对数函数的测试试卷
中职物理指数函数与对数函数测试题
中职物理指数函数与对数函数测试题一、选择题1.指数函数与对数函数是下列哪一组函数关系?()A.反功能关系B.反比例关系C.正比例关系D.互为逆运算关系2.根据以下函数对应关系,选择出指数函数的图象,可以是直线方程的是()A.$y=2^x$B.$y=\log_2 x$C.$y=2x$D.$y=\frac{1}{2^x}$3.下列函数中,属于对数函数的是()A.$y=x^2$B.$y=\frac{1}{x}$C.$y=\log_2 x$D.$y=3x+2$4.下列哪组函数中,属于指数函数的一对反函数?()A.$y=10^x$和$y=\log_{10} x$B.$y=e^x$和$y=\ln x$C.$y=2^x$和$y=\log_2 x$D.$y=\frac{1}{2^x}$和$y=\log_{\frac{1}{2}} x$二、解答题1.写出指数函数与对数函数的定义,并说明它们的特点。
2.利用对数函数的特性,求解以下方程:$$2^x=8$$3.已知指数函数$y=2^x$,试回答以下问题:(1)$x=0$时,$y=\square$(2)当$x$取什么值时,$y=8$?三、计算题1.计算以下函数的值:(1)$y=2^3$(2)$y=\log_2 16$2.已知指数函数$y=2^x$和对数函数$y=\log_2 x$,求解以下方程:(1)$2^x=\frac{1}{4}$(2)$x=\log_2 64$四、应用题1.小明在银行存了6000元,按年利率4.2%计算,如果按复利方式,求5年后他的本息和。
2.某商品的初始价格为500元,假设每年下降10%,求经过多少年后商品的价格将降到400元以下?五、拓展题1.用函数的定义求解以下方程:$$2^{2x}=\frac{1}{16}$$2.设$y=f(x)$为指数函数,且$f(2)=4$,$f(3)=8$,求$f(4)$。
3.用指数函数的性质计算以下函数的极限:$$\lim_{x\to+\infty}\frac{e^x}{x^2+3}$$4.用对数函数的性质计算以下函数的极限:$$\lim_{x\to0}\frac{\ln(2+x)}{x}$$5.简单介绍一下指数函数与对数函数在生活中的应用。
高一数学《指数函数与对数函数》测试题(含答案解析)
高一数学《指数函数与对数函数》测试题(含答案解析)一、选择题:1、已知(10)xf x =,则(5)f =( ))A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >¹,下列说法中,正确的是(,下列说法中,正确的是( ))①若M N =则log log aa M N =; ②若loglog aaM N =则M N =;③若22log log a a M N =则M N =; ④若M N =则22log log a aM N=。
A 、①②③④、①②③④ B 、①③、①③ C 、②④、②④ D 、②、②3、设集合2{|3,},{|1,}xS y y x R T y y x x R ==Î==-Î,则S T 是 ( )) A 、Æ B 、T C 、S D 、有限集、有限集 4、函数22log (1)y x x =+³的值域为(的值域为( ))A 、()2,+¥B 、(),2-¥C 、[)2,+¥D 、[)3,+¥5、设 1.50.90.4812314,8,2y y y -æö===ç÷èø,则(,则( ))A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 6、在(2)log(5)a b a -=-中,实数a 的取值范围是(的取值范围是( )) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++×等于(等于( ))A 、0B 、1C 、2D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是(表示是( ))A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a -- 9、若21025x=,则10x-等于(等于()) A 、15 B 、15- C 、150 D 、16251010、若函数、若函数2(55)xy a a a =-+×是指数函数,则有(是指数函数,则有( ))A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ¹ 11、当1a >时,在同一坐标系中, 函数xy a -=与log xa y =的图象是图中的(的图象是图中的( ))12、已知1x ¹,则与x 3log 1+x 4log 1+x5log 1相等的式子是(相等的式子是( )) A 、x 60log 1 B 、3451log log log x x x ×× C 、 60log 1x D 、34512log log log x x x ×× 1313、、若函数()l o g (01)af x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ))A 、24B B、、22C C、、14D D、、121414、下图是指数函数(、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)x y d =x的图象,则的图象,则a 、b 、c 、d 与1的大小关系是(的大小关系是( ))A 、1a b c d <<<<B B、、1b a d c <<<<C 、1a b c d <<<<D D、、1a b d c <<<< 1515、若函数、若函数my x +=-|1|)21(的图象与x 轴有公共点,轴有公共点,则m 的取值范围是(的取值范围是( ))A 、1m £-B B、、10m -£<C C、、1m ³D D、、01m <£二、填空题:1616、指数式、指数式4532-ba 化为根式是化为根式是 。
初升高数学暑假衔接(人教版)综合测试第4章:指数函数与对数函数(教师版)
第4章:指数函数与对数函数基础检测卷(试卷满分150分,考试用时120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.函数()32x f x a -=+(0a >且1a ≠)的图象恒过定点()A .()0,1B .()0,3C .()3,3D .()4,1【答案】C【解析】对于函数()f x ,则30x -=,可得3x =,则()0323f a =+=,所以,函数()32x f x a -=+(0a >且1a ≠)的图象恒过定点坐标为()3,3.故选:C.2.设3484log 4log 8log log 16m ⋅⋅=,那么m 等于()A .92B .9C .18D .27【答案】B【解析】348lg 4lg8lg lg log 4log 8log 2lg3lg 4lg8lg3m mm ⋅⋅=⨯⨯== ,lg 2lg3lg9m ∴==,9m ∴=,故选:B.3.函数()()23log 1f x x =+的值域为()A .()0,∞+B .[)0,∞+C .()1,+∞D .[)1,+∞【答案】B【解析】令21u x =+,则1u ≥,又3log y u =在[)1,+∞上单调递增,所以()233log 1log 10x +≥=,故函数()f x 的值域为[)0,∞+.故选:B .4.碘—131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘—131会衰变为其他元素).今年3月1日凌晨,在一容器中放入一定量的碘—131,到3月25日凌晨,测得该容器内还剩有2毫克的碘—131,则3月1日凌晨,放入该容器的碘—131的含量是()A .8毫克B .16毫克C .32毫克D .64毫克【答案】B【解析】设3月1日凌晨放入该容器的碘—131的含量是x 毫克,由题意,3月1日凌晨到月25日凌晨共经历了3个半衰期,所以31()22x ⋅=,解得16x =,即放入该容器的碘—131的含量是16毫克.故选:B5.若函数(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩对任意12,x x ≠都有2121()()0f x f x x x -<-,则实数a 的取值范围是()A .()01,B .103⎛⎫⎪⎝⎭,C .]1(,17D .1173⎡⎫⎪⎢⎣⎭,【答案】D 【解析】由2121()()0f x f x x x -<-得,()f x 在R 上是减函数,则有01310314log 1a a a a a <<⎧⎪-<⎨⎪-+≥⎩,解得1173a ≤<.故选:D.6.已知函数(log )a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图所示,则下列结论成立的是()A .1,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<<【答案】D【解析】由函数图象可知函数为单调递减函数,结合(log )a y x c =+可知01a <<,当1x =时,log 1)0,1,0(1a c c c +<∴+>∴>,当0x =时,log 0,01a c c >∴<<,故01c <<,故选:D7.函数32()236f x x x x =-+-在区间[2,4]-上的零点必属于区间()A .[2,1]-B .[2.5,4]C .[1,1.75]D .[1.75,2.5]【答案】D【解析】解法一:二分法由已知可求得,(2)280f -=-<,(1)40f =-<,37(2.5)08f =>,(4)380f =>,97(1.75)064f =-<.对于A 项,因为()(2)10f f ->,所以A 项错误;对于B 项,因为()()2.540f f >,所以B 项错误;对于C 项,因为()()1 1.750f f >,所以C 项错误;对于D 项,因为()()1.75 2.50f f <,所以D 项正确.解法二:因为()()322()23623f x x x x x x =-+-=-+,所以()20f =,即函数32()236f x x x x =-+-在区间[2,4]-上的零点为2,故D 正确.故选:D.8.已知1312a ⎛⎫= ⎪⎝⎭,21log 3b =,121log 3c =,则()A .a b c >>B .a c b>>C .c a b>>D .c b a>>【答案】C【解析】因为12x y ⎛⎫= ⎪⎝⎭在R 上单调递减,故1103111222⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即1,12a ⎛⎫∈ ⎪⎝⎭,因为2log y x =在()0,∞+上单调递增,故221log log 103b =<=,因为12log y x =在()0,∞+上单调递减,故112211log log 132=>=c ,故c a b >>.故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列运算中正确的是()A .383log 8log 5log 5=B136a =C .若114a a -+=,则11223a a -+=D .()2log 71ln ln e 72-⎛⎫+= ⎪⎝⎭【答案】BD【解析】对于选项A ,由换底公式可得353log 8log 8log 5=,故A 不正确;对于选项B22313333262a a a a +=⋅==,故B 正确;对于选项C ,设1122a a t -+=()0t >,两边分别平方可得122a a t -++=,因为114a a -+=,所以216t =,故11224a a -+=,故C 不正确;对于选项D ,()22log 7log 71ln ln e 2ln17072-⎛⎫+=+=+= ⎪⎝⎭,故D 正确.故选:BD .10.关于函数()()01xf x a a a =>≠,且与函数()()log 01a g x x a a =>≠,且说法正确的有()A .()()f x g x 与互为反函数B .()()f x g x 与的图像关于原点对称C .()()f x g x 与必有一交点D .()()f x g x 与的图像关于y x =对称【答案】AD【解析】()()0,1xf x a a a =>≠与函数()()log 0,1a g x x a a =>≠是互为反函数,图像关于y x =对称,故AD 选项正确;()()f x g x 与的图像不关于原点对称,故B 选项错误;当1a >时,()()f x g x 与没有交点,故C 选项错误;故选:AD.11.(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是()A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【解析】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确.故选:ACD .12.关于函数()|ln |2||f x x =-,下列描述正确的有()A .()f x 在区间(1,2)上单调递增B .()y f x =的图象关于直线2x =对称C .若1212,()(),x x f x f x ≠=则124x x +=D .()f x 有且仅有两个零点【答案】ABD【解析】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .三、填空题:本题共4小题,每小题5分,共20分13.求函数y =的定义域______.【答案】(,3][1,)-∞-⋃+∞【解析】要使原函数有意义,则2ln(22)0x x +-≥,即2221x x +-≥,解得3x ≤-或1x ≥.所以,函数()f x =(,3][1,)-∞-⋃+∞.故答案为:(,3][1,)-∞-⋃+∞14.设a ∈R ,22()()21x xa a f x x ⋅+-=∈+R ,()f x 为奇函数,则a 的值为__________.【答案】1【解析】要使()f x 为奇函数,∵x ∈R ,∴需()()0f x f x +-=,∴()()1222,212121x x x xf x a f x a a +-=--=-=-+++,由12202121x x x a a +-+-=++,得()2212021x x a +-=+,1a ∴=.故答案为:1.15.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为________.(精确到0.01)【答案】1.56【解析】因为(1.5625)0.003f ≈,(1.5562)0.029f ≈-,即(1.5625)(1.5562)0f f ⋅<,所以由零点存在定理可知()f x 的零点在()1.55621.5625,之间,近似值为1.56.故答案为:1.56.16.若方程2310x ax +-=的两根分别在区间(1,0)-和(0,1)内,则实数a 的取值范围是__________.【答案】(2,2)-【解析】令()231f x x ax =+-,因为方程2310x ax +-=的两根分别在区间(1,0)-和(0,1)内,所以()()()131********f a f f a ⎧-=-->⎪=-<⎨⎪-=+->⎩,解得22a -<<,故答案为:(2,2)-四.解答题:本小题共6小题,共70分。
对数函数测试题及答案
对数函数测试题及答案对数与对数函数测试题一、选择题。
1.log89的值就是log23a.()23b.1c.d.2322.若log2[log1(log2x)]?log3[log1(log3y)]?log5[log1(log5z)]=0,则x、y、z的大小 235关系是a.z<x<yb.x<y<z3c.y<z<xc.0d.z<y<xd.()3.未知x=2+1,则log4(x-x-6)等同于a.()32b.5412()4.已知lg2=a,lg3=b,则lg12等同于lg15a.2a?b1?a?bb.a?2b1?a?bc.2a?b1?a?bd.a?2b1?a?b()5.未知2lg(x-2y)=lgx+lgy,则x的值ya.1b.4c.1或4c.(d.4或16()6.函数y=log1(2x?1)的定义域为2a.(1,+∞)22b.[1,+∞)1,1]2d.(-∞,1)()7.未知函数y=log1(ax+2x+1)的值域为r,则实数a的值域范围就是2a.a>1xb.0≤a<1c.0<a<1c.ln5d.0≤a≤1d.log5e()()8.已知f(e)=x,则f(5)等于a.e5b.5e9.若f(x)?logax(a?0且a?1),且f?1(2)?1,则f(x)的图像是yyxoxyxoyxooabcd110.若y??log2(x?ax?a)在区间(??,1?3)上就是增函数,则a的值域范围就是() a.[2?23,2]22b.?2?23,2c.2?23,2?d.2?23,2()11.设集合a?{x|x?1?0},b?{x|log2x?0|},则a?b等于a.{x|x?1}b.{x|x?0} c.{x|x??1}d.{x|x??1或x?1}12.函数y?lnx?1x?1,x?(1,??)的反函数为xa.y?e?1ex?1,x?(0,??)b.y?ex?1ex?1,x?(0,??)c.y?ex?1ex?1,x?(??,0)d.y?ex?1ex?1,x?(??,0)二、填空题.13.计算:log6.25+lg12.51?log23100+lne+2=.14.函数y=log24(x-1)(x<1=的反函数为__________.15.已知m>1,试比较(lgm)0.9与(lgm)0.8的大小.16.函数y=(log21x)-log21x+5在2≤x≤4时的值域为______.44三、答疑题.17.已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.2)(18.已知函数f(x)=lg[(a-1)x+(a+1)x+1],若f(x)的定义域为r谋实数a的值域范围.19.已知f(x)=x+(lga+2)x+lgb,f(-1)=-2,当x∈r时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,先行比较|loga(1-x)|与|loga(1+x)|的大小.322221.未知函数f(x)=loga(a-a)且a>1,(1)求函数的定义域和值域;(2)探讨f(x)在其定义域上的单调性;(3)证明函数图象关于y=x等距.22.在对数函数y=log2x的图象上(如图),有a、b、c三点,它们的横坐标依次为a、a+1、xa+2,其中a≥1,谋△abc面积的最大值.4对数与对数函数测试题参考答案一、选择题:adbcbcdcbaab二、填空题:13.三、答疑题:17.解析:先求函数定义域:由2-ax>0,得ax<2又a就是对数的底数,∴a>0且a≠1,∴x<2513x0.90.8,14.y=1-2(x∈r),15.(lgm)≤(lgm),16.?y?8242a2>1,∴a<2a由递增区间[0,1]应当在定义域内可以得又2-ax在x∈[0,1]就是减至函数∴y=loga(2-ax)在区间[0,1]也是减函数,由复合函数单调性可知:a>1∴1<a<218、求解:依题意(a-1)x+(a+1)x+1>0对一切x∈r恒设立.当a-1≠0时,其充要条件是:2?5?a?1?0Champsaura<-1或a>?223(a?1)?4(a?1)?0222又a=-1,f(x)=0满足题意,a=1,不合题意.所以a的取值范围是:(-∞,-1]∪(5,+∞)319、解析:由f(-1)=-2,得:f(-1)=1-(lga+2)+lgb=-2,解之lga -lgb=1,∴a=10,a=10b.b22又由x∈r,f(x)≥2x恒设立.言:x+(lga+2)x+lgb≥2x,即x+xlga+lgb≥0,对x∈r恒设立,由δ=lga-4lgb≤0,整理得(1+lgb)-4lg b≤0即(lgb-1)≤0,只有lgb=1,不等式成立.即b=10,∴a=100.∴f(x)=x+4x+1=(2+x)-3当x=-2时,f(x)min=-3.522222。
新课程必修第一册《指数函数与对数函数》基础测试题及答案解析
新课程必修第一册《指数函数与对数函数》基础测试题及答案解析时间:120分钟 满分:150分一、选择题(本大题共8小题,每小题5分,共40分) 1.若a<12,则化简42a -12的结果是( )A .2a -1B .-2a -1C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( )A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.若a>1,则函数y =a x与y =(1-a)x 2的图象可能是下列四个选项中的( )4.函数f(x)=ln(x +1)-2x的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)5.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( )A .增函数且f(x)>0B .增函数且f(x)<0C .减函数且f(x)>0D .减函数且f(x)<06.已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x>02x, x≤0,则f(f(19))等于( )A .4B .14C .-4D .-147.函数f(x)=4x+12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称8.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列函数中,是奇函数且存在零点的是( )A .y =x 3+x B .y =log 2x C .y =2x 2-3D .y =x |x |10.下列说法正确的是( ) A .函数()1f x x=在定义域上是减函数 B .函数()22xf x x =-有且只有两个零点 C .函数2xy =的最小值是1D .在同一坐标系中函数2xy =与2xy -=的图象关于y 轴对称11.若函数1xy a b =+-(0a >,且1a ≠)的图像经过第一、三、四象限,则下列选项中正确的有( ) A .1a >B .01a <<C .0b >D .0b <12.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,设函数f (x )=1⊕2-x,则下列命题正确的有( )A .f (x )的值域为[1,+∞)B .f (x )的值域为(0,1]C .不等式f (x +1)<f (2x )成立的范围是(-∞,0)D .不等式f (x +1)<f (2x )成立的范围是(0,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13. 函数()()2lg lg x f x x =-的零点为________. 14.函数f(x)=ax -1+3的图象一定过定点P ,则P 点的坐标是________.15.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.16.若函数f (x )=log a x (a >0,且a ≠1)在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a +m =______. 三、解答题(本大题共6小题,共70分) 17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-;(2) 设log a 2=m ,log a 3=n ,求a 2m +n的值;18.(12分)(1) log 49-log 212+5lg210-.(2)12lg 25lg 2lg ++()1lg 0.01+-; 19.(12分)设函数f(x)=2x+a 2x -1(a 为实数).(1)当a =0时,若函数y =g(x)为奇函数,且在x>0时g(x)=f(x),求函数y =g(x)的解析式;(2)当a<0时,求关于x 的方程f(x)=0在实数集R 上的解. 20.(12分)已知函数f (x )=log ax +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分) 已知函数2328()log 1mx x nf x x ++=+. (Ⅰ)若4,4m n ==,求函数()f x 的定义域和值域;(Ⅱ)若函数()f x 的定义域为R ,值域为[0,2],求实数,m n 的值.答案及解析:一、单选题1.C [∵a <12,∴2a -1<0.于是,原式=41-2a2=1-2a .]2.C [由函数的解析式得:⎩⎪⎨⎪⎧lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵a >1,∴y =a x在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 4.A f(1)=ln2-2=ln 2e 2<ln1=0,f(2)=ln3-1=ln 3e>ln1=0,所以函数f(x)=ln(x +1)-2x的零点所在的大致区间是(1,2).5.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]6.B [根据分段函数可得f (19)=log 319=-2,则f (f (19))=f (-2)=2-2=14.]7.D 易知f(x)的定义域为R ,关于原点对称.∵f(-x)=4-x+12-x =1+4x2x =f(x),∴f(x)是偶函数,其图象关于y 轴对称.8.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减, 所以log 0.44>log 0.46;B 选项中函数y =1.01x在R 上是增函数, 所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增, 所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.] 二、多选题9.解析:选AD A 中,y =x 3+x 为奇函数,且存在零点x =0,与题意相符;B 中,y =log 2x 为非奇非偶函数,与题意不符;C 中,y =2x 2-3为偶函数,与题意不符;D 中,y =x |x |是奇函数,且存在零点x =0,与题意相符. 10.解析:对于A ,()1f x x=在定义域上不具有单调性,故命题错误; 对于B ,函数()22xf x x =-有三个零点,一个负值,两个正值,故命题错误;对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2﹣x 的图象关于y 轴对称,命题正确.故选CD 11.解析:因为函数1xy a b =+- (0a >,且1a ≠)的图像经过第 一、三、四象限,所以其大致图像如图所示:由图像可知函数为增函数,所以1a >.当0x =时,110y b b =+-=<,故选AD.12.解析:选AC 由函数f (x )=1⊕2-x,有f (x )=⎩⎪⎨⎪⎧1,1≥2-x,2-x ,1<2-x,即f (x )=⎩⎪⎨⎪⎧2-x,x <0,1,x ≥0,作出函数f (x )的图象,如图所示,根据函数图象得f (x )的值域为[1,+∞),故A 正确,B 错误;若不等式f (x +1)<f (2x )成立,由函数图象知,当2x <x +1<0即x <-1时成立,当⎩⎪⎨⎪⎧2x <0,x +1≥0即-1≤x <0时也成立.所以不等式f (x +1)<f (2x )成立时,x <0.故C 正确,D 错误.故选A 、C. 三、填空题13. 解析:由题知:()2lg lg 0x x -=,得(l g 1g )l 0x x -=,∴lg 0x =或lg 1x =,∴1x =或10x =.故答案为:1x =或10x = 14.(1,4)解析 由于函数y =a x恒过(0,1),而y =ax -1+3的图象可看作由y =a x的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4). 15.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2.16.解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f (4)=log a 4=2⇒a =2,所以m =log 212=-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a +m =2-1=1;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12=log a 12=2⇒a =22,所以m =log 224=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意. 答案:1 17.解 (1)原式=1-0+1-22-()1442-=1+14-2-1=1+14-12=34.(2) ∵log a 2=m ,log a 3=n , ∴a m =2,a n=3. ∴a 2m +n=a 2m ·a n =(a m )2·a n =22·3=12.18.解 (1) 原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.(2) ()11222lg 252100.1-⎡⎤⨯⨯⨯⎢⎥⎣⎦()172227lg 521010lg 102⎛⎫=⨯⨯⨯==⎪⎝⎭;19.解 (1)当a =0时,f (x )=2x-1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x-1) =-(12)x+1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x-1, x ≥0-12x+1, x <0.(2)f (x )=0,即2x+a2x -1=0,整理,得:(2x )2-2x+a =0, 所以2x=1±1-4a 2,又a <0,所以1-4a >1,所以2x=1+1-4a2, 从而x =log 21+1-4a2.20.解 (1)要使此函数有意义,则有⎩⎪⎨⎪⎧x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log ax +1x -1=-f (x ). ∴f (x )为奇函数.f (x )=log a x +1x -1=log a (1+2x -1),函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减; 当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增. 21.解 ∵f (x )=log 2x2·log 2x4=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2=(log 2x -32)2-14,∵-3≤12log x ≤-32.∴32≤log 2x ≤3. ∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 (Ⅰ)若4,4m n ==,则232484()log 1x x f x x ++=+,由2248401x x x ++>+,得到2210x x ++>,得到1x ≠-,故定义域为{}1x x ≠-.令224841x x t x ++=+,则2(4)840t x x t --+-= 当4t =时,0x =符合.当4t ≠时,上述方程要有解,则2644(4)0,t t ⎧∆=--≥⎨≠⎩,得到04t ≤<或48t <≤,又1x ≠-,所以0t ≠,所以08t <≤,则值域为3(,log 8]-∞.(Ⅱ)由于函数()f x 的定义域为R ,则22801mx x nx ++>+恒成立,则06440m mn >⎧⎨-<⎩,即016m mn >⎧⎨>⎩,令2281mx x nt x ++=+,由于()f x 的值域为[0,2],则[1,9]t ∈,而 2()80t m x x t n --+-=,则由644()()0,t m t n ∆=---≥解得[1,9]t ∈ ,故1t =和9t =是方程644()()0t m t n ---=即2()160t m n t mn -++-=的两个根,则10169m n mn +=⎧⎨-=⎩,得到55m n =⎧⎨=⎩,符合题意.所以5,5m n ==.。
(完整版)中职数学第一册指数函数、对数函数测试题
232015级建筑部3月份月考数学测试题第I 卷(选择题,共60分)一、选择题(本大题共20小题,每小题3分,共60分。
在每小题所给出的四个选项中,只有一个符合 题目要求,不选、多选、错选均不得分) 1、 下列函数是幕函数的是( A y x 3; B yx 3; C y3x ; D y log ? x2、 数列-3,3,-3,3,…的一个通项公式是( A.a n =3(-1)n+1B .a n =3(-1)C.a n =3-(-1) D. a n =3+(-1)3、对数log 31的值正确的是() A. 0B.1C. 2D.1 4、将对数式log2 —4以上都不对2化成指数式可表示为()1A. 24 2B.D.5、若指数函数的图像经过点 1乙 ,则其解析式为A. y 2xB . yC. 4xD.6、下列运算中, 正确的是34A. 54 5亍 53B. 54 - 5C.354D.A a 1 ;Ba 1;C0 a 1&将对数式 ln x 2化为指数式为()A.x 3102B. x =2C.x = e D.7、已知log a 2 log a 3,则a 的取值范围是( 9、3 2814的计算结果为(231A. 3B.9C.丄 D.110. 下列函数,在其定义域内,既是奇函数又是增函数的是( 1A. y x 2B. y 2xC. y11. 已知 log 0.5 b v log 0.5 a vlog 0.5 c ,贝U( b a c (A ) 2 > 2 > 2 (C ) 2c >2b > 2a12. 三个数0.73、log 30.7、30.7的大小关系是 x 3 D.)(B ) 2 (D ) 2y log 2 xb c> 2 > 2a b> 2 > 23 0.7A. 0.7 3 log 3 0.7B. 30.7 log 30.7 30.7 3 0.7C. log 3 0.7 0.7 3D. 0.7log 3 0.7 30.7313.下列各组函数中,表示同一函数的是( A. 2x 与y x B. x 2log 2 2x D. C. y 15.设函数f(x)a x 与y x 在同一坐标系下的图象可能是( y yixxCO-1z-1XDlog a X1),则 f (8)A. 2B.16.已知 f(x)log 2X,x x 2 9,x (0, (A. 16B. 8 1 2),则 f[f(、7)] ,0) C. 4 C. 3D. 2 D.17.计算 log 2 1.25 log 2 0.2 A. 2 B. C. 18.函数 f (x) 3x 的定义域是( A. x x 3B. C. x x 3 D.D.19. 函数f(X)e x是( )A.奇函数,且在0, 为增函数B.偶函数,且在0, 为增函数C.奇函数,且在,0为减函数D.偶函数,且在,0为增函数20. 若函数y log2(ax2 3x a)的定义域为R,则a的取值范围是( )1 3 1 3A. ( , )B. ( , )C. ( , )D.(,)2 2 2 22015级建筑部3月份月考数学测试题第口卷(非选择题,共60分)二、填空题(每空4分,共20分。
对数函数练习题(含答案)精选全文完整版
可编辑修改精选全文完整版对数函数一、选择题1.设0.32a =,20.3b =,2log 0.3c =,则,,a b c 的大小关系( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<2.已知0.1 1.32log 0.3,2,0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a <<3.式子25123lg lg lg +-= ( )A.2B.1C.0D.﹣24.使式子 2(1)log (1)x x -- 有意义的 x 的值是( )A. 1x <- 或 1x >B. 1x > 且 2x ≠C. 1x >D. 2x ≠5.函数()()22log 23f x x x =+-的定义域是( )A. []3,1-B. ()3,1-C. (][),31,-∞-⋃+∞D. (,3)(1,)-∞-⋃+∞6.已知0a >,且1a ≠,函数x y a =与log ()a y x =-的图像只能是图中的( ) A. B. C. D.7.函数()2()ln 28f x x x =--的单调递增区间是( )A. (),2-∞-B. (),1-∞C. ()1,+∞D. ()4,+∞ 8.函数()()20.5f log 2x x x =-++的单调递增区间为( ) A. 11,2⎛⎫- ⎪⎝⎭ B. 1,22⎛⎫ ⎪⎝⎭ C. 1,2⎛⎫+∞ ⎪⎝⎭ D.前三个答案都不对二、填空题9.计算: =-⨯5log 3132log 9log 125278__________.10.计算: 4413log 3log 32⨯=__________.11.如图所示的曲线是对数函数log a y x =当a 取4个不同值时的图像,已知a 的值分别为4313,,,3510,则相应于1234,,,C C C C 的a 值依次为__________.12.函数()()log 21a f x x =--(0,)a a >≠的图像恒过定点__________.13.函数()log 23a y x =++ (0a >且1a ≠)的图像过定点__________.14.若3436x y ==,则21 x y+=__________. 15.已知()()0.450.45log 2log 1x x +>-,则实数x 的取值范围是______.三、解答题16.解不等式: ()()2log 4log 2a a x x ->-.17. 求函数()22log 65y x x =-+的定义域和值域.18.求函数212log (32)y x x =+-的值域.19.已知()()4log 41x f x =-.1.求()f x 的定义域;2.讨论()f x 的单调性;3.求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的值域.20.已知指数函数()(0,1)x f x a a a =>≠且.(1)写出()f x 的反函数()g x 的解析式;(2)解不等式()log (23)a g x x ≤-参考答案1.答案:C解析:因为1a >,01b <<,0c <,所以c b a <<,故选C.2.答案:C解析:由对数和指数的性质可知,∵2log 0.30a =<,0.10221b =>=,1.300.20.21c =<=,∴a c b <<.3.答案:A解析:4.答案:B解析:由 210{1011x x x ->->-≠,解得 1x > 且 2x ≠. 5.答案:D解析:由题意,得2230x x +->,事实上,这是个一元二次不等式,此处,我们有两种解决方法:一是利用函数223y x x =+-的图像观察得到,要求图像正确、严谨;二是利用符号法则,即2230x x +->可因式分解为()()310x x +⋅->,则30,{10x x +>->或30,{10,x x +<-<解得1x >或3x <-, 所以函数()f x 的定义域为(,3)(1,)-∞-⋃+∞.6.答案:B解析:可以从图象所在的位置及单调性来判别.也可以利用函数的性质识别图象,特别注意底数a 对图象的影响。
精选《指数函数和对数函数》单元测试完整考题(含参考答案)
2019年高中数学单元测试试题 指数函数和对数函数(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.已知x 是函数f(x)=2x + 11x-的一个零点.若1x ∈(1,0x ),2x ∈(0x ,+∞),则( )(A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0(C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0(2010浙江文数)(9) 2.当0<a <b <1时,下列不等式中正确的是( ) A .(1-a )b1>(1-a )bB .(1+a )a >(1+b )bC .(1-a )b>(1-a )b2D .(1-a )a>(1-b )b(1995上海7)3.设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞)4.定义运算{()()a ab a b b a b ≤⊕=>,则函数()12xf x =⊕的图像是 [答]( )5.设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )(07全国Ⅰ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件 B6.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( )(07山东) A .1,3 B .-1,1 C .-1,3D .-1,1,3 A .7.设()f x 是连续的偶函数,且当x>0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( ) A .3- B .3C .8-D .8(2008辽宁理12)8.函数f(x)=||||22c x b x x a -++-(0<a<b<c)的图象关于( )对称A,x 轴 B,y 轴 C,原点 D,直线y=x (石家庄二模)(理)化简f(x)= )(22c x b x x a --+-为偶函数,选B第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题9.比较下列各组数中两个值的大小:(1)0.53.1________ 2.33.1; (2)0.32()3-_________0.242()3-; (3) 2.52.3-___________0.10.2-10.为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为at y -⎪⎭⎫ ⎝⎛=161(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室. (07湖北)⎪⎩⎪⎨⎧>⎪⎭⎫⎝⎛≤≤=-1.0,1611.00101.0t t t y t ,6.011.若y x yx5533-≥---成立,则_____0x y +12.函数y =21log (x 2-3x +2)的单调递减区间是13.________A A ⋂=,_________A ⋂∅=,__________A A =,_________A ∅=_________U AC A =,_________U A C A =,若A B⊆,则____,A B A B== ()_______________U C A B ⋂= ()_______________U C A B ⋃=14.已知函数2122(),[1,)x x f x x x++=∈+∞,⑴试判断()f x 的单调性,并加以证明;⑵试求()f x 的最小值. 【例1】⑴增函数;⑵72. 15.某村计划建造一个室内面积为800m2的矩形菜温室,在温室内,沿左右两侧与后侧内墙各保留1米宽的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积为多少? 116.定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 .17.某城市现有人口总数100万人,如果年自然增长率为本1.2%,试解答下列问题 (1)写出该城市人口总数y (万人)与年份x (年)的函数关系式; (2)计算10年以后该城市的人口总数(精确到0.1); (3)计算大约多少年后该城市人口将达到120万人. 18.)23(log 221+-=x x y 的定义域是_______ .19.函数()2log 3y x =+的定义域为 .20.已知()()x x x f a a log log 2+-=对任意⎪⎭⎫⎝⎛∈21,0x 都有意义,则实数a 的取值范围是21.函数y =的定义域是 ____ . 22.若方程5||||lg +-=x x 在区间))(1,(z k k k ∈+上有解,则所有满足条件的k 的值的和为 。
2020-2021学年高中数学必修第一册第四章《指数函数与对数函数》测试卷及答案解析
③b>a>1
④0<a<b<1
⑤a=b
其中不可能成立的关系有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解答】解:∵实数 a,b 满足 th a th b,
hh 即
h
hᵎ
hh
,∴
h
h
hᵎ
hh
,∴
h
h
hᵎ ;
h
h 对于①,当 a=3,b=2 时, h
h h ,即 th 3
th 2,∴①不成立;
对于②,当 a ,b 时, th
∴
;
使
∴使
使
使
x=y=3 时取等号.
故选:B.
使 使
使
,当且仅当
,即
使
6.已知 3m=2n=k 且
,则 k 的值为( )
A.15
B.
C.
【解答】解:∵3m=2n=k,∴m=log3k,n=log2k,
D.6
∴
th
th
th
th logk6=2,
∴k2=6,∴
,
故选:C.
7.设 a=30.7,b=( )﹣0.8,c=log0.70.8,则 a,b,c 的大小关系为( )
第6页共9页
∴ thh
,
∴f(6t)﹣f(3t)=loga6t﹣loga3t=loga2 .
故答案为: . 四.解答题(共 6 小题)
14.(1)计算: ୠ
⺁
ୠ;
(2)已知 x+x﹣1=4,求 x2﹣x﹣2 的值.
【解答】解:(1) ୠ
⺁
ୠ
ୠ
⺁
;
ୠ
(2)由 x+x﹣1=4,两边平方并整理得 x2+x﹣2=14,
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。
新人教A版必修第一册第四章指数函数与对数函数单元测试
8.函数f(x)=log 2(x 2-ax +3a)在[2,+∞)上是增函数,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,4]C .[-2,4]D .(-4,4]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列计算正确的是( )A .12(-3)4=3-3 B .2213log -=23C .39=33 D .log 3(-4)2=4log 3210.对于函数f(x)定义域内的任意x 1,x 2(x 1≠x 2),当f(x)=lg x 时,下述结论中正确的是( )A .f(0)=1B .f(x 1+x 2)=f(x 1)·f(x 2)C .f(x 1·x 2)=f(x 1)+f(x 2)D .f (x 1)-f (x 2)x 1-x 2>011.下列函数中,能用二分法求函数零点的有( ) A .f(x)=3x -1 B .f(x)=x 2-2x +1 C .f(x)=log 4x D .f(x)=e x -2 12.下列说法正确的是( )A .函数f(x)=1x 在定义域上是减函数 B .函数f(x)=2x -x 2有且只有两个零点 C .函数y =2|x|的最小值是1D .在同一坐标系中函数y =2x 与y =2-x 的图象关于y 轴对称 三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是________.14.已知函数f(x)=log 6(x +1),则f(1)+f(2)=________,f(x)>0的解集为________.(本题第一空2分,第二空3分)15.已知函数f(x)=log a (-x +1)(a>0且a ≠1)在[-2,0]上的值域是[-1,0].若函数g(x)=a x +m -3的图象不经过第一象限,则m 的取值范围为________.第四章单元测试卷1.解析:易知函数y=2-x,y=log12x,y=1x在区间(0,+∞)上单调递减,函数y =x 12在区间(0,+∞)上单调递增.故选A.答案:A2.解析:f (1)=ln 2-2=ln 2e 2<ln 1=0,f (2)=ln 3-1=ln 3e >ln 1=0,所以函数f (x )=ln (x +1)-2x 的零点所在的大致区间是(1,2). 答案:A3.解析:集合M 表示函数y =2x 的值域,为(0,+∞);集合P 表示函数y =log 2x -13x -2的定义域,则⎩⎪⎨⎪⎧3x -2>0,2x -1>0,2x -1≠1,解得x >23且x ≠1,故选D.答案:D4.解析:易知f (x )的定义域为R ,关于原点对称.∵f (-x )=4-x +12-x =1+4x2x =f (x ),∴f (x )是偶函数,其图象关于y轴对称.答案:D 5.解析:∵c =0.30.2<0.30=1,a =log 27>log 24=2,1<b =log 38<log 39=2,∴c <b <a .故选A.答案:A6.解析:f (x )≤2⇔⎩⎪⎨⎪⎧ x ≤1,21-x ≤2,或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2⇔0≤x ≤1,或x >1,故选D.答案:D7.解析:当0<a <1时,函数y =a x 的图象过定点(0,1)且单调递减,则函数y =1a x 的图象过定点(0,1)且单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0且单调递减,D 选项符合;当a >1时,函数y =a x 的图象过定点(0,1)且单调递增,则函数y =1a x 的图象过定点(0,1)且单调递减,函数y =log a⎝⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0且单调递增,各选项均不符合,综上,选D.答案:D8.解析:因为f (x )在[2,+∞)上是增函数,所以y =x 2-ax +3a在[2,+∞)上单调递增且恒为正,所以⎩⎨⎧a 2≤2,22-2a +3a >0,即-4<a ≤4,故选D.答案:D9.解析:12(-3)4=1234=33,A 错误;221log 3-=22log 23=23,B正确;39==33,C 正确;log 3(-4)2=log 316=log 324=4log 32,D 正确.故选BCD.答案:BCD10.解析:对于A ,函数的定义域为(0,+∞),故f (0)无意义,∴A 错误;对于B ,当x 1=1,x 2=1时,f (x 1+x 2)=f (2)=lg 10,f (x 1)·f (x 2)=lg 1·lg 1=0,∴B 错误;对于C ,f (x 1·x 2)=lg(x 1·x 2)=lg x 1+lg x 2=f (x 1)+f (x 2),∴C 正确;对于D ,f (x )=lg x 在(0,+∞)单调递增,则对任意的0<x 1<x 2,都有f (x 1)<f (x 2)即f (x 1)-f (x 2)x 1-x 2>0;∴D 正确.故选CD.答案:CD11.解析:f (x )=x 2-2x +1=(x -1)2,f (1)=0,当x <1时,f (x )>0;当x >1时,f (x )>0,在零点两侧函数值同号,不能用二分法求零点,其余选项中在函数的零点两侧函数值异号.故选ACD.答案:ACD12.解析:对于A ,f (x )=1x 在定义域上不具有单调性,故命题错误;对于B ,函数f (x )=2x -x 2有三个零点,一个负值,两个正值,故命题错误;对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2-x的图象关于y 轴对称,命题正确.故选CD. 答案:CD13.解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)14.解析:∵f (x )=log 6(x +1),则f (1)+f (2)=log 62+log 63=log 66=1.由f (x )>0可得log 6(x +1)>0,∴x +1>1,∴{x |x >0}.故答案为:1;(0,+∞).答案:1 (0,+∞)15.解析:函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0].当a >1时,f (x )=log a (-x +1)单调递减, ∴⎩⎪⎨⎪⎧f (-2)=log a 3=0,f (0)=log a 1=-1,无解; 当0<a <1时,f (x )=log a (-x +1)单调递增, ∴⎩⎪⎨⎪⎧f (-2)=log a 3=-1,f (0)=log a 1=0,解得a =13. ∵g (x )=⎝ ⎛⎭⎪⎫13x +m-3的图象不经过第一象限,∴g (0)=⎝ ⎛⎭⎪⎫13m-3≤0,解得m ≥-1,即m 的取值范围是[-1,+∞).答案:[-1,+∞) 16.解析:因为要使f (x )=lg(2x -b )在x ∈[1,+∞)时,恒有f (x )≥0, 所以有2x -b ≥1在x ∈[1,+∞)时恒成立,即2x ≥b +1在x ∈[1,+∞)上恒成立.又因为指数函数g (x )=2x 在定义域上是增函数.所以只要2≥b +1成立即可,解得b ≤1.答案:(-∞,1]17.解析:(1)原式=(-1)2-3×⎝ ⎛⎭⎪⎫3382-3+⎝ ⎛⎭⎪⎫15001-2-105-2+1 =⎝ ⎛⎭⎪⎫2782-3+(500)12-10(5+2)+1 =49+105-105-20+1=-1679.(2)原式=log 331-4+lg 100+2=-14+2+2=154. 18.解析:(1)∵函数f (x )的图象过点(2,1), ∴f (2)=1,即log a 2=1,解得a =2, 因此,f (x )=log 2x (x >0). (2)f (m 2-m )=log 2(m 2-m ), ∵f (m 2-m )<1且1=log 22, ∴log 2(m 2-m )<log 22,该不等式等价为:⎩⎪⎨⎪⎧m 2-m >0,m 2-m <2,解得-1<m <0或1<m <2,∴实数m 的取值范围为(-1,0)∪(1,2).19.解析:(1)令t =a x>0,∵x ∈[-1,1],a >1,∴a x∈⎣⎢⎡⎦⎥⎤1a ,a , f (x )=t 2+2t -1=(t +1)2-2,故当t =a 时,函数y 取得最大值为a 2+2a -1=14,求得a =3(舍负),∴f (x )=32x +2×3x -1.(2)由f (x )=7,可得32x +2×3x -1=7,即(3x +4)(3x -2)=0, 求得3x =2,∴x =log 32.20.解析:(1)由于保鲜时间与储藏温度之间的函数关系是y =t ·a x (a >0,且a ≠1),由题意可得:⎩⎪⎨⎪⎧200=t ·a 0,160=t ·a 1,解得⎩⎨⎧t =200,a =45,故函数解析式为y =200×⎝ ⎛⎭⎪⎫45x .(2)当x =2 ℃时,y =200×⎝ ⎛⎭⎪⎫452=128(h).当x =3 ℃时,y =200×⎝ ⎛⎭⎪⎫453=102.4(h).故温度在2 ℃和3 ℃的保鲜时间分别为128 h 和102.4 h.21.解析:(1)因为函数t =log 12x 在[2,4]上是减函数,所以t max=log 122=-1,t min =log 124=-2.(2)令t =log 12x ,x ∈[2,4],则g (t )=t 2-2t +4=(t -1)2+3,由(1)得t ∈[-2,-1],因此当t =-2,即x =4时,f (x )max =12;当t =-1,即x =2时,f (x )min =7.因此,函数f (x )的值域为[7,12].22.解析:(1)因为f (x )为R 上的奇函数, 所以f (0)=0,得b =1. 又f (-1)=-f (1),得a =1. 经检验a =1,b =1符合题意.(2)证明:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=1-2x 12x 1+1-1-2x 22x 2+1=(1-2x 1)(2x 2+1)-(1-2x 2)(2x 1+1)(2x 1+1)(2x 2+1)=2(2x 2-2x 1)(2x 1+1)(2x 2+1). 因为x 1<x 2,所以2x 2-2x 1>0. 又因为(2x 1+1)(2x 2+1)>0,所以f (x 1)>f (x 2),所以f (x )为R 上的减函数.(3)因为t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立, 所以f (t 2-2t )<-f (2t 2-k ).因为f (x )为奇函数,所以f (t 2-2t )<f (k -2t 2). 因为f (x )为R 上的减函数,所以t 2-2t >k -2t 2,即k <3t 2-2t 恒成立,而3t 2-2t =3⎝ ⎛⎭⎪⎫t -132-13≥-13. 所以k <-13.。
人教A新版必修1《第4章 指数函数与对数函数》单元测试卷(二).docx
人教A 新版必修1《第4章 指数函数与对数函数》单元测试卷(二)一、选择题(本大题共12小题,共60.0分)6.设/(%) = xln x,若广(X 。
)= 2,则X 。
的值为()7. 设a = log 3|, b = log 51,c = log 7|,贝收 )9. 某厂2006年的产值为"万元,预计产值每年以zi%递增,则该厂到2018年的产值(单位:万元)是1. 计算:崂+ 2屈2-()1 = (A. 1B. 2C. -1D. 02. 1 函数 ' =顽顽的定义域为(A. (-00,1)B. (1, +00)C. (1,2) u (2,+8)D. (1,3) u (3, +8)3. 函数y = 2xT 的值域是()A. (0,+oo)B. (-1, +00)C. (1,+8)D. G ,+8) 4. 函数y = 的零点个数是()A. 0B. 1C. 2D.无数个 5. 方程lg|x| = COSX 根的个数为()A. 10B. 8C. 6D.4A. e 2B.—C.eD. In2A. c > b > aB. b > c > aC. a> c > bD. a > b > cA. a(i+n约13B. a(l + n约12C. a(l + n约D. — a(l -n%)1210.函S/(x) = 2x + 3x的零点所在的一个区间是().A, (-2,-1) B. (0,1) C. (-1,0) D. (1,2)11.三个变量%, y2 , 无随着变量x的变化情况如下表:则关于x分别呈对数函数、指数函数、幕函数变化的变量依次为()A.无,光,>3B. y2, y3C. y2, % D, %, y3, y212.已知函数/'(x) = |x - 2| + l,g(x)=奴,若方程/'(x) = g(x)有两个不相等的实根,则实数左的取值范围是()A. (0,|)B. (|,1)C. (1,2)D. (2.+x)二、填空题(本大题共4小题,共20.0分)13.设f(x)=化当仃-:),x 2 2,则竹⑵)的值为______________ .ve x~L,x < 214.若函数/(%) = log2(x + a)的零点为一2,贝!J Q =.15.已知an =(9",把数列{%}的各项排列成如下的三角形状,记a? :; a4A(jn, n)表示第勿行的第〃个数,则4(10,12) = .16.知0 < a < 1,则方程(1闵=|log a x|的实根个数是.三、解答题(本大题共6小题,共70.0分)17.(1)计算:0.064 3 — (—4)。
高中数学 第四章 指数函数、对数函数与幂函数综合测试训练(含解析)新人教B版必修第二册-新人教B版高
第四章综合测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若n ∈N ,a ∈R ,给出下列式子:①4-42n;②4-42n +1;③5a 4;④4a 5.其中恒有意义的式子的个数是( B )A .1B .2C .3D .4 [解析] 根据根指数是偶数时,被开方数非负,可知②无意义;当a <0时,④无意义;恒有意义的是①③.故选B .2.函数y =log 12x -3的定义域为( C )A .(-∞,18]B .[18,+∞)C .(0,18]D .(0,8][解析] 要使函数y =log 12x -3有意义,应满足log 12x -3≥0, ∴log 12x ≥3,∴⎩⎪⎨⎪⎧x >0x ≤⎝ ⎛⎭⎪⎫123=18,∴0<x ≤18,故选C .3.下列不等式中正确的是( C ) A .lg 0.1>lg 0.2 B .0.20.1<0.20.2C .0.20.1>lg 0.1D .0.10.2<lg 0.2[解析] lg 0.1<0,0.20.1>0,∴0.20.1>lg 0.1,故选C . 4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >0⎝ ⎛⎭⎪⎫12xx ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=( D ) A .-18B .18C .-8D .8[解析] f ⎝ ⎛⎭⎪⎫127=log 3127=log 33-3=-3,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,故选D .5.若a >b >1,0<c <1,则( C ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[解析] 令a =4,b =2,c =12,则a c =412 =2,b c =212 =2,∴a c >b c,排除A ;ab c =42,ba c =4,∴ab c >ba c ,排除B ;log a c =log 412=-12,log b c =log 212=-1,∴log a c >log b c ,排除D ,故选C .6.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图像是( C )[解析] 因为函数y =log 2x 的反函数是y =2x ,所以f (x )=2x .故f (1-x )=21-x,因为此函数在R 上是减函数,且过点(0,2).因此选C .7.下列函数中,满足“f (x +y )=f (x )f (y )”的增函数是( B ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x[解析] 对于函数f (x )=x 3,f (x +y )=(x +y )3,f (x )f (y )=x 3·y 3,而(x +y )3≠x 3y 3,所以f (x )=x 3不满足f (x +y )=f (x )f (y ),故A 错误; 对于函数f (x )=3x,f (x +y )=3x +y=3x ·3y =f (x )f (y ),因此f (x )=3x满足f (x +y )=f (x )f (y ),且f (x )=3x是增函数,故B 正确;对于函数f (x )=x 12 ,f (x +y )=(x +y )12 ,f (x )f (y )=x 12 y 12 =(xy )12 ,而(x +y )12 ≠(xy )12 ,所以f (x )=x 12 不满足f (x +y )=f (x )f (y ),故C错误;对于函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y=f (x )·f (y ),因此f (x )=⎝ ⎛⎭⎪⎫12x 满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x不是增函数,故D 错误.8.设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f [f (a )]=2f (a )的a 的取值X 围是( C )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[解析] 由f [f (a )]=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知实数a ,b 满足等式3a=6b,给出下列四个关系式:①a =b ;②0<b <a ;③a <b <0;④b <0<A .其中可能成立的是( ABC )A .①B .②C .③D .④[解析] 在同一个坐标系中画出函数y =3x,y =6x的图象如图所示.由图像,可知当a =b =0时,3a=6b,故①可能成立;作出直线y =k ,如图所示,当k >1时,若3a=6b,则0<b <a ,故②可能成立;当0<k <1时,若3a=6b,则a <b <0,故③可能成立.故选ABC .10.对于0<a <1,下列四个不等式中成立的是( BD )A .log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a B .log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1aC .a1+a<a1+1aD .a1+a>a1+1a[解析] 因为0<a <1,所以a <1a ,从而1+a <1+1a,所以log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a .又因为0<a <1,所以a1+a>a1+1a.11.设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ACD ) A .f (x 1+x 2)=f (x 1)·f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2) C .f x 1-f x 2x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22[解析] 2x 1·2x 2=2x 1+x 2,所以A 成立,2x 1+2x 2≠2x 1·x 2,所以B 不成立,函数f (x )=2x,在R 上是单调递增函数,若x 1>x 2则f (x 1)>f (x 2),则f x 1-f x 2x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f x 1-f x 2x 1-x 2>0,故C 正确;f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22说明函数是凹函数,而函数f (x )=2x是凹函数,故ACD 正确.12.关于函数f (x )=|ln |2-x ||,下列描述正确的有( ABD ) A .函数f (x )在区间(1,2)上单调递增 B .函数y =f (x )的图像关于直线x =2对称 C .若x 1≠x 2,但f (x 1)=f (x 2),则x 1+x 2=4 D .函数f (x )有且仅有两个零点[解析] 函数f (x )=|ln |2-x ||的图像如图所示:由图可得:函数f (x )在区间(1,2)上单调递增,A 正确;函数y =f (x )的图像关于直线x =2对称,B 正确;若x 1≠x 2,但f (x 1)=f (x 2),则当x 1,x 2>2时,x 1+x 2>4,C 错误;函数f (x )有且仅有两个零点,D 正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.设函数f (x )=x -a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图像经过点(0,1),则方程f -1(x )=2的解为__1__.[解析] 由y =f (x )=x -a ,得x -a =y 2(y ≥0)把点(0,1)代入得a =1. 所以f -1(x )=x 2+1(x ≥0).由f -1(x )=2,得x 2+1=2,即x =1.14.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2log 32x-1,x ≥2,则f [f (2)] =__2__.[解析] 因为f (2)=log 3(22-1)=1, 所以f [f (2)]=f (1)=2e1-1=2.15.已知函数f (x )=b -2x2x +1为定义在区间[-2a,3a -1]上的奇函数,则a =__1__,f ⎝ ⎛⎭⎪⎫12=__22-3__.[解析] 因为f (x )是定义在[-2a,3a -1]上的奇函数. 所以定义域关于原点对称, 即-2a +3a -1=0,所以a =1, 因为函数f (x )=b -2x2x +1为奇函数, 所以f (-x )=b -2-x 2-x +1=b ·2x -11+2x =-b -2x1+2x ,即b ·2x-1=-b +2x,所以b =1, 所以f (x )=1-2x1+2x ,所以f ⎝ ⎛⎭⎪⎫12=1-212 1+212 =1-21+2=22-3.16.下列说法中,正确的是__①④__. ①任取a >0,均有3a >2a, ②当a >0,且a ≠1,有a 3>a 2, ③y =(3)-x是增函数,④在同一坐标系中,y =2x与y =2-x的图像关于y 轴对称. [解析] ∵幂函数y =x a ,当a >0时, 在(0,+∞)上是增函数, ∵3>2,∴3a>2a,故①正确;当a =0.1时,0.13<0.12,故②错; 函数y =(3)-x=⎝⎛⎭⎪⎫33x是减函数,故③错; 在同一坐标系中,y =2x 与y =2-x=(12)x 的图像关于y 轴对轴,故④正确.四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值. (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 ; (2)2lg 2+lg 31+12lg 0.36+13lg 8.[解析] (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 =94+1+94=112.(2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg 12=1.18.(本小题满分12分)已知函数f (x )=2x -1+a (a 为常数,且a ∈R )恒过点(1,2).(1)求a 的值;(2)若f (x )≥2x,求x 的取值X 围.[解析] (1)f (1)=20+a =1+a =2,解得a =1. (2)由f (x )=2x -1+1=2x 2+1≥2x ,得2x2≤1,即2x -1≤1=20,即x -1≤0,解得x ≤1,因此,实数x 的取值X 围是(-∞,1].19.(本小题满分12分)求函数y =(2x )2-2×2x+5,x ∈[-1,2]的最大值和最小值. [解析] 设2x=t ,因为x ∈[-1,2],所以2x=t ∈⎣⎢⎡⎦⎥⎤12,4则y =t 2-2t +5为二次函数,图像开口向上,对称轴为t =1, 当t =1时,y 取最小值4,当t =4时,y 取最大值13.20.(本小题满分12分)已知幂函数y =f (x )的图像过点(8,m )和(9,3). (1)求m 的值;(2)若函数g (x )=log a f (x )(a >0,a ≠1)在区间[16,36]上的最大值比最小值大1,某某数a 的值.[解析] (1)由题意,y =f (x )是幂函数,设f (x )=x α,图像过点(8,m )和(9,3)可得9α=3,所以α=12,故f (x )=x 12 ,所以m =f (8)=22,故m 的值为22.(2)函数g (x )=log a f (x ),即为g (x )=log a x , 因为x 在区间[16,36]上,所以x ∈[4,6], ①当0<a <1时,g (x )min =log a 6,g (x )max =log a 4, 由log a 4-log a 6=log a 23=1,解得a =23.②当a >1时,g (x )min =log a 4,g (x )max =log a 6,由log a 6-log a 4=log a 32=1,解得a =32,综上可得,实数a 的值为23或32.21.(本小题满分12分)一片森林原来的面积为a ,计算每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已被砍伐了多少年? (3)今后最多还能砍伐多少年?[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a , 即(12)m 10 =(12)12 ,m 10=12,解得m =5, 故到今年为止,该森林已被砍伐5年. (3)设从今年开始,以后最多能砍伐n 年,则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.22.(本小题满分12分)已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值X 围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,某某数a 的取值X 围. [解析] (1)函数f (x )是R 上的奇函数,则f (0)=0,求得a =0. 又此时f (x )=-x 是R 上的奇函数,所以a =0为所求. (2)函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0).故只要a ≥0即可.(3)由已知函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ).最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2⇒⎩⎪⎨⎪⎧a +12>0a +1≥4a +2.故-12<a ≤-13为所求.。
2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析
2023-2024学年高一数学《指数函数与对数函数》一.选择题(共12小题)1.(2022春•鼓楼区校级期中)设,则a,b,c的大小顺序为()A.a<c<b B.c<a<b C.a<b<c D.b<a<c 2.(2022春•鼓楼区校级期中)关于x的不等式e x≤ax(x﹣lnx)只有唯一实数解,则实数a的取值范围是()A.{e}B.[e,+∞)C.{1}D.(0,1] 3.(2022春•福州期中)已知a=lg2,b=log23,c=log34,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.c<a<b 4.(2022•福州模拟)折纸是我国民间的一种传统手工艺术.现有一张长10cm、宽8cm的长方形的纸片,将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1,S2.若S1:S2=1:3,则折痕长的最大值为()A .cm B.10cm C.2cm D.2cm 5.(2021秋•福州期末)已知函数f(x)=(x+3)(x﹣e)+(x﹣e)(x﹣π)+(x﹣π)(x+3)的零点x1,x2(x1<x2),则()A.x1x2>0B .<﹣C.x2﹣x1<e D.x1+x2<π6.(2021秋•福州期末)设a=0.123,b=30.4,c=log0.40.12,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.a<c<b D.c<a<b 7.(2021秋•仓山区校级期末)若方程x2+2x+m2+3m=m cos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2B.﹣2C.4D.﹣4 8.(2021秋•鼓楼区校级期中)某科技有限公司为了鼓励员工创新,打破发达国家的芯片垄断,计划逐年增加研发资金投入,若该公司2018年全年投入的研发资金为200万元,在此基础上,每年投入的研发资金比上一年增加10%,则该公司全年投入的研发资金开始超过400万元的年份是()(参考数据:1.16=1.77,1.17=1.95,1.18=2.14,1.19=2.36)第1页(共23页)。
中职数学指数函数与对数函数测试题
中职数学指数函数与对数函数测试题第四章单元测试试卷一、选择题1.下列函数中是幂函数的是()。
A。
y = 5x^2B。
y = (2/3)xC。
y = (x-5)^2D。
y = 2/x^32.下列函数中是指数函数的是()。
A。
y = 1/x^2B。
y = (-3)^xC。
y = (2/5)^xD。
y = 3*2^x3.化简log3(8)/log3(2)可得()。
A。
3B。
log3(4)C。
2D。
44.若lg2=a,lg3=b,则lg6可用a,b表示为()。
A。
a-bB。
a+bC。
abD。
(a+b)/25.对数函数y=logx的定义域与值域分别是()。
A。
R,RB。
(0,+∞),RC。
R,(0,+∞)D。
(0,+∞),(0,+∞)6.下列各式中,正确的是()。
A。
loga(x-y)=loga(x)-loga(y)B。
log5(x^3)=3log5(x) (x>0)XXX(MN)=loga(M)+loga(N)D。
loga(x+y)=loga(x)*loga(y)二、填空题7.比较大小:(1)1/2;(2)1/3;(3)log3(5);(4)log5(2);(5)ln6.8.已知log2(16)=4;log2(1/16)=()。
9.已知log2(16)=4;log2(2)=()。
10.若log3(2)=a,则log3(23)=()。
11.(1)1/(5^2);(2)1/(5^-2);(3)5^0;(4)2^-4;(5)2^7/3^5.12.将下列根式和分数指数幂互化:(1)7b^3/5;(2)(ab)^-5/6.三、解答题13.已知幂函数y=x^α,当x=1/8时,y=2.1)求该幂函数的表达式;2)求该幂函数的定义域;3)求当x=2,3,-1/3,2/32时的函数值。
14.计算或化简(1)(349/4)^5*9/(7);15.求下列各式中的x:(1)log3(x)=4;(2)loga(x^2/27)=3;(3)log2(3^x)=1-x。
苏教版 必修第一册 第6章 幂函数、指数函数、对数函数 章节测试卷 (解析版)
必修第一册第6章幂函数、指数函数、对数函数单元测试卷一、选择题(共8小题).1.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a2.已知幂函数f(x)=x a,当x>1时,恒有f(x)<x,则a的取值范围是()A.0<a<1B.a<1C.a>0D.a<03.下列各函数中,值域为(0,+∞)的是()A.B.C.y=x2+x+1D.4.已知f(3x)=4x•log2x,那么的值是()A.﹣2B.4C.8(log23﹣1)D.5.若关于x的方程|a x﹣1|=2a(a>0,a≠1)有两个不等实根,则a的取值范围是()A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)6.若偶函数f(x)在(﹣∞,0)内单调递减,则不等式f(﹣1)<f(lgx)的解集是()A.(0,10)B.(,10)C.(,+∞)D.(0,)∪(10,+∞)7.已知函数f(x)=是定义域(﹣∞,+∞)上的单调递减函数,则实数a的取值范围是()A.B.(,]C.D.8.已知f(x)是定义在R上的偶函数,且在(0,+∞)上是增函数,设a=f(﹣),b =f(log3),c=f(),则a、b、c的大小关系是()A.a<c<b B.b<a<c C.b<c<a D.c<b<a二、多选题9.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),下列命题中正确的是()A.f(x1+x2)=f(x1)•f(x2)B.f(x1•x2)=f(x1)+f(x2)C.D.<10.在同一直角坐标系中,函数y=a x,且a≠1)的图象可能是()A.B.C.D.11.关于函数f(x)=log|x﹣1|,有以下四个命题,其中所有正确命题的选项是()A.函数f(x)在区间(﹣∞,1)上是单调增函数B.函数f(x)的图象关于直线x=1对称C.函数f(x)的定义域为(1,+∞)D.函数f(x)的值域为R12.已知幂函数f(x)=x a的图象经过函数且a≠1)的图象所过的定点,则幂函数f(x)具有的特性是()A.在定义域内单调递减B.图象过定点(1,1)C.是奇函数D.其定义域是R三、填空题13.函数f(x)=a x﹣1+3的图象一定过定点P,则P点的坐标是.14.函数f(x)=log5(2x+1)的单调增区间是.15.函数y=的值域是.16.若不等式lg≥(x﹣1)lg3对任意x∈(﹣∞,1],恒成立,则实数a 的取值范围是.四、解答题17.已知函数f(x)=.(1)如果x∈[﹣1,1]时,求函数y=(f(x))2﹣2af(x)+3的最小值y(a);(2)若a∈[﹣4,4]时,在(1)的条件下,求y(a)的值域.18.已知x>1,且x≠,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.19.若不等式x2﹣log m x<0在(0,)内恒成立,求实数m的取值范围.20.已知函数f(x)=2x.(1)若f(x)=2,求x的值;(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.21.已知函数f(x)=log a(x﹣1),g(x)=log a(6﹣2x)(a>0且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.22.如图,A,B,C是函数y=f(x)=log x图象上的三点,它们的横坐标分别是t,t+2,t+4(t≥1).(1)设△ABC的面积为S,求S=g(t);(2)若函数S=g(t)<f(m)恒成立,求m的取值范围.参考答案一、单选题(共8小题).1.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【分析】由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.解:a=log20.2<log21=7,b=20.2>20=1,∴c=0.70.3∈(0,1),故选:B.2.已知幂函数f(x)=x a,当x>1时,恒有f(x)<x,则a的取值范围是()A.0<a<1B.a<1C.a>0D.a<0【分析】x>1时,f(x)<x恒成立转化为x a﹣1<x0恒成立,借助指数函数单调性可求a 的取值范围.解:当x>1时,f(x)<x恒成立,即x a﹣1<1=x0恒成立,因为x>1,所以a﹣1<0,解得a<1,故选:B.3.下列各函数中,值域为(0,+∞)的是()A.B.C.y=x2+x+1D.【分析】选项A可以化为一个指数函数,值域即可求得;选项B含有根式,且根号内部的值不回答语1,断定值域不符合要求;选项C配方后可求值域;选项D的指数不会是0,所以之于众不含1.解:==,此函数为指数函数,定义域为R,所以值域为(0,+∞);不会大于5,所以其值域不是(0,+∞);所以的值域不是(0,+∞).故选:A.4.已知f(3x)=4x•log2x,那么的值是()A.﹣2B.4C.8(log23﹣1)D.【分析】直接利用函数的解析式,代入求解函数值即可.解:f(3x)=4x•log2x,那么=f(3×)=•log2=﹣2.故选:A.5.若关于x的方程|a x﹣1|=2a(a>0,a≠1)有两个不等实根,则a的取值范围是()A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)【分析】先画出a>1和0<a<1时的两种图象,根据图象可直接得出答案.解:据题意,函数y=|a x﹣1|(a>0,a≠1)的图象与直线y=2a有两个不同的交点.a>3时由图知,0<2a<1,所以a∈(0,),故选:D.6.若偶函数f(x)在(﹣∞,0)内单调递减,则不等式f(﹣1)<f(lgx)的解集是()A.(0,10)B.(,10)C.(,+∞)D.(0,)∪(10,+∞)【分析】由于偶函数f(x)在(﹣∞,0]内单调递减故f(x)在(0,+∞)内单调递增,利用函数的性质可得等价于|lgx|>|﹣1|,从而解得x的范围.解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,故选:D.7.已知函数f(x)=是定义域(﹣∞,+∞)上的单调递减函数,则实数a的取值范围是()A.B.(,]C.D.【分析】根据分段函数单调性的性质建立不等式关系进行求解即可.解:若f(x)是定义域(﹣∞,+∞)上的单调递减函数,则满足,故选:B.8.已知f(x)是定义在R上的偶函数,且在(0,+∞)上是增函数,设a=f(﹣),b =f(log3),c=f(),则a、b、c的大小关系是()A.a<c<b B.b<a<c C.b<c<a D.c<b<a【分析】利用f(x)是定义在R上的偶函数,化简a,b,利用函数在(0,+∞)上是增函数,可得a,b,c的大小关系.解:a=f(﹣)=f(),b=f(log3)=f(log32),c=f(),∵0<log32<1,1<<,∴>>log32.∴a>c>b,故选:C.二、多选题9.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),下列命题中正确的是()A.f(x1+x2)=f(x1)•f(x2)B.f(x1•x2)=f(x1)+f(x2)C.D.<【分析】根据指数的运算性质和指数函数的单调性以及凹凸性对各命题进行逐一进行判定即可.解:=,所以A成立,+≠,所以B不成立,若x1>x2则f(x1)>f(x2),则,说明函数是凹函数,而函数f(x)=2x是凹函数,故D 正确故选:ACD.10.在同一直角坐标系中,函数y=a x,且a≠1)的图象可能是()A.B.C.D.【分析】根据指数函数和对数函数的单调性进行分析即可得解.解:选项A、B,∵指数函数单调递增,∴a>1,∴对数函数单调性递减,∴A正确,B 错误;选项C、D,∵指数函数单调递减,∴0<a<1,∴对数函数单调性递增,∴C正确,D 错误.故选:AC.11.关于函数f(x)=log|x﹣1|,有以下四个命题,其中所有正确命题的选项是()A.函数f(x)在区间(﹣∞,1)上是单调增函数B.函数f(x)的图象关于直线x=1对称C.函数f(x)的定义域为(1,+∞)D.函数f(x)的值域为R【分析】首先画出函数的图象,进一步利用函数的图象求出函数的单调区间,函数的对称轴,函数的定义域和值域,最后判定结果.解:函数f(x)=log|x﹣1|,是由函数f(x)=log|x|的图象向右平移8个单位得到的,如图所示:根据函数的图象:对于A:函数f(x)在区间(﹣∞,1)上是单调增函数,正确.对于C:函数f(x)的定义域为(﹣∞,1)∪(1,+∞),错误.故选:ABD.12.已知幂函数f(x)=x a的图象经过函数且a≠1)的图象所过的定点,则幂函数f(x)具有的特性是()A.在定义域内单调递减B.图象过定点(1,1)C.是奇函数D.其定义域是R【分析】根据指数函数的性质求得g(x)的图象恒过的定点,可得f(x)的解析式,再判断f(x)具有的性质即可.解:在函数g(x)=a x﹣2﹣中,令x﹣2=6,解得x=2,所以函数g(x)的图象过定点P(2,);得2a=,解得a=﹣4;所以f(x)在定义域内的每个区间上是单调减函数,选项A正确;函数的定义域是{x|x≠0},所以选项D错误.故选:ABC.三、填空题13.函数f(x)=a x﹣1+3的图象一定过定点P,则P点的坐标是(1,4).【分析】通过图象的平移变换得到f(x)=a x﹣1+3与y=a x的关系,据y=a x的图象恒过(0,1)得到f(x)恒过(1,4)解:f(x)=a x﹣1+3的图象可以看作把f(x)=a x的图象向右平移一个单位再向上平移3个单位而得到,且f(x)=a x一定过点(0,8),故答案为:(1,4)14.函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).【分析】要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.解:要使函数的解析有有意义则2x+1>0由于内函数u=7x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)15.函数y=的值域是(﹣2,﹣1].【分析】根据指数函数的单调性判断每段函数的单调性,根据单调性即可得出每段的y 的范围,从而得出y的范围,即得出原函数的值域.解:①x≤1时,y=3x﹣1﹣7单调递增;∴﹣2<y≤31﹣1﹣2=﹣1;②x>1时,y=31﹣x﹣5单调递减;﹣2<y<31﹣1﹣4=﹣1;∴该函数的值域为(﹣2,﹣1].故答案为:(﹣2,﹣1].16.若不等式lg≥(x﹣1)lg3对任意x∈(﹣∞,1],恒成立,则实数a 的取值范围是(﹣∞,1].【分析】不等式lg≥(x﹣1)lg3可整理为a≤=()x+()x,然后转化为求函数y=()x+()x在(﹣∞,1)上的最小值即可,利用单调性可求最值.解:不等式lg≥(x﹣4)lg3,即不等式lg≥lg2x﹣1,∵y=()x+()x在(﹣∞,1)上单调递减,∴要使原不等式恒成立,只需a≤1,故选:D.四、解答题17.已知函数f(x)=.(1)如果x∈[﹣1,1]时,求函数y=(f(x))2﹣2af(x)+3的最小值y(a);(2)若a∈[﹣4,4]时,在(1)的条件下,求y(a)的值域.【分析】(1)利用换元法,结合二次函数的性质即可求函数y=(f(x))2﹣2af(x)+3的最小值y(a);(2)根据函数的单调性即可得到结论.解:令t=,∵x∈[﹣1,1],∴t∈[,3],则函数等价为y=t2﹣2at+3=(t﹣a)2+4﹣a2,当≤a≤3,函数的最小值为y(a)=6﹣a2,故y(a)=.f(4)=12﹣6×4=12﹣24=﹣12,即y(a)∈[﹣12,]故函数y(a)的值域为[﹣12,].18.已知x>1,且x≠,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.【分析】利用作差法,得出f(x)﹣g(x)=log x,讨论x的取值,从而判断f(x)与g(x)的大小.解:∵f(x)﹣g(x)=(1+log x3)﹣2log x2=log x,且x>1,x≠;5+log x3>2log x2,当0<<5,即1<x<时,有log x<8,f(x)<g(x);1<x<时,f(x)<g(x).19.若不等式x2﹣log m x<0在(0,)内恒成立,求实数m的取值范围.【分析】在同一坐标系中作y=x2和y=log m x的草图,利用数学结合得出0<m<1,只要x=时,y=log m≥,进而求出a的范围.解:由x2﹣log m x<0,得x6<log m x,在同一坐标系中作y=x2和y=log m x的草图,如图所示∵x=时,y=,∴≤,即m≥∴≤m<2即实数m的取值范围为≤m<1.20.已知函数f(x)=2x.(1)若f(x)=2,求x的值;(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.【分析】(1)当x<0时,f(x)=0≠2,舍去;当x≥0时,f(x)=2x﹣=2,即(2x)2﹣2•2x﹣1=0,2x>0.基础即可得出.(2)当t∈[1,2]时,2t f(2t)+mf(t)≥0,即+m≥0,即m (22t﹣1)≥﹣(24t﹣1).化简解出即可得出.解:(1)当x<0时,f(x)=0≠2,舍去;当x≥5时,f(x)=2x﹣=2,即(2x)2﹣2•7x﹣1=0,2x>0.∴x=.即m(27t﹣1)≥﹣(24t﹣1).∵t∈[1,2],∴﹣(22t+1)∈[﹣17,﹣5].故m的取值范围是[﹣5,+∞).21.已知函数f(x)=log a(x﹣1),g(x)=log a(6﹣2x)(a>0且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.【分析】(1)直接由对数式的真数大于0联立不等式组求解x的取值集合得答案;(2)分a>1和0<a<1求解不等式得答案.【解答】解(1)由,解得1<x<3.∴函数ϕ(x)的定义域为{x|1<x<3};②当a>1时,不等式等价于,解得:;②当0<a<1时,不等式等价于,解得:.综上可得,当a>1时,不等式的解集为(6,];当0<a<1,不等式的解集为[).22.如图,A,B,C是函数y=f(x)=log x图象上的三点,它们的横坐标分别是t,t+2,t+4(t≥1).(1)设△ABC的面积为S,求S=g(t);(2)若函数S=g(t)<f(m)恒成立,求m的取值范围.【分析】(1)过点A,B,C分别垂直于x轴于点D,E,F.先写出A,B,C坐标,再用坐标表示得S=S梯形ABED+S梯形BCFE﹣S梯形ACFD=log2.(2)由于g(t)在[1,+∞)上单调递减,推出g(t)max=g(1)=log2,若g(t)<f(m)恒成立,即g(t)max=log2<log2,解得m取值范围.解:(1)过点A,B,C分别垂直于x轴于点D,E,F.A(t,log t),B(t+2,log(t+2)),C(t+4,log(t+4))=+﹣=log=log2(1+),所以g(t)max=g(1)=log2,所以g(t)max=log2<f(m)=log m=log2,所以4<m<.。
专题5.6对数的概念及运算(4个考点六大题型) 试卷及答案
专题5.6对数的概念及运算(4个考点六大题型)【题型1 对数的概念与求值】【题型2 指数式与对数式的互化】 【题型3 对数的运算】 【题型4 对数运算性质的应用】 【题型5 换底公式-化简求值】 【题型6 换底公式-证明恒等式】【题型1 对数的概念与求值】1.(2023春·海南省直辖县级单位·高二嘉积中学校考期末)已知函数()239,0log ,0x x f x x x ⎧-≤=⎨>⎩,则()()0f f =( ) A .3B .1C .2D .-22.(2023·江苏·高一假期作业)方程()()2lg 1lg 22x x -=+的根为( )A .3-B .3C .1-或3D .1或3-3.(2022秋·高一单元测试)(多选)下列说法正确的有( ) A .零和负数没有对数B .任何一个指数式都可以化成对数式C .以10为底的对数叫做常用对数D .以e 为底的对数叫做自然对数4.(2021·全国·高一专题练习)(多选)下列函数为对数函数的是( ) A .y =log a x +1(a >0且a ≠1) B .y =()log 2a x (a >0且a ≠1) C .y =1log a x -(a >1且a ≠2)9.(2023·全国·高一假期作业)(1)已知18log 9a =,185b =,求18log 45.(用,a b 表示) (2)已知9log 4a =,95b =,求36log 45.(用,a b 表示)【题型3 对数的运算】(2)log lognmaab bn=(m R∈,n R∈,0n≠).专题5.6对数的概念及运算(4个考点六大题型)【题型1 对数的概念与求值】【题型2 指数式与对数式的互化】 【题型3 对数的运算】 【题型4 对数运算性质的应用】 【题型5 换底公式-化简求值】 【题型6 换底公式-证明恒等式】【题型1 对数的概念与求值】1.(2023春·海南省直辖县级单位·高二嘉积中学校考期末)已知函数()239,0log ,0x x f x x x ⎧-≤=⎨>⎩,则()()0f f=( ) A .3 B .1 C .2 D .-2【答案】C【分析】根据题意结合对数运算直接运算求解.【详解】由题意可得:()20909f =-=,所以()()()309log 92f f f ===. 故选:C.2.(2023·江苏·高一假期作业)方程()()2lg 1lg 22x x -=+的根为( )A .3-B .3C .1-或3D .1或3-【答案】B【分析】根据对数把原方程转化为一元二次方程,注意对数的真数大于0. 【详解】由()()2lg 1lg 22x x -=+,得2212210220x x x x ⎧-=+⎪->⎨⎪+>⎩,【详解】23a b ==,2log 6log >211log 6log a +不正确, 1()(a b a b a +=+当且仅当a b =时取等号,a b >,∴故B 正确,111a b =+ 故选:ABC 4.(2023z 满足3x =则下列说法中正确的是(x【题型4 对数运算性质的应用】【详解】x)x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业标题:“函数与方程思想方法”的教学解决策略
作业要求:请学员老师选择您所在的学段学科年级布置的作业,进行撰写提交
【高中数学一年级】
1.课程:“函数与方程思想方法”的教学解决策略
作业:在以下课题中任选一个,完成一份配套的教学评价测验试卷,并对命制的教学评价测验卷作“设计说明”。
课题:
(1)3.1.1 分数指数幂
(2)3.1.2指数函数
(3)3.2.1 对数
(4)3.2.2 对数函数
(5)3.3 幂函数
(6)3.4.1 函数与方程
对数函数的教学评价测试试卷
一.填空题
1. 函数)32(log 5-=-x y x 的定义域
2.计算522log 253log 648ln1+-=______.
3. 函数)1,0(log 2≠+=a a x y a 的图象一定经过定点
4.已知函数()lg f x x =,则14f ⎛⎫ ⎪⎝⎭,13f ⎛⎫ ⎪⎝⎭
,(2)f 的大小关系是______. 5. 5log ,6log ,5.0log 653的大小顺序为
6.函数
的值域为__________.
7.函数 在区间 上的最大值比最小值大2,则实数 =___.
8.函数y =log 2
1[(1-x )(x +3)]的递减区间是___________
9.设函数f(x)=⎩⎨⎧-x
x 81log 2 )),,1(()),1,((+∞∈-∞∈x x 则满足f(x)=41的x 值为___________。
10.若1<a<2,则y=)1(log -a x 中x 的取值范围是_____________。
二.简答题
11.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,求a的取值范围.
12.若-3≤log1
2x≤-
1
2
,求f(x)=(log2
x
2
)·(log2
x
4
)的最大值和最小值.
设计说明:
1.检测学生理解掌握对数函数概念、图像、性质及其相关的运算性质
2.能够通过对数函数的概念、图像、性质对对数的理解和应用,让学生掌握分类讨论、数形结合思想、整体思想等数学思维方法的应用。