磁性元件及高频变压器设计资料

合集下载

高频变压器的设计基础(1)

高频变压器的设计基础(1)

了解高频变压器设计基础(1)
设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs 值比较小,常使用在开关电源中。

高频链逆变技术用高频变压器代替传统逆变器中笨重的工
频变压器,大大减小了逆变器的体积和重量。

在高频链的硬件电路设计中,高频变压器是重要的一环。

高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:
1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

高频变压器的设计

高频变压器的设计

组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2020/7/15
8
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
2020/7/15
2
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/7/15
3
2020/7/15
4
3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是 受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工 作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作 模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面 积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
2020/7/15
1
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。

高频变压器设计

高频变压器设计

5高频率的功率变压器THE HIGH-FREQUENCY POWER TRANSFORMER5-0概论(INTRODUCTION)很多科学家认为磁性元件的设计是一种“高深的技术”,其实这乃是一种最重的错误观念。

磁性元件的设计乃为精密的科学,而那些所有正确的基本电磁定律,乃由以前的科学家们所研究发展出来,如Maxwell, Ampere , Oersted ,与Gauss等人。

本章主要目的就是介绍基本的磁学定律,而且为了实际的电磁元件设计,如线圈与变压器,我们将以简单的,合逻辑的,有条理的方式来深入浅出介绍磁性与电性之间存在的关系。

5-1电磁的原理(PRINCIPLES OF ELECTROMAONETISM)考虑如图5-1所示的简单电路,此由电压源V,开关S与负载L,组成一个空气线圈(air coil)的电路,如果在某些情况下,开关S被关闭(closed),则会有电流I产生经由线上流至负载,当电流通过线圈时,就会有磁场被建立起来,如图中所示,连接于线圈之间所产生的磁场,此乃为称之为磁通量(flux),而磁场中的磁力线可称之为磁通链(flux linkages)。

图5-1流经空气线圈的电流I会有磁通量的产生图5-2 铁磁材料棒置于线圈之内会产生较多或较强的磁通量然而,在此线圈中的磁通量并不会很大,如果我们在线圈中加入磁性材料(铁磁材料)棒,则会有额外的磁场被感应产生,因此,也就会有更多的磁通量被产生,如图5-2所示。

而磁通链将沿着磁棒前进,并经由空气传导路径形成一回路,如果铁磁铁心(ferromagnetic core )以此种方式构成并取代了磁棒,则磁通就会呈现一连续的路径,且磁场将形成于铁心之内,因此所感应的磁场就会较强大,如图5-3所示。

图5-3 连续的铁磁性铁心会限制所有的磁通量于铁心内并有很强的磁场产生在磁场上某一点所测量的磁通聚集程度,我们称之为磁通量密度(magnetic flux density )或是磁感应(magnetic induction),以符号B 来表示。

高频变压器设计范本

高频变压器设计范本

Corp:xxx Designer:xxx TEL:xxx Date:2010-2-26
变压器型号:xxxxxx VER: 2.0
CHE200-30GT1
NP8NP7NP6NP5NP4NP3
图1、变压器原理图
技术要求:
1、绕制要求紧密、均匀,不同绕组间要用绝缘胶带隔开(见图3)
2、NS2、NS3并绕,NP3~NP8并绕。

3、引出线要套高压铁氟龙套管,套管伸至边空内。

4、原副边耐压要求:各绕组-绕组之间及绕组-磁芯之间3000V AC/1分钟,要求无闪
烙,漏电流<1mA 。

(NP为原边绕组,NS为副边绕组)
5、磁芯型号:PC40
6、骨架:采用我司最新开模骨架:ETD34 (18+18PIN)
7、NP1绕组电感:3.5 mH±5%
8、漏感:<80 uH(1kHz,1V,短NP2~NP8、NS1~NS4,测NP1)
9、变压器要浸漆烘干并拔掉不用的引脚
10、变压器铁芯最外层加焊宽12mm的铜铂,并外包一层绝缘胶带。

请标示出第
1脚。

11、标明变压器型号和生产日期。

图2、变压器骨架引脚图(引脚朝下,俯视图)
1T 1T
1T 1T 1T 1T 1T
2T
绕组
绝缘胶带
边空档带
图3、内部绕线示意图
注: 1、各层之间的绝缘胶带必须要绕;(尤其NP1绕组层间绝缘胶带必须有); 2、内层NP1绕60匝,最外层NP1绕38匝。

3、NP1、NP2均留边墙胶带。

请打样 10 PCS ,希望3月5日前完成。

谢谢合作! 如有疑问,请电话联系。

高频变压器设计规格书范本

高频变压器设计规格书范本

高频变压器设计图
丝印型号符合标准CE/UL
设计者设计日期
审核人审核日期
版本记录
V1:
V2:
V3:
500V级逆变器通用开关电源性,9路电源输出,5V、24V、15V、隔离5V、隔离24V,4路IGBT驱动25V。

1. 外观及外形尺寸 单位:mm
引脚加工:PIN3,10,11,14,16,20,21,24,25,28,29,32剪去 丝印型号: 2. 电气图
绝缘套管同名端
9号引脚套管视情况加工情况确定
3. 磁芯及绕制工艺示意图
磁芯型号:EE33 磁芯材质:DMR40
气隙方式:芯柱打磨气隙,边柱不留气隙
>=2mm
>=3mm =3mm 尽量大端空胶带宽度要求TOP
PIN
EE33 DMR40
4. 线圈绕制要求
5.电气性能
●原边电感量:L15-17=4.0mH ±10%
●原边漏感量:Lk15-17≤150uH (其他引脚短接)
●绝缘耐压:
1)AC 3000V,50Hz,0.2mA ,1MIN N1 E1 N7 N8 N9 N10 N11彼此间及对其他绕组
2)AC 1500V,50Hz,1mA ,1MIN N2 N3 N4与N5 N6间
3)AC 3000V,50Hz,1mA,1MIN 线圈与磁芯间
●绝缘等级:F
●变频器外加屏蔽层,并用胶带缠绕
6.供应商要求
样品需求数量:
样品需求日期:
样品规格书:
样品测试报告:
收货人:联系方式:
收货地址:。

磁性元件及高频变压器设计

磁性元件及高频变压器设计

磁性元件及高频变压器设计成继勋 2009.12.31(2011.3.22修改)1 磁性材料的磁化1.1 磁化曲线在外磁场(或电流)的作用下,磁性材料被磁化,磁化曲线如图图1.1 图1.2 在交变磁场的作用下,形成磁滞回线。

H H B r 0μμμ== (1.1)H -磁场强度,SI 单位制A/m ;CGS 制:Oe (奥斯特),1A/m=4π×10-3OeB -磁通密度(磁感应强度,磁化强度)SI 单位制:T (Tesla 特斯拉);CGS 制:Gs (高斯),1T=104Gs μ-磁导率,H/m (亨利/米);μ0-真空磁导率,SI 单位制中μ0= 4π×10-7H/m ,CGS 制中μ0=1。

μr -相对磁导率,无量纲在均匀磁场中SB ϕ=(1.2)φ-磁通量,SI 单位制:Wb (韦,韦伯);CGS 制:Mx (麦,麦克斯韦)1Wb=10-8Mx S -面积,SI 单位制:m 2; CGS 制:cm 2Hs 称饱和磁场强度,Hc 称矫顽力 Bs 饱和磁通密度,Br 剩余磁通密度(剩磁)1.2 几个磁导率的概念(1)初始磁导率 )0(0→∆∆=H HBi μμ(2)最大磁导率μm :磁化曲线上μm 的最大值max0HB m μμ=(3)增量磁导率(脉冲磁导率) μΔDCH H HB =∆∆∆=0μμ图1.3即在具有直流偏置磁场时,再加上一个交流磁场,这时测得的磁导率。

(4)幅值磁导率 μa没有直流偏置时,交变磁场强度的幅值与磁通密度幅值的关系称为幅值磁导率μa(5)有效磁导率μe在磁路中存在气隙,即非闭合磁路条件下,测得的磁导率为有效磁导率1.3 安培环路定律图1.4 图1.5∑⎰⎰==I dl H l d H lαcos (1.3) 对绕N 匝线,电流为I 的磁环NI Hl l d Hl==⎰ (1.4)式中,l=2πr 为磁路长度,H 为磁芯中的磁场强度为lNIH =(1.5) NI F = (1.6)称为磁(动)势,单位A ,常称为安匝。

开关电源中的高频磁元件设计

开关电源中的高频磁元件设计

开关电源中的高频磁元件设计高频磁元件是开关电源中的重要组成部分,能够将输入的电能转化为高频电能,并进行功率变换。

它们在保证开关电源正常工作、提高效率和减小尺寸方面起到关键作用。

因此,在设计高频磁元件时,需要考虑多种因素,包括输入输出电压、频率、功率、效率等。

下面,将详细介绍高频磁元件的设计。

1.开关频率和功率密度:在设计高频磁元件时,首先需要考虑开关频率和功率密度。

开关频率越高,磁元件所承受的磁通变化速度越快,对磁性材料的要求也越高。

此外,功率密度的大小也会影响磁元件的尺寸和重量。

2.磁芯材料选择:选择合适的磁芯材料对于高频磁元件的设计至关重要。

常用的磁芯材料包括铁氧体、磁性粉末材料和软磁材料等。

铁氧体具有较高的磁导率和饱和磁感应强度,并且价格相对较低,适用于大功率开关电源。

磁性粉末材料具有优良的高频特性,适用于高频开关电源。

软磁材料具有低矫顽力和低剩磁,适用于高频大电流的开关电源。

3.磁芯形状设计:磁芯的形状对于高频磁元件的性能也有很大的影响。

通常,矩形和环形磁芯是常见的设计形式。

矩形磁芯适用于大功率开关电源,而环形磁芯适用于高频开关电源。

此外,还可以采用线圈分层和空气隙设计来减小电流的涡流损耗和铜损耗。

4.初级和次级绕组设计:绕组是高频磁元件中的重要组成部分,它将输入的电流变压为合适的电压,并传递给次级侧。

在设计绕组时,需要考虑绕组的匝数、尺寸、电阻和电感等参数,以及绕组之间的绝缘和屏蔽。

5.整体设计和电磁兼容性:在设计高频磁元件时,还需要考虑整体的设计和电磁兼容性。

合理的布局和隔离可以减小互感和干扰,提高系统的性能稳定性和抗干扰能力。

此外,还需要进行电磁兼容性测试,以确保高频磁元件符合相关标准和规范。

综上所述,高频磁元件的设计是开关电源设计中的重要环节。

在设计过程中,需要考虑开关频率、功率密度、磁芯材料选择、磁芯形状设计、绕组设计以及整体设计和电磁兼容性等因素,以确保高频磁元件的性能稳定和高效工作。

高频变压器设计

高频变压器设计

高频变压器设计
设计高频变压器需要考虑以下几个方面:
1. 选择合适的磁性材料:高频变压器需要使用高效的磁性材料,如铁氧体材料或软磁合金材料。

这些材料能够有效地吸收和传导高频电磁场。

2. 选择合适的线圈和绕组设计:高频变压器的线圈和绕组需要采用低电阻、低损耗的材料,并且绕组需要紧密结合,以减小电流的涡流损耗。

3. 根据设计要求确定变压器的参数:根据设计要求,确定变压器的输入电压、输出电压、功率等参数,以及变压器的工作频率,从而确定变压器的结构和尺寸。

4. 进行磁路设计:根据变压器的磁路特性,设计合适的磁路结构,包括铁芯的形状和尺寸,以及绕组的位置和布局。

5. 进行磁路和电路的仿真和优化:使用电磁仿真软件,对变压器的磁路和电路进行仿真和优化,以改善变压器的性能。

6. 进行变压器的制造和组装:根据设计要求,制造和组装变压器,包括绕线、绝缘、封装等步骤。

同时,对制造过程进行严格的控制和测试,以保证变压器的质量和性能。

7. 进行变压器的测试和调试:对制造好的变压器进行测试和调试,包括输出电压和功率的测试,以及变压器的效率和稳定性等性能的评估。

总之,设计高频变压器需要综合考虑磁性材料、线圈和绕组、磁路结构、电路仿真和优化等多个因素,以满足设计要求并提高变压器的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性元件及高频变压器设计成继勋 2009.12.31(2011.3.22修改)1 磁性材料的磁化1.1 磁化曲线在外磁场(或电流)的作用下,磁性材料被磁化,磁化曲线如图图1.1 图1.2 在交变磁场的作用下,形成磁滞回线。

H H B r 0μμμ== (1.1)H -磁场强度,SI 单位制A/m ;CGS 制:Oe (奥斯特),1A/m=4π×10-3OeB -磁通密度(磁感应强度,磁化强度)SI 单位制:T (Tesla 特斯拉);CGS 制:Gs (高斯),1T=104Gs μ-磁导率,H/m (亨利/米);μ0-真空磁导率,SI 单位制中μ0= 4π×10-7H/m ,CGS 制中μ0=1。

μr -相对磁导率,无量纲 在均匀磁场中SB ϕ=(1.2)φ-磁通量,SI 单位制:Wb (韦,韦伯);CGS 制:Mx (麦,麦克斯韦)1Wb=10-8Mx S -面积,SI 单位制:m 2; CGS 制:cm 2Hs 称饱和磁场强度,Hc 称矫顽力 Bs 饱和磁通密度,Br 剩余磁通密度(剩磁)1.2 几个磁导率的概念(1)初始磁导率)0(0→∆∆=H HBi μμ (2)最大磁导率μm :磁化曲线上μm 的最大值max0HB m μμ=(3)增量磁导率(脉冲磁导率) μΔDCH H HB =∆∆∆=0μμ图1.3即在具有直流偏置磁场时,再加上一个交流磁场,这时测得的磁导率。

(4)幅值磁导率 μa没有直流偏置时,交变磁场强度的幅值与磁通密度幅值的关系称为幅值磁导率μa(5)有效磁导率μe在磁路中存在气隙,即非闭合磁路条件下,测得的磁导率为有效磁导率1.3 安培环路定律图1.4 图1.5∑⎰⎰==I dl H l d H lαcos (1.3) 对绕N 匝线,电流为I 的磁环NI Hl l d Hl==⎰ (1.4)式中,l=2πr 为磁路长度,H 为磁芯中的磁场强度为lNIH =(1.5) NI F = (1.6)称为磁(动)势,单位A ,常称为安匝。

1.4 磁路1.4.1磁路欧姆定律ϕμμϕμSl l S l BHl NI F ===== (1.7)或 ϕm R F = (1.8)(1.9) R m 称为磁阻,(1.8)式称为磁路欧姆定律1.4.2有气隙的磁路气隙磁阻 S图1.6SR m 0μδδ=式中,S 为气隙截面积,设等于磁芯有效截面积。

δ为气隙长度。

设磁芯有效磁路长度为l c ,则磁芯内磁阻SlR r ml μμ0=总磁阻 SSl R r cm 00μδμμ+=磁导 )1(10cr rc m m l l S R G δμμμ+==有效(相对)磁导率为(1.10)如果 μr >>l c /δ,则δμce l ≈(1.11)1.5 磁芯材料性质与参数磁芯材料主要参数有初始磁导率、饱和磁通密度、剩磁、矫顽力、损耗、电阻率、居里温度、初始磁导率比温度系数、比损耗因子和功率损耗、初始磁导率减落因子和比减落因子(表示μi 经磁扰动或机械冲击后的经时变化)等。

1.5.1初始磁导率与频率的关系图1.7 1.5.2 初始磁导率与温度的关系初始磁导率温度系数和比温度系数表征初始磁导率与温度的关系。

居里温度是磁性材料从铁磁性(亚铁磁性)到顺磁性的转变温度,或称磁性消失温度,表示方式有多种。

天通材料标准中规定的确定居里温度的方法如下图:图1.8 图1.8a TP4的温度特性1.5.3 饱和磁通密度与温度的关系随着温度升高,饱和磁通密度降低,下图为TP4材料图1.91.5.4 磁芯损耗损耗角正切(损耗因子)tgδm表示磁芯损耗与磁芯储能之比。

磁芯损耗包括:①磁滞损耗②涡流损耗③剩余损耗(主要由磁后效引起,与粒子的扩散有关)。

磁滞在低场下可以不予考虑,涡流在低频下也可忽略,剩下的就是剩余损耗。

在低频弱场下,可用三者的代数和表示:tgδm=tgδh+tg δf+tgδr。

在磁感应强度较高或工作频率较高时,各种损耗互相影响难于分开。

故在涉及磁损耗大小时,应注明工作频率f以及对应的Bm(磁通密度幅值)值。

剩余损耗和Bm的大小无关,但随频率增大而增大。

而磁滞损耗随B的增加增大,涡流损耗则和频率成线性变化。

在大信号场工作时,用单位体积的功率损耗(比损耗)表示,总比损耗P cv=P h+P f+P r随磁通密度、工作频率和温度而变。

低频时P cv =η fB m1.6在数十KHz~1MHz时P cv =η fαB mβ式中η—损耗系数;f—工作频率;B m—磁芯磁通密度幅值;α、β为大于1的指数。

下图为TDG公司TP4材料的损耗特性:图1.10 和磁通密度及工作频率的关系(80℃和100℃)图1.11 和温度的关系1.6 铁氧体材料类型选择磁芯最主要的是:工作频率、工作温度范围、饱和磁通密度、磁导率、损耗开关电源中的电感和变压器工作频率为数十KHz ~1MHz ,磁芯材料选锰锌MnZn 软磁铁氧体,牌号各公司不同。

我国天通控股公司(TDG )部分MnZn 材料特性如下表2 电磁感应2.1 法拉第定律与楞次定律dtd dt d Ne ψϕ-=-= (2.1) 式中ψ=Nφ称为磁链。

当线圈内的磁通量变化时,产生感应电动势。

楞次定律指出了电动势的方向:它总是使感生电流产生的磁通阻止原磁通的变化。

楞次定律又称磁场惯性定律。

图2.12.2 自感磁链与产生磁场的电流成正比Li =ψ (2.2)定义 iN iL ϕψ==当线圈内电流变化引起磁通变化,产生感应电动势。

(2.2)代入(2.1),得dtdiLe -= (2.3) 称自感电动势,故L 称为自感系数,又称电感量,简称电感。

自感电动势的方向总是阻止电流的变化2.3 电磁能量关系磁场储存的能量为(2.4)V 为磁芯体积。

电感储存的能量为(2.5) 2.4 图2.2见图2.3,空载时,变压器初级加电压u 1,产生电流i 1,磁通φ11,φ11中一部分φ12与次级匝链,称主磁通。

一部分φ1s 不与次级匝链,称为漏磁通。

φ12在次级产生感应电动势e 2,空载时等于次级电压u 2。

11011111111121111111111R s m m s m m s m m u e e i R dtdiL dt di L i R dtd N dt d N i R dt d N i Re u ++=++=++=+=+=ϕϕϕ图2.321222u dtd Ne ==ϕ (2.6) i 1m 为励磁电流,L 1为励磁电感,L s 称漏感。

忽略漏磁通和线圈电阻,有dt d N u 1211ϕ= (2.7) dt d N u 1222ϕ= (2.8)所以有(2.9) 次级加负载时,产生电流i 2,i 2产生与φ12相位相反的磁通φ2(去磁)使φ12下降,从而e 1下降,由于输入电压u 1未变,于是i 1增大,φ12增大,最终维持φ12和e 1不变。

2112ϕϕϕ-=磁势平衡: 221111N i N i N i m -= (2.10a ) 或者 221111N i N i N i m += (2.10b ) 初级电流产生的磁势一部分平衡次级电流产生的去磁磁势,一部分维持励磁电流。

2.5 恒频交流激励的变压器(1)正弦波激励时ft B B m π2sin = (2.11)忽略漏感和电阻,由(2.7)ft fSB dtft SB d N u m m πππ2cos 2)2sin (11==有效值 222111mm B fSN U U π==即 m B fSN U 11443.4= (2.12)注意,这里B 的变化范围是2Bm ,式中S 为磁芯截面积。

(2)矩形波激励时设电压幅值为U 1,脉冲宽度为τ,周期为T ,占空比为D=τ/T ,变压器磁芯磁通密度在τ时间内变化范围为ΔB ,则τϕBS N dt SdB N dt d N U ∆===1111 B S N U ∆=11τ (2.13)U 1τ称变压器的伏秒积(容量),表征变压器初级能承受U 1电压的时间。

超过这个时间,磁芯饱和。

在相同的电压作用下,U 1ττ=DT ,所以(2.14) 特例,交流方波激励时,D =0.5,ΔB =2Bm ,则m B fSN U 114= (2.15)(2.12)~(2.15)是计算变压器初级匝数的公式(不含反激变压器)3 单端反激式变换器的的高频变压器设计3.1 单端反激式变换器的工作方式开关S 闭合时,二极管截止,变压器磁芯储能。

S 断开时,磁芯储能通过二极管向负载释放。

因此,变压器并不是真正意义上的变压器,而是提供磁场将初级的能量转移到次级,初级起电感的作用。

3.2 初级峰值电流的计算开关S 闭合后,初级电流从0 开始上升,如果忽略回路的电阻,电流的变化规律是线性的。

当S 断开时,电流上升到最大值I Pm 。

在S 导通期间(t on )初级电流的平均值为I pm /2。

S 关断的一段时间t off ,这段时间初级绕组中没有电流。

两段时间之和为周期T 。

令占空比D = t on /T ,整个周期中电流的平均值为I PAV =DI pm /2。

这样就可以确定,电源的输入功率P i =U i I PAV 。

如果效率为η,输出功率为P o =ηP i I PAV 。

这样,初级电流最大值可由下式得出2max min min 0ηηηD I U I U P P pm i pav i i ===∴(3.1a )上面的P i 计算中,以平均值代替了有效值,得出的I pm 是偏大的。

用有效值计算(见3.4节),得(3.1b )最大占空比的选择:在能满足输入电压变化范围的情况下,应使D 的范围在0.5左右。

D 小时,初级电流峰值高;D 大时,次级电流峰值大,初级的关断反峰电压高。

3.3 初级电感的计算初级电感在一个周期转移的能量等于最大储能:221pm p L I L W =功率为 f I L P pm p i 221= 所以(3.2) 结合(3.1a )和(3.2)得(3.3a )或者(3.3b )结合(3.1b )和(3.2)可得(3.4a )或者(3.4b ) L p 为临界电感,当初级电感等于临界电感时,一周期内储存的能量刚好放完,电流(能量)连续(实际上,初次级电流都是不连续的)。

要求工作于电流连续模式(CCM )时,L 要大于临界电感。

否则,将工作于电流断续模式(DCM )。

建议按(3.3b )和(3.4)计算I pm 和L p 。

如果要求输出最小功率P o min 时电流仍连续,则公式中应以P omin 代替P o3.4有效值电流的计算有效值定义为 ⎰=on T dt i T I 021 设工作于临界连续状态,初级电流为不连续的三角波,占空比为D ,则初级电流有效值为 (3.5a )或者 (3.5b )K f 是因功率因数(由波形引起)小于1引入的一个系数,一般可取0.7.次级电流有效值为(3.6) U1、U2为初级和次级的额定电压。

相关文档
最新文档