人教版七年级数学上册易考易错题
人教版七年级上册数学易错题集及解析
人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级数学易错题讲解及答案_人教版七年级数学上册
人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a -一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定, a -可能是正数,0,负数 分析:若a 是正数,则a -就是负数, 若a =0则a -=0若a 是负数,则a -就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数. 错解: 点C 与点A 之间的距离为2, ∴点C 表示的数为5.点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解: 点C 与点A 之间的距离为2,∴点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度. ①点C 在点A 的左侧2个单位长度,则点C 表示的数为5. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-9.3、.计算:200520011171311391951511⨯+⨯+⨯+⨯+⨯错解:原式=2005120011171131131919151511--+-+-+- =200511-=20052004 剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 方法直接去求解.而忽视本题54511=-, 4549151=-结果中分子是4而不是1.故这样做是错的.正解:原式=41⎪⎭⎫ ⎝⎛--+-+-+-⨯2005120011171131131919151511=41)200511(-⨯ =2005501.4、计算: 17391326-⨯.【错解】原式17391313261750721515.2=-⨯+⨯=-+=-【错解剖析】本题错误原因是把173926-看成173926-与的和,而它应是39-与1726-的和. 【正确解答】原式171713913135075152622=-⨯-⨯=--=-. 5、计算:(1)[]24)3(2611--⨯--; 【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136. 错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136. 【错解剖析】错解一中是将41-计算成1得到136,错解二中是去括号符号出错得到136-.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2--÷⨯-.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2⨯-.【正确答案】原式=1-9×14×14=1-916 =716. 6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 8、已知方程24)3(2-=+--m x m m 是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程. 【错解】m =±3.【剖析】忘记m -3≠0这个条件.【正解】(1)由⎩⎨⎧≠-=-0312m m 得m =-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 【错解】 7x -)1(32)1(2121-=--x x x .)1(4)1(3342-=---x x x x . 4433342-=+--x x x x . 32x =-7.x =327- .【剖析】 去中括号时)1(21--x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2x x x ⎡⎤--=-⎢⎥⎣⎦.第一次去括号,得 42x -44)1(233-=-+x x x .第二次去分母,得 84x -6x +3x -3=8x -8. 移项,合并同类项,得 73x =-5.把系数化为1,得 x =735-. 10. 解方程1-x =5.【错解】由1-x =5得到x -1=5.∴x =6.【剖析】去绝对值符号必须考虑正负性x -1=5或x -1=-5. 【正解】由1-x =5得到x -1=5或x -1=-5. ∴x =6或x =-4.11、某水果批发市场香蕉的价格如下表:强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264, 解得:x =32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264,解得:x =32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP=21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式. 错解一:(1)14°41′25″×5=70°205′125″=72°6′25″; (2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″; (2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″; (2)26.29°=26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?A BC PQ APQCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。
人教版七年级上数学易错题
人教版七年级上数学易错题一.填空1.,和统称为正数。
和统称为分数。
,,,,和统称为有理数。
和统称为非负数;和通称为非正数;和统称为非正整数;和统称为非负整数。
2.-(+5)表示_____的相反数,即-(+5)=____;-(-5)表示_____的相反数,即-(-5)=___;3.已知数轴上A,B表示的数互为相反数,并且两点间的距离是6,点A在点B 的左边,则点A,B标识的数分别是_______。
二.应用题1.-7,3.5,-3.1415,π,0.03,-3又1/2,10,-0.23,-4/2自然数集合:整数集合:正分数集合非正数集合有理数集合2.观察下面一列数,探求其规律:-2分之一,3分之二,-4分之三,5分之四,-6分之五,7分之六...(1)写出7,8,9项的三个数;(2)第2012个数是什么?(3)如果这一列数无限的排列下去,与那两个数越来越近?3.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?4.小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。
列式计算,小明和小红谁为胜者?5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。
(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?6、(本题7分)今年夏天某地遭遇洪灾,甲乙两地堤坝发现险情,指挥部分别调派27 人和19人去甲乙两处抢险,后因情况紧急,两地都要求派人支援,而指挥部可调动的其他抢险队员只有20人,考虑到甲处的抢险任务重,所以甲处抢险的总人数必须是乙处总人数的2倍,问指挥部应给甲、乙两处各派多少人?有理数笔记:。
人教版七年级数学上册易考易错题集
七年级数学上册易考易错题1 让学生回忆本学期所学内容哪些知识在运用时较容易出错并列举例子。
2要求学生能够在所举易错例子中找出错误原因并能写出正确答案3加强学生学会发现问题和解决问题的能力同时培养学生多积累多总结的习惯教学过程一确定有效数字时容易忽略0而出错。
例1 近似数0.40350有几个有效数字?常见错解近似数0.40350 有3个有效数字分别是4,3,5错解分析正确答案二应用乘法分配律时运算符号出错例2 计算(-48)*(1-1/12+3/4)常见错解原式=-48-4+36=-16错解分析正确答案三违背有理数的运算顺序出错例3 计算-4-(-12)÷(-3)常见错解原式=-4+12÷(-3)=8÷(-3)=-8/3错解分析正确答案四对乘方的意义理解不透而出错例4 计算-2^2-50÷(-5)^2-1常见错解原式=4-50÷25-1=4-2-1=1错解分析正确答案五错用运算律而出错例五计算12÷(1/2-1/4+1/6)常见错解原式=12÷1/2-12÷1/4+12÷1/6=24-48+72=48错解分析正确答案六确定单项式的系数和次数出错例六单项式-2a^2b∏/3的系数是__次数是__常见错解-2/3,4次错解分析正确答案七同类项的概念把握不准而出错例七判断下列各项是否是同类项-x^2y与 3yx^2 (2)2^3 与 x^3常见错解(1)不是(2)是错解分析正确答案八去括号法则理解不透而出错例八计算 3x-[x-2(x-y)]常见错解1原式=3x-(x-2x-2y)=3x-x+2x-2y=4x-2y常见错解2原式=3x-(x-2x+y)=3x-(-x+y)=3x+x-y=2x-y 错解分析正确答案九移项没变号而出错例九解方程 2x-3=x+4常见错解 2x-x=4-3X=1错解分析正确答案十去括号没变号而出错例10 解方程2*(x-3)-3*(x+1)=6常见错解 2x-3-3x+3=62x-3x=6-x=6X=-6错解分析正确答案十一去分母时出错例11 解方程(4-x)/3=1-(x-3)/5常见错解1 5*(4-x)=1-3*(x-3)20-5x=1-3x+9-5x+3x=1+9-20-2x=-10X==5常见错解2 5*(4-x)=15-3x-920-5x=15-3x-9-5x+3x=15-9-20-2x=-14X=7错解分析正确答案随堂练习(1)近似数0.302050有几个有效数字?(2)计算(-48)*(1-1/6+3/4)(3)计算-6-(-24)÷(-3)(4)计算-3^2-50÷(-5)^2-1(5)计算2÷(1/2-1/4+1/6)(6)单项式(-3ab^3)/5的系数和次数分别是什么(7)判断下列各组十分是同类项(1)-3a^2b 与 10ba^2 (2) 3^2与 x^2(8)计算3a-[a-2(a-b)]+b(9)解方程 3x-3=x+1(10)解方程 3(x-3)-2(2x-1)=6(11)解方程 (4-x)/3=(x-3)/5-1小结我们这节课有什么收获?。
人教版数学七年级上册全册单元试卷易错题(Word版 含答案)
人教版数学七年级上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
人教版七年级数学上册 期末试卷易错题(Word版 含答案)
人教版七年级数学上册期末试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。
【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.2.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.3.已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=(1)若射线OE在∠BOC的内部(如图所示):①若 =43°,求∠COD的度数;②当∠AOD=3∠COE时,求∠COD的度数;(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求的值.【答案】(1)①∵∠BOC=180°−∠AOC,∠AOC=120°∴∠BOC=180°−120°=60°∵∠COE=∠BOC−∠BOE,∠BOE=n=43°∠COD=∠DOE−∠COE,∠DOE=50°∴∠COD=50°−(60°−43°)=33°②当∠DOE在∠BOC之间时,设∠COD=x,则由题意可得:120+x=3(50+x)无解;当OD在∠AOC之间时,设∠COD=x,则由题意可得120-x=3(50-x)解得x=15°所以当∠AOD=3∠COE时,∠COD=15°(2)解:如图,当OE1平分∠BOC时,∵∠AOC=120°∴∠BOC=180°−120°=60°∴n=∠BOE1= ∠BOC=30°;如图,当OE2平分∠BOD2时,n=∠BOE2=∠D2OE=50°;如图,当OE3平分∠COD3时,∵∠E3OC=∠D3OE3=50°,∠BOC=180°−∠AOC=180°−120°=60°∴n=∠BOE3=∠BOC+∠E3OC=60°+50°=110°;如图,当OE4平分∠AOC时,∵∠COE4= ∠AOC= ×120°=60°∠BOC=180°−∠AOC=180°−120°=60°∴n=∠BOE4=∠BOC+∠COE4=60°+60°=120°【解析】【分析】(1) ① 根据平角的定义,由∠BOC=180°−∠AOC 算出∠BOC的度数,根据角的和差,由∠COE=∠BOC−∠BOE ,∠COD=∠DOE−∠COE ,算出∠COD的度数;②扶摇分类讨论:当∠DOE在∠BOC之间时,设∠COD=x,则∠AOD=120+x,∠COE=50+x,根据∠AOD=3∠COE 列出方程,求解即可;当OD在∠AOC之间时,设∠COD=x,则则∠AOD=120-x,∠COE=50-x,根据∠AOD=3∠COE 列出方程,求解即可,综上所述即可得出答案;(2)需要分类讨论:①当OE1平分∠BOC时,根据平角的定义算出∠BOC 的度数,根据角平分线的定义得出n=∠BOE1= ∠BOC=30°;② 当OE2平分∠BOD2时,n=∠BOE2=∠D2OE=50°;③ 当OE3平分∠COD3时, n=∠BOE3=∠BOC+∠E3OC ,④ 当OE4平分∠AOC时, n=∠BOE4=∠BOC+∠COE4,综上所述即可得出答案。
七年级数学上册易错题100道
人教版七年级数学上册易错题100道相交线和平行线易错题(28题)1、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向左拐300,第二次向右拐300 ;B 、第一次向右拐500,第二次向左拐1300;C 、第一次向右拐500,第二次向右拐1300 ;D 、第一次向左拐500,第二次向左拐1300. 2、如图1,AB ∥CD ,那么∠A+∠C+∠AEC =( ) A .360° B .270° C .200° D .180°(1) (2) (3) 3、如图2所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D 4 如图3所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 5 观察图形,下列说法正确的个数是( ) ①过点A 有且只有一条直线AC 垂直于直线l ; ②线段AC 的长是点A 到直线l 的距离。
③线段AB 、AC 、AD 中,线段AC 最短,根据是垂线段最短; ④线段AB 、AC 、AD 中,线段AC 最短,根据是两点之间线段最短; A .1个 B .2个 C .3个 D .4个6、下列说法中正确的是( )A .三角形三条高所在的直线交于一点。
B .有且只有一条直线与已知直线平行。
C .垂直于同一条直线的两条直线互相垂直。
EDCBA4321E DCBACD .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
7、如图,DH ∥EG ∥BC ,且DC ∥EF ,那么图中和∠1相等的角的个数是( )A 、2B 、4C 、5D 、6H C1G D FEB A8 下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A .1 B .2 C .3 D .以上结论皆错9 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138 、;B . 都是10 ;C . 42138 、或4210 、;D . 以上都不对10、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补D .平移变换中,各组对应点连成两线段平行且相等11、如图5,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180 B .270 C .360 D .54012、已知:如图6,AB//CD ,则图中α、β、γ三个角之间的数量关系为( ).A 、α+β+γ=360︒B 、α+β+γ=180︒C 、α+β-γ=180︒D 、α-β-γ=90︒abMP N 1 23 图5A B 120°α25°C D15、把“等角的补角相等”写成“如果…,那么…”形式 16、如图7,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = 17、如图8,把长方形纸片沿折叠,使,分别落在,的位置,若,则等于图7 图818、如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数.CDFEBA19、如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠DNF ,∠1=∠2,那么MG ∥NP ,试写出推理过程.图6ABCDE20 如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论无需证明.APB DC E21如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?22 如图,已知直线 1l ∥2l ,且 3l和1l 、2l 分别交于A 、B 两点,点P 在AB 上。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定,a 可能是正数,0,负数分析:若a 是正数,则a就是负数,若a=0 则a=0 若a 是负数,则a 就是正数.2、在数轴上点A表示的数是7.点B,C表示的两个数互为相反数且C与A之间的距离为2,求点B,C 对应的数.错解:点C与点A 之间的距离为2,点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.剖析:点C与点A之间的距离为2,则点C有可能在点A的左侧也有可能在点A右侧.故要分情况讨论.正解:点C与点A 之间的距离为2,点C在点A的左侧2个单位长度或点C在点A的右侧2个单位长度.① 点C在点A的左侧2个单位长度,则点C表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.② 点C在点A的右侧2个单位长度,则点C表示的数为9.点B 和点C 表示的数互为相反数,B 表示的数为-9.1 1 1 13、.计算:1 5 5 9 9 13 13 17 2001 2005错解:原式=1 1 1 1 1 1 1 1 1 15 5 9 9 13 13 17 2001 20051=120052004=2005剖析:由于学生在长期的学习中形成的思维定式,用类似于解1 1 1 1 11 1 1 1 1方法直接去求解.而忽视本12 23 34 2003 2004 2004 20051 4 1 1 4413 13 17 20011 2005题1 1 4,1 1 4结果中分子是4而不是1.故这样做是错的.5 5 5 9 451正解:原式=55991 1 1 156= (1 )4 2005 = 501.=2005174、计算: 391713 . 2617错解】原式 39 13 17 1326 17 507 21 515 .2错解剖析】本题错误原因是把 3917 看成 39与17 的和,而它应是 39与26 2617 17的和. 26正确解答】原式 39 13 17 13 507 17 5151 .26 2 25、计算:1) 14 61 2 ( 3)2 ;错解剖析】错解一中是将 14计算成 1得到163,错解二中是去括号符号出错解】错解一:原式 =1- 16 =1-16 =1+76=13.=6.错解二:原式 =-1- 1 × 6 =-1- 1 ×6 =-1-76 13 =- . 62-9) -7)2-9) -7)13错得到7正确答案】原式 =-1- 1×( 2-9)6 1=-1- 1 ×(-7)6=- 1+ 76 162) ( 1)4 32 22 ( 1)2.2错解】原式 =1- 9÷ 1=-8.错解剖析】没有按照运算顺序计算,而是先计算 22 ( 3)2 .2正确答案】原式 =1-9× 1 × 144=1-916 7=16.1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2y7、用代数式表示下列语句:1)比 x 与 y 的和的平方小 x 与 y 的和的数;a 的 2倍与b 的1 的差除以 a 与b 的差的立方 .32) 错解: 1) x 2y 2x y 2) 2a 13b a b 3. 6、 用代数式表示下列语句:1) 比 x 与 y 的和的平方小 x 与 y 的和的数;剖析: 2)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3正解:(1)(x y) 2 (x y) (2)12a b3 (a b) 3222)a的2倍与b的1的差除以a与b的差的立方.37373剖析:(1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和 再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2 y 2x y .2a1b正解:(1)(x y)2 (x y) (2)33(a b) 38、已知方程 (m 3)x 4 m 2是关于 x 的一元一次方程. 求:(1) m 的值; (2) 写出这个关于 x 的一元一次方程. 【错解】 m=±3. 【剖析】忘记 m-3≠0 这个条件.m 2 1 【正解】(1)由 m 2 1得 m=-3.m 3 0 (2)-6x +4=-5.9、解方程 7x -1 x 1(x 1) 2(x 1).2 23 1 1 2【错解】 7 x - 1 x 1(x 1) 2(x 1).2 2 342x 3x 3(x 1) 4(x 1) . 42x 3x 3x 3 4x 4 . 32x=-7.7x= .3211 【剖析】 去中括号时 1(x 1)漏乘系数 1 ,另外,同样在这一步去括号时忘 22记了考虑符号问题. 【正解】第一次去分母,得142 x - 3 x (x 1) 4(x 1).2第一次去括号,得 42 x - 3x 3(x 1) 4x 4 .2 第二次去分母,得 84 x- 6x + 3x -3=8x-8. 移项,合并同类项,得 73 x =- 5. 把系数化为 1,得x =10. 解方程 x 1 = 5.错解:(1) x 2 y 2x y2) 2a 1b a b 3.32)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3【错解】由x 1=5 得到x- 1=5.∴ x=6.【剖析】去绝对值符号必须考虑正负性x-1=5 或x-1=-5.【正解】由x 1=5得到x- 1=5或x- 1=- 5.∴ x=6 或x=-4.11、某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付264元,请问张强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20 千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32.∴第一次购买32 千克香蕉,第二次购买18 千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20 千克以上但不超过40 千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32(不符合题意,舍去).答:第一次购买14 千克香蕉,第二次购买36 千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体. 错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为 C 、D 也是柱体.图形 C 因为上下底面不平行,所以不是柱体;图形 D 上下底面 大小不等,所以也不是柱体.正确答案: A 和B 是柱体( A 是圆柱, B 是棱柱).13、已知点 B 在直线 AC 上,AB =6,AC =10,P 、Q 分别是 AB 、AC 的中点,求PQ 的长. 错解: PQ=2.错解分析: 这是一道典型的数形结合题, 用几何的思想, 代数的方法进行计算,重点要画 出符合条件的两种图形 ,注重分类的完备性.正确答案:本题 B 点有在线段 AC 上或在射线 CA 上两种可能.由 P 、Q 分别为 AB 、AC 的 11 中点可知 AP = AB =3,AQ = AC =5,所以 PQ =AQ -AP =2 或 PQ =AQ + AP =8.22AP Q B CB P A Q C所以 PQ 的长为 2 或 8.14、 (1)计算 14° 41′ 25;″×5(2)把 26.29 °转化为度、分、秒表示的形式. 错解一 :( 1) 14°41′25″=×750°205′12=5″72°6′2;5″( 2) 26 . 29°= 26°29.′错解二 :( 1) 14°41′25″=×750°205′12=5″91°7′;5″ ( 2) 26 . 29°= 26°2′.9″剖析:角的度量单位度、分、秒之间是六十进制(即满 60 进1),而不是百进制或十进 制,在由大单位化成下一级小单位时应乘以 60,由小单位化成上一级大单位时应除以 60 ,上述错解均因单位间的进制关系不清而致错.正解:( 1)14°41′25″=×750°205′12=5″73°27′;5″ ( 2) 26 . 29°= 26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+ 17′+0.4×60″=26°17′2.4″15、如图,已知∠ AOC =∠ BOC =∠ DOE =90°,问图中是否有与∠ COE 互补的角?错解:观察图形可知,图中没有与∠ COE 互补的角.剖析:图中真的没有与∠ COE 互补的角吗?还是让我们分析后再下结论吧!由∠ AOC =90°可知:∠AOD 与∠COD 互为余角;由∠ DOE=90°可知:∠ COE与∠ COD 互为余角,根据“同角的余角相等”得∠ COE=∠ AOD.可见,要找与∠ COE 互补的角,可转化为找与∠AOD 互补的角,观察图形知:∠ BOD 与∠ AOD 互为补角,因此与∠ COE 互补的角是∠ BOD .由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠ COE 互补的角,它是∠ BOD .思考:图中有没有与∠ COD 互补的角?。
人教版数学七年级上册全册单元试卷易错题(Word版 含答案)
人教版数学七年级上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
人教版七年级数学上册期末考试易错题-有答案
【点睛】
本题考查的是有理数的加减混合运算熟知有理数的加法法则是解答此题的关键.
14.(新东方)已知abc为有理数且它们在数轴上的位置如图所示.
(1)断:a_____0b_____0c_____0(填“<”或“=”或“>”)
(2)若 求 的值.
【答案】(1)<>>;(2)4
2.(2021·山东七年级期末)计算 的值等于()
A. B. C. D.
【答案】D
【分析】
根据有理数的减法法则计算可得.
【详解】
解: =
故选:D.
【点睛】
本题主要考查有理数的减法解题的关键是掌握有理数减法法则:减去一个数等于加上这个数的相反数.
3.(【新东方】【2021.5.20】【WZ】【初一下】【初中数学】【WZ00145】)若 且 则 的值等于()
【易错2例题】有理数的减法
2.(2021·西安市第五十三中学七年级期末)计算
(1) ;(2) .
【答案】(1) ;(2) .
【分析】
(1)先将有理数减法转化为加法再按加法进行计算即可;
(2)先将有理数减法转化为加法然后利用加法的结合律先将整数与整数相加分数与分数相加.
【详解】
解:(1) ;
(2) .
(6)原式 .
(7)原式 .
(8)原式 .
【点睛】
本题考查有理数的加减混合运算正确运用法则和运算律是解题的关键.
10.(1.有理数(题型篇))已知|a|=2|b|=5
(1)求a+b;
(2)若又有a>b求a+b.
【答案】(1)7或-3或3或-7(2)-3或-7
【分析】
(1)先根据绝对值求出a、b的值再计算a+b;
人教版七年级数学上期末复习易错题典型题整理集训试题提优拔尖
0D C B A 期末复习易错题典型题整理姓名一、选择题1.8708900精确到万位是( )A .870万B .8.70×106C .871×104D .8.71×1062.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( )A .65-B .65C .56-D .563.a 、b 两数的平方差除以a 与b 的差的平方,用代数式表示是 ( )A.()222b a b a -- B.22b a b a -- C.()222b a b a -- D.222b a b a -- 4.当x =-3时,多项式ax 5+bx 3+cx -5的值是7,那么当x =3时,它的值是 ( )A .-3B .-7C .7D .-175.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为40,则满足条件的x 的不同值最多有( )A . 2个B . 3个C . 4个D . 5个a bab+6.若=0,则下列结论中成立的是 ( )A .a b 、是一对不等于0的互为相反数B .a b 、互为倒数C .0a =或0b =D .0a =且0b =7.若一个数的相反数为非负数,则这个数是( )A .正数 B.负数 C.正数或0 D.负数或08.甲、乙两名同学从学校到县城,甲的速度是4千米/小时,乙的速度是6千米/小时,甲先出发1小时,结果乙比甲早到1小时,则学校与县城间的路程是( )A.24千米B.12千米C.10千米D.8千米9.有两根同样长的蜡烛,粗烛可燃烧4小时,细烛可燃烧3小时。
一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现粗烛的长度是细烛的2倍,则停电时间为( )A.2小时B.2小时20分C.2小时24分D.2小时40分10.在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交11.数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( ) A.a c b d +<+ B.a c b d +=+ C.a c b d +>+ D.不确定12.一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( )A 、高12.8%B 、低12.8%C 、高40%D 、高28%二、填空题13.将数轴对折,是表示—3和1的两个点重合,若此时表示—5的点与另一个表示=x x 的点也重合,则 .14.比—4大3的数是 ,比—4大—6的数是 ,比—4的相反数大—4的数是 .15.算式—8—3+1—7按“和”的意义读作 ,按“运算”的意义读作 .16.现有一个不成立的等式“62—60=4”,请移动其中一个数字,使得等式成立,则移动后成立的等式是 .17.甲乙丙丁四个小朋友合买了一个60元的电动玩具,甲付的钱数是其他小朋友付的总钱数的一半,乙付的钱数是其他小朋友付的总钱数的31,丙付的钱数是其他小朋友付的总钱数的,41则丁付了 元.18.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10,两种都会的有7人,设会弹古筝的有m 人,则该班同学共有 人(用含m 的式子表示)19.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次的自己顺序的倒数加1,第1位同学报(111+),第2位同学报(121+),第3位同学报(131+)……这样得到的20个数的积为 . 20.如果两个角的两条边分别互相平行其中一个角45°,则另一个角等于 °. 21.在等号右边的括号内填上适当的项.(1)a b c d a ++-=+( ); (2)a b c d a -+-=-( );(3)a b c d a b ---=-+( ); (4)a b c d a b +++=+-( ).22.如图,边长为a 和3的两个正方形在一起,则阴影部分面积为 . (结果用含有a 的式子表示,并化成最简形式)三、解答题 23.已知0)21(32=-+-b a ,求代数式22222ab b a +-⎪⎭⎫⎝⎛的值.24.甲、乙两工人同时接受一批生产任务,开始工作时,甲先花去212小时改装机器,提高工作效率,因此前4小时结束时,甲比乙少做400个零件,继续工作4小时后,甲反比乙多做4200个零件,问这一天甲、乙各做了多少个零件?25.观察下列各式:(1)-a+b=-(a-b) ; (2) 2-3x=-(3x-2); (3) 5x+30=5(x+6); -x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知的值求22221,21,5b b a b b a +++--=-=+.26.世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母A 、B 、C 、D 、E 的五个大小相同的正方形是展厅,剩余的是四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米. 设展厅的正方形边长为x 米:(1)用含x 米的代数式表示核心筒的正方形边长为 米;(2)求该模型的每个休息厅的图形周长(用含x 的式子表示);(3)若每个展厅的正方形周长比每个休息厅的图形周长少36米,求x 的值.27.大家知道a 的几何意义是:数轴上表示数a 的点到原点之间的距离.如1-a 的几何意义为:表示数轴上表示数a 与数1两点之间的距离.(1)试问 :5+a 的几何意义为:数轴上表示数a 与数 两点之间的距离;(2)根据绝对值的几何意义解决以下问题:设a 、b 、c 为整数,且|a ﹣b |+|c ﹣b |=1,求|c ﹣a |+|a ﹣b |+|b ﹣c |的值.28.一列客车的速度每小时60千米,一列货车的速度是每小时45千米,货车比客车长135米,如果两车在平行轨道上同向行驶,客车从后面赶上货车,它们交叉时间是1分30秒,求各车长度,如果两车在平行的轨道上相向行驶,它们交叉时间要多少秒?29.晚饭后,小明准备出去散步,出去时看了一下表,时间是6点多,时针与分针成90°角.散步回家后,小明又看了一下表,还不到7点,而时针与分针又恰好成90°角,问小明出去了多长时间?30.已知数轴上B A 、两点对应数分别为P ,和42 为数轴上一动点,对应数为x .(1)若的值;的三等分点,直接写出为线段x AB P (2)数轴上是否存在点值;?若存在,求出点距离和为点、点到使x B A P P 10,若不存在,请说明理由。
人教版七年级数学上册考题易错汇总及答案解析
人教版七年级数学上册考题易错汇总及答案解析1.下表是某年 1 月份我国几个城市的平均气温,在这些城市中,平均气温最低的城市是()城市北京上海沈阳广州太原平均气温﹣5.6°C2.3°C﹣16.8°C17.6°C﹣11.2°CA.北京B.沈阳C.广州D.太原【考点】有理数大小比较.【解答】﹣16.8<﹣11.2<﹣5.6<2.3<17.6,∴在这些城市中,平均气温最低的城市是沈阳,故选:B.2.据报告,70 周年国庆正式受阅人数约 12000 人,这个数据用科学记数表示()A.12×104 人B.1.2×104 人C.1.2×103 人D.12×103 人【考点】科学记数法-表示较大的数.【解答】12000 用科学记数法表示为 1.2×104.故选:B.3.下列各式中,大小关系正确的是()A.0.3<﹣B.﹣>﹣C.﹣>﹣D.﹣(﹣)=﹣【考点】相反数;绝对值;有理数大小比较.【解答】A. ,故本选项不合题意;B.∵,∴,故本选项不合题意;C.∵,∴,故本选项不合题意;D. ,故本选项不合题意. 故选:B.4.已知 a>0,b<0,且|a|<|b|,则下列关系正确的是()A.b<﹣a<a<﹣bB.﹣a<b<a<﹣bC.﹣a<b<﹣b<aD.b < a<﹣b<a【考点】绝对值;有理数大小比较.【解答】∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>0,﹣a<b,∴b<﹣a<a<﹣b. 故选:A.5.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则 a﹣b 的值为()A.24B.14C.24 或 14D.以上都不对【考点】绝对值;有理数的加法;有理数的减法.【解答】∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当 a=5,b=﹣19 时,a﹣b=5+19=24,当 a=﹣5,b=﹣19 时,a﹣b=14.综上所述:a﹣b 的值为 24 或 14.故选:C.6.有理数 m,n 在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③;④﹣n﹣m>0.A.1 个B.2 个C.3 个D.4 个【考点】数轴;有理数的加法;有理数的减法.【解答】由数轴知,n<0<m,|n|>|m|,∴m+n<0,n﹣m<0,,﹣n﹣m>0,∴正确的有:①③④共 3 个. 故选:C.7.﹣的倒数是()A.﹣B.C.﹣D.【考点】倒数.【解答】﹣的倒数是﹣,故选:A.8.已知 a,b,c 为有理数,且 a+b﹣c=0,abc<0,则的值为()A.﹣1B.1C.1 或﹣1D.﹣3【考点】绝对值;有理数的减法;有理数的乘法.【解答】∵a+b﹣c=0,∴c﹣b=a,c﹣a=b,a+b=c,∵abc<0,分两种情况:①a、b、c 三个数都是负数,则原式=+﹣=﹣1﹣1+1=﹣1,②a、b、c 三数中有 2 个正数、1 个负数,即 c 是正数,原式=+﹣=﹣1+1﹣1=﹣1,故选:A.9.下列几种说法中,正确的是()A.有理数的绝对值一定比 0 大B.有理数的相反数一定比 0 小C.互为倒数的两个数的积为 1D.两个互为相反的数(0 除外)的商是 0【考点】相反数;绝对值;倒数;有理数的乘法;有理数的除法.【解答】A.有理数的绝对值不一定比 0 大,也可能等于 0,错误;B.有理数的相反数不一定比 0 小,0 的相反数还是 0,错误;C.互为倒数的两个数的积为 1,正确;D.两个互为相反的数(0 除外)的商应该是﹣1,错误;故选:C.10.在代数式中,整式的个数是()A.3B.4C.5D.6【考点】整式.【解答】、3xy、﹣、﹣是整式,故选:B.11.在代数式x﹣y,3a,a2﹣y+ ,,xyz,,中有()A.5 个整式B.4 个单项式,3 个多项式C.6 个整式,4 个单项式D.6 个整式,单项式与多项式个数相同【考点】整式.【解答】单项式有:3a,xyz,共 3 个.多项式有x﹣y,a2﹣y+ 共3 个,所以整式有 6 个. 故选:D.12.下列说法错误的是()A.﹣ x3y 的系数是﹣B.0 是单项式C. xy2 的次数是 2D.3x2﹣9x﹣1 的常数项是﹣1【考点】单项式;多项式.【解答】A.﹣x3y 的系数是﹣,故正确;B.0 是单项式,故正确;C. 的次数为 3,不是 2,故错误;D.3x2﹣9x﹣1 的常数项是﹣1,故正确;故选:C.13.多项式﹣ x3y2﹣x5y2+8 的最高次项是()A.x5y2B.﹣x5y2C.D.8【考点】多项式.【解答】多项式﹣x3y2﹣x5y2+8 的最高次项是﹣x5y2,故选:B.14.去括号正确的是()A.﹣(a﹣1)=a+1B.﹣(a﹣1)=a﹣1C.﹣(a﹣1)=﹣a+1D.﹣(a﹣1)=﹣a﹣1【考点】去括号与添括号.【解答】﹣(a﹣1)=﹣a+1,正确,故选项 C 符合题意;故选:C.15.下列代数式是同类项的是()A. 与 x2yB.2x2y 与 3xy2C.xy 与﹣xyzD.x+y 与 2x+2y【考点】同类项.【解答】A. 与 x2y,所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确;B.2x2y 与 3xy2,所含字母相同,但相同字母的指数不同,不是同类项,故本选项错误;C.xy 与﹣xyz,所含字母不尽相同,不是同类项,故本选项错误;D.x+y 与 2x+2y 是多项式,不是同类项,故本选项错误. 故选:A.16.将四张边长各不相同的正方形纸片按如图方式放入矩形 ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示. 设右上角与左下角阴影部分的周长的差为 l.若知道 l 的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④【考点】整式的加减.【解答】设①、②、③、④四个正方形的边长分别为 a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道 l 的值,则不需测量就能知道正方形④的周长,故选:D.17.若 x=2 是关于 x 的一元一次方程 ax﹣2=b 的解,则 3b﹣6a+2 的值是()A.﹣8B.﹣4C.8D.4【考点】一元一次方程的解.【解答】将 x=2 代入一元一次方程 ax﹣2=b 得 2a﹣b=2∵3b﹣6a+2=3(b﹣2a)+2∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4 即 3b﹣6a+2=﹣4故选:B.18.小明在解方程去分母时,方程右边的﹣1 没有乘 3,因而求得的解为 x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【考点】解一元一次方程.【解答】根据题意,得:2x﹣1=x+a﹣1,把 x=2 代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.19.下列四组变形中,属于移项变形的是()A.由 5x+10=0,得 5x=﹣10B.由,得 x=12C.由 3y=﹣4,得D.由 2x﹣(3﹣x)=6,得 2x﹣3+x=6【考点】等式的性质;解一元一次方程.【解答】A、移项得出 5x=﹣10,故本选项正确;B 、去分母得出 x=12,故本选项错误; C、方程的两边除以 3 得出,y=﹣,故本选项错误; D、去括号得出 2x ﹣3+x=6,故本选项错误;故选:A.20.方程去分母得() A.3(2x+3)﹣x=2(9x﹣5)+6B.3(2x+3)﹣6x=2(9x﹣5)+1 C.3(2x+3)﹣x=2(9x﹣5)+1 D.3(2x+3)﹣6x=2(9x﹣5)+6【考点】解一元一次方程.【解答】方程的两边都乘以 6 可得:3(2x+3)﹣6x=2(9x﹣5)+6.故选:D.21.解方程 4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得 4x﹣4﹣x=2x+1;②移项,得 4x+x﹣2x=4+1;③合并同类项,得 3x=5;④化系数为 1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【考点】解一元一次方程.【解答】方程 4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得 4x ﹣4﹣x=2x+1;②移项,得 4x﹣x﹣2x=4+1;③合并同类项,得 x=5;④化系数为 1,x=5.其中错误的一步是②. 故选:B.22.某班组每天需生产 50 个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了 6 个零件,结果比规定的时间提前 3 天并超额生产 120 个零件,若设该班组要完成的零件任务为 x 个,则可列方程为()A. B.C. D.【考点】由实际问题抽象出一元一次方程.【解答】实际完成的零件的个数为 x+120,实际每天生产的零件个数为 50+6,所以根据时间列的方程为:=3,故选:C.23.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 10 人不能上车,若每辆客车乘 43 人,则只有 1 人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④【考点】由实际问题抽象出一元一次方程.【解答】根据总人数列方程,应是 40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④. 故选:D.24.如图,将正方体的表面展开,得到的平面图形可能是()A.B.C.D.【考点】几何体的展开图.【解答】A.平面图形有凹字形,不能围成正方体,故本选项不合题意;B.平面图形能围成正方体,故本选项符合题意;C.平面图形不能围成正方体,故本选项不合题意;D..平面图形不能围成正方体,故本选项不合题意;故选:B.25.用平面去截正方体,在所得的截面中,不可能出现的是()A.七边形B.六边形C.平行四边形D.等边三角形【考点】认识立体图形;截一个几何体.【解答】∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴在所得的截面中,不可能出现的是七边形,故选:A.26.下列图形折叠后能得到如图的是()A.B.C.D.【考点】展开图折叠成几何体.【解答】A.折叠后①,②,③相邻,故此选项正确;B.折叠后①与③是相对面,不可能是①,②,③相邻,故此选项错误;C.折叠后①与③是相对面,不可能是①,②,③相邻,故此选项错误;D.折叠后②与③是相对面,不可能是①,②,③相邻,故此选项错误.故选:A.27.在图中,∠ACE 的补角、余角分别是()A.∠ECB、∠ECDB.∠ECD、∠ECBC.∠ACB、∠ACDD.∠ACB、∠ACD【考点】余角和补角.【解答】∠ACE 的补角是∠ECB,∠ACE 的余角是∠ECD. 故选:A.28.如图是某个几何体的展开图,则这个几何体是()A.三棱柱B.四棱柱C.四棱锥D.三棱锥【考点】几何体的展开图.【解答】观察图形可知,这个几何体是三棱柱. 故选:A.29.下列说法正确的是()A.两点之间的所有连线中,直线最短B.若点 P 是线段 AB 的中点,则 AP=BPC.若 AP=BP,则点 P 是线段 AB 的中点D.若 CA=3AB,则 CA=CB【考点】线段的性质:两点之间线段最短;两点间的距离.【解答】A、两点之间的所有连线中,线段最短,故本选项错误;B、根据线段中点的定义可知,若 P 是线段 AB 的中点,则 AP=BP,故本选项正确;C、如图:AP=BP,但 P 不是线段 AB 的中点,故本选项错误;D、如图:AB=1,AC=3,此时 CA=CB,故本选项错误.故选:B.30.下列说法中正确的有()①射线比直线小一半;②连接两点的线段叫两点间的距离;③过两点有且只有一条直线;④两点之间所有连线中,线段最短A.1 个B.2 个C.3 个D.4 个【考点】直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;两点间的距离.【解答】①射线比直线小一半,根据射线与直线都无限长,故这个说法错误;②连接两点的线段的长度叫两点间的距离,此这个说法错误;③过两点有且只有一条直线,此这个说法正确;④两点之间所有连线中,线段最短,此这个说法正确;故正确的有 2 个.故选:B.31.直线 a 上有 5 个不同的点 A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【考点】直线、射线、线段.【解答】根据题意画图:由图可知有 AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共 10 条.故选:D.32.某公司员工分别在 A、B、C 三个住宅区,A 区有 30 人,B 区有 15 人,C 区有 10 人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A 区B.B 区C.C 区D.A、B 两区之间【考点】两点间的距离.【解答】∵当停靠点在 A 区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在 B 区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在 C 区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在 A、B 区之间时,设在 A 区、B 区之间时,设距离 A 区 x 米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当 x=0 时,即在 A 区时,路程之和最小,为 4500 米;综上,当停靠点在 A 区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在 A 区.故选:A.33.如图,点 O 在 AB 上,∠AOC=120°,OD,OE 分别为∠AOC.∠BOC 的角平分线,图中大于 0°小于 180°的角中,相等的共有()对.A.6B.5C.4D.3【考点】角平分线的定义.【解答】∵∠AOC=120°,OD,OE 分别为∠AOC.∠BOC 的角平分线,∴∠AOD=∠COD=∠BOC=60°,∠COE=∠BOE=30°,∴∠AOC=∠BOD=120°,∴图形中相等的角共有 5 对,故选:B.34.如图,在△ABC 中,∠C=90°,点 D,E 分别在边 AC,AB 上.若∠B=∠ADE,则下列结论正确的是()A.∠A 和∠B 互为补角B.∠B 和∠ADE 互为补角C.∠A 和∠ADE 互为余角D.∠AED 和∠DEB 互为余角【考点】余角和补角.【解答】∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A 和∠ADE 互为余角. 故选:C.35.有理数 x 在数轴上的位置如图所示,化简|x|﹣3|2﹣x|得 .【考点】数轴;绝对值.【解答】根据题意得 x>2,∴2﹣x<0,∴|x|﹣3|2﹣x|=x﹣3(x﹣2)=x﹣3x+6=﹣2x+6.故答案为:﹣2x+6.36.下列说法:①若|a|=﹣a,则 a 为负数;②若|a|﹣|b|=a+b,则 a>0>b;③若 a>0,a+b>0,ab≤0,则|a|>|b|;④若|a+b|=|a|﹣|b|,则 ab≤0,其中正确的是 .【考点】绝对值;有理数的加法;有理数的乘法.【解答】:①若|a|=﹣a,则 a 为非正数,即 a 为 0 或负数,所以①不正确,;②若|a|﹣|b|=a+b,则 a>0>b,不正确,因为当 a=b=0 时,原等式成立;③若 a>0,a+b>0,ab≤0,则|a|>|b|,正确,因为异号两数相加取绝对值较大的加数的符号;④若|a+b|=|a|﹣|b|,则 ab≤0,正确,因为 a,b 两个数异号,或者其中一个数为 0 即可.故答案为③④.37.单项式的系数是;次数是 .【考点】单项式.【解答】根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是 3.38.多项式 x+7 是关于 x 的二次三项式,则 m= .【考点】多项式.【解答】∵多项式是关于 x 的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即 m≠﹣2,综上所述,m=2,故填空答案:2.39.当 k=时,关于 x,y 的代数式 x6﹣5kx4y3﹣4x6+3x4y3+3 合并后不含x4y3 项.【考点】合并同类项.【解答】关于 x,y 的代数式 x6﹣5kx4y3﹣4x6+3x4y3+3 合并后不含 x4y3 项,即﹣5kx4y3 与 3x4y3 合并以后是 0,∴﹣5k+3=0,解得.故答案为:.40.小马在解关于 x 的一元一次方程=3x 时,误将﹣2x 看成了+2x,得到的解为 x=6,请你帮小马算一算,方程正确的解为 x= .【考点】解一元一次方程.【解答】当 x=6 时,=3×6,解得:a=8,∴原方程是=3x,解得:x=3. 故答案为:3.41.小华同学在解方程 5x﹣1=()x+3 时,把“()”处的数字看成了它的相反数,解得 x=2,则该方程的正确解应为 x= .【考点】解一元一次方程.【解答】设()处的数字为 a,根据题意,把 x=2 代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为 x=.故答案为:.42.已知关于 x 的方程 2mx﹣6=(m+2)x 有正整数解,则整数 m 的值是 .【考点】解一元一次方程.【解答】解关于 x 的方程 2mx﹣6=(m+2)x,得:x= .∵x 为正整数,∴为正整数,又∵m 是整数,∴m﹣2 是 6 的正约数,∴m﹣2=1,2,3,6,∴m=3,4,5,8.43.为了倡导居民节约用水,自来水公司规定:居民每户用水量在 8 立方米以内,每立方米收费 0.8 元;超过规定用量的部分,每立方米收费 1.2 元.小明家 12 月份水费为 18 元,求小明家 12 月份的用水量,设小明家 12 月份用水量为 x 立方米,根据题意,可列方程为 .【考点】由实际问题抽象出一元一次方程.【解答】∵8×0.8=6.4<18,∴x>8,根据题意,可列方程为:8×0.8+1.2(x﹣8)=18,故答案为:8×0.8+1.2(x﹣8)=18.44.王强从 A 处沿北偏东 60°的方向到达 B 处,又从 B 处沿南偏西 25°的方向到达 C 处,则王强两次行进路线的夹角为度.【考点】方向角.【解答】由图可知,∠ABD=60°(两只线平行,内错角相等)由因为∠2=25°所以∠1=60°﹣25°=35°. 故答案为:35°.45.已知关于 x、y 的单项式xm﹣ny2 与单式﹣xym 是同类项,试求整式﹣[5m﹣(2mn+2n﹣3n)]﹣( mn﹣3n)的值.【考点】同类项;整式的加减-化简求值.【解答】∵单项式xm﹣ny2 与单式﹣xym 是同类项,∴m﹣n=1,m=2,解得,m=2,n=1,﹣[5m﹣(2mn+2n﹣3n)]﹣( mn﹣3n)=﹣m+ (2mn+2n﹣3n)﹣( mn﹣3n)=﹣m+mn+n﹣ n﹣ mn+3n=﹣m﹣ mn+ n,当 m=2,n=1 时,原式=﹣×2﹣×2×1+ ×1=﹣ .46.已知有理数 a,b 在数轴上的位置如图所示,解决以下问题:(1)化简:2b+a+|3b﹣a|﹣|2a﹣b|;(2)已知(3x﹣6)2+|2﹣2y|=2b+a+|3b﹣a|﹣|2a﹣b|,请你求出代数式 3xy+2(x2+2y)﹣3(xy+x2)的值.【考点】数轴;绝对值;整式的加减-化简求值.【解答】(1)观察数轴可知:b<0,a>0,∴3b﹣a<0,2a﹣b>0,∴2b+a+|3b﹣a|﹣|2a﹣b|=2b+a+a﹣3b﹣(2a﹣b)=2a﹣b﹣2a+b =0;(2)∵(3x﹣6)2+|2﹣2y|=2b+a+|3b﹣a|﹣|2a﹣b|=0,又∵(3x﹣6)2≥0,|2﹣2y|≥0,∴,∴x=2,y=1;∴3xy+2(x2+2y)﹣3(xy+x2),=﹣x2+4y,=﹣22+4×1,=0.47.设 a,b,c,d 为有理数,=ad﹣bc,当=10 时,求代数式 2(x﹣2)﹣3(x+1)的值.【考点】有理数的混合运算;整式的加减;解一元一次方程.【解答】根据题中的新定义运算方法得:6x﹣4(3x﹣2)=10,去括号得:6x﹣12x+8=10,解得:x=,∴2(x﹣2)﹣3(x+1)=2x﹣4﹣3x﹣3=﹣x﹣7=﹣()﹣7=.∴代数式 2(x﹣2)﹣3(x+1)的值是.48.图 1 是由一副三角板拼成的图案,根据图中提供的信息,解答下列问题:(1)图 1 中,∠EBC 的度数为;(2)能否将图 1 中的三角板 ABC 绕点 B 逆时针旋转 ? 度(0°<幔?90°,如图 2),使旋转后的∠ABE=2∠DBC?若能,求出 ? 的度数,若不能,请说明理由;(3)能否将图 1 中的三角板 ABC 绕点 B 顺时针旋转 ? 度(0°<幔?90°,如图 3),使旋转后的∠ABE=2∠DBC?请直接回答,不必说明理由;答:(填“能”或“不能”)【考点】角的计算.【解答】(1)∠EBC=∠ABC+∠EBD=60°+90°=150°;(2)第一种情况:若逆时针旋转 ? 度(0<幔?60°),如图 2:据题意得 90°﹣幔?2(60?得幔?30°,∴∠EBC=90°+(60°﹣30°)=120°;第二种情况,若逆时针旋转 ? 度(60°≤幔?90°),据题意得 90°﹣幔?2(﹣?60?得幔?70°,∴∠EBC=90°﹣(70°﹣60°)=80°;故∠EBC=∠120°或80°;(3)若顺时针旋转 ? 度,如图 3,据题意得 90°+幔?2(60°+ ?得幔僵?30°∵0<幔?90°,幔僵?30°不合题意,舍去.。
人教版七年级数学上册易错题精选
七年级数学(上)易错题汇总1.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣32.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004C.2004或2005 D.2005或20063.﹣22,(﹣1)2,(﹣1)3的大小顺序是()A.﹣22<(﹣1)2<(﹣1)3B.﹣22<(﹣1)3<(﹣1)2C.(﹣1)3<﹣22<(﹣1)200000D.(﹣1)2<(﹣1)3<﹣224.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________ .5.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣16.下列时刻,时针与分针的夹角为直角的是()A.3时30分B.9时30分C.8时55分D.6时分7.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0 C.72的平方根是7 D.负数有一个平方根8.的算术平方根是()A.±81 B.±9 C.9 D.39.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|= _________ .10.若(﹣ab)103>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>011.若16的平方根是m,﹣27的立方根是n,那么m+n的值为_________ .12.计算:(1)= _________ ;(2)= _________ .(5)= _________ ;(6)= _________ .13.已知3x|n﹣1|+5=0为一元一次方程,则n= _________ .14.如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是_________ .15.已知点B在直线AC上,线段AB=8cm,AC=18cm,p、Q分别是线段AB、AC的中点,则线段PQ= _________ .16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为_________ .17.解方程(1)4(x+0.5)=x+7;(2);(3);(4).18.如图所示,已知C点分线段AB为3:2,D点分线段AC为1:2,DC的长为12cm,求AB 的长.19.已知∠AOB=40°,过点O 引射线OC ,若∠AOC :∠COB=2:3,且OD 平分∠AOB .求∠COD 的度数.20. 已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?21 .已知:如图,DA ⊥AB,DE 平分∠ADC,CE 平分∠BCD,且∠1+∠2=90°.试猜想BC 与AB 有怎样的位置关系,并说明其理由22. 已知:如图所示,CD ∥EF,∠1=∠2,. 试猜想∠3与∠ACB 有怎样的大小关系, 并说明其理由21A E CD B 321F A G E C D B。
人教版七年级上册数学全册单元试卷易错题(Word版 含答案)
人教版七年级上册数学全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)(1)若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;(2)将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?(4)若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.【答案】(1)解:∵OM、ON分别平分∠BOA、∠DOC∴∠AOM=∠BOA,∠AON=∠AOC∵∠MON=∠AOM+∠AON=(∠BOA+∠AOC)∵∠BDO=30°、∠CAO=45°∴∠AOB=90°,∠AOC=45°∴∠MON= (90°+45°)=67.5°答:∠MON的度数为67.5°.(2)解:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x+α=90°,2y+α=45°,∴2x+2y+2α=135°,∴∠MON=x+y+α=67.5°(3)解:(2)的结论成立理由:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x-α=90°,2y-α=45°,∴2x+2y-2α=135°,∴∠MON=x+y-α=67.5°∠MON=x+y-α=67.5°(4)解:在变化,有时∠MON=112.5°。
如图,将三角板OBD从图(1)绕O点逆时针旋转如图所示,设∠AOD=x∵∠BOD=90°,∠AOC=45°∴∠AOB=90°+x,∠DOC=360°-45°-x=315°-x∵OM、ON分别平分∠BOA、∠DOC,∴∠BOM=∠AOB=,∠DON=∠DOC=∴∠MON=∠BOM+∠DON-∠DOB=+-90°=202.5°-90°=112.5°答:在变化,有时∠MON=112.5°.【解析】【分析】(1)利用角平分线的定义,可得出∠AOM=∠BOA,∠AON=∠AOC,再根据∠MON=∠AOM+∠AON,代入计算可解答。
人教版七年级上册数学全册单元试卷易错题(Word版 含答案)
人教版七年级上册数学全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.3.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
人教版七年级上册数学全册单元试卷易错题(Word版 含答案)
人教版七年级上册数学全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD= ∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD= ∠AOC,∠DOE= (n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).【答案】(1)解:∵∠BOC=40°,OD平分∠AOC,∴∠AOD=∠DOC=70°,∵∠DOE=90°,则∠AOE=90°﹣70°=20°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解得:x= ,∴∠AOE=60﹣x=60﹣ =(3)解:设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解得:x= ,∴∠AOE= ﹣ =【解析】【分析】(1)首先根据平角的定义,由∠AOC=∠AOB-∠BOC算出∠AOC的度数,再根据角平分线的定义由∠AOD=∠DOC =∠AOC算出∠AOD的度数,最后根据∠AOE=∠DOE-∠AOD即可算出答案;(2)可以用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE;(3)用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE。
2.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD 平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.【答案】(1)解:BE垂直平分AD,理由:∵AM⊥BC,∴∠ABC+∠5=90°,∵∠BAC=90°,∴∠ABC+∠C=90°,∴∠5=∠C;∵AD平分∠MAC,∴∠3=∠4,∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,∴∠BAD=∠ADB,∴△BAD是等腰三角形,又∵∠1=∠2,∴BE垂直平分AD(2)解:△ABD、△GAE是等边三角形.理由:∵∠5=∠C=30°,AM⊥BC,∴∠ABD=60°,∵∠BAC=90°,∴∠CAM=60°,∵AD平分∠CAM,∴∠4= ∠CAM=30°,∴∠ADB=∠4+∠C=60°,∴∠BAD=60°,∴∠ABD=∠BDA=∠BAD,∴△ABD是等边三角形;∵在Rt△BGM中,∠BGM=60°=∠AGE,在Rt△ACM中,∠CAM=60°,∴∠AEG=∠AGE=∠GAE,∴△AEG是等边三角形.【解析】【分析】(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;根据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.3.将一副三角板如图1摆放在直线MN上,在三角板OAB和三角板OCD中,,, .(1)保持三角板OCD不动,将三角板OAB绕点O以每秒的速度逆时针旋转,旋转时间为t秒.①当 ________秒时,OB平分此时 ________ ;②当三角板OAB旋转至图2的位置,此时与有怎样的数量关系?请说明理由;________(2)如图3,若在三角板OAB开始旋转的同时,另一个三角板OCD也绕点O以每秒的速度逆时针旋转,当OB旋转至射线OM上时同时停止.①当t为何值时,OB平分?②直接写出在旋转过程中,与之间的数量关系.【答案】(1)1.5;;,(2)解:①由题意:,,,所以t为2时,OB平分②当时,当时,当时,【解析】【解答】(1)①当时,即,故答案为【分析】(1)该小题是简单的旋转问题,结合图1即可求得t的值及与的关系该小题第二问涉及角的旋转问题,利用特殊角解决本题就好做多了(2)平分时,根据角平分线的定义即可建立等量关系4.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.5.综合题(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=________.(用含α与β的代数式表示)【答案】(1)解:∵CO⊥AB,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠EOC= ∠AOC= ×90°=45°,∵OF平分∠BOC,∴∠COF= ∠BOC= ×90°=45°,∠EOF=∠EOC+∠COF=45°+45°=90°;(2)解:∵OE平分∠AOD,∴∠EOD= ∠AOD= ×(80+β)=40+ β,∵OF平分∠BOC,∴∠COF= ∠BOC= ×(80+β)=40+ β,∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣β;∠EOF=∠COE+∠COF=40﹣β+40+ β=80°;(3)【解析】【解答】(3)如图2,∵∠AOC=∠BOD=α,∠CO D=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE= (α+β),∴∠COE=∠DOE﹣∠COD= ,如图3,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE= (α﹣β),∴∠COE=∠DOE+∠COD= .综上所述:,故答案为:.【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义得到∠EOD=40+ β,∠COF=40+ β,根据角的和差即可得到结论;(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即可得到结论.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB 的下方.(1)若OM恰好平分∠BOC,求∠BON的度数;(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.【答案】(1)解:∵∠BOC=120°,OM恰好平分∠BOC∴∠BOM=∠BOC=60°又∵∠MON=90°∴∠BON=∠MON−∠BOM=90°−60°=30°(2)解:设的余角为x°,则由题意得:,x=15,3x=45,所以的度数为45°(3)解:(0°< <90°)..【解析】【分析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON−∠BOM,即可求出结果。
人教版七年级上册数学 期末试卷易错题(Word版 含答案)
人教版七年级上册数学期末试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.3.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.4.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册易考易错题
教学目标
1 让学生回忆本学期所学内容哪些知识在运用时较容易出错并列举例子。
2要求学生能够在所举易错例子中找出错误原因并能写出正确答案
3加强学生学会发现问题和解决问题的能力同时培养学生多积累多总结的习惯
教学重难点
在易错题中找出错误原因并能写出正确答案
教学课时2课时
教学过程
一确定有效数字时容易忽略0而出错。
例1 近似数0.40350有几个有效数字?
常见错解近似数0.40350 有3个有效数字分别是4,3,5
错解分析
正确答案
二应用乘法分配律时运算符号出错
例2 计算(-48)*(1-1/12+3/4)
常见错解原式=-48-4+36=-16
错解分析
正确答案
三违背有理数的运算顺序出错
例3 计算-4-(-12)÷(-3)
常见错解原式=-4+12÷(-3)=8÷(-3)=-8/3
错解分析
正确答案
四对乘方的意义理解不透而出错
例4 计算-2^2-50÷(-5)^2-1
常见错解原式=4-50÷25-1=4-2-1=1
错解分析
正确答案
五错用运算律而出错
例五计算12÷(1/2-1/4+1/6)
常见错解原式=12÷1/2-12÷1/4+12÷1/6=24-48+72=48
错解分析
正确答案
六确定单项式的系数和次数出错
例六单项式-2a^2b∏/3的系数是__次数是__
常见错解-2/3,4次
错解分析
正确答案
七同类项的概念把握不准而出错
例七判断下列各项是否是同类项
-x^2y与 3yx^2 (2)2^3 与 x^3
常见错解(1)不是(2)是
错解分析
正确答案
八去括号法则理解不透而出错
例八计算 3x-[x-2(x-y)]
常见错解1原式=3x-(x-2x-2y)=3x-x+2x-2y=4x-2y
常见错解2原式=3x-(x-2x+y)=3x-(-x+y)=3x+x-y=2x-y 错解分析
正确答案
九移项没变号而出错
例九解方程 2x-3=x+4
常见错解 2x-x=4-3
X=1
错解分析
正确答案
十去括号没变号而出错
例10 解方程2*(x-3)-3*(x+1)=6
常见错解 2x-3-3x+3=6
2x-3x=6
-x=6
X=-6
错解分析
正确答案
十一去分母时出错
例11 解方程(4-x)/3=1-(x-3)/5
常见错解1 5*(4-x)=1-3*(x-3)
20-5x=1-3x+9
-5x+3x=1+9-20
-2x=-10
X==5
常见错解2 5*(4-x)=15-3x-9
20-5x=15-3x-9
-5x+3x=15-9-20
-2x=-14
X=7
错解分析
正确答案
随堂练习
(1)近似数0.302050有几个有效数字?
(2)计算(-48)*(1-1/6+3/4)
(3)计算-6-(-24)÷(-3)
(4)计算-3^2-50÷(-5)^2-1
(5)计算2÷(1/2-1/4+1/6)
(6)单项式(-3ab^3)/5的系数和次数分别是什么
(7)判断下列各组十分是同类项(1)-3a^2b 与 10ba^2 (2) 3^2与 x^2(8)计算3a-[a-2(a-b)]+b
(9)解方程 3x-3=x+1
(10)解方程 3(x-3)-2(2x-1)=6
(11)解方程 (4-x)/3=(x-3)/5-1
小结我们这节课有什么收获?
作业。