0.1C .0.3D .0.43.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15-20次之间的频率是(). A .0.4B .0.33C .0.17D .0.14.在频数分布表中,所有频数之和() A .是1B .等于所有数据的个数C .与所有数据的个数无关D .小于所有数据的个数5.有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是(). A .4B .5C .6D .76.如图是若干只电灯泡的使用寿命进行检测的频数分布折线图,由图可知检测的频数为() A .20B .14C .12D .10二、填空题7.在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知: (1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.8.对某班同学的身高进行统计(单位:厘米),频数分布表中,这一组学生人数是12,频率是0.24,则该班共有________名学生;这一组学生人数是8,频率是________.9.在频率分布直方图中,小长方形的面积等于_______,各小长方形的面积和等于_______. 10.一个样本容量为80的样本最大值是123,最小值是50,取10为组距,则可分为_____组11.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数). 三、解答题12.为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.13.一个面粉批发商统计了前48个星期的销售量(单位:t):24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.624.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.321.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.721.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.621.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.14.为了改进银行的服务质量,随机抽随机抽查了30名顾客,统计了顾客在窗口办理业务所用的时间(单位:分钟)下图是这次调查得到的统计图。
9.3一元一次不等式组2
本节知识要点1会解一元一次不等式组,并在数轴上确定其解集.2能根据实际问题中的数量关系,列出一元一次不等式组;本节测试:1(能力题)求同时满足6x +3>4x +7和8x -3≤5x +12的整数解.2(能力题)解不等式组-1<312-x ≤5;3(应用题)某校在一次课外活动中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,求预定每组学生的人数.答案1“同时满足”说明要求两个不等式组成的不等式组的解集,再确定它的整数解.由题意,得⎩⎨⎧≤②+-①+>+125387436x x x x由①得x >2,由②得x ≤5∴ 不等式组的解集为2<x ≤5,在数轴上表示如图9-16所示∴ 整数x 为3,4,5.说明:确定不等式组解集的关键是应用数轴找各不等式解集的公共部分,这体现了数与形的有效结合.2本题可以看做是把两个不等式-1<312-x 和312-x ≤5连写在一起,所以可以解这两个不等式组成的不等式组求出x 的取值范围;也可以利用不等式的基本性质变形得出不等式的解集.解法一:原不等式可以化成下面的不等式组⎪⎪⎩⎪⎪⎨⎧≤②-①-<-53123121x x解不等式①,得x >-1,解不等式②,得x ≤8把不等式①、②的解集在数轴上表示出来,如图9-18所示所以不等式组的解集为-1<x ≤8,原不等式组的解集为-1<x ≤8.解法二:-1<312-x ≤5,-3<2x -1≤15,-2<2x ≤16,-1<x ≤8. 说明:对于只有中间部分含有未知数的连写形式的不等式,也可以按照解不等式的步骤两边求解.3借鉴列方程组解应用题的方法,抓不等关系,列不等式.本题中的两个不等关系是:(1)9组中每组比预定的人数多1人,学生总数超过200人;(2)9组中每组比预定的人数少1人,学生总数不到190人.设预定每组学生有x 人,根据题意,得⎩⎨⎧190)1(92001)(9<->+x x 解这个不等式组,得⎪⎪⎩⎪⎪⎨⎧91999199<>x x 所以不等式组的解集为9191<x <9199 即21<<x 922291,其中符合题意的整数解只有一个,x =22所以预定每组学生的人数为22人说明:列不等式或不等式组解应用题,当求得未知数的值后,必须检验,一是检验所求值是否是原不等式或不等式组的解集;二是检验所求的值是否与实际意义相符,如人数、数位上的数字皆为整数,速度、路程、时间等皆为非负数等.。
人教版数学七年级下册9.3 一元一次不等式组-课件
④ x< -1 x≥ 2
A x ≥ -1
A x< -1
A x ≥ -1
A x< -1
B x≥ 2
B x< 2
B x< 2
B
x≥ 2
C -1≤ x≤ 2
C -1< x< 2
C -1≤ x< 2
C -1< x≥ 2
D 无解
D 无解
D 无解
D 无解
2 x-
1
x,
①
2.
解不等式组:
1
x
< 3.
②
2
解: 解不等式①,得 x > 1 .
因此,原不等式组的解集为 20<x <22.
2x+y=5m+6 ① 7.已知方程组 x-2y=-17 ② 的解x,y的值都是正数,且x<y,求m的取值范围.
解:①×2+②得:5x=10m-5,得:x=2m-1.
①-②×2得:5y=5m+40,得:y=m+8.
又∵x,y的值都是正数,且x<y.
∴ 2m-1>0 m+8>0 2m-1<m+8
a x>b
b
同大取大
a x<a b
同小取小
a a<x<b b
大小小大中间找
a 无解 b
大大小小无处找
练一练
填表:
不等式组
x
≥
-5,
x
>
-
3
x
>
-5,
x
≤
-3
x-
5
<
0,
x
+
3
<
0
不等式组的解集 x﹥-3 -5﹤x≤-3 x<-3
一元一次不等式组练习题(含答案)
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:
.
24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.
9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。
最新 同步练习9.3 一元一次不等式组 -期末复习训练2021-2022学年人教版数学七年级下册
专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤73.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤26.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣37.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣19.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣310.不等式组的整数解的个数是()A.2B.3C.4D.5二、填空题(共5小题)11.不等式组的解集是.12.关于x的不等式组有2个整数解,则a的取值范围为.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为.14.不等式组的解集是.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是.三、解答题(共5小题)16.解不等式组.17.解不等式组:,并写出它的所有整数解.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.求不等式组的整数解.20.解不等式组:,并将解集在数轴上表示.专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,将两不等式解集表示在数轴上如下:故选:C.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤7【解答】解:依题意,得:,解得:3≤x<7.故选:B.3.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个【解答】解:由数轴知,不等式组的整数解为﹣1、0、1、2,故选:C.4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在【解答】解:解不等式x﹣2≥﹣3得x≥﹣1,解2x+3<5得x<1.则公共部分是:﹣1≤x<1.则整数值是﹣1,0.故选:C.5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤2【解答】解:,∵解不等式①得:x≥2,解不等式②得:x>a,又∵不等式组的解集是x≥2,∴a<2故选:C.6.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣3【解答】解:∵不等式组无解,∴2a﹣5≥3a﹣2,解得:a≤﹣3,故选:D.7.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.【解答】解:,由①得x≤2,由②得x>﹣2,故此不等式组的解集为:故选:C.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣3【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.10.不等式组的整数解的个数是()A.2B.3C.4D.5【解答】解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.二、填空题(共5小题)11.不等式组的解集是≤x<2.【解答】解:,解①得:x<2,解②得:x≥,则不等式组的解集是:≤x<2.故答案是:≤x<2.12.关于x的不等式组有2个整数解,则a的取值范围为0≤a<1.【解答】解:解不等式8+2x>0,得:x>﹣4,解不等式x﹣a≤﹣2,得:x≤a﹣2,∵不等式组有两个整数解,∴不等式组的整数解为﹣3、﹣2,∴﹣2≤a﹣2<﹣1,解得0≤a<1,故答案为:0≤a<1.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为x>25.【解答】解:根据题意可得:,如图:∵三个人中只有一人说对了,∴这本书的价格x(元)所在的范围为x>25.故答案为:x>25.14.不等式组的解集是x≤3.【解答】解:由①得,x≤3,由②得,x<4,故原不等式组的解集为:x≤3.故答案为x≤3.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣2,﹣1.【解答】解:不等式组,由①得:x≥,由②得:x<2,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是≤x<2,即整数解为1,0,∴﹣1<≤0,解得:﹣3<a≤﹣1,则整数a的值为﹣2,﹣1,故答案为:﹣2,﹣1.三、解答题(共5小题)16.解不等式组.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.17.解不等式组:,并写出它的所有整数解.【解答】解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?【解答】解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.19.求不等式组的整数解.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤1,∴原不等式组的解集为:﹣1<x≤1,∴它的整数解是0、1.20.解不等式组:,并将解集在数轴上表示.【解答】解:由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:用坐标表示地理位置练习题一、选择题1..海事救灾船前去救援某海域失火货轮,需要确定()A.方位B.距离C.方位和距离D.失火轮船的国籍2.如图所示是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y 轴正方向建立平面直角坐标系,则熊猫馆所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为()A.(2,3)B.(0,3)C.(3,2)D.(2,2)4.点A可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走()A.(7,2)B.(2,6)C.(7,6)D.(4,5)5.如图,是做课间操时,李明,李刚和李红三人的相对位置,如果用(4,5)表示李明的位置,(2,4)表示李刚的位置,则李红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)6.如图所示是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向上B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处二、填空题7.如图,用坐标原点O表示学校的位置,用x轴正方向表示正东方向,用y轴正方向表示正北方向.若李威家在王聪家的正西方向、张颜家的正北方向,则李威家的位置用坐标表示是____距离学校最近的是____家. 8.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____.9.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是____.10.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是____.三、解答题11.常用的确定物体位置的方法有两种.如图10,在4×4的边长为1的小正方形组成的网格中,标有A,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.12.如图为某废墟示意图,由于雨水冲蚀,残缺不全,依稀可见钟楼坐标为A(5,-2),街口坐标为B(5,2),•资料记载阿明先生的祖居的坐标为(2,1),你能帮助阿明先生找到他家的老屋吗?13.回答下列问题:如图②,已知过点O的所有射线等分圆周且相邻两射线的夹角为15°.(1)点A的极坐标是____;点D的极坐标是__.(2)请在图②中标出点B(5,45°),点E(2,-90°).(3)怎样从点B运动到点C?小明设计的一条路线为:点B→(4,45°)→(3,45°)→(3,30°)→点C.请你设计与小明不同的一条路线,也可以从点B运动到点C.14.国家实施西部大开发,大力进行电网建设,某电厂决定给A,B,C,D四个村庄架设输电线路,已知电厂O及A,B,C,D四个村的位置如图所示.若点A表示为(2,3),那么点O,B,C,D怎样表示?。
9.3一元一次不等式组(2)
2
.1
。 2
。
3 5
x≤1 -1<x<3 此不等式组无 解 x>1
。 -1
。
2 -5
。
1
2.写出下列各不等式组的解 2.写出下列各不等式组的解 集 1 1 x> x> 3 无解 x>2 2 x<-2 x>2
例题分析
1.解不等式 解不等式-5<3x+1<4. 解不等式
2.求不等式 求不等式 的整数解. 的整数解
1− 2x 3≤ <7 3
一个长方形足球场的长为x 3. 一个长方形足球场的长为x米, 宽为70 70米 宽为70米,若它的周长大 350米 面积小于7560平米, 7560平米 于350米,面积小于7560平米, 判断x的取值范围。 判断x的取值范围。
x<-1 x<-3
x<-3
x>2 2<x<5 x<5
3、解下列不等式组 、
① 2 x + 3 ≥ x + 11, ( 此不等式组无解 ) (3) 2 x + 5 ② −1< 2 − x 2
2 x − 1 > x + 1, ( x≥3 ) (1) x + 8 ≤ 4x − 1 x − 2 > −1 (−3 < x < 7 ) (2) 3 3x + 1 < 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.3 一元一次不等式组一、选择题1.下列各式中不是一元一次不等式组的是( )A .50135010 (203)420205489x x a y B C D x x b y x ->⎧⎧->-<<-⎧⎧⎪⎪+<⎨⎨⎨⎨+<+>⎩⎩⎪⎪>-+<⎩⎩ 2.不等式组52110x x -≥-⎧⎨->⎩的解集是( )A .x ≤3B .1<x ≤3C .x ≥3D .x>1 3.如图9-3-1,不等式5234x x -≤-⎧⎨-<⎩的两个不等式的解集在数轴上表示正确的为( )4.已知a=32,23x x b ++=,且a>2>b ,那么x 的取值范围是( ) A .x>1 B .x<4 C .1<x<4 D .x<15.下列不等式组无解的是( )A .20309020...40405050x x x x B C D x x x x -<-<->->⎧⎧⎧⎧⎨⎨⎨⎨+<+>+<+>⎩⎩⎩⎩6.不等式│x-2│>1的解集是( )A .x>3或x<1B .x>3或x<-3C .1<x<3D .-3<x<37.不等式组3027210x x x +>⎧⎪<⎨⎪+>⎩的解集是( )A .-3<x<12 B .-12<x<72 C .-3<x<72 D .无解 8.如果不等式组8x x m <⎧⎨>⎩无解,那么m 的取值范围是( )A .m>8B .m ≥8C .m<8D .m ≤8 9.一种灭虫药粉30kg ,含药率是15100,现在要用含药率较高的同种灭虫药粉50kg 和它混合,使混合后含药率大于30%而小于35%,则所用药粉的含药率x 的范围是( ) A .15%<x<28% B .15%<x<35% C .39%<x<47% D .23%<x<50%10.韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B队的车,每辆车4人,车不够,每辆坐5人,•有的车未满,则A队有出租车()A.11辆 B.10辆 C.9辆 D.8辆二、填空题11.不等式组273(1)423633x xxx-<-⎧⎪⎨+≤-⎪⎩的解集_______.12.不等式组211841x xx x-<+⎧⎨+>-⎩的正整数解是________.13.若关于x的不等式组202(1)11x ax x->⎧⎨+>-⎩的解集为x>3,则a的取值范围是________.14.代数式1-k的值大于-1且不大于3,则k的取值范围是________.15.已知关于x的不等式组2123x ax b-<⎧⎨->⎩的解集是-1<x<1,那么(a+1)(b-2)的值等于______.16.已知关于x的不等式组21xxx a<⎧⎪>-⎨⎪>⎩无解,则a的取值范围是_______.17.不等式组23182xx x>-⎧⎨-≤-⎩的最小整数解是________.18.把一篮苹果分组几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生最多得3个,求学生人数和苹果数?设有x个学生,依题意可列不等式组为__________.三、解答题19.解不等式组并把解集在数轴上表示出来.(1)3(1)(3)8211132x xx x-+--<⎧⎪+-⎨-≤⎪⎩4100(2)5411213xx xx x-<⎧⎪+>⎨⎪-≥+⎩2(13)(3)797x +-≤≤ 3(1)2(9)(4)3 3.5 1.4140.50.7x x x x ->+⎧⎪-+⎨-≤-⎪⎩20.如果方程组325x y a x y -=+⎧⎨+=⎩的解x 、y 满足x>0,y<0求a 的取值范围.21.喷灌是一种先进的田间灌水技术,雾化指标P 是它的技术要素之一,当喷嘴的直径d (mm ),喷头的工作压强为h (kPa )时,雾化指标P=100hd,如果树喷灌时要求3000≤P•≤4000,若d=4mm ,求h 的范围.22.随着我市教育改革的不断深入,素质教育的全面推进,•中学生利用假期参加社会实践的调查越来越多,一位同学在A公司实习调查时,•计划部给了他一份实习作业;在下述条件下,规划下个月的产量,若公司生产部有工人200名,•每个工人的月劳动时间不超过196h,每个工人生产一件产品需用2h;本月将剩余原料60吨,•下个月准备购进300吨,每件产品需原料20kg;经市场调查,预计下个月市场对这种产品的需求量不少于16000件,公司准备充分保证市场要求,•你能和这位同学一同规划出下个月的产量范围吗?(设下个月产量为x件)23.某校为了奖励在数学竞赛中获奖的学生,买了若干支钢笔送给他们,•如果每人送3支,则还余8支;如果每人送5支,则最后一人得到的钢笔支数不足3支,求出该校的获奖人数和所买钢笔支数.24.某福利工厂准备在六一前夕准备生产甲、•乙两种型号的玩具送给一所幼儿园,已知生产甲型玩具需要1号配件7个,2号配件2个;生产乙型玩具需要1号配件3个,2号配件5个,生产现有1号配件480个,2号配件370个,若该厂计划生产甲乙两种型号的玩具一共100个,用现有配件能否完成计划?如能,请写出所有的生产方案;•如不能则说明理由.25.某钢铁企业为了适应市场竞争的需要,提高生产效率,•决定将一部分钢铁生产一线员工调整去从事服务工作,该企业有钢铁生产一线员工1000人,平均每人可创造年产值30万元,根据规划,调整出去的一部分一线员工后,•余下的生产一线员工平均每人全年创造年产值可增加30%,调整到服务性工作岗位人员平均每人全年可创造产值24万元,如果要保证员工岗位调整后,它位全年总产值至少增加20%,且钢铁产品的产值不能超过33150万元,怎样安排调整到服务行业的人数?答案:一、选择题1.C 解析:主要依据一元一次不等式组的定义:•由几个含有相同未知数的一元一次不等式所组成的一组不等式.因此可以确定答案为选项C .2.B 解析:先解每个不等式,•再利用数轴找解集的公共解部分为不等式组的解集.或者依据设a<b 那么不等式组x ax b >⎧⎨>⎩的解集为x>b ;不等式组x a x b <⎧⎨<⎩的解集为x<a ;不等式组x ax b>⎧⎨<⎩的解集为a<x<b ;不等式组x a x b <⎧⎨>⎩的解集为空集.3.B4.C 解析:由已知a>2>b 即为32222223x a x b +⎧>⎪>⎧⎪⎨⎨+<⎩⎪<⎪⎩建立不等式组再求解.5.C6.A 解析:由│x-2│>1,可得x-2>1或x-2<-1.所以解集为x>3或x<1. 7.B 解析:先求每个不等式的解集,再利用数轴找三个解集的公共解如图所示所以不等式组的解集选B .8.B 解析:因为不等式组无解,即x<8与x>m 无公共解集,利用数轴可知m ≥8 9.C 解析:依题意可得不等式15503030353947100,1005030100100100x x +⨯<<<<+解得.10.B 解析:设A 队有出租车x 辆,B 队有(x+3)辆依题意可得11155561656934(3)56115(3)56185x x x x x x x x ⎧<⎪<⎧⎪⎪⎪>>⎪⎪⎨⎨+<⎪⎪<⎪⎪+>⎩⎪>⎪⎩化简得 解得913<x<11∵x 为整数,∴x=10二、填空题 11.x ≤3212.1 解析:先求不等式组的解集为x<2,所以正整数解为1.13.a ≤32 解析:首先化简原不等式组得2,3x a x >⎧⎨>⎩, 因为不等式组的解集为x>3,借助于数轴可知2a ≤3所以a ≤32. 14.-2≤k<2 解析:由已知可得1113k k ->-⎧⎨-≤⎩ 解不等式组得-2≤k<2.15.-8 解析:解不等式组2123x a x b -<⎧⎨->⎩可得解集为2b+3<x<12a +因为不等式组的解集为-1<x<1,所以2b+3=-1,12a +=1,解得a=1,b=-2代入(a+1)(b-2)=2×(-4)=-816.a ≥2 解析:借助数轴把不等式的解集在数轴上表示出来,•由于不等式组无解;因此反映在数轴上没有公共部分,所以a ≥2.17.-1 解析:先求出不等式组解集为-32<x ≤3,其中整数解为-1,0,1,2,3 故最小整数解-1.18.436(1)436(1)3x x x x +≥-⎧⎨+≤-+⎩解析:设有x 名学生,苹果数为(4x+3)个, 再根据题目中包含的最后一个学生最多得3个 即不等关系为0≤最后一个学生所得苹果≤3所以不等式组为436(1)0436(1)3x x x x +--≥⎧⎨+--≤⎩三、解答题19.(1)原不等式组化简为4877x x -<⎧⎨≤⎩解:解不等式①得x>-2 解不等式②得x ≤1把不等式①②的解集在数轴上表示出来,因此不等式组的解集为-2<x ≤1.(2)41005411213xx xx x-<⎧⎪+>⎨⎪-≥+⎩解:解不等式①得x<5 2解不等式②得x>-1解不等式③得x≤2所以原不等式组的解集为-1<x≤2.(3)解:原不等式化为不等式组2(13)49713722(13)6391372xxxx+⎧⎧≥-+≥-⎪⎪⎪⎪⎨⎨+⎪⎪≤+≤⎪⎪⎩⎩化简为解不等式①得x≥-17 2解不等式②得x≤61 6所以不等式组的解集为-172≤x≤616.(4)解:原不等式组化简为515 36 xx<-⎧⎨-≤-⎩解不等式①得x<-3解不等式②得x≥2所以不等式组的解集为空集也即无解.解析:解(4)不等式组中不等式②3 3.5 1.40.50.7x x-+-≤-14时,先利用分数基本性质化小数分母为整数即2(x-3)-(5x+2)≤-14,再去括号,移项合并,为-3x≤-6,最后化系数为1时,•两边同除以-3,不等号要改变方向,解集为x≥2.20.解:解方程组83325123a x x y a x y a y +⎧=⎪-=+⎧⎪⎨⎨+=--⎩⎪=⎪⎩的解为∵x>0,y<0∴8031203a a +⎧>⎪⎪⎨--⎪<⎪⎩解不等式组得a>-12故a 的取值范围为a>-12解析:先解方程组求x ,y ,再根据x ,y 的取值范围建立不等式组从而确定a•的取值范围.21.解:把d=4代入公式P=100h d 中得P=1004h即P=25h又∵3000≤P ≤4000 ∴3000≤25h ≤4000 120≤h ≤160故h 的范围为120~160(kPa )解析:把d 代入公式得到P=25h ,再根据P 的取值范围建立不等式从而求到h 的取值范围.22.解:设下个月产量为x 件,依题意可得:219620020(60300)100016000x x x ≤⨯⎧⎪≤+⨯⎨⎪≥⎩解得:16000≤x ≤18000即下个月的产量不少于16000件,不高于18000件 解析:此题关键在于分析包含题意的三个不等关系(1)16000(2)200(3)360x x t ⎧⎪⎨⎪⎩产品件数大于等于生产件时间产品所用时间不超过个工人劳动时间生产件产品所用原料不超过从而建立不等式组23.解:设有x 名学生获奖,则钢笔支数为(3x+8)支,依题意得 385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩解得5<x ≤612∵x 为正整数 ∴x=6把x=6代入3x+8=26答:该校有6名学生获奖,买了26支钢笔.解析:设出获奖人数,则可表示奖励的钢笔支数,再根据题目中第二个已知条件,每人送5支,最后一人所得支数不足3支,隐含了0≤最后一人所得钢笔支数<3•这样的不等式关系列不等式组,求出x 的取值范围5<x ≤612,又x 表示人数应该是正整数,•所以x=6,3x+6=26,因此一共有6名学生获奖,买了26支钢笔发奖品.24.解:设生产甲型玩具x 个,则生产乙型玩具(100-x )个,依题意得:73(100)48025(100)370x x x x +-≤⎧⎨+-≤⎩解之得:4313≤x ≤45∵x 为正整数 ∴x=44或45 100-x=56或55故能实现这个计划,且有2种方案第1种方案:生产甲型玩具44个,生产乙型玩具56个. 第2种方案:生产甲型玩具45个,生产乙型玩具55个.25.解:设从现在钢铁生产一线员工中调整x 人从事服务性工作, 根据题意得30(130%)(1000)2430(120%)100030(130%)(1000)33150x x x +-+≥⨯+⨯⎧⎨+-≤⎩解之得150≤x ≤200答:从现在钢铁生产一线员工中调整安排到服务性工作岗位的人数不少于150人,不超过200人.解析:题目中虽然关系复杂,但只要抓住现在全年总产值至少增加20%,钢铁产品产值不能超过33150万元,这两个不等关系,从而建立不等式组,从而解决从钢铁生产一线员工调整到服务行业工作的人数问题.。