2006中考数学复习同步检测(13)二次函数的概念

合集下载

二次函数(最全的中考二次函数知识点总结

二次函数(最全的中考二次函数知识点总结

二次函数(最全的中考二次函数知识点总结二次函数基础知识二次函数的概念是指形如22y=ax^2+bx+c(a≠0)的函数。

其中,a、b、c是常数。

与一元二次方程类似,二次函数的定义域是全体实数。

二次函数的结构特征是等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.其中,a是二次项系数,b是一次项系数,c是常数项。

二次函数的各种形式之间可以通过变换相互转化。

例如,用配方法可将二次函数y=ax^2+bx+c化为y=a(x-h)^2+k的形式,其中h=(-b/2a),k=(4ac-b^2)/4a。

二次函数的解析式可以表示为一般式、顶点式或两根式。

其中,一般式是2y=ax^2+bx+c,顶点式是y=a(x-h)^2+k,两根式是y=a(x-x1)(x-x2)。

二次函数的图象可以用五点绘图法画出。

首先将二次函数化为顶点式,然后确定其开口方向、对称轴及顶点坐标,最后在对称轴两侧左右对称地描点画图。

二次函数y=ax^2的性质与a的符号有关。

当a>0时,开口向上,顶点坐标为(0,0);当a<0时,开口向下,顶点坐标为(0,0)。

顶点坐标为b/2ac−b2/4a以上是二次函数的基本性质,其中y轴和对称轴是直线,顶点是一个点,开口方向和最值是由a的符号决定的。

在具体应用中,可以利用这些性质来帮助我们解决问题。

例如,求函数的最值、确定函数的图像等等。

顶点决定抛物线的位置。

对于几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向和大小完全相同,只是顶点位置不同。

在二次函数2y=ax^2+bx+c中,a、b、c 与函数图像的关系是:抛物线。

二次项系数a在函数中起着决定性的作用。

当a>0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a越小,开口越小,反之a 的值越大,开口越大。

因此,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。

中考数学二次函数基础知识

中考数学二次函数基础知识

中考数学二次函数基础知识
二次函数
正比例函数是:y=kx(k≠0) 两个数的商是常数(x/y=k,k≠0)一次函数是:y=kx+b(k≠0)
反比例函数: 两个数的积是常数(xy=k,k≠0)二次函数:y=ax 2+bx+c
1、二次函数y=ax 2+bx+c 一些基本概念①
二次函数是一条关于 x=- 对称的抛物线。

此抛物线有三大特征:有开口方向,有对称轴,有顶点。

考点一、 二次函数的概念
a
b
2
考点五、二次函数的解析式的几种应用例1
例2例3
解法1用一般式方法,由于顶点D点的横坐标为-1,所以是以 x=- = -1为对称轴的
解法2知道顶点和交点就可利用顶点式方法:再把BC点代入
a
b
2
解法
知道和x轴的两个交点,可直接用交点式方法:
3
解析:由于抛物线是以D为顶点(-1,?)为对称轴的,又和x轴交于两点AB,因为B点坐标是(-3,0),就可推出A的坐标是(1,0)
例4知道最值和对称轴,可直接用顶点法。

中考数学《二次函数》复习资料

中考数学《二次函数》复习资料
(1)写出抛物线的开口方向、对称轴和顶点坐标;
(2)求抛物线与x轴、y轴的交点坐标;
(3)画出草图
(4)观察草图,指出x为何值时,y>0,y=0,y<0.
14、如图,已知二次函数
的图象经过A(2,0)、B(0,-6)两点。
(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与 轴交于点C,求点C的坐标
A. x=-2 B.x=2 C. x=-4 D. x=4
5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()
A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
6.二次函数y=ax2+bx+c的图象如图所示,则点在第__象限( )
A.一B.二C.三D.四
(三)、二次函数解析式的表示方法
1.一般式: ( , , 为常数, );
2.顶点式: ( , , 为常数, );
3.两根式: ( , , 是抛物线与 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
8.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.
9、二次函数 的对称轴是.
10二次函数 的图象的顶点是,当x时,y随x的增大而减小.
11抛物线 的顶点横坐标是-2,则 =.
12、抛物线 的顶Байду номын сангаас是 ,则 、c的值是多少?

初中数学知识归纳二次函数的概念和性质

初中数学知识归纳二次函数的概念和性质

初中数学知识归纳二次函数的概念和性质二次函数是初中数学中重要的数学概念之一。

它是指函数的表达式中存在一个二次项,且其图像为开口朝上或开口朝下的抛物线。

本文将逐步介绍二次函数的概念和性质,以帮助读者更好地理解和应用该知识。

1. 二次函数的定义二次函数的定义是f(x)=ax^2+bx+c,其中a、b、c为常数,a≠0。

a 决定抛物线的开口方向,正值表示开口朝上,负值表示开口朝下。

常数b和c则分别决定了抛物线的位置和纵坐标的平移。

2. 二次函数的图像二次函数的图像为抛物线,其对称轴为直线x=-b/2a。

若a>0,抛物线开口朝上,最低点的纵坐标为-c+b^2/4a;若a<0,抛物线开口朝下,最高点的纵坐标为-c+b^2/4a。

3. 二次函数的零点零点是指函数取值为0的横坐标。

对于二次函数f(x)=ax^2+bx+c,可以通过求解方程ax^2+bx+c=0来确定其零点。

根据判别式Δ=b^2-4ac 的值,可以判断二次函数的零点个数和形式:(1) 当Δ>0时,二次函数有两个不同的实数根;(2) 当Δ=0时,二次函数有一个重根;(3) 当Δ<0时,二次函数无实数根,但可能存在虚数根。

4. 二次函数的顶点顶点是指二次函数抛物线的最高点或最低点。

对于二次函数f(x)=ax^2+bx+c,其顶点的横坐标为-xv=b/2a,纵坐标为-f(xv)=-Δ/4a。

顶点是抛物线的对称中心,对称轴经过顶点。

5. 二次函数的增减性和极值对于二次函数f(x)=ax^2+bx+c,当a>0时,函数在对称轴左侧呈减少趋势,在对称轴右侧呈增长趋势;当a<0时,则相反。

当抛物线开口朝上时,最低点为函数的最小值;当抛物线开口朝下时,最高点为函数的最大值。

6. 平移与二次函数对于二次函数f(x)=ax^2+bx+c,平移是指将抛物线沿横轴或纵轴方向移动。

平移的规律如下:(1) 向左平移:f(x+a)的图像沿x轴正方向移动a个单位;(2) 向右平移:f(x-a)的图像沿x轴负方向移动a个单位;(3) 向上平移:f(x)+a的图像沿y轴正方向移动a个单位;(4) 向下平移:f(x)-a的图像沿y轴负方向移动a个单位。

二次函数的基本概念

二次函数的基本概念

二次函数的基本概念二次函数是数学中一个重要的函数类型,其形式通常为f(x) = ax^2 + bx + c,其中a、b和c为实数且a ≠ 0。

二次函数的图像呈现出拱形,常常在数学和科学领域被广泛应用。

本文将介绍二次函数的基本概念和相关性质。

1. 二次函数的标准形式二次函数的标准形式是f(x) = ax^2 + bx + c,其中a、b和c分别代表函数的系数。

在标准形式中,x^2项的系数a决定了二次函数图像的开口方向和形状。

当a>0时,图像开口朝上,形状为向上的拱形;当a<0时,图像开口朝下,形状为向下的拱形。

2. 二次函数的顶点二次函数的图像呈现出拱形,其中最高点或最低点称为顶点。

顶点的横坐标为x = -b/2a,纵坐标为f(-b/2a)。

通过顶点的坐标,可以了解二次函数的对称轴,对称轴与x轴的交点也是顶点。

3. 二次函数的轴对称性二次函数的图像是关于对称轴x = -b/2a对称的,即对称轴将图像分成两个完全相同的部分。

这意味着,如果(x, y)是图像上的一点,那么(-x, y)也一定是图像上的一点。

4. 二次函数的零点二次函数的零点是函数图像与x轴相交的点,即f(x) = 0的解。

根据二次方程求根公式,二次函数的零点可以通过以下公式得到:x = (-b ± √(b^2-4ac))/(2a)其中,b^2-4ac被称为判别式,可以用来判断二次函数的零点类型。

当判别式大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根。

5. 二次函数的图像特征二次函数的图像特征包括开口方向、顶点坐标、对称轴、零点以及图像的凹凸性等。

根据系数a的正负和判别式的值,可以确定二次函数图像的这些特征。

掌握这些特征可以帮助我们更好地理解和分析二次函数。

总结:二次函数是数学中一种重要的函数类型,具有拱形的图像特征。

了解二次函数的基本概念和相关性质,如标准形式、顶点、轴对称性、零点以及图像特征,对于解决实际问题、分析数据以及深入研究数学领域都具有重要意义。

中考复习二次函数知识点总结

中考复习二次函数知识点总结

中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。

一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。

在二次函数中,我们通常用y来表示函数的值,用x表示自变量。

二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。

当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。

这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。

3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。

注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。

三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。

此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。

2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。

此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。

四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。

2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。

3.求图像开口方向:判断二次项的系数a的正负性即可。

4.求单调性:根据图像特征可以判断。

5. 求零点:令y=0,解方程ax^2+bx+c=0即可。

(完整版)中考二次函数专题复习

(完整版)中考二次函数专题复习

中考二次函数专题复习知识点归纳:一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。

3.y a x h =-的性质: 左加右减。

4.y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac ba-.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系师生共同学习过程:知识梳理: 练习:1.抛物线23(1)2y x =-+的对称轴是( ) A .1x =B .1x =-C .2x =D .2x =- 2.要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( ).A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 最新考题1.(2009年四川省内江市)抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 2.(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y知识点2:二次函数的图形与性质例1:如图1所示,二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴.第(1)问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0,其中正确的结论的序号是 .第(2)问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是_______.抛物线与x 轴无交点 二次三项式的值恒为正一元二次方程无实数根.例2:抛物线y=-x 2+(m -1)x+m 与y 轴交于(0,3)点,(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 的增大而减小?思路点拨:由已知点(0,3)代入y=-x 2+(m -1)x+m 即可求得m 的值,即可知道二次函数解析式,并可画出图象,然后根据图象和二次函数性质可得(2)(3)(4).解:(1)由题意将(0,3)代入解析式可得m=3, ∴ 抛物线为y=-x 2+2x+3. 图象(图2):(2)令y=0,则-x 2+2x+3=0,得x 1=-1,x 2=3; ∴ 抛物线与x 轴的交点为(-1,0),(3,0). ∵ y=-x 2+2x+3=-(x -1)2+4, ∴ 抛物线顶点坐标为(1,4);(3)由图象可知:当-1<x<3时,抛物线在x 轴上方; (4)由图象可知:当x>1时,y 的值随x 值的增大而减小. 练习:1.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m = B .k n = C .k n > D .00h k >>,2.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( ) 最新考题 1.(2009深圳)二次函数cbx ax y ++=2的图象如图所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是()A . 21y y <B .21y y =C .21y y >D .不能确定 2.(2009北京)如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )3.(2009年台州)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:F GO A C DB C D 1111xo y y o x y o x xo y… 0 1 3 … … 1 3 1…则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0 D .方程02=++c bx ax 的正根在3与4之间知识点3:二次函数的应用例1:如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图6所示),则6楼房子的价格为 元/平方米.思路点拨:观察函数图像得:图像关于x 4=对称, 当x 2y=2080=时,元.因为x=2到对称轴的距离与x=6到对称轴的距离相等。

二次函数概念和知识点九年级

二次函数概念和知识点九年级

二次函数概念和知识点九年级在九年级数学课程中,学生们接触到了二次函数这一概念。

二次函数是一种常见的数学函数,它在实际生活中有着广泛的应用。

本文将对二次函数的概念和其相关的知识点进行探讨和介绍。

首先,我们来了解一下二次函数的基本概念。

二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a不为0。

这个函数的自变量x是实数,而函数值y也是实数。

二次函数的图像是一个抛物线,其开口向上或向下取决于a的正负。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

接下来,让我们来了解一些与二次函数相关的重要知识点。

首先是二次函数的顶点,顶点是抛物线的最高点(开口向下)或最低点(开口向上)。

二次函数的顶点坐标可通过公式x = -b/2a来求得。

这个公式的推导过程比较复杂,但掌握了这个公式,我们就能更轻松地确定二次函数的顶点。

另一个重要的知识点是二次函数的轴对称线。

轴对称线是抛物线的对称轴,它将抛物线分成两个对称部分。

轴对称线可通过公式x = -b/2a来求得。

需要注意的是,轴对称线和顶点的x坐标是相等的。

除了顶点和轴对称线,二次函数还有两个重要的特殊点,即零点和判别式。

零点是使得函数值等于零的x值,也即解二次方程ax^2 + bx + c = 0的解。

判别式是由二次方程的系数a、b和c所构成的一个数,用来判断二次方程的解的情况。

当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程没有实数解。

关于二次函数的应用,我们可以举一些实际例子来说明。

比如,假设我们要建造一座拱桥,为了确定拱桥的形状和高度,需要使用二次函数来模拟和计算拱桥的抛物线形状。

又比如,在物理中,抛物线的运动轨迹也可以用二次函数来表示。

通过研究二次函数,我们可以更好地理解和分析这些现象,并利用数学方法解决实际问题。

在学习和理解二次函数的过程中,我们还可以通过练习一些例题来加深对其概念和知识点的掌握。

初中数学中考复习 二次函数 专题讲义(含解析)

初中数学中考复习 二次函数  专题讲义(含解析)

二次函数 专题讲义考点回顾一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

初中数学二次函数知识点整理

初中数学二次函数知识点整理

初中数学二次函数知识点整理二次函数是初中数学中的一个重要知识点,它在数学中有很广泛的应用。

下面将对初中数学二次函数的相关知识点进行整理。

一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(其中a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数,b表示一次项的系数,c表示常数项。

2.二次函数的图像:二次函数的图像是一个抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3.二次函数的顶点:二次函数的图像上的最高点(a<0)或最低点(a>0)称为二次函数的顶点,其坐标为(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

4.对称轴:二次函数图像的对称轴是通过顶点的一条垂直线。

5.零点:二次函数与x轴交点的横坐标称为零点,即二次函数的根。

6. 判别式:对于二次函数y=ax²+bx+c,其判别式Δ=b²-4ac的值能够确定二次函数的图像与x轴的交点个数。

a)当Δ>0时,二次函数与x轴有两个交点,即有两个不相等的根。

b)当Δ=0时,二次函数与x轴有一个交点,即有一个重根。

c)当Δ<0时,二次函数与x轴没有交点,即没有实根。

二、性质和特点1. 对于二次函数y=ax²+bx+c,等价于y=a(x-h)²+k,其中(h,k)为顶点的坐标。

二次函数的特点有:a)当a>0时,教材开口向上,最小值为k。

b)当a<0时,教材开口向下,最大值为k。

c)当a>1时,抛物线越“瘦长”,曲线变化越快。

d)当a<1时,抛物线越“胖宽”,曲线变化越慢。

e)当a=1时,曲线为标准的抛物线。

2.二次函数的平移和缩放a)平移:对于函数y=ax²+bx+c,平移后的函数为y=a(x-h)²+k,其中(h,k)为平移的向量。

b)缩放:对于函数y=x²,缩放后的函数为y=ax²,其中a的取值决定了缩放的程度。

初三数学讲义(二次函数)(含答案)

初三数学讲义(二次函数)(含答案)

初三数学讲义(二次函数)(含答案)(含答案) 知识梳理:知识梳理:一、二次函数概念:二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ¹)的函数,叫做二次函数。

这里需要强调:这里需要强调:和一元二次方程类似,二次项系数0a ¹,而b c ,可以为零.二次函数的定义域是全体实数.次函数的定义域是全体实数.二、二次函数的基本形式1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ¹);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ¹);3. 两根式:12()()y a x x x x =--(0a ¹,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 三、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ¹.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.决定了抛物线的对称轴. ⑴ 在0a >的前提下,的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴;轴;当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧;轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴;轴;当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”概括的说就是“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.轴交点的位置. 二次函数解析式的确定:三个独立条件 四、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a æö--ç÷èø,. 当2bx a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a æö--ç÷èø,.当2bx a<-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y有最大值244ac b a-.注意:当定义域是m x n ££时,要判断对称轴是否在定义域内时,要判断对称轴是否在定义域内..若对称轴在定义域内时,最值就在顶点处取;否则就在端点处取最值域内时,最值就在顶点处取;否则就在端点处取最值. . 五、二次函数图象的平移1. 平移步骤:平移步骤:方法一:⑴方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.六、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:轴的交点个数:① 当240b ac D =->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ¹,其中的12x x ,是一元二次方程()200ax bx c a ++=¹的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0D =时,图象与x 轴只有一个交点;轴只有一个交点; ③ 当0D <时,图象与x 轴没有交点. 1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++¹本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:内在联系:0D > 抛物线与x 轴有两个交点两个交点 二次三项式的值可正、可零、可负可零、可负一元二次方程有两个不相等实根一元二次方程有两个不相等实根 0D =抛物线与x 轴只有一个交点有一个交点二次三项式的值为非负二次三项式的值为非负 一元二次方程有两个相等的实数根一元二次方程有两个相等的实数根 0D < 抛物线与x 轴无交点交点二次三项式的值恒为正二次三项式的值恒为正 一元二次方程无实数根. 图1 重要题型: 1.1.基本问题:基本问题:1. 已知函数26(2)my m x-=-是二次函数,则m 值为(值为( )A.2 B. ±2C. ﹣ 2 D 6±2. 二次函数c bx ax y ++=2的图象如图1所示,则下列结论正确的是(所示,则下列结论正确的是( ) A .a b c ><>000,, B .a b c <<>000,, C .a b c <><000,, D .a b c <>>000,,3. 抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位个单位 B.先向左平移2个单位,再向下平移3个单位个单位 C.先向右平移2个单位,再向下平移3个单位个单位 D.先向右平移2个单位,再向上平移3个单位个单位 4. 已知二次函数223y x x =--.当y <0时,自变量x 的取值范围是(围是( ). A .-1<x <3 B .x <-1 C . x >3 D .x <-1或x >3 5. 已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是(轴没有交点,那么该抛物线的顶点所在的象限是() A .第四象限.第四象限 B .第三象限.第三象限 C .第二象限.第二象限 D .第一象限.第一象限6. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l 7. 已知二次函数y=﹣x 22﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是________________.8.二次函数y=ax 2+bx+c +bx+c(a≠0)中的(a≠0)中的x 与y 的部分对应值如下表:的部分对应值如下表: x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3 ﹣4 ﹣ 3 0512给出了结论:给出了结论:(1)二次函数y=ax 2+bx+c 有最小值,最小值为﹣有最小值,最小值为﹣33; (2)当时,时,y y <0;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧. 则其中正确结论的个数是(则其中正确结论的个数是( )A .1个B B..2个C C.. 3个D D..0个9.9.已知二次函数已知二次函数y =ax2+bx bx++c 图象的一部分如图,图象的一部分如图, 则a 的取值范围是的取值范围是______________________________..10. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t =a +b +1,则t 值的变化范围是(值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <0 11. 已知二次函数2y ax bx c =++(0a ¹)的图象如图的图象如图所示,有下列结论:( )①240b ac ->;②0abc >; ③80a c +>;④930a b c ++<.其中,正确结论的个数是其中,正确结论的个数是A. 1 B. 2 C. 3 D. 4 12. 抛物线y =ax 2+bx +c (a ≠ 0)满足条件:(1)4a -b =0;(2)a -b +c >0;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①a <0;②c >0;③a +b +c <0;④43c ca <<,其中所有正确结论的序号是其中所有正确结论的序号是 .13. 函数2(2)5(1)y x x m =-+££中y 的范围是56y ££,则m 的取值范围是_____. 3.3.易错易做题:易错易做题:14.已知22224+3=12x y x x y +,则的最大值是( ) A.9 B.10 C.12 D.15 15. 某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.元.16. 设二次函数y =ax 2+2ax +1(32x -££)有最大值4,则实数a 的值为________. Ox y 1x =1-2-17. 如图,抛物线y=ax 2+bx+c 经过点A (﹣(﹣33,0),B (0,3),C (1,0). (1)求此抛物线的解析式.)求此抛物线的解析式. (2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD⊥AB 于点D . ①动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;点的坐标; ②连接PA PA,以,以AP 为边作图示一侧的正方形APMN APMN,随着点,随着点P 的运动,的运动,正方形的大小、位置也随之改变.当顶点M 或N 恰好落在抛物线对称轴上时,恰好落在抛物线对称轴上时, 求出对应的P 点的坐标.(结果保留根号)(结果保留根号)18. 如图, 在平面直角坐标系xOy 中,抛物线与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C . (1)求点B 的坐标的坐标 (用含m 的代数式表示);求证:无论m 取何值时,取何值时, B 都在直线y x =-上;(2)D 为BO 中点,中点,直线直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛求抛 物线的解析式;(3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的 坐标. 备用图备用图x x m y 222-=CAOBxyCAOBxy课后作业:课后作业:1. 如图为抛物线2yax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是则下列关系中正确的是A .a +b =-1 B . a -b =-1 C . b <2aD . ac <0 2. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是(在同一坐标系中的大致图象是( ). 3. 已知二次函数)0(2¹++=a c bx ax y 的图象如图所示对称轴为21-=x 。

中考数学复习二次函数知识点

中考数学复习二次函数知识点

中考数学复习二次函数知识点二次函数是数学中的重要概念,它在高中数学以及各类数学竞赛中都有广泛的应用。

了解和掌握二次函数的知识点对于中考数学复习非常重要。

以下是关于二次函数的知识点的详细介绍:一、二次函数的定义和基本形式二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c是实数且a ≠ 0。

其中,a 称为二次函数的二次项系数,b 称为一次项系数,c 称为常数项。

二次函数的图像是一个拱形,开口的方向由二次项系数a的正负决定,当a>0时,图像开口朝上;当a<0时,图像开口朝下。

二、二次函数的顶点二次函数的顶点是图像的最高点或最低点,它的横坐标为x=-b/2a,纵坐标为y=f(-b/2a)。

顶点是对称轴x=-b/2a上的一个点,它将图像分为两部分。

三、二次函数的轴对称性二次函数的图像关于对称轴x=-b/2a对称,即对称轴左侧和右侧的部分是相同的。

四、二次函数的平移与伸缩在二次函数的基本形式上,通过变换可以得到平移和伸缩后的二次函数。

(1) 平移:将二次函数的图像沿着 x 轴或 y 轴平移。

在标准的二次函数 f(x) = ax^2 + bx + c 上平移 h 个单位,得到 f(x-h) = a(x-h)^2 + b(x-h) + c。

(2) 伸缩:将二次函数的图像横向或纵向拉长或缩短。

在标准的二次函数 f(x) = ax^2 + bx + c 上横向伸缩为 y = a(x-h)^2 + k。

五、二次函数的解析式二次函数的解析式是对二次函数 y = ax^2 + bx + c 进行化简得到的表达式。

(1) 一般形式:y = ax^2 + bx + c(2)顶点式:y=a(x-h)^2+k,其中(h,k)是函数的顶点坐标。

(3)因式分解式:y=a(x-x1)(x-x2),其中x1和x2是函数的零点或根。

(4)标准式:y=a(x-p)(x-q),其中p和q是函数的零点或根。

中考二次函数知识点

中考二次函数知识点

中考二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2ya xb xc =++(a b c,,是常数,a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而bc ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2ya xb xc =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2yax=的性质:a 的绝对值越大,抛物线的开口越小。

2.2y ax c=+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k=-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2yax=的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx axy ++=2沿y 轴平移:向上(下)平移m 个单位,c bx axy ++=2变成m c bx axy +++=2(或m c bx axy -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx axy ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y a xb xc =++的比较从解析式上看,()2ya x h k =-+与2y a x b x c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b a c b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b a c b hk aa-=-=,.五、二次函数2yax bx c=++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y a xb xc =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b a c b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b xa=-时,y 有最小值244a c b a-.2.当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b a c b a a ⎛⎫-- ⎪⎝⎭,.当2b xa<-时,y 随x的增大而增大;当2b xa>-时,y 随x 的增大而减小;当2b xa=-时,y 有最大值244a c b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c=++(a ,b ,c 为常数,0a≠); 2. 顶点式:2()ya x h k=-+(a ,h ,k 为常数,0a≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b a c -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2ya xb xc =++中,a作为二次项系数,显然0a≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a<时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b>时,02b a-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a<的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b<时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c=---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k=---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y a x b x c=-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x hk =-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222by a x b x c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k=-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数: ① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200axbx c a ++=≠的两根.这两点间的距离21A Bx x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2yax bx c=++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2yax bx c=++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

中考复习二次函数知识点(典型试题)

中考复习二次函数知识点(典型试题)

中考复习专题——二次函数知识点总结二次函数知识点:1. 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。

总结:2. 2y ax c =+的性质:结论:上加下减。

总结:3. ()2y a x h =-的性质:结论:左加右减。

总结:4. ()2y a x h k=-+的性质:总结:二次函数图象的平移1. 平移步骤:⑴将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k,;⑵保持抛物线2y ax=的形状不变,将其顶点平移到()h k,处,具体平移方法如下:【或左(h<0)】向右(h>0)【或左(h平移|k|个单位2. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k=-+与2y ax bx c=++的比较请将2245y x x =++利用配方的形式配成顶点式。

请将2y ax bx c =++配成()2y a x h k =-+。

总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2y=2x 2-4y=2x 2+2y=2x 2y=2(x-4)2-3y=2(x-4)2y=2x 2第二部分 典型习题1.抛物线y =x 2+2x -2的顶点坐标是 ( D )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( C )A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0CA EF BD第2,3题图 第4题图3.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( D ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >04.如图,已知∆ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则∆DEF 的面积y 关于x 的函数的图象大致为( D )DO 424O424O 424O 424yxBC2482,484EF xEF x y x x -=⇒=-∴=-+ 5.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 4 .6.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y>0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤22114k x x k+-,其中所有正确的结论是①③④ (只需填写序号).第9题7.已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式. 解:(1)102-=x y 或642--=x x y将0)b (,代入,得c b =.顶点坐标为21016100(,)24b b b +++-,由题意得21016100224b b b b +++-⨯+=-,解得1210,6b b =-=-.(2)22--=x y8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-. (1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围. 解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . (2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x .9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少? ⑶兴趣小组又在研究中发现,图中10时到 22时的曲线是抛物线,求该抛物线的解 析式.解:⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时 ⑵第三天12时这头骆驼的体温是39℃⑶()22102421612≤≤++-=x x x y 10.已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、B 两点,与y 轴交于点C .是否存在实数a ,使得 △ABC 为直角三角形.若存在,请求出a 的值;若不 存在,请说明理由.解:依题意,得点C 的坐标为(0,4).设点A 、B 的坐标分别为(1x ,0),(2x ,0),由04)334(2=+++x a ax ,解得 31-=x ,ax 342-=. ∴ 点A 、B 的坐标分别为(-3,0),(a34-,0). ∴ |334|+-=aAB ,522=+=OC AO AC , =+=22OC BO BC 224|34|+-a. ∴ 9891693432916|334|2222+-=+⨯⨯-=+-=aa a a a AB , 252=AC ,1691622+=aBC . 〈ⅰ〉当222BC AC AB +=时,∠ACB =90°. 由222BC AC AB +=,得)16916(259891622++=+-a a a . 解得 41-=a .∴ 当41-=a 时,点B 的坐标为(316,0),96252=AB ,252=AC ,94002=BC .于是222BC AC AB +=. ∴ 当41-=a 时,△ABC 为直角三角形. 〈ⅱ〉当222BC AB AC +=时,∠ABC =90°. 由222BC AB AC +=,得)16916()98916(2522+++-=a a a . 解得 94=a . 当94=a 时,3943434-=⨯=-a ,点B (-3,0)与点A 重合,不合题意.〈ⅲ〉当222AB AC BC +=时,∠BAC =90°. 由222AB AC BC +=,得)98916(251691622+-+=+a aa . 解得 94=a .不合题意. 综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当41-=a 时,△ABC 为直角三角形. 11.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且ABm 的值;(2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值. 解: (1)A(x 1,0),B(x 2,0) . 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根. ∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2 ;又AB =∣x 1 — x 2=∴m 2-4m +3=0 .解得:m=1或m=3(舍去) , ∴m 的值为1 . (2)M(a ,b),则N(-a ,-b) . ∵M 、N 是抛物线上的两点,∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 . ∴当m <2时,才存在满足条件中的两点M 、N. ∴2a m =- .这时M 、N 到y 2m -又点C 坐标为(0,2-m ),而S △M N C = 27 , ∴2×12×(2-m 2m -∴解得m=-7 .12.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0). (1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 解法一:(1)依题意,抛物线的对称轴为x =-2. ∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1, 0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=. ∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++= 上, ∵ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴ 9)(21=OD CD AB ⋅+.∴ 93)42(21=+a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =. (3)设点E 坐标为(0x ,0y ).依题意,00<x ,00<y , 且2500=x y .∴ 0025x y =-.①设点E 在抛物线342++=x x y 上,∴340200++=x x y .NMCx yO解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45). 设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小. ∵ AE 长为定值,∴ 要使△APE 的周长最小,只须PA +PE 最小. ∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点. 设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y .∴ 把x =-2代入上式,得21=y . ∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =.解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++. ∴ △<0 . ∴ 此方程无实数根. 综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小. 解法二:(1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=.令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x . ∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)由a ax ax y 342++=,得D (0,3a ). ∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∴ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴ 9)(21=+OD CD AB ⋅.解得OD =3. ∴ 33=a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .(3)同解法一得,P 是直线BE 与对称轴x =-2的交点.∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F .由PF ∥EQ ,可得EQ PF BQ BF =.∴ 45251PF =.∴ 21=PF . ∴ 点P 坐标为(-2,21). 以下同解法一.13.已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标.(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设NQ 的长为l ,四边形NQAC 的面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).解:(1)设抛物线的解析式)2)(1(-+=x x a y ,∴ )2(12-⨯⨯=-a .∴ 1=a .∴ 22--=x x y . 其顶点M 的坐标是⎪⎭⎫ ⎝⎛-4921,. (2)设线段BM 所在的直线的解析式为b kx y +=,点N 的坐标为N (t ,h ),∴ ⎪⎩⎪⎨⎧+=-+=.214920b k b k ,.解得23=k ,3-=b . ∴ 线段BM 所在的直线的解析式为323-=x y . ∴ 323-=t h ,其中221<<t .∴ t t s )3322(212121-++⨯⨯=121432+-=t t . ∴ s 与t 间的函数关系式是121432+-=t t S ,自变量t 的取值范围是221<<t . (3)存在符合条件的点P ,且坐标是1P ⎪⎭⎫ ⎝⎛4725,,⎪⎭⎫ ⎝⎛-45232,P . 设点P 的坐标为P )(n m ,,则22--=m m n . 222)1(n m PA ++=,5)2(2222=++=AC n m PC ,.分以下几种情况讨论:i )若∠PAC =90°,则222AC PA PC +=.∴ ⎪⎩⎪⎨⎧+++=++--=.5)1()2(222222n m n m m m n , 解得:251=m ,12-=m (舍去). ∴ 点⎪⎭⎫ ⎝⎛47251,P . ii )若∠PCA =90°,则222AC PC PA +=.∴ ⎪⎩⎪⎨⎧+++=++--=.5)2()1(222222n m n m m m n ,解得:02343==m m ,(舍去).∴ 点⎪⎭⎫ ⎝⎛45232,-P . iii )由图象观察得,当点P 在对称轴右侧时,AC PA >,所以边AC 的对角∠APC 不可能是直角.(4)以点O ,点A (或点O ,点C )为矩形的两个顶点,第三个顶点落在矩形这边OA (或边OC )的对边上,如图a ,此时未知顶点坐标是点D (-1,-2),以点A ,点C 为矩形的两个顶点,第三个顶点落在矩形这一边AC 的对边上,如图b ,此时未知顶点坐标是E ⎪⎭⎫⎝⎛-5251,,F ⎪⎭⎫ ⎝⎛-5854,.图a 图b 14.已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴的交点的个数.解:根据题意,得a -2=-1.∴ a =1. ∴ 这个二次函数解析式是22-x y =.因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与x 轴有两个交点. 15.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB =5 cm ,拱高OC =0.9 cm ,线段DE 表示大桥拱内桥长,DE ∥AB ,如图(1).在比例图上,以直线AB 为x 轴,抛物线的对称轴为y 轴,以1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域; (2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12≈,计算结果精确到1米).解:(1)由于顶点C 在y 轴上,所以设以这部分抛物线为图象的函数解析式为1092+=ax y .因为点A (25-,0)(或B (25,0))在抛物线上, 所以109)25(02+=-⋅a ,得12518=-a .因此所求函数解析式为)2525(109125182≤≤-x x y +=-.(2)因为点D 、E 的纵坐标为209, 所以109125182092+-x =,得245±=x . 所以点D 的坐标为(245-,209),点E 的坐标为(245,209). 所以225)245(245=-=-DE . 因此卢浦大桥拱内实际桥长为385227501.011000225≈⨯⨯=(米).16.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值. 解: (1)a 、c 同号. 或当a >0时,c >0;当a <0时,c <0. (2)证明:设点A 的坐标为(1x ,0),点B 的坐标为(2x ,0),则210x x <<.∴ 1x OA =,2x OB =,c OC =.据题意,1x 、2x 是方程)0(02≠=a c bx ax ++的两个根. ∴ ac x x =⋅21. 由题意,得2OC OB OA =⋅,即22c c a c==. 所以当线段OC 长是线段OA 、OB 长的比例中项时,a 、c 互为倒数.(3)当4-=b 时,由(2)知,0421>==-+a a b x x ,∴ a >0.解法一:AB =OB -OA =21221124)(x x x x x x -+=-,∴ aa ac a c a AB 32416)(4)4(22=-==-. ∵ 34=AB , ∴ 3432=a .得21=a .∴ c =2. 解法二:由求根公式,a a a ac x 322416424164±-±-±===, ∴ a x 321-=,ax 322+=. ∴ a a a x x OA OB AB 32323212=--=-=-=+. ∵ 34=AB ,∴ 3432=a ,得21=a .∴ c =2. 17.如图,直线333+-=x y 分别与x 轴、y 轴交于点A 、B ,⊙E 经过原点O 及A 、B 两点. (1)C 是⊙E 上一点,连结BC 交OA 于点D ,若∠COD =∠CBO ,求点A 、B 、C 的坐标;(2)求经过O 、C 、A 三点的抛物线的解析式:(3)若延长BC 到P ,使DP =2,连结AP ,试判断直线PA 与⊙E 的位置关系,并说明理由.解:(1)连结EC 交x 轴于点N (如图).∵ A 、B 是直线333+-=x y 分别与x 轴、y 轴的交点.∴ A (3,0),B )3,0(. 又∠COD =∠CBO . ∴ ∠CBO =∠ABC .∴ C 是的中点. ∴ EC ⊥OA . ∴ 232,2321====OB EN OA ON . 连结OE .∴ 3==OE EC . ∴ 23=-=EN EC NC .∴ C 点的坐标为(23,23-). (2)设经过O 、C 、A 三点的抛物线的解析式为()3-=x ax y .∵ C (23,23-). ∴)323(2323-⋅=-a .∴ 392=a . ∴ x x y 8329322-=为所求. (3)∵ 33tan =∠BAO , ∴ ∠BAO =30°,∠ABO =50°. 由(1)知∠OBD =∠ABD .∴ ︒=︒⨯-∠=∠30602121ABO OBD . ∴ OD =OB ·tan30°-1.∴ DA =2.∵ ∠ADC =∠BDO =60°,PD =AD =2.∴ △ADP 是等边三角形.∴ ∠DAP =60°.∴ ∠BAP =∠BAO +∠DAP =30°+60°=90°.即 PA ⊥AB . 即直线PA 是⊙E 的切线.。

中考数学必考题讲解 二次函数

中考数学必考题讲解 二次函数

中考数学必考题讲解二次函数
二次函数是中考数学中必考的重点内容之一。

本文将对二次函数的基本概念、性质以及解题方法进行详细讲解,帮助学生在中考中取得优异的成绩。

首先,我们来了解一下二次函数的基本概念。

二次函数是指函数
y=ax+bx+c,其中a、b、c为实数且a≠0。

其中,a决定了二次函数
的开口方向和大小,b决定了二次函数的对称轴位置,c决定了二次
函数的纵轴截距。

接下来,我们来看一些二次函数的性质。

首先,二次函数的图像为一条开口向上或向下的抛物线。

其次,二次函数的对称轴为x=-b/2a,对称轴上的点为顶点,顶点的纵坐标为c-b/4a。

最后,当a>0时,
二次函数的最小值为c-b/4a;当a<0时,二次函数的最大值为c-b/4a。

最后,我们来讲解一些解题方法。

首先,如果已知二次函数的顶点和一个点,可以利用顶点公式和函数值相等的性质求出a、b、c的值。

其次,如果已知二次函数的两个点,可以利用函数值相等和斜率相等的性质求出a、b、c的值。

最后,如果已知二次函数的图像和一些特定点,可以利用函数值相等和联立方程的方法求出a、b、c的值。

综上所述,二次函数是中考数学中非常重要的内容,学生一定要掌握好其基本概念、性质和解题方法,才能在中考中取得好成绩。

- 1 -。

初中数学的二次函数知识点汇总

初中数学的二次函数知识点汇总

初中数学的二次函数知识点汇总二次函数是初中数学中非常重要的知识点之一,它与实际生活紧密相关,掌握了二次函数的知识,不仅可以解决实际问题,还可以为高中数学的学习打下坚实的基础。

本文将对初中数学中与二次函数相关的知识点进行汇总。

一、基本定义与性质1. 二次函数的定义:二次函数是指由形如y = ax^2 + bx + c (a ≠ 0) 的函数所表示的函数关系,其中a、b、c为实数,a称为二次函数的二次项系数,b称为一次项系数,c称为常数项。

二次函数的图像是一条抛物线。

例如:y = x^2 是一个二次函数。

2. 二次函数的图像特点:二次函数的图像在笛卡尔坐标系中是一个抛物线。

当二次函数的二次项系数a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

3. 顶点坐标:二次函数的图像的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)代表二次函数。

4. 对称轴与对称性:二次函数的图像的对称轴方程为x = -b/2a,对称轴也是图像的抛物线的轴线。

二次函数具有对称性,即对称轴将图像分成两部分,两部分关于对称轴对称。

5. 零点与解:二次函数的零点即为函数与x轴相交的点,也就是方程f(x) = 0的解。

求解二次方程可以使用配方法、因式分解法、求根公式等方法。

二、二次函数的图像与方程的关系1. 基本图像的平移:对于一般形式的二次函数y = ax^2 + bx + c,改变a、b、c 的值会对图像产生相应的平移效果。

例如,当x轴正方向平移h个单位,y轴正方向平移k个单位,则y = a(x - h)^2 + k 表示二次函数的图像向右平移h个单位,向上平移k个单位。

2. 图像的缩放与翻折:改变a的值可以控制抛物线的开口情况,当a > 1时,开口变宽,当0 < a < 1时,开口变窄,当a < 0时,抛物线翻折。

3. 图像的对称性:对称轴将图像分成两部分,两部分关于对称轴对称,因此,可以通过掌握对称轴、顶点坐标与开口方向的关系来快速绘制二次函数的图像。

九年级数学:二次函数的概念,真简单

九年级数学:二次函数的概念,真简单

九年级数学:二次函数的概念,真简单
二次函数是一种特殊的函数形式,它可以用以下方程表示:y = ax + bx + c。

其中,a、b、c都是实数,且a不等于0。

二次函数的图像为一个开口朝上或朝下的抛物线。

二次函数的顶点是抛物线的最高点或最低点,可以用以下公式求出:x = -b/2a,y = f(x),其中f(x)表示二次函数在x处的函数值。

二次函数的对称轴垂直于x轴,通过顶点。

二次函数的判别式Δ = b - 4ac,可以用来判断二次函数的图像开口方向和与x轴的交点个数。

当Δ大于0时,二次函数有两个不同的实根,抛物线开口朝上;当Δ等于0时,二次函数有一个实根,抛物线与x轴相切;当Δ小于0时,二次函数没有实根,抛物线开口朝下。

二次函数在数学、物理、化学等领域有广泛应用,例如用来描述物体的运动轨迹、电子元件的特性等。

- 1 -。

初中二次函数知识点

初中二次函数知识点

初中二次函数知识点二次函数是数学中非常重要的一种函数形式,也是初中数学学习的一个重要知识点。

本文将为大家详细介绍二次函数的相关概念、性质和应用。

一、二次函数的定义和一般形式二次函数是指形如 y=ax²+bx+c (其中a、b、c为常数,且a≠0)的函数。

其中x为自变量,y为因变量。

二次函数的一般形式表达了一个二次函数的特征:由一个二次幂项、一个一次项和一个常数项构成。

其中,二次幂项的系数a决定了函数的开口方向、形状和平移等属性;一次项的系数b决定了函数的位置和方向性;常数项c则决定了函数的纵向平移。

二、二次函数的图像特征1. 开口方向当二次函数的二次幂项系数a大于0时,函数的图像开口向上,形状类似于一个“U”字形,称为正向的。

当二次幂项系数a小于0时,函数的图像开口向下,形状类似于倒置的“U”字形,称为反向的。

2. 顶点二次函数的顶点是图像的最低或最高点,其横坐标为-b/2b。

顶点的纵坐标则根据二次函数的形状而定,当a>0时为最小值,当a<0时为最大值。

3. 对称轴二次函数的对称轴是垂直于x轴的一条直线,经过顶点。

对称轴的方程为x=-b/2a。

4. 零点二次函数的零点是函数图像与x轴的交点,即满足函数值为0的x值。

求解零点可以通过关于x的二次方程的解得到。

5. 范围和值域二次函数的范围取决于开口方向,当a>0时,范围是y≥最小值;当a<0时,范围是y≤最大值。

值域则为最小值到正无穷或最大值到负无穷的闭区间。

三、二次函数的常见变形1. 常数项的变形在二次函数的一般形式中,常数项c可以使函数图像上下平移,比如y=ax²+bx+c+3,就是原函数图像向上平移3个单位。

2. 一次项的变形一次项的系数b决定了函数图像的斜率和位置。

如果b>0,则图像向右倾斜;如果b<0,则图像向左倾斜。

3. 二次幂项的变形二次幂项的系数a决定了函数图像的开口方向和形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年中考数学复习同步检测(13) 姓名
(二次函数概念)
一.填空题:
1.二次函数5)3(22---=x y 的图象开口方向 ,顶点坐标是 ,对称轴是 ;
2.函数322++-=x x y 的图象在x 轴上截得的两个交点距离为 ;
3.函数)32(x x y -=,当x 为 时,函数的最大值是 ;
4.二次函数)
(3)2(2-+--=m x m x y 与x 轴的两交点在x 轴正半轴上,则m 的取值范围是 ;
5.把函数22x y =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ;
6.若二次函数22-+-=mx x y 的最大值为4
9,则常数_____=m ; 7.直线6-=ax y 与抛物线342++=x x y 只有一个交点,则_____=a ;
8.若a 、b 、c 为△ABC 的三边,且二次函数ab c x b a x y 2)(222+++-=的顶点在x 轴上,则△ABC 为 三角形;
9.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于正半轴C 点,且AC = 20,BC = 15,∠ACB = 90°,则此抛物线的解析式为 ;10.若二次函数c bx ax y ++=2的图象如图所示,则直线c abx y +=
不经过 象限;
11.抛物线12--=x x y 在直线2+=x y 下方的x 的取值范围是 ;
12.已知抛物线c bx ax y ++=2的对称轴为2=x ,且经过点(1,4)和点(5,0),则该抛物线的解析式为 ;
13.抛物线562++=x x y 的顶点坐标是__________,对称轴是 ;
14.已知抛物线c bx ax y ++=2
的图象与x 轴有两个交点,那么一元二次方程02=++c bx ax 的根的情况是 ;
15.已知抛物线c bx ax y ++=2与x 轴交点的横坐标为-1,则c a += ;
16.一次函数b kx y +=的图象过点(m ,1)和点(1-,m ),其中m > 1,则二次函数
k b x a y ++=2)(的顶点在第 象限;
二.选择题:
17.已知二次函数23x y =、23x y -=、231x y =、23
1x y -=它们图象的共同特点为( ) A 都关于原点对称,开口方向向下 B 都关于x 轴对称,y 随x 的增大而增大
C 都关于y 轴对称,y 随x 的增大而减小
D 都关于y 轴对称,顶点都是原点 18.若二次函数()32122--++=m m x m y 的图象经过原点,则m 的值必为 ( )
A 1-或3
B 1-
C 、 3
D 、 无法确定
19.将二次函数32+=x y 的图象向左平移2个单位后,再向下平移2个单位,得到( )
A y = x 2 + 5
B 1)2(2++=x y
C 1)2(2+-=x y
D 12+=x y
20.二次函数c bx ax y ++=2的图象开口向上,顶点在第四象限内,且与y 轴的交点在x 轴下方,则点p (b
c a ,)在 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限
21.二次函数0,2=+++=b a b ax x y 若中,则它的图象必经过点 ( )
A (1-,1-)
B (1,1-)
C (1,1)
D (1-,1)
22.已知二次函数c bx ax y ++=2若0<ac ,则其图象与x 轴的位置关系是 ( )
A 只有一个交点
B 有两个交点
C 没有交点
D 交点数不确定
23.函数()33222---=m m
x m y 为x 的二次函数,其函数的开口向下,则m 的取值为( ) A 125-==m m 或 B 25=m C 1=m D
25==m m 或24.已知函数()02≠++=a c bx ax y 的图象如图所示,A 0>abc B 042>-ac b C 02>+b a D 24+-c b a 25.已知点A (1,1y )、B (2,2y -)、C (3,2y -)
在函数()21122-+=x y 上,则1y 、2y 、3y 的大小关系是 A 1y >2y >3y B 1y >3y >2y C 3y >1y >2y D 2y >1y >3
y 26.已知(2,5)(4,5)是抛物线c bx ax y ++=2上的两点,则这个抛物线的对称轴为( )
A b
a x -= B 2=x C 4=x D 3=x 三.解答题:
27.抛物线过(1-,10)、(1,4)、(2,7)三点,求抛物线的解析式;
x
28.二次函数c bx ax y ++=2有最小值为8-,且a :b :c =1:2:(3-),求此函数的解析式;
29.抛物线的对称轴是2=x ,且过(4,-4)、(-1,2),求此抛物线的解析式;
30.二次函数c bx ax y ++=2,2-=x 时6-=y ;2=x 时10=y ;3=x 时,24=y ;
求此函数的解析式;
31.已知二次函数1)1(2-++-=m x m x y .
(1) 求证:不论m 为何实数值,这个函数的图象与x 轴总有交点.
(2)
m 为何实数值时,这两个交点间的距离最小?这个最小距离是多少?
32.已知二次函数c bx ax y ++=2的图象与x 轴分别交于A (-3,0),B 两点,与y 轴交于(0,3)点,对称轴是1-=x ,顶点是P .求:(1)函数的解析式;(2)△APB 的面积.
33.有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式
x。

相关文档
最新文档