《正多边形与圆》习题1
2020年九年级数学上册专题24.3正多边形和圆(讲练)【含解析】
2020年九年级数学上册专题24.3正多边形和圆(讲练)一、知识点1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120° 中心角=90° 中心角=60°,△BOC 为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2二、标准例题:例1:如图,正六边形ABCDEF 内接于⊙O ,连接BD .则∠CBD 的度数是()A .30°B .45°C .60°D .90°【答案】A【解析】∵在正六边形ABCDEF 中,∠BCD ==120°,BC =CD,(62)1806-⨯∴∠CBD =(180°﹣120°)=30°,12故选:A .总结:本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.例2:如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近( )A .B .C .D .45342312【答案】C【解析】连接AC ,设正方形的边长为a ,∵四边形ABCD 是正方形,∴∠B=90°,∴AC 为圆的直径,a ,,223π=≈故选C.总结:本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.例3:如图,正六边形ABCDEF 内接于⊙O ,BE 是⊙O 的直径,连接BF ,延长BA ,过F 作FG ⊥BA ,垂足为G .(1)求证:FG是⊙O的切线;(2)已知FG =,求图中阴影部分的面积.【答案】(1)见解析;(2) 图中阴影部分的面积为.83π【解析】(1)证明:连接OF ,AO ,∵AB =AF =EF ,∴,AB AF EF ==∴∠ABF =∠AFB =∠EBF =30°,∵OB =OF ,∴∠OBF =∠BFO =30°,∴∠ABF =∠OFB ,∴AB ∥OF ,∵FG ⊥BA ,∴OF ⊥FG ,∴FG 是⊙O 的切线;(2)解:∵,AB AF EF ==∴∠AOF =60°,∵OA =OF ,∴△AOF 是等边三角形,∴∠AFO =60°,∴∠AFG =30°,∵FG =,∴AF =4,∴AO =4,∵AF ∥BE ,∴S △ABF =S △AOF ,∴图中阴影部分的面积=.260483603ππ⨯=总结:此题考查切线的判定,等边三角形的判定,扇形面积,解题关键在于利用等弧对等角三、练习1.如图,正六边形的边长为2,分别以点为圆心,以为半径作扇形,扇形ABCDEF ,A D ,AB DCABF .则图中阴影部分的面积是( )DCE A .B .C .D.43π83π-43π-43π【答案】B 【解析】解:∵正六边形的边长为2,ABCDEF ∴正六边形的面积是:,,ABCDEF ()22sin 606622︒⨯⨯=⨯=120FAB EDC ∠=∠=∴图中阴影部分的面积是:,21202823603ππ⨯⨯-⨯=故选:B .2.有一个正五边形和一个正方形边长相等,如图放置,则的值是()1∠A .B .C .D .15︒18︒20︒9︒【答案】B 【解析】解:正五边形的内角的度数是1(52)1801085︒︒⨯-⨯=正方形的内角是90°,则∠1=108°-90°=18°.故选:B .3.如图,已知正方形的顶点、在上,顶点、在内,将正方形绕点逆ABCD A B O C D O ABCD A 时针旋转,使点落在上.若正方形的边长和的半径均为,则点运动的路径长为D O ABCD O 6cm D ()A .B .C .D .2cmπ32cm πcm π12cm π【答案】C 【解析】解:设圆心为O ,连接AO ,BO , OF ,∵AB=6,AO=BO=6,∴AB=AO=BO,∴三角形AOB 是等边三角形,∴∠OAB=60°∵AF=AO=FO=6,∴△FAO 是等边三角形,∴∠OAF=60°∠FAB=∠OAB+∠OAF =120°,∴∠EAC=120°-90°=30°,∵AD=AB=AF=6,∴点D 运动的路径长为:=π.306180π⨯⨯故选:C .4.如图,在正五边形中,,的延长线交于点,则等于( ).ABCDE AE CD FF ∠A .B .C .D .30°32︒36︒38︒【答案】C 【解析】∵五边形ABCDE 是正五边形,∴∠AED =∠EDC =108°,∴∠FED =∠FDE =72°,由三角形的内角和定理得:∠F =180°﹣72°﹣72°=36°.故选C .5.如图,已知正五边形内接于,连结,则的度数是( )ABCDE O BD ABD ∠A .B .C .D .60︒70︒72︒144︒【答案】C 【解析】∵五边形为正五边形ABCDE ∴()1552180108ABC C ∠=∠=-⨯︒=︒∵CD CB =∴181(8326)010CBD ∠=︒-︒=︒∴72ABD ABC CBD ∠=∠-∠=︒故选:C .6.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .B .C .D .π-2π-π+2π+【答案】A【解析】解:6个月牙形的面积之和,2132622πππ⎛=--⨯⨯= ⎝故选:A .7.阅读理如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m)称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”。
2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习(含答案)
2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习基础题知识点1 认识正多边形1.下面图形中,是正多边形的是( )A.矩形 B.菱形C.正方形 D.等腰梯形2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是( )A.240° B.120° C.60° D.30°3.一个正多边形的一个外角等于30°,则这个正多边形的边数为.4.如图,AC是正五边形ABCDE的一条对角线,则∠ACB= .知识点2 与正多边形有关的计算5.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A. 3 B.2 C.2 2 D.2 36.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( )A.正三角形 B.正方形C.正五边形 D.正六边形7.若正方形的外接圆半径为2,则其内切圆半径为( )A. 2 B.2 2C.22D.18.边长为6 cm的等边三角形的外接圆半径是.9.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C的坐标为( ).10.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于 (结果保留根号).知识点3 画正多边形11.如图,甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断( )A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确12.图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为( )A.4R=5r B.3R=4rC.2R=3r D.R=2r14.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2 B.3a2 C.4a2 D.5a217.如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为.18.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.综合题20.如图1,2,3,…,m,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…正n边形ABCDEF…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是,图3中∠MON的度数是;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案01 基础题知识点1 认识正多边形1.下面图形中,是正多边形的是(C)A .矩形B .菱形C .正方形D .等腰梯形2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是(B)A .240°B .120°C .60°D .30°3.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.4.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB=36°.知识点2 与正多边形有关的计算5.(沈阳中考)如图,正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是(B)A. 3B .2C .2 2D .2 3 6.(株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(A) A .正三角形 B .正方形 C .正五边形 D .正六边形7.(滨州中考)若正方形的外接圆半径为2,则其内切圆半径为(A)A. 2 B .2 2C.22D .1 8.边长为6 cm 的等边三角形的外接圆半径是23.9.(宁夏中考)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C 的坐标为(12,-32).10.(教材P109习题T6变式)将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于1+2(结果保留根号).知识点3 画正多边形甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断(A)A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).解:如图.02中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为(D)A.4R=5r B.3R=4rC.2R=3r D.R=2r14.(滨州中考)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是(C)A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.(达州中考)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(A)A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2 B.3a2 C.4a2 D.5a217.(山西中考命题专家原创)如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为67.5°.18.(连云港中考)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为2∶1;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.解:BE是⊙O的内接正十二边形的一边,理由:连接OA ,OB ,OE ,在正方形ABCD 中,∠AOB=90°,在正六边形AEFCGH 中,∠AOE=60°,∴∠BOE=30°.∵n=360°30°=12, ∴BE 是正十二边形的边.03 综合题20.如图1,2,3,…,m ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF …的边AB ,BC 上的点,且BM=CN ,连接OM ,ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是90°,图3中∠MON 的度数是72°;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).解:(1)连接OA ,OB.∵正三角形ABC 内接于⊙O ,∴OA=OB ,∠OAM=∠OBA=30°,∠AOB=120°.∵BM=CN ,AB=BC ,∴AM=BN.∴△AOM ≌△BON(SAS).∴∠AOM=∠BON.∴∠AOM +∠BOM=∠BON +∠BOM ,即∠AOB=∠MON.∴∠MON=120°.(3)∠MON=360°n.。
2023年中考数学一轮专题练习 ——正多边形和圆(含解析)
2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。
初三数学正多边形和圆知识精讲首试题
初三数学正多边形和圆知识精讲一. 本周教学内容:正多边形和圆1. 正多边形的定义:各边相等,各内角也相等的多边形叫正多边形。
2. 正多边形与圆的关系〔1〕把圆分成n〔n≥3〕等份,有如下结论:其一:依次连结各分点所得的多边形是这个圆的内接正n边形,这圆是正n边形的外接圆。
其二:经过各分点作圆的切线以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形,这圆是正n边形的内切圆。
〔2〕任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
3. 有关概念〔1〕正多边形的中心〔2〕正多边形的半径〔3〕正多边形的边心距〔4〕正多边形的中心角4. 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
这里我们设:正n边形的中心角为α,半径为R,边心距为r,边长为a n,周长为P n,面积为S n,那么有:()1360α=°n()sin22180a R n n =°()cos 3180r R n=·°()414222R r a n =+()5P n a n n =· ()61212S n ra rP n n n ==· ()()()721802180正多边形的每一个内角·°,内角和·°=-=-n nn5. 每一个正多边形都是轴对称图形,当边数为偶数时,它还是中心对称图形。
二. 重点和难点:1. 重点是正多边形的计算问题,计算通常是通过解直角三角形来解决的,所以在解这类题时,要尽量创造直角三角形,把所求的问题放到直角三角形中去。
尤其是含30°、60°角的直角三角形和等腰直角三角形更重要。
2. 难点是灵敏运用正多边形的知识和概念解题。
三. 易错点分析:1. 正多边形的定义要理解后记牢,这里各边都相等,各角都相等,缺一不可,边数一样多的正多边形是相似多边形。
2. 对于任意三角形来讲都有外接圆和内切圆,但注意只有正三角形的外接圆和内切圆是同心圆。
2020九年级数学上册 2.6 正多边形与圆课堂学习检测题一 (新版)苏科版
第二章 第六节 正多边形与圆1.如图,半径为2的正六边形ABCDEF 的中心为原点O ,顶点A 、D 在x 轴上,则点C 坐标为( )A 、(1,2)-B 、(1,2)-C 、(1,3)-D 、(1,3)--2.如图,正六边形ABCDEF 中,阴影部分面积为2123cm ,则此正六边形的边长为()n nA . 2cmB . 4cmC . 6cmD . 8cm3.3.以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;②两边及其第三边上的中线对应相等的两个三角形全等;③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣2x,当>0时y 随x 的增大而增大, 正确的有( )A . ①② B. ②③ C. ②④ D. ③④4.如图,⊙O 是正五边形ABCDE 的外接圆,这个正五边形的边长为a ,半径为R ,边心距为r ,则下列关系式错误的是( )A . R 2﹣r 2=a 2B . a=2Rsin36° C. a=2rtan36° D. r=Rcos36°5.如图,正五边形ABCDE 内接于⊙O ,过点A 的切线与CB 的延长线相交于点F ,则∠F=( )A . 18°B . 36°C . 54°D . 72°6.半径为R 的圆内接正三角形的面积是( )A .232RB .2πRC .2332RD .2334R 7.如图,正六边形ABCDEF 内接于⊙O,AB=2,则图中阴影部分的面积为( )A . πB . 2πC .D . 4π8.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .B .C .D .9.圆内接四边形ABCD 的四个内角的度数之比∠A :∠B :∠C :∠D 可以是( )A .3:2:4:1B .1:3:4:2C .3:3:1:4D .4:1:2:310.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需( )个五边形.A .6B .7C .8D .911.如图,正三角形的边长为12cm,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为 cm.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.cm.A.圆内接正六边形的边心距为23,则这个正六边形的面积为__________2︒-=__________.(结果精确到0.1)B.用科学计算器计算:sin38213.13.若等边三角形的边长为4 cm,则它的外接圆的面积为.14.正六边形的边长为4cm,它的边心距等于__________cm;15.如图所示,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接六边形的面积为 _____16.如图,在⊙O中,∠D=70°,∠ACB=50°,则∠BAC= .DO CAB17.有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,全部倒入A容器,问:结果会(“溢出”、“刚好”、“未装满”,选一个)18.正六边形的每个中心角为_________度.19.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是_____。
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
正多边形与圆 知识点+例题+练习(非常好 分类全面)
§ 2.6 正多边形与圆一、概念知识点1 正多边形及其有关概念★正多边形:________相等、________也相等的多边形叫做正多边形.注:边数3n 的多边形必须同时满足“各边相等”和“各角相等”这两个条件,才能判定它是正多边形.例1 下列说法正确的是()A.正三角形不是正多边形B.平行四边形是正多边形C.正方形是正多边形D.各角相等的多边形是正多边形知识点2 正多边形的对称性(重点)1.正多边形都是________图形.一个正n边形共有_______条对称轴,每一条对称轴都经过正n边形的_________.2.一个正多边形,如果有偶数条边,那么它是________________图形,也是_________________图形;如果有奇数条边,那么是_______________图形.注:(1)如果一个正多边形是中心对称图形,那么它的中心就是对称中心;(2)正n边形的内角和等于________________,每一个内角都等于___________________,每一个外角都等于_________________.知识点3 正多边形的判定例2 如图,在正∆ABC中,E,F,G,H,L,K分别是各边的三等分点,试说明六边形EFGHLK是正六边形.二、经典题型题型1 根据正多边形的性质求角例1 如图,正方形ABCD是O的内接正方形,点P是弧CD上不同于点C的任意一点,则∠BPC等于___________.题型2 利用正多边形的性质求图形的面积例 2 如图,正六边形内接于O,O的半径为10,则图中阴影面积_________.典例精讲:1. 下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面( ) 、(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(4)C .(1)(3)D .(1)(4)2. 若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:2:3B .3:2:1C .1:2:3D . 3:2:13. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O的半径为______________________.(第4题) (第5题)4.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .5.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.OB CDA EF E D C A O6.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .7.如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB B A 11的值为( )A .21 B .22 C .41D .42。
(含答案)九年级数学苏科版上册课时练第2单元《2.6 正多边形与圆》(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练2.6正多边形与圆1.已知正六边形的边长是2,则该正六边形的边心距是()A.1B.C.2D.2.若一个圆内接正多边形的中心角是36°,则这个多边形是()A.正五边形B.正八边形C.正十边形D.正十八边形3.如图,正六边形ABCDEF内接于⊙O,过点O作OM⊥边BC于点M,若⊙O的半径为4,则边心距OM的长为()A.B.C.2D.4.边长为2的正六边形的面积为()A.6B.6C.6D.5.如图,在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H.若该圆的半径为15cm,则线段GH的长为()A.cm B.5cm C.3cm D.10cm6.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠BOQ=.7.已知正六边形的半径是4,则这个正六边形的周长为.8.若一个正六边形的周长为24,则该六边形的面积为.9.已知⊙O的内接正六边形的边心距为,则⊙O的周长为.10.已知正六边形的半径是3,则这个正六边形的边长是.11.如图,正方形ABCD内接于⊙O,P为上的一点,连接DP,CP.(1)求∠CPD的度数;(2)当点P为的中点时,CP是⊙O的内接正n边形的一边,求n的值.12.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:P A =PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究P A、PB、PC三者之间有何数量关系,并给予证明.13.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5cm,求⊙O的半径R.14.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.15.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.16.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:AB•r1+AC•r2=AB•h,∴r1+r2=h(1)理解与应用如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r 1,r2,r3,试证明:.(2)类比与推理边长为2的正方形内任意一点到各边的距离的和等于;(3)拓展与延伸若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…r n,请问r1+r2+…r n是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.17.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.18.如图正方形ABCD内接于⊙O,E为任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.19.如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).20.如图,⊙O的周长等于8πcm,正六边形ABCDEF内接于⊙O.(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.21.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.22.如图,⊙O外接于正方形ABCD,P为弧AD上一点,且AP=1,PC=3,求正方形ABCD 的边长和PB的长.23.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.24.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=s时,四边形PBQE为菱形;②当t=s时,四边形PBQE为矩形.25.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.参考答案1.B.2.C.3.A.4.A.5.B.6.15°.7.24.8.24.9.4π.10.3.11.解:(1)连接OD,OC,∵正方形ABCD内接于⊙O,∴∠DOC=90°.∴;(2)连接PO,OB,∵正方形ABCD内接于⊙O,∴∠COB=90°,∵点P为BC的中点,∴=,∴,∴n=360÷45=8.12.证明:(1)延长BP至E,使PE=PC,连接CE.∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,∴△BEC≌△APC(SAS),∴P A=BE=PB+PC.(2)过点B作BE⊥PB交P A于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∴∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(3)答:;证明:过点B,作BM⊥AP,在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.∴MP=QM,又∵∠APB=30°,∴cos30°=,∴PM=PB,∴∴13.解:连接OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=×360°=120°,∠BOD=×360°=30°,∴∠COD=∠BOC﹣∠BOD=90°,∵OC=OD,∴∠OCD=45°,∴OC=CD•cos45°=5×=5(cm).即⊙O的半径R=5cm.14.(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH;(2)解:由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.15.解:(1)(Ⅰ)连接BD,∵AD=3×5=15cm,AB=5cm,∴BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴A、B、C三点在以O为圆心,以OA为半径的圆上,∴OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,∵CE⊥AB,AC=BC,∴AD是过A、B、C三点的圆的直径,∵OA=OB=OD,∴O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10﹣x,则有:,解得:,(8分)则ON=,∴直径为.16.解:(1)分别连接AP,BP,CP,作AD⊥BC于D,∴∠ADB=90°,∵△ABC是等边三角形∴AB=BC=AC=2,∠ABC=60°,∴∠BAD=30°,∴BD=1,在Rt△ABD中,由勾股定理,得∴AD=∵S△ABP +S△BCP+S△ACP=S△ABC.∴AB•r1+BC•r2+AC•r3=BC×AD,∵BC=AC=AB,∴r1+r2+r3=AD.∴r1+r2+r3=(2)如图2,∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=2.∵PE⊥AB,PF⊥BC,PG⊥DC,PH⊥AD,∴四边形PEBF是矩形,四边形PFCG是矩形,四边形PGDH是矩形,四边形PHAE是矩形,∴PE=AH,PF=BE,PG=HD,PH=AE,∴PE+PF+PG+PH=AH+BE+HD+AE=AD+AB=4.故答案为4.(3)设正n边形的边心距为r,且正n边形的边长为2,∴S正n边形=×2×r×n.r=,∵S正n边形=×2×r1+×2×r2+×2×r1+…+×2×r n,∴×2×r1+×2×r2+×2×r1+…+×2×r n=×n,∴r1+r2+…+r n=nr=(为定值).17.解:(1)连接OB,OC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE===4∴BC=2BE=2×4=8.解法二:如图,连接BD.∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∴∠CBD=45°,∴BC=BD•cos45°=16×=8.18.解:(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF,CE,CA,BD,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠BDE=∠DBF,∠BDC=∠ABD,∴∠ABF=∠CDE,∵∠CF A=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=19.解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:在图2中,∠APN=90°;在图3中,∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n中,.20.解:(1)连接OC、OD,作OH⊥CD于H,∵⊙O的周长等于8πcm,∴半径OC=4cm,∵六边形ABCDE是正六边形,∴∠COD=60°,∴∠COH=30°,∴圆心O到CD的距离=4×cos30°=2,∴圆心O到AF的距离为2cm;(2)正六边形ABCDEF的面积=×4×2×6=24cm2.21.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.22.解:连接AC,作AE⊥PB于E,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABC=∠D=∠BCD=90°,∠ACB=45°,∴AC是⊙O的直径,△ABC是等腰直角三角形,∴∠APC=90°,AC=AB,∴AC===,∴AB==,∵∠APB=∠ACB=45°,AE⊥PB,∴△APE是等腰直角三角形,∴PE=AE=AP=,∴BE===,∴PB=PE+BE=+=2.23.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.24.(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当P A=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.25.解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.。
2022年中考数学真题-专题14 圆与正多边形(1)(全国通用解析版)
专题14 圆与正多边形一.选择题1. 如图,在⊙O 中,∠BOC =130°,点A 在BAC 上,则∠BAC 的度数为( )A. 55°B. 65°C. 75°D. 130°【答案】B【解析】【分析】利用圆周角直接可得答案. 【详解】解: ∠BOC =130°,点A 在BAC 上, 165,2BACBOC故选B 【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.2. 如图,在O 中,弦,AB CD 相交于点P ,若48,80A APD ∠=︒∠=︒,则B 的大小为( )A. 32︒B. 42︒C. 52︒D. 62︒ 【答案】A【解析】【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得32C ∠=︒,再根据同弧所对的圆周角相等,即可得到答案.【详解】C A APD ∠+∠=∠,48,80A APD ∠=︒∠=︒,32C ∴∠=︒32B C ∴∠=∠=︒故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.3. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A. 23πB. 23π-C. 43π-D. 43π【答案】B【解析】 【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC 作OD ⊥AB 于点D ,∵∠AOB =2×36012︒=60°, ∴△OAB 是等边三角形, ∴∠AOD =∠BOD =30°,OA =OB =AB =2,AD =BD =12AB =1,∴OD =∴阴影部分的面积为260212236023ππ⋅⨯-⨯=- 故选:B .【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.4. 如图,在四边形材料ABCD 中,AD BC ∥,90A ∠=︒,9cm AD =,20cm AB =,24cm BC =.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )A. 110cm 13B. 8cmC.D. 10cm【答案】B【解析】【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,∵AD BC ∥,∠BAD =90°,∴△EAD △△EBC ,∠B =90°, △EA AD EB BC=,即92024EA EA =+, ∴12cm EA =,∴EB =32cm ,∴40cm EC ==,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H ,∴OF =OG =OH ,∵=EBC EOB COB EOC S S S S ++△△△△, ∴11112222EB BC EB OF BC OG EC OH ⋅=⋅+⋅+⋅, ∴()2432=243240OF ⨯++⋅,∴8cm OF =,∴此圆的半径为8cm ,故选B .【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.5. 如图,四边形ABCD 内接于O ,连接OB ,OD ,BD ,若110C ∠=︒,则OBD ∠=( )A. 15︒B. 20︒C. 25︒D. 30【答案】B【解析】 【分析】根据圆内接四边形的性质求出A ∠,根据圆周角定理可得BOD ∠,再根据OB OD =计算即可.【详解】∵四边形ABCD 内接于O ,∴18070A BCD ∠︒-∠︒== ,由圆周角定理得,2140BOD A ∠=∠=︒ ,∵OB OD = ∴180202BOD OBD ODB ︒-∠∠=∠==︒ 故选:B .【点睛】此题考查圆周角定理和圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6. 如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:△BAD CAD ∠=∠;△若60BAC ∠=︒,则120∠=︒BEC ;△若点G 为BC 的中点,则90BGD ∠=︒;△BD DE =.其中一定正确的个数是( )A. 1B. 2C. 3D. 4 【答案】D【解析】【分析】根据点E 是ABC 的内心,可得BAD CAD ∠=∠,故①正确;连接BE ,CE ,可得∠ABC +∠ACB =2(∠CBE +∠BCE ),从而得到∠CBE +∠BCE =60°,进而得到∠BEC =120°,故②正确; BAD CAD ∠=∠,得出BD CD =,再由点G 为BC 的中点,则90BGD ∠=︒成立,故③正确;根据点E 是ABC 的内心和三角形的外角的性质,可得()12BED BAC ABC ∠=∠+∠,再由圆周角定理可得()12DBE BAC ABC ∠=∠+∠,从而得到∠DBE =∠BED ,故④正确;即可求解. 【详解】解:∵点E 是ABC 的内心,∴BAD CAD ∠=∠,故①正确;如图,连接BE ,CE ,∵点E 是ABC 的内心,∴∠ABC =2∠CBE ,∠ACB =2∠BCE ,∴∠ABC +∠ACB =2(∠CBE +∠BCE ),∵∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠CBE +∠BCE =60°,∴∠BEC =120°,故②正确;∵点E 是ABC 的内心,∴BAD CAD ∠=∠,∴BD CD =,∵点G 为BC 的中点,∴线段AD 经过圆心O ,∴90BGD ∠=︒成立,故③正确;∵点E 是ABC 的内心, ∴11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ∵∠BED =∠BAD +∠ABE , ∴()12BED BAC ABC ∠=∠+∠, ∵∠CBD =∠CAD ,∴∠DBE =∠CBE +∠CBD =∠CBE +∠CAD , ∴()12DBE BAC ABC ∠=∠+∠, ∴∠DBE =∠BED ,∴BD DE =,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.7. 如图所示,等边ABC 的顶点A 在△O 上,边AB 、AC 与△O 分别交于点D 、E ,点F 是劣弧DE 上一点,且与D 、E 不重合,连接DF 、EF ,则DFE ∠的度数为( )A. 115︒B. 118︒C. 120︒D. 125︒【答案】C【解析】【分析】根据等边三角形的性质可得60A ∠=︒,再根据圆内接四边形的对角互补即可求得答案. 【详解】解:ABC 是等边三角形,60A ∴∠=︒,180120DFE A ∴∠=︒-∠=︒,故选C .【点睛】本题考查了等边三角形的性质及圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.8. 大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm ,则正六边形ABCDEF 的边长为( )A. 2mmB.C.D. 4mm 【答案】D【解析】【分析】如图,连接CF 与AD 交于点O ,易证△COD 为等边三角形,从而CD =OC =OD =12AD ,即可得到答案.【详解】连接CF 与AD 交于点O ,∵ABCDEF 为正六边形,∴∠COD = 3606︒=60°,CO =DO ,AO =DO =12AD =4mm ,∴△COD 为等边三角形,∴CD =CO =DO =4mm ,即正六边形ABCDEF 的边长为4mm ,故选:D .【点睛】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键.9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32 B. 2 D. 52【答案】C【解析】【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到∠B =60°,关键圆周角定理得到∠ACD =90°,∠D =∠B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10. 如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA ,PB 分别相切于点A ,B ,不倒翁的鼻尖正好是圆心O ,若28OAB ∠=°,则APB ∠的度数为( )A. 28︒B. 50︒C. 56︒D. 62︒【答案】C【解析】【分析】连OB,由AO=OB得,∠OAB=∠OBA=28°,∠AOB=180°-2∠OAB=124°;因为P A、PB分别相切于点A、B,则∠OAP=∠OBP=90°,利用四边形内角和即可求出∠APB.【详解】连接OB,∵OA=OB,∴∠OAB=∠OBA=28°,∴∠AOB=124°,∵P A、PB切⊙O于A、B,∴OA⊥P A,OP⊥AB,∴∠OAP+∠OBP=180°,∴∠APB+∠AOB=180°;∴∠APB=56°.故选:C【点睛】本题考查切线的性质,三角形和四边形的内角和定理,切线长定理,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.11. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连接PM,PN,则所有满足∠MPN =45°的△PMN中,边PM的长的最大值是()A. B. 6 C. D.【答案】C【解析】【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M、N作以点O为圆心,∠MON=90°的圆,则点P在所作的圆上,观察圆O所经过的格点,找出到点M距离最大的点即可求出.MN,以O为【详解】作线段MN中点Q,作MN的垂直平分线OQ,并使OQ=12圆心,OM为半径作圆,如图,MN,所以OQ=MQ=NQ,因为OQ为MN垂直平分线且OQ=12∴∠OMQ=∠ONQ=45°,∴∠MON=90°,所以弦MN所对的圆O的圆周角为45°,所以点P在圆O上,PM为圆O的弦,通过图像可知,当点P在P'位置时,恰好过格点且P M'经过圆心O,所以此时P M'最大,等于圆O的直径,∵BM=4,BN=2,∴MN=△MQ=OQ△OM==△2P M OM'==故选C.【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.12. 如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A. 175π3cm2 B.175π2cm2 C. 175πcm2 D. 350πcm2【答案】C【解析】【分析】先利用勾股定理计算出AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式计算出圆锥的侧面积.【详解】解:在Rt AOC△中,25AC =cm , ∴它侧面展开图的面积是127251752ππ⨯⨯⨯=cm 2. 故选:C【点睛】本题考查了圆锥的计算,理解圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长是解题的关键. 13. 如图,ABC 内接于⊙,46O C ∠=︒,连接OA ,则OAB ∠=( )A. 44︒B. 45︒C. 54︒D. 67︒【答案】A【解析】 【分析】连接OB ,由2∠C =△AOB ,求出△AOB ,再根据OA =OB 即可求出△OAB .【详解】连接OB ,如图,△△C =46°,△△AOB =2△C =92°,△△OAB +△OBA =180°-92°=88°,△OA =OB ,△△OAB =△OBA ,△△OAB =△OBA =12×88°=44°,故选:A .【点睛】本题主要考查了圆周角定理,根据圆周角定理的出△AOB =2△C =92°是解答本题的关键.14. 已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A. 236πcmB. 224πcmC. 216πcmD. 212πcm【答案】B【解析】【分析】利用圆锥侧面积计算公式计算即可:S rl π=侧;【详解】4624S rl πππ==⋅⋅=侧2cm ,故选B .【点睛】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可. 15. 如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(AB ),点O 是这段弧所在圆的圆心,半径90m OA =,圆心角80AOB ∠=︒,则这段弯路(AB )的长度为( )A. 20m πB. 30m πC. 40m πD. 50m π【答案】C【解析】 【分析】根据题目中的数据和弧长公式,可以计算出这段弯路(AB )的长度.【详解】解:∵半径OA =90m ,圆心角∠AOB =80°,∴这段弯路(AB )的长度为:809040(m)180ππ⨯=, 故选C 【点睛】本题考查了弧长的计算,解答本题的关键是明确弧长计算公式.180n r l π=16. 如图,,AB AC 是O 的两条弦,⊥OD AB 于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 130︒【答案】B【解析】 【分析】根据四边形的内角和等于360°计算可得∠BAC =50°,再根据圆周角定理得到∠BOC =2∠BAC ,进而可以得到答案.【详解】解:∵OD ⊥AB ,OE ⊥AC ,∴∠ADO =90°,∠AEO =90°,∵∠DOE =130°,∴∠BAC =360°-90°-90°-130°=50°,∴∠BOC =2∠BAC =100°,故选:B .【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17. 如图,点I 为的ABC 内心,连接AI 并延长交ABC 的外接圆于点D ,点E 为弦AC 的中点,连接CD ,EI ,IC ,当2AI CD =,6IC =,5ID =时,IE 的长为( )A. 5B. 4.5C. 4D. 3.5【答案】C【解析】【分析】延长ID到M,使DM=ID,连接CM.想办法求出CM,证明IE是△ACM 的中位线即可解决问题.【详解】解:延长ID到M,使DM=ID,连接CM.∵I是△ABC的内心,∴∠IAC=∠IAB,∠ICA=∠ICB,∵∠DIC=∠IAC+∠ICA,∠DCI=∠BCD+∠ICB,∴∠DIC=∠DCI,∴DI=DC=DM,∴∠ICM=90°,∴CM=,∵AI=2CD=10,∴AI=IM,∵AE=EC,∴IE是△ACM的中位线,CM=4,∴IE=12故选:C.【点睛】本题考查三角形的内心、三角形的外接圆、三角形的中位线定理、直角三角形的判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.18. 某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为,则改建后门洞的圆弧长是( )A. 5πm 3B. 8πm 3C. 10πm 3D. 5π+2m 3⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】利用勾股定理先求得圆弧形的门洞的直径BC ,再利用矩形的性质证得COD ∆是等边三角形,得到60COD ∠=︒,进而求得门洞的圆弧所对的圆心角为36060300︒-︒=︒,利用弧长公式即可求解.【详解】如图,连接AD ,BC ,交于O 点,∵90BDC ∠=︒ ,∴BC 是直径,∴4BC ===,∵四边形ABDC 是矩形,∴122OC OD BC ===, ∵2CD =,∴OC OD CD ==,∴COD ∆是等边三角形,∴60COD ∠=︒,∴门洞的圆弧所对的圆心角为36060300︒-︒=︒ , ∴改建后门洞的圆弧长是11300300410221801803BC πππ︒⨯︒⨯⨯==︒︒(m), 故选:C【点睛】本题考查了弧长公式,矩形的性质以及勾股定理的应用,从实际问题转化为数学模型是解题的关键.19. 如图,正六边形ABCDEF 内接于△O ,若△O 的周长等于6π,则正六边形的边长为( )C. 3D. 【答案】C【解析】 【分析】连接OB ,OC ,由△O 的周长等于6π,可得△O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵△O 的周长等于6π,∴△O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.20. 家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC =90°,则扇形部件的面积为( )A. 12π米2 B. 14π米2 C. 18π米2 D. 116π米2 【答案】C【解析】 【分析】连接BC ,先根据圆周角定理可得BC 是O 的直径,从而可得1BC =米,再解直角三角形可得AB AC = 【详解】解:如图,连接BC ,90BAC ∠=︒,BC ∴是O 的直径,1BC ∴=米,又AB AC =,45ABC ACB ∴∠=∠=︒,sin AB AC BC ABC ∴==⋅∠=(米),则扇形部件的面积为290123608ππ⨯=(米2), 故选:C .【点睛】本题考查了圆周角定理、解直角三角形、扇形的面积公式等知识点,熟练掌握圆周角定理和扇形的面积公式是解题关键.二.填空题21. 如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是_____.【答案】 【解析】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCO DEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOMDOHMOFCHOSSSS,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案. 【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形由正六边形是中心对称图形可得:,,AOMDOHMOFCHOSSSS,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心, 由正六边形的性质可得:AOF 为等边三角形,60,AFO而6,AB =6,3,AB AF OF OA AP FP226333,OP2,AM 则1,MP 2213327,OM247.MHOM故答案为:【点睛】本题考查的是正多边形与圆的知识,掌握“正六边形既是轴对称图形也是中心对称图形”是解本题的关键.22. 如图,用一个半径为6 cm 的定滑轮拉动重物上升,滑轮旋转了120︒,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_________cm .(结果保留π)【答案】4π 【解析】【分析】利用题意得到重物上升的高度为定滑轮中120°所对应的弧长,然后根据弧长公式计算即可.【详解】解:根据题意,重物的高度为12064180ππ⨯⨯=(cm ).故答案为:4π.【点睛】本题考查了弧长公式:180n Rl π⋅⋅=(弧长为l ,圆心角度数为n ,圆的半径为R ).23. 如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BCAD的值等于_________.【答案】 △. 36 △. 32+ 【解析】【分析】由等腰三角形的性质得出∠DAE =∠DEA ,证出∠BEC =∠BCE ,由折叠的性质得出∠ECO =∠BCO ,设∠ECO =∠OCB =∠B =x ,证出∠BCE =∠ECO +∠BCO =2x ,∠CEB =2x ,由三角形内角和定理可得出答案;证明△CEO ∽△BEC ,由相似三角形的性质得出CE BEEO CE=,设EO =x ,EC =OC =OB =a ,得出a 2=x (x +a ),求出OE a ,证明△BCE ∽△DAE ,由相似三角形的性质得出BC ECAD AE=,则可得出答案.【详解】解:∵AD =DE , ∴∠DAE =∠DEA ,∵∠DEA =∠BEC ,∠DAE =∠BCE , ∴∠BEC =∠BCE ,∵将该圆形纸片沿直线CO 对折, ∴∠ECO =∠BCO , 又∵OB =OC , ∴∠OCB =∠B ,设∠ECO =∠OCB =∠B =x , ∴∠BCE =∠ECO +∠BCO =2x , ∴∠CEB =2x ,∵∠BEC +∠BCE +∠B =180°, ∴x +2x +2x =180°, ∴x =36°, ∴∠B =36°;∵∠ECO =∠B ,∠CEO =∠CEB , ∴△CEO ∽△BEC , ∴CE BEEO CE=, ∴CE 2=EO •BE ,设EO =x ,EC =OC =OB =a , ∴a 2=x (x +a ),解得,x a (负值舍去),∴OE a ,∴AE =OA -OE =a -12a =32-a ,∵∠AED =∠BEC ,∠DAE =∠BCE , ∴△BCE ∽△DAE ,∴BC EC AD AE=,∴32BCAD==.故答案为:36,32+.【点睛】本题是圆的综合题,考查了圆周角定理,折叠的性质,等腰三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.24. 如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是AD所对的圆周角,则∠APD的度数是______.【答案】30°##30△【解析】【分析】根据垂径定理得出△AOB=△BOD,进而求出△AOD=60°,再根据圆周角定理可得△APD=12△AOD=30°.【详解】△OC⊥AB,OD为直径,△BD AD=,△△AOB=△BOD,△△AOB=120°,△△AOD=60°,△△APD=12△AOD=30°,故答案为:30°.【点睛】本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.25. 某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm ,底面圆的半径为10 cm ,这种圆锥的侧面展开图的圆心角度数是_____. 【答案】120︒ 【解析】【分析】设这种圆锥的侧面展开图的圆心角度数为n ,30210180n =⨯⨯ππ,进行解答即可得.【详解】解: 设这种圆锥的侧面展开图的圆心角度数为n°,30210180n =⨯⨯ππ 120n =︒故答案为:120︒.【点睛】本题考查了圆锥侧面展开图的圆心角,解题的关键是掌握扇形的弧长公式.26. 如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.【答案】32或65【解析】【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可. 【详解】解:连接OA ,①当D点与O点重合时,∠CAD为90°,设圆的半径=r,∴OA=r,OC=4-r,∵AC=4,在Rt△AOC中,根据勾股定理可得:r2+4=(4-r)2,解得:r=32,即AD=AO=32;②当∠ADC=90°时,过点A作AD⊥BC于点D,∵12AO•AC=12OC•AD,∴AD=AO AC OC,∵AO=32,AC=2,OC=4-r=52,∴AD=65,综上所述,AD的长为32或65,故答案为:32或65.【点睛】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.27. 一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为____________厘米.【答案】26【解析】【分析】令圆O的半径为OB=r,则OC=r-2,根据勾股定理求出OC2+BC2=OB2,进而求出半径.【详解】解:如图,由题意,得OD垂直平分AB,∴BC=10厘米,令圆O的半径为OB=r,则OC=r-2,在Rt△BOC中OC2+BC2=OB2,∴(r-2)2+102=r2,解得r=26.故答案为:26.【点睛】本题考查垂径定理和勾股定理求线段长,熟练地掌握圆的基本性质是解决问题的关键.28. 若扇形的圆心角为120 ,半径为32,则它的弧长为___________.【答案】π【解析】【分析】根据题目中的数据和弧长公式,可以计算出该扇形的弧长.【详解】解:∵扇形的圆心角为120°,半径为32, ∴它的弧长为:31202,180ππ⨯=故答案为:π【点睛】本题考查弧长的计算,解答本题的关键是明确弧长的计算公式.180n rl π=29. 如图,⊙O 的半径为2,点A ,B ,C 都在⊙O 上,若30B ∠=︒.则AC 的长为_____(结果用含有π的式子表示)【答案】23π 【解析】【分析】利用同弧所对的圆心角是圆周角的2倍得到60AOC ∠=︒,再利用弧长公式求解即可.【详解】2AOC B ∠=∠,30B ∠=︒,60AOC ∴∠=︒,⊙O 的半径为2,60221803AC ππ⨯∴==, 故答案为:23π.【点睛】本题考查了圆周角定理和弧长公式,即180n rl π=,熟练掌握知识点是解题的关键.30. 如图,在Rt ABC △中,90C ∠=︒,6AC =,BC =1的O在Rt ABC △内平移(O 可以与该三角形的边相切),则点A 到O 上的点的距离的最大值为________.【答案】1 【解析】【分析】设直线AO 交O 于M 点(M 在O 点右边),当O 与AB 、BC 相切时,AM 即为点A 到O 上的点的最大距离.【详解】设直线AO 交O 于M 点(M 在O 点右边),则点A 到O 上的点的距离的最大值为AM 的长度当O 与AB 、BC 相切时,AM 最长 设切点分别为D 、F ,连接OB ,如图∵90C ∠=︒,6AC =,BC =∴tan ACB BC==AB = ∴60B ∠=︒∵O 与AB 、BC 相切 △1302OBD B ∠=∠=︒ △O 的半径为1 ∴1OD OM ==∴BD ==∴AD AB DB =-=∴OA===∴1=+=AM OA OM∴点A到O上的点的距离的最大值为1.【点睛】本题考查切线的性质、特殊角度三角函数值、勾股定理,解题的关键是确定点A到O上的点的最大距离的图形.31. 如图,在扇形AOB中,点C,D在AB上,将CD沿弦CD折叠后恰好与OA,OA=,则EF的度数为_______;折痕OB相切于点E,F.已知120AOB∠=︒,6CD的长为_______.【答案】△. 60°##60△ △.【解析】【分析】根据对称性作O关于CD的对称点M,则点D、E、F、B都在以M为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O关于CD的对称点M,则ON=MN连接MD、ME、MF、MO,MO交CD于N△将CD沿弦CD折叠∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上△将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∴ME ⊥OA ,MF ⊥OB∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∴MEO MFO ≅(HL ) ∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ====∴CD =故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三.解答题32. 如图,在Rt ABC △中,90ACB ∠=︒,以BC 为直径作⊙O ,交AB 边于点D ,在CD 上取一点E ,使BE CD =,连接DE ,作射线CE 交AB 边于点F .(1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长. 【答案】(1)见解析 (2)BF =5,4225DE = 【解析】【分析】(1)根据Rt ABC △中,90ACB ∠=︒,得到∠A +∠B =∠ACF +∠BCF =90°,根据BE CD =,得到∠B =∠BCF ,推出∠A =∠ACF ;(2)根据∠B =∠BCF ,∠A =∠ACF ,得到AF =CF ,BF =CF ,推出AF =BF =12 AB ,根据4cos cos 5AC ACF A AB ∠===,AC =8,得到AB =10,得到BF =5,根据6BC ==,得到3sin 5BC A AB ==,连接CD ,根据BC 是⊙O 的直径,得到∠BDC =90°,推出∠B +∠BCD =90°,推出∠A =∠BCD ,得到3sin 5BD BCD BC ∠==,推出185BD =,得到75DF BF BD =-=,根据∠FDE =∠BCE ,∠B =∠BCE ,得到∠FDE =∠B ,推出DE ∥BC ,得到△FDE ∽△FBC ,推出DE DF BC BF =,得到4225DE =. 【小问1详解】解:∵Rt ABC △中,90ACB ∠=︒,∴∠A +∠B =∠ACF +∠BCF =90°,∵BE CD =,∴∠B =∠BCF ,∴∠A =∠ACF ;【小问2详解】∵∠B =∠BCF ,∠A =∠ACF∴AF =CF ,BF =CF ,∴AF =BF =12 AB , ∵4cos cos 5AC ACF A AB ∠===,AC =8,∴AB=10,∴BF=5,∵6 BC==,∴3 sin5BCAAB==,连接CD,∵BC是⊙O的直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∴3 sin5BDBCDBC∠==,∴185 BD=,∴75 DF BF BD=-=,∵∠FDE=∠BCE,∠B=∠BCE,∴∠FDE=∠B,∴DE∥BC,∴△FDE∽△FBC,∴DE DF BC BF=,∴4225 DE=.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.33. 如图,已知AC为O的直径,直线P A与O相切于点A,直线PD经过O 上的点B且CBD CAB∠=∠,连接OP交AB于点M.求证:(1)PD 是O 的切线;(2)2AM OM PM =⋅【答案】(1)见解析 (2)见解析【解析】【分析】(1)连接OB ,由等边对等角及直径所对的圆周角等于90°即可证明; (2)根据直线P A 与O 相切于点A ,得到90OAP ∠=︒,根据余角的性质得到OAM APM ∠=∠,继而证明OAM APM ,根据相似三角形的性质即可得到结论.【小问1详解】连接OB ,OA OB OC ==,,OAB OBA OBC OCB ∴∠=∠∠=∠,AC 为O 的直径,ABC OBA OBC ∴∠=∠+∠,CBD CAB∠=∠,OBA CBD∴∠=∠,90CBD OBC OBD∴∠+∠=︒=∠,∴PD是O的切线;【小问2详解】直线P A与O相切于点A,90OAP∴∠=︒,∵PD是O的切线,90AMO AMP OAP∴∠=∠=∠=︒,90OAM PAM PAM APM∴∠+∠=∠+∠=︒,OAM APM∴∠=∠,OAM APM∴,AM OMPM AM∴=,∴2AM OM PM=⋅.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,圆周角定理,等腰三角形的性质,熟练掌握知识点是解题的关键.34. 如图,点C在以AB为直径的O上,CD平分ACB∠交O于点D,交AB于点E,过点D作O的切线交CO的延长线于点F.(1)求证:FD AB∥;(2)若AC=BC=,求FD的长.【答案】(1)见解析(2)15 8【解析】【分析】(1)连接OD,由CD平分△ACB,可知AD BD=,得△AOD=△BOD=90°,由DF是切线可知△ODF=90°=△AOD,可证结论;(2)过C作CM⊥AB于M,已求出CM、BM、OM的值,再证明△DOF∽△MCO,得CM OMOD FD,代入可求.【小问1详解】证明:连接OD,如图,△CD平分△ACB,△AD BD=,△△AOD=△BOD=90°,△DF是△O的切线,△△ODF=90°△△ODF=△BOD,△DF∥AB.【小问2详解】解:过C作CM⊥AB于M,如图,∵AB是直径,∴∠ACB=90°,∴AB2222(25)(5)5BC.∴1122AB CM AC BC=,即115255 22CM,∴CM=2,∴2222(5)21BM BC CM,∴OM=OB -BM=135122,∵DF∥AB,∴∠OFD=∠COM,又∵∠ODF=∠CMO=90°,∴△DOF ∽△MCO,∴CM OM OD FD,即32252FD,∴FD=158.【点睛】本题考查了圆的圆心角、弦、弧关系定理、圆周角定理,切线的性质,相似三角形的判定与性质,勾股定理,解题的关键是熟练掌握这些定理,灵活运用相似三角形的性质求解.35. 如图,AB 为O的直径,点C是O上一点,点D是O外一点,BCD BAC∠=∠,连接OD交BC于点E.(1)求证:CD是O的切线.(2)若4,sin5CE OA BAC=∠=,求tan CEO∠的值.【答案】(1)见解析;(2)3【解析】【分析】(1)连接OC ,根据圆周角定理得到∠ACB =90°,根据OA =OC 推出∠BCD =∠ACO ,即可得到∠BCD +∠OCB =90°,由此得到结论;(2)过点O 作OF ⊥BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ∥AC ,得到1BF OB CF OA==,证得OF 为△ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值.【小问1详解】证明:连接OC ,∵AB 为O 的直径,∴∠ACB =90°,∴∠ACO +∠OCB =90°,∵OA =OC ,△∠A =∠ACO ,∵BCD BAC ∠=∠,∴∠BCD =∠ACO ,∴∠BCD +∠OCB =90°,∴OC ⊥CD ,∴CD 是O 的切线.【小问2详解】解:过点O 作OF ⊥BC 于F , ∵4,sin 5CE OA BAC =∠=, ∴设BC =4x ,则AB =5x ,OA =CE =2.5x ,∴BE =BC -CE =1.5x ,∵∠C =90°,∴AC 3x =,∵OA =OB ,OF ∥AC , ∴1BF OB CF OA==, ∴CF =BF =2x ,EF =CE -CF =0.5x ,∴OF 为△ABC 的中位线,∴OF =1 1.52AC x =, ∴tan CEO ∠= 1.530.5OF x EF x ==.【点睛】此题考查了圆周角定理,证明直线是圆的切线,锐角三角函数,三角形中位线的判定与性质,平行线分线段成比例,正确引出辅助线是解题的关键. 36. 如图,AB 为O 的弦,OC OA ⊥交AB 于点P ,交过点B 的直线于点C ,且CB CP =.(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若sin 85A OA ==,求CB 的长. 【答案】(1)相切,证明见详解(2)6【解析】【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA ∠=∠,CPB CBP ∠=∠,从而求出90AOC OBC ∠=∠=︒,再根据切线的判定得出结论; (2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.【小问1详解】证明:连接OB ,如图所示:CP CB OA OB ==,,∴A OBA ∠=∠,CPB CBP ∠=∠,APO CPB ∠=∠,APO CBP ∴∠=∠,OC OA ⊥,即90AOP ︒=∠,90A APO OBA CBP OBC ∴∠+∠=︒=∠+∠=∠,OB BC ∴⊥, OB 为半径,经过点O ,∴直线BC 与O 的位置关系是相切.【小问2详解】分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,如图所示:AM BM ∴=,CP CB AO CO =⊥,,A APO PCN CPN ∴∠+∠=∠+∠,PN BN =,PCN BCN ∠=∠A PCN BCN ∴∠=∠=∠sin A =,8OA =,sin OM OP A OA AP ∴===4OM AM OP AP ∴====,25AB AM ∴==,111()(22255PN BN PB AB AP ∴===-=⨯-=sin sin BN A BCN CB ∴=∠==,6CB ∴===. 【点睛】本题考查了切线的证明,垂径定理的性质,等腰三角形,勾股定理,三角函数等知识点,熟练掌握相关知识并灵活应用是解决此题的关键,抓住直角三角形边的关系求解线段长度是解题的主线思路.37. 如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 、C 、D 、M 均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB 、CD ,相交于点P 并给出部分说理过程,请你补充完整:解:在网格中取格点E ,构建两个直角三角形,分别是△ABC 和△CDE . 在Rt △ABC 中,1tan 2BAC ∠=在Rt △CDE 中, ,所以tan tan BAC DCE ∠∠=.所以∠BAC =∠DCE .因为∠ACP + ∠DCE =∠ACB =90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.(1)【拓展应用】如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在BM上找出一点P,使PM=AM,写出作法,并给出证明:(2)【拓展应用】如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使2AM=AP·AB,写出作法,不用证明.【答案】(1)1tan2DCE∠=;见解析(2)见解析【解析】【分析】(1)取格点N,作射线AN交BM于点P,则AN MO⊥根据垂径定理可知,点P即为所求作;(2)取格点I,连接MI交AB于点P,点P即为所求作.利用正切函数证得∠FMI=∠MNA,利用圆周角定理证得∠B=∠MNA,再推出△P AM∽△MAB,即可证明结论.【小问1详解】解:【操作探究】在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,1 tan2BAC∠=在Rt△CDE中,1 tan2DCE∠=,所以tan tan BAC DCE ∠∠=.所以∠BAC =∠DCE .因为∠ACP + ∠DCE =∠ACB =90°,所以∠ACP +∠BAC =90°,所以∠APC =90°,即AB ⊥CD . 故答案为:1tan 2DCE ∠=; 取格点N ,作射线AN 交BM 于点P ,点P 即为所求作;11tan ,tan 33MOD NAC ∠=∠= MOD NAC ∴∠=∠90NAC ANC ∠+∠=︒90ANC DOM ∴∠+∠=︒∴AN OM ⊥AM PM ∴=【小问2详解】解:取格点I ,连接MI 交AB 于点P ,点P 即为所求作;证明:作直径AN ,连接BM 、MN ,在Rt △FMI 中,1an 3t FMI ∠=, 在Rt △MNA 中,1an 3t MNA ∠=, 所以tan tan FMI MNA ∠∠=.。
九年级数学上册《正多边形和圆》练习题及答案解析
九年级数学上册《正多边形和圆》练习题及答案解析学校:___________姓名:___________班级:________________一、填空题1.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为_______,面积为_______.2.正十二边形的中心角是_____度.二、解答题3.(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(2)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(3)如图①,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D的位置时,你能求出①A'、①D、①1与①2之间的数量关系吗?并说明理由.4.阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2,正五边形ABCDE 内接于①O ,AB =2,求对角线BD 的长.5.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.6.如图所示,正五边形的对角线AC 和BE 相交于点M .(1)求证:AC ①ED ;(2)求证:ME =AE .7.如图1,正五边形ABCDE 内接于①O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;①以F 为圆心,FO 为半径作圆弧,与①O 交于点M ,N ;①连接,,AM MN NA .(1)求ABC∠的度数.(2)AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在①O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.8.如图,ABC是等边三角形,点D、E、G分别在边AB、AC、BC上,且AD CE BG==,BE、CD、AG分别相交于点F、P、Q.求证:①PQF是等边三角形.9.如图,在圆内接正三角形ABC中,若①DOE保持120°角度不变,求证:当①DOE绕着O点旋转时,由两条半径和①ABC的两条边围成的图形,图中阴影部分的面积始终是①ABC的面积的13.10.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.三、单选题11.如图,已知①O 的半径为1,AB 是直径,分别以点A 、B 为圆心,以AB 的长为半径画弧.两弧相交于C 、D 两点,则图中阴影部分的面积是( )A .52π-B .56πC .53πD .83π-12.对于等边三角形的性质,下列说法不正确的是( )A .等边三角形的三条边都相等,三个内角也都相等;B .等边三角形的边都等于60,角都等于60°;C .等边三角形中线、高、角平分线都相等,而且都交于一点;D .等边三角形具有等腰三角形的所有性质;132,则这个多边形的内角和为( )A .720︒B .360︒C .240︒D .180︒14.如图,四边形ABCD 为⊙O 的内接正四边形,△AEF 为⊙O 的内接正三角形,若DF 恰好是同圆的一个内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.1215.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分①CHEC.整个图形不是中心对称图形D.CEH△是等边三角形参考答案及解析:1.1)a22)a【分析】设正八边形的边长为x,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可;利用正八边形的面积等于正方形的面积减去剪掉的四个等腰直角三角形的面积列式计算即可得解.【详解】解:正方形ABCD外接圆的直径就是它的对角线,∴正方形边长为a,如图所示,设正八边形的边长为x,在Rt AEL 中,LE x =,AE AL x ==,2x x a ∴+=,解得:1)x a =,即正八边形的边长为1)a .2222241)]2)AEL S S S a x a a a =-=-=-=正方形正八边形.故答案是:1)a ,22)a .【点睛】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,解题的关键是读懂题目信息,根据正方形的边长列出方程.2.30 【分析】根据正多边形的中心角公式:360n计算即可 【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式3.(1)2①A =①1+①2;见解析;(2)2①A =①1﹣①2;见解析;(3)2(①A +①D )=①1+①2+360°,见解析【分析】(1)根据翻折的性质表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出①3、①4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,①3=EDA '∠=12(180-①1),①4=DEA '∠=12(180-①2),①①A +①3+①4=180°,①①A +12(180-①1)+12(180-①2)=180°,整理得,2①A =①1+①2;(2)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180+①2),①①A+①3+①4=180°,①①A+12(180-①1)+12(180+①2)=180°,整理得,2①A=①1-①2;(3)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180-①2),①①A+①D+①3+①4=360°,①①A+①D+12(180-①1)+12(180-①2)=360°,整理得,2(①A+①D)=①1+①2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.4.(1)AC BD AB CD AD BC ⋅=⋅+⋅;(2)1【分析】(1)由托勒密定理可直接求解;(2)连接,AD AC ,根据圆周角与弦的关系可得AD AC BD ==,设BD x =,在四边形ABCD 中,根据托勒密定理有,AC BD AB CD AD BC ⋅=⋅+⋅,建立方程即可求得BD 的长【详解】(1)由托勒密定理可得:AC BD AB CD AD BC ⋅=⋅+⋅故答案为:AC BD AB CD AD BC ⋅=⋅+⋅(2)如图,连接,AD AC ,五边形ABCDE 是正五边形,则E ABC BCD ∠=∠=∠,2AB BC CD ===AD AC BD ∴==设BD x =,AC BD AB CD AD BC ⋅=⋅+⋅即2222x x =⨯+解得1211x x ==1BD ∴=+【点睛】本题考查了托勒密定理,圆周角与弦的关系,解一元二次方程,理解题意添加辅助线是解题的关键.5.(1)点A在该反比例函数的图象上,理由见解析(2)3+【分析】(1)过点P作x轴垂线PG,连接BP,可得BP=4,G是CD的中点,所以P(4,;(2)易求D(6,0),E(8,,待定系数法求出DE的解析式为y﹣次函数即可求点Q.(1)解:点A在该反比例函数的图象上,理由如下:过点P作x轴垂线PG,连接BP,①P是正六边形ABCDEF的对称中心,CD=4,①BP=4,G是CD的中点,①sin604PG BO BC==⋅︒==①P(4,,①P在反比例函数y=kx(k>0,x>0)的图象上,①k=①反比例函数解析式为y由正六边形的性质可知,A(2,,①点A在反比例函数图象上;(2)解:由(1)得D (6,0),E (8,,设DE 的解析式为y =mx +b ,①608m b m b +=⎧⎪⎨+=⎪⎩①m b ⎧=⎪⎨=-⎪⎩①y﹣由方程y y ⎧=⎪⎨⎪=-⎩,解得x=3,①Q点横坐标为3+..【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标结合是解题的关键.6.(1)见解析;(2)见解析【分析】(1)作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒,由①EAC 的度数等于EDC 的度数的一半,得到①EAC =1144722⨯︒=︒,同理,①AED =12×72°×3=108°,则 ①EAC +①AED =180°,即可证明ED∥AC ;(2)由①AEB 的度数等于AB 的度数的一半,得到①AEB =36°,则①EMA =180°-①AEB -①EAC =72°,可推出①EAM =①EMA =72°,即可证明 EA =EM .【详解】解:①正多边形必有外接圆,①作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒, ① ①EAC 的度数等于EDC 的度数的一半,① ①EAC =1144722⨯︒=︒, 同理,①AED =12×72°×3=108°,① ①EAC +①AED =180°,① ED∥AC ;(2)①①AEB 的度数等于AB 的度数的一半,①①AEB =36°,①①EMA =180°-①AEB -①EAC =72°,① ①EAM =①EMA =72°,① EA =EM .【点睛】本题主要考查了正多边形与圆,平行线的判定,等腰三角形的判定,解题的关键在于能够熟练掌握圆的相关知识.7.(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:①正五边形ABCDE .①BC CD DE AE AB ====, ①360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ①3AEC AE =,①AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ①1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,①ON OF =,①ON OF FN ==,①OFN △是正三角形,①60OFN ∠=︒,①60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,①60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,①AMN 是正三角形;(3)①AMN 是正三角形,①2120A N A N M O =∠=︒∠.①2AD AE =,①272144AOD ∠=⨯︒=︒,①DN AD AN =-,①14412024NOD∠=︒-︒=︒,①3601524n==.【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.8.见解析【分析】先根据“SAS”证明△ACD①△CBE,得到①ACD=①CBE,结合三角形外角的性质可证①BFD=①60°,进而可证△PQF是等边三角形.【详解】证明:①△ABC是等边三角形,①①A=①BCE=60°,AC=CB,又①AD=CE,①△ACD①△CBE(SAS);①①ACD=①CBE,①①ACB=①ACD+①BCF=60°,①①BFD=①CBE+①BCF=①ACD+①BCF =60°,同理可得,①APE=60°,①△PQF是等边三角形.【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,以及三角形外角的性质,综合运用各知识点是解答本题的关键.9.见解析【分析】连接OA、OB、OC,由正多边形和圆的性质可得:①OAB①①OBC①①OCA.则①1=①2,再证明①OAG①①OCF,即可求解.【详解】如图:连接OA、OB、OC,由正多边形和圆的性质可得①OAB①①OBC①①OCA.①①1=①2.设OD 交BC 于F ,OE 交AC 于G ,则①AOC =①3+①4=120°,①DOE =①5+①4=120°,① ①3=①5.∴在①OAG 和①OCF 中2135OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,① ①OAG ①①OCF .① ΔAOC ΔABC 13OFCG S S S ==四边形. 【点睛】本题考查了正多形和圆的性质,全等三角形的判定和性质,将阴影部分的面积转化为固定的三角形面积是解题关键.10.(1)2(3)-【分析】(1)根据题意可得GE DC ∥,根据平行线分线段成比例即可求解;(2)根据(1)的结论,可得AG AD AE AC ==根据旋转的性质可得DAG CAE ∠=∠,进而证明GAD EAC ∽,根据相似三角形的性质即可求解;(3)分两种情况画出图形,证明①ADG ①①ACE ,根据相似三角形的判定和性质以及勾股定理即可得出答案.(1) 解:正方形AFEG 与正方形ABCD 有公共点A ,点G 在AD 上,F 在AB 上,GE DC ∴∥AG AE DG EC ∴= EC AE DG AG∴= 四边形AFEG 是正方形 ∴AE =∴2DG AGE === (2)解:如图,连接AE ,正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,DAG CAE ∴∠=∠AG AD AE AC ==GAD EAC ∴∽∴AC CE DG AD= (3) 解:①如图,AB =AG AD =,AD AB ∴==8AG ==,16AC ==, ,,G E C 三点共线,Rt AGC △中,GC ==8CE GC GE ∴=-=,由(2)可知GAD EAC ∽,∴CE AC DG DA==()816DA CE DG AC ⋅∴==4==. ①如图:由(2)知△ADG ①①ACE ,①DG AD CE AC ==,①DG , ①四边形ABCD 是正方形,①AD =BC ,AC 16,①AG ,①AG =8, ①四边形AFEG 是正方形,①①AGE =90°,GE =AG =8,①C ,G ,E 三点共线.①①AGC =90°①CG①CE =CG +EG,①DG =综上,当C ,G ,E 三点共线时,DG 的长度为-【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.11.A【分析】连接AC 、BC ,如图,先判断△ACB 为等边三角形,则①BAC =60°,由于S 弓形BC =S 扇形BAC ﹣S △ABC ,所以图中阴影部分的面积=4S 弓形BC +2S △ABC ﹣S ⊙O ,然后利用扇形的面积公式、等边三角形的面积公式和圆的面积公式计算.【详解】解:连接BC ,如图,由作法可知AC =BC =AB =2,①①ACB 为等边三角形,①①BAC =60°,①S 弓形BC =S 扇形BAC ﹣S △ABC ,①S 阴=4S 弓形BC +2S △ABC ﹣S ⊙O=4(S 扇形BAC ﹣S △ABC )+2S △ABC ﹣S ⊙O=4S 扇形BAC ﹣2S △ABC ﹣S ⊙O=42602360π⨯⨯-222﹣π×12 53=π﹣ 故选:A .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了扇形的面积公式.12.B【分析】根据等边三角形的性质逐项分析判断即可求解.【详解】解:A . 等边三角形的三条边都相等,三个内角也都相等,故该选项正确,不符合题意;B . 等边三角形的三个角都等于60°,三条边都相等,不一定等于60,故该选项不正确,符合题意;C . 等边三角形中线、高、角平分线都相等,而且都交于一点,故该选项正确,不符合题意;D . 等边三角形具有等腰三角形的所有性质,故该选项正确,不符合题意;故选B .【点睛】本题考查了等边三角形的性质,掌握等边三角形的性质是解题的关键.13.A【分析】设AB 是正多边形的一边,OC①AB ,在直角①AOC 中,利用三角函数求得①AOC 的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,求出边数,根据内角和公式即可求出多边形的内角和.【详解】如图:①2,①2,设AB 是正多边形的一边,OC①AB , 2OC OA OB k ===,,在直角①AOC 中,OC cos AOC AO ∠== ①①AOC=30°,①①AOB=60°, 则正多边形边数是:360660︒︒=, ①多边形的内角和为:()62180720-⨯︒=︒,故选:A .【点睛】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.14.D【分析】连接,,AC OD OF ,先根据圆内接正多边形的性质可得点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,从而可得1145,3022CAD BAD CAF EAF ∠=∠=︒∠=∠=︒,再根据角的和差可得15DAF ∠=︒,然后根据圆周角定理可得230DOF DAF ∠=∠=︒,最后根据正多边形的性质即可得.【详解】解:如图,连接,,AC OD OF ,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,∴点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,90,60BAD EAF ∠=︒∠=︒,1145,3022CAD BAD CAF EAF ∴∠=∠=︒∠=∠=︒, 15DAF CAD CAF ∴∠=∠-∠=︒,230DOF DAF ∴∠=∠=︒, DF 恰好是圆O 的一个内接正n 边形的一边,3603601230n DOF ︒︒∴===∠︒, 故选:D .【点睛】本题考查了圆内接正多边形、圆周角定理等知识点,熟练掌握圆内接正多边形的性质是解题关键.15.D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A .① 根据正八边形的性质, 四边形ABCH 与四边形EFGH 能够完全重合,即四边形ABCH 与四边形EFGH 全等①四边形ABCH 与四边形EFGH 的周长相等,故选项正确,不符合题意;B .连接DH ,如图1,① 正八边形是轴对称图形,直线HD 是对称轴,① HD 平分①CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.①八边形ABCDEFGH是正八边形,① B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,①DOE=360=45 8︒︒①OE=OH①①OEH=①OHE=12①DOE=22.5°①①CHE=2①OHE=45°①①HCE=①HEC=12(180°-①CHE)=67.5°①CEH△不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.。
正多边形与圆(八大题型)( 原卷版)
A.1B.2C. D.
解题技巧提炼
主要考查了正多边形和圆,正六边形的性质、正方形的性质,等边三角形的性质,勾股定理,正确掌握它们的性质是解决问题的关键.
【变式3-1】(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )
A. B. C.3D.2
正多边形.
◆2等于 的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,得到圆的n个等分点;
(2)顺次连接各等分点.
【例题1】下列命题正确的是( )
A.各边相等的多边形是正多边形
B.正多边形一定是中心对称图形
C.各角相等的圆内接多边形是正多边形
D.正多边形外接圆的半径是正多边形的半径
半径
外接圆的半径叫做正多边形的半径.
边心距
内切圆的半径叫做正多边形的边心距.
中心角
正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.
任何正多边形都有一个外接圆和一个内切圆.
◆2、正多边形的判定:
一个多边形必须同时满足各边相等,各角也相等才能判定其是正多边形,两个条件缺一不可,如菱形的各边相等,但各角不一定相等,矩形的各角相等,但各边不一定相等,因此它们不是正多边形.
解题技巧提炼
根据正多边形的相关概念进行判断即可,正n边形(n≥3,n为整数)都是轴对称图形,都有n条对称轴,且这些对称轴都交于一点,当n为偶数时,正n边形为中心对称图形.
【变式1-1】下列说法中,错误的是( )
A.正多边形的外接圆的圆心,就是它的中心
B.正多边形的外接圆的半径,就是它的半径
C.正多边形的内切圆的半径,就是它的边心距
(苏科版)九年级上册数学《第2章对称图形---圆》
2020-2021学年苏科版数学中考复习专题练习—正多边形与圆及圆中有关计算(含答案)
正多边形与圆及圆中有关计算一、学习目标1.了解正多边形的概念及正多边形与圆的关系,并会进行有关计算;2.会用弧长公式、扇形面积公式、圆锥侧面积公式计算有关问题;3.体会方程思想和转化思想.二、题型训练题型一、正多边形与圆【例题1】如图,等边△ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.22∶3B.2∶3C.23∶2D.3∶2【例题2】如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【例题3】如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,证明:AE=ME;(3)求证:ME2=BM·BE.【题小结】转化思想,正多边形转化为等腰三角形或直角三角形、三角形面积的转化、相等的线段之间的转化.借题发挥:1.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.借题发挥1借题发挥2ab借题发挥3例题3例题1例题23.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若∠ADB =18°,则这个正多边形的边数为 . 题型二、圆中与弧长、面积有关的计算 【例题4】如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,⌒FA 1,⌒A 1B 1,⌒B 1C 1,⌒C 1D 1,⌒D 1E 1,⌒E 1F 1,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .【例题5】在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( )A .π4B .π-32C .π-34D .3π2【题小结】弄清旋转的本质,把不规则图形的面积转化为规则图形的面积.借题发挥:1.如图,半径为10的扇形AOB 中,∠AOB =90°,C 为⌒AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π 2.若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm (结果保留π). 3.如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB 于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A =30°,OP =1,求图中阴影部分的面积.题型三、与圆锥有关的计算【例题6】已知圆锥的底面半径为1cm ,高为3cm ,则它的侧面展开图的面积为= cm 2.【例题7】已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 度.【题小结】转化及方程思想:立体图形与平面图形的相互转化,由圆锥有关的公式列出方程解决问题. 借题发挥: 例题4 借题发挥1 例题5 借题发挥3A B C'C B'。
2020年中考数学复习正多边形与圆 专题练习题及答案
正多边形与圆1.一个正多边形每一个内角是它相邻的外角的4倍,这个正多边形的边数是( )A.7 B.8 C.9 D.102.若一个四边形的外接圆与内切圆是同心圆,则这个四边形一定是( )A.矩形 B.菱形 C.正方形 D.等腰梯形3.王明想用一块边长为60cm的等边三角形做成一个最大的正六边形,写上“祝福祖国”的字样来表达自己的喜悦之情,则此六边形的边长是( )A.20cm B.25cm C.30cm D.40cm4. 利用等分圆可以作正多边形,只利用直尺和圆规不能作出的多边形是()A.正三角形B.正方形C.正六边形D.正七边形5. 已知圆的半径是23,则该圆的内接正六边形的面积是()A.3 3B.9 3C.18 3D.36 36. 如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. R2-r2=a2B. a=2Rsin36°C. a=2rtan36°D. r=Rcos36°7. 小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A.23cmB.43cmC.63cmD.83cm8. 已知等边三角形的内切圆半径、外接圆半径和高的比是( ) A.1∶2∶ 3 B.2∶3∶4 C.1∶3∶2 D.1∶2∶3 9. 下列命题:①正多边形都有内切圆和外接圆,且这两个圆是同心圆;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④正多边形既是轴对称图形又是中心对称图形;⑤正n 边形的中心角是a n =360°n ,且正多边形的中心角与其每一个外角相等.其中真命题有( )A.2个B.3个C.4个D.5个10. 正多边形的一边所对的中心角与该正多边形的一个内角的关系是( )A.互补B.互余C. 既互补又互余D.无法确定 11. 圆内接正六边形的一边所对的圆周角是 或 12. 中心角为40°的正多边形的对称轴有____条 13. 下面图形中,是正多边形的是 (填序号). ①矩形 ②菱形 ③正方形 ④等腰梯形14. 已知正六边形ABCDEF 的边心距为3cm ,则正六边形的半径为 cm.15. 如图正六边形ABCDEF 内接于半径为3的圆O ,则劣弧AB 的长度为 .16. 圆内接正六边形的边心距为23,则这个正六边形的周长为 cm.17. 如图,已知⊙O 的周长等于6πcm,则它的内接正六边形ABCDEF 的边长为 cm.18. 如图,有一个边长为2cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为____cm.19. 正多边形的面积为240cm2, 周长为60cm,则边心距为 cm.20. 如图所示,已知正六边形ABCDEF内接于⊙O,图中阴影部分的面积为123,则⊙O的半径是21. 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,求阴影部分的面积。
人教版九年级数学上册圆一章正多边形和圆练习题及答案
初中数学试卷金戈铁骑整理制作九年级数学圆一章正多边形和圆练习题及答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 3.正五边形共有__________条对称轴,正六边形共有__________条对称轴. 4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________. 二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 2.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.343.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.332.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化. 答案:D2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a , 所以AD ∶OA ∶OD=3∶2∶1. 答案:A3.正五边形共有__________条对称轴,正六边形共有__________条对称轴.思路解析:正n 边形的对称轴与它的边数相同. 答案:5 64.中心角是45°的正多边形的边数是__________.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n︒360,所以n=8.答案:85.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.思路解析:由切线长定理及三角形周长可得. 答案:6二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 思路解析:因为正n 边形的外角为n ︒360,一个内角为nn ︒•-180)2(,所以由题意得n ︒360=32·nn ︒•-180)2(,解这个方程得n=5. 答案:52.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.34思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A. 答案:A3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 思路解析:周长相等的正多边形的面积是边数越多面积越大. 答案:B4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法: ①作直径AC; ②作直径BD ⊥AC;③依次连结A 、B 、C 、D 四点, 四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点. 六边形AEFCGH 即为⊙O 的内接正六边形. (2)证明:连结OE 、DE. ∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =30°. ∴DE 为⊙O 的内接正十二边形的一边. 三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.33思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33. 答案:D2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 思路解析:将问题转化为直角三角形,由直角边的比知应选B. 答案:B3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.思路解析:转化为直角三角形求出正六边形的边长,然后用P 6=6a n 求出周长.答案:184.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.答案:144.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-2思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3. 6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.思路分析:由正多边形的内角与外角公式可求. 解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-3思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O1O2O3,则正△O1O2O3外接圆的半径为334cm,所以大圆的半径为334+2=3634(cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=n360.。
人教版九年级数学上册《24.3 正多边形和圆》同步练习 无答案
人教版九上《24.3 正多边形和圆》同步练习一.选择题(共14 小题)1.对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补2.如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m)称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2 的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)3.如图,点P、M、N 分别是边长为2 的正六边形中不相邻三条边的中点,则△PMN 的周长为()A.6 B.6√2 C.6√3 D.94.若一个正多边形的一个内角是135°,则这个正多边形的中心角为()A.20°B.45°C.60°D.90°5.一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为()A.2√2 B.4√2 C.4√3 D.86.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径为()7.如图,点M、N 分别是正五边形ABCDE 的两边AB、BC 上的点.且AM=BN,点O 是正五边形的中心,则∠MON 的度数是()A.45 度B.60 度C.72 度D.90 度8.边长为2 的正六边形ABCODE 按如图方式摆放在平面直角坐标系中,若正比例函数y=kx 的图象经过点儿A,则k 的值为()9.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;………在这样连续6 次旋转的过程中,点M 在图中直角坐标系中的纵坐标可能是()10.下列正多边形中,对称轴条数是6 条的为()A.正三角形B.正方形C.正六边形D.正五边形11.如图,AB、AC 分别为⊙O 的内接正六边形、内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于()A.8 B.10 C.12 D.1612.已知一正方形的内切圆半径为1,那么这个正方形与它的内切圆及外接圆的面积的比为()A.4:1:2 B.4:2π:πC.4:2π:1 D.4:π:2π13.已知正方形的周长为x,它的外接圆半径为y,则y 与x 的函数关系式是()14.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l 上,且有一个公共顶点O,则∠AOB 的度数是()A.83°B.84°C.85°D.94°二.填空题(共7 小题)15.正六边形的两对边之间的距离是14cm,则边长是cm.16.如图,正六边形ABCDEF 的顶点B,C 分别在正方形AMNP 的边AM,MN 上.若AB =4,则CN=.17.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子.如图,分别以等边△ABC 的三个顶点为圆心,边长为半径画弧,则A -B ,B -C ,A -C 组成的封闭图形就是“莱洛三角形”.若 AB =3,则此“莱洛三角形”的周长为.18.我们规定:一个正 n 边形(n 为整数,n ≥4)的最长对角线与边长的比值,叫做这个正 n 边形的“特征值”,记为 a n ,那么 a 6=.19.如图,ABCDE 是边长为 1 的正五边形,则它的内切圆与外接圆所围圆环的面积为.20.如图,正方形的边长为 a ,以顶点 B 、D 为圆心,以边长 a 为半径分别画弧,在正方形内两弧所围成图形的面积是.21.如图,⊙O 是正方形 ABCD 的外接圆,AB =2,点 E 是劣弧 AD 上任意一点,CF ⊥BE 于 F .当点 E 从点 A 出发按顺时针方向运动到点 D 时,则 AF 的取值范围是.三.解答题(共 11 小题)22.如图,已知点 O 是正六边形 ABCDEF 的对称中心,G ,H 分别是 AF ,BC 上的点,且 AG =BH .(1)求∠FAB 的度数; (2)求证:OG =OH .23.如果边长相等的正五边形和正六边形的一边重合,求∠1 的度数.24.如图,图 1、图 2、图 3、…、图 n 分别是⊙O 的内接正三角形 ABC ,正四边形 ABCD 、正五边形 ABCDE 、…、正 n 边形 ABCD …,点 M 、N 分别从点 B 、C 开始以相同的速度在⊙O 上逆时针运动. (1)求图 1 中∠APN 的度数是 ;图 2 中,∠APN 的度数是 ,图 3 中∠APN 的度数是.(2)试探索∠APN 的度数与正多边形边数 n 的关系(直接写答案).25.已知:如图,△ABC 是⊙O 的内接等腰三角形,顶角∠BAC =36°,弦 BD 、CE 分别平分∠ABC 、∠ACB .求证:五边形 AEBCD 是正五边形.26.已知:如图,正八边形 A 1A 2A 3A 4A 5A 6A 7A 8 内接于半径为 R 的⊙O . (1)求 A 1A 3 的长;(2)求四边形A1A2A3O 的面积;(3)求此正八边形的面积S.27.等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC 中,AB=AC,把底边BC 分成m 等份,连接顶点A 和底边BC 各等分点的线段,即可把这个三角形的面积m 等分.问题的提出:任意给定一个正n 边形,你能把它的面积m 等分吗?探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m 等分?如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12 个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4).这样就把正三角形的面积四等分.(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m 等分?叙述你的分法并说明理由;(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m 等分?(叙述方法即可,不需说明理由)(4)向题解决:怎样从正n 边形的中心引线段,才能将这个正n 边形的面积m 等分?(叙述分法即可,不需说明理由).28.如图,已知正n 边形边长为a,边心距为r,求正n 边形的半径R、周长P 和面积S.29.如图所示,正六边形ABCDEF 内接于⊙O,已知⊙O 的周长等于6πcm (1)求∠ADB 的度数(2)求正六边形ABCDEF 的周长和面积.30.如图,圆心角120°的扇形OMN,绕着正六边形ABCDEF 的中心O 旋转,OM 交AB 于H,ON 交CD 于K,OM>OA.(1)证明:△AOH≌△COK;(2)若AB=2,求正六边形ABCDEF 与扇形OMN 重叠部分的面积.31.如图,已知正三角形ABC 内接于⊙O,AD 是⊙O 的内接正十二边形的一条边长,连接CD,若CD=6√2cm,求⊙O 的半径.32.(1)已知:如图1,△ABC 是⊙O 的内接正三角形,点P 为劣弧BC 上一动点.求证:PA=PB+PC;(2)已知:如图2,四边形ABCD 是⊙O 的内接正方形,点P 为劣弧BC 上一动点.求。
初中数学正多边形和圆解答题专项练习题1(附答案详解)
(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.
16.观察下面的表格,根据表格解答下列问题:
-2
0
1
1
-3
-3
(1)写出 , , 的值;
(2)在直角坐标系中画出二次函数 的图象;并根据图象写出使不等式 成立时 的取值范围;
13.如图,方格纸中每个小正方形的边长都是1个单位长度.线段AB的端点A、B都在格点上,请你仅用无刻度的直尺完成下列作图.(保留必要的作图痕迹,不必写作法)
(1)在图①中以AB为边作一个正方形ABCD;
(2)在图②中以点A、点B为顶点作一个面积为12的菱形.
14.图1、图2分别是 的网格,网格中每个小正方形的边长均为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图1中画一个菱形 ,使得菱形 的面积为 ;
(2)在图2中画一个直角三角形 为直角,其面积等于(1)中菱形 的面积,画一条线段(两端点与小正方形的顶点重合)将此直角三角形 分成两个等腰三角形,并直接写出分割线段的长.
12.下列网格中的六边形 是由一个边长为6的正方形剪去左上角一个边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.
(3)若点 分别在线段 , 上运动(不含端点),经过探究发现,点 运动到每一个确定的位置, 的周长有最小值 ,随着点 的运动, 的值会发生变化,求所有 值中的最大值.
3.中心为O的正六边形 的半径为 .点 同时分别从 两点出发,以 的速度沿 向终点 运动,连接 ,设运动时间为 .
(1)求证:四边形 为平行四边形;
(3)设该图象与 轴两个交点分别为 , ,与 轴交点为 ,直接写出 的外心坐标.
3.7《正多边形与圆》综合练习
正多边形与圆A 卷1.边长为a 的正六边形的边心距是__________,周长是____________,面积是___________。
2.如图1,正方形的边长为a ,以顶点B 、D 为圆心,以边长a 为半径分别画弧,在正方形内两弧所围成图形的面积是___________。
(1) (2) (3)3.圆内接正方形ABCD 的边长为2,弦AE 平分BC 边,与BC 交于F ,则弦AE 的长为__________。
4.正六边形的面积是18,则它的外接圆与内切圆所围成的圆环面积为_________。
5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________。
6.正三角形的内切圆半径、外接圆半径和高的比为___________。
7.在半径为R 的圆中,内接正方形与内接正六边形的边长之比为___________。
8.同圆的内接正n 边形与外切正n 边形边长之比是______________。
9.正三角形与它的内切圆及外接圆的三者面积之比为_____________。
10.正三角形的外接圆半径为4cm ,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________。
3B 卷1.正方形的内切圆半径为r ,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________。
2.如果正三角形的边长为a ,那么它的外接圆的周长是内切圆周长的_______倍。
3.如图2,正方形边长为a,那么图中阴影部分的面积是__________。
4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________。
5.半径为R 的圆的内接正n 边形的面积等于__________。
6.如果圆的半径为a ,它的内接正方形边长为b ,该正方形的内切圆的内接正方形的边长为c ,则a,b,c 间满足的关系式为___________。
7.如图3,正△ABC 内接于半径为1cm 的圆,则阴影部分的面积为___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正多边形与圆》习题
1.若正六边形的边长为1,那么正六边形的中心角的度数是_______,半径是_______,边心距是_______,它的每一个内角是_______.正n边形的一个外角度数与它的_______角的度数相等.
2.已知一个多边形的内角和是外角和的4倍,则这个多边形是( )
A.八边形B.十二边形C.十边形D.九边形
3.边长为a的正六边形的内切圆的半径为( )
A.2a B.a C a D.1 2 a
4.如图,四边形ABCD是边长为a的正方形,以D为圆心、DA为半径的圆弧与以BC为
直径的半圆交于另一点P,延长AP交BC于点N,则BN
NC
_______.
5.(1)如图①,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是_______.
(2)如图②,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图③中,并写出这个图形的边数.
(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?
6.如图①,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个
△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.
(1)如图②,当n=1时,求正三角形的边长a1;
(2)如图③,当n=2时,求正三角形的边长a2;
(3)如图①,求正三角形的边长a n(用含n的代数式表示).
7.如图,菱形ABCD 的边长为2cm ,∠DAB =60°.点P 从A 点出发,以cm /s 的速度,沿AC 向C 作匀速运动;与此同时,点Q 也从A 点出发,以1cm /s 的速度,沿射线AB 作匀速运动.当P 运动到C 点时,P 、Q 都停止运动.设点P 运动的时间为ts .
(1)当P 异于A .C 时,请说明PQ ∥BC ;
(2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?。