1-半导体基础知识
半导体基本知识
五、PN结的电容效应
PN结具有一定的电容效应,它由两方面的因素决定。
(1) 势垒电容Cb
表征耗尽层内电荷量的变化。
(2)扩散电容Cd 表征耗尽层外中性区(P区和N区)内电荷量的变化。
(1) 势垒电容Cb
PN结外加电压变化时,空间电荷区的宽度将发生 变化,有电荷的积累和释放的过程,与电容的充放电 相同,其等效电容称为势垒电容Cb。
当PN结外加正向电压,且u >>UT时,
qu kT
即i随u按指数规律变化;
当PN结外加反向电压,且| u |>> UT时,
当反向电压超过一定数值后, 反向电流急剧增加,称为反向 击穿。 击穿:齐纳击穿、雪崩击穿
①齐纳击穿
掺杂浓度越高,耗尽层宽度窄
不大的反向电压就可在耗尽层形成很强的电场,而直接 破坏共价键,使价电子脱离共价键束缚,产生电子—空 穴对,致使电流急剧增大。
(2) 扩散电容Cd
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的过 程,其等效电容称为扩散电容Cd。 外加正向电压一定时,靠近耗尽层交界面处的非平 衡少子浓度高,而远离交界面的地方浓度低,浓度自 高到低逐渐衰减,直至零。形成一定的浓度梯度(浓 度差),形成扩散电流。
空穴 空间电荷区 耗尽层 电子
P区
内电场
N区
二、 PN结的单向导电性
在 PN结的两端外加电压,破外原来的平衡状态。
①外加正向电压
电源正极接PN结的P端,负极接N端
P区的电位高于N区的电位,称为正向偏置或正向接法。
②外加反向电压 电源负极接PN结的P端,正极接N端
(1)
PN结加正向电压时的导电情况
01.半导体物理基础知识
1.2半导体材料硅的晶体结构
1.2.4硅晶体内的共价键 硅晶体的特点是原子之间靠共有电子对连接在一起。硅原子 的4个价电子和它相邻的4个原子组成4对共有电子对。这种共有 电子对就称为“共价键”。如图1.2-2所示。
图1.2-2
1.2半导体材料硅的晶体结构
1.2.5硅晶体的金刚石结构 晶体对称的,有规则的排列叫做晶体格子,简称 晶格,最小的晶格叫晶胞。图1.2-3表示一些重要的 晶胞。
1.9平衡载流子和非平衡载流子
一块半导体材料处于某一均匀的温度中,且不 受光照等外界因素的作用,即这块半导体处于平衡状 态,此时半导体中的载流子称为平衡态载流子。 半导体一旦受到外界因素作用(如光照,电流 注入或其它能量传递形式)时,它内部载流子浓度就 多于平衡状态下的载流子浓度。半导体就从平衡状态 变为非平衡状态,人们把处于非平衡状态时,比平衡 状态载流子增加出来的一部分载流子成为非平衡载流 子。
1.2半导体材料硅的晶体结构
1.2.2晶体结构 固体可分为晶体和非晶体两大类。原子无规 则排列所组成的物质为非晶体。而晶体则是由原子 规则排列所组成的物质。晶体有确定的熔点,而非 晶体没有确定熔点,加热时在某一温度范围内逐渐 软化。 1.2.3单晶和多晶 在整个晶体内,原子都是周期性的规则排列, 称之为单晶。由许多取向不同的单晶颗粒杂乱地排 列在一起的固体称为多晶。
1.1导体,绝缘体和半导体
物体的导电能力,一般用材料电阻率的大小来 衡量。电阻率越大,说明这种材料的导电能力越弱。 表1-1给出以电阻率来区分导体,绝缘体和半导体的 大致范围
物体 电阻率 Ω·CM
导体 <10e-4
半导体 10e3~10e9
绝缘体 >10e9
表1-1
1-半导体基础知识-v5.ppt [兼容模式]
问题
• 为什么半导体器件的温度稳定性差?是多子还是少子是 影响温度稳定性的主要因素?
• 导致半导体性能温度稳定性差的主要原因有二: (1)少数载流子浓度与温度有关(随着温度的升高而指数式增加) (2)耗尽层宽度与温度有关(一般随着温度的升高而变窄) 注:多数载流子浓度基本上等于掺杂浓度,在室温、全电离情况下, 多数载流子浓度与温度也基本上无关;只有在低温下才有较大的 关系。因此,半导体性能在低温下的不稳定性还与多数载流子浓 度的变化有关。
导电性介于导体与绝缘体之间的物质称为半导体。 导体--铁、铝、铜等金属元素等低价元素,其最外层电 子在外电场作用下很容易产生定向移动,形成电流。 绝缘体--惰性气体、橡胶等,其原子的最外层电子受原 子核的束缚力很强,只有在外电场强到相当程度时才可能导 电。 半导体--硅(Si)、锗(Ge),均为四价元素,它们原 子的最外层电子受原子核的束缚力介于导体与绝缘体之间。 本征半导体是纯净的晶体结构的半导体。 无杂质 稳定的结构
u
i = I S (e U T − 1)
(常温下U T = 26mV)
材料 硅Si 锗Ge 开启电压 0.5V 0.1V
击穿 电压
导通电压 0.5~0.8V 0.1~0.3V
反向饱 和电流
开启 电压
温度的 电压当量
反向饱和电流 1µA以下 几十µA
二、二极管的伏安特性及电流方程
二极管的反向测试电路图
面接触型:结面积大, 结电容大,故结允许 的电流大,最高工作 频率低。
平面型:结面积可小、 可大,小的工作频率 高,大的结允许的电 流大。
3
2016/9/7
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
1.1 半导体基础知识
1.1 半导体基础知识1.1.1 半导体的特性自然界的各种物质,根据其导电能力的差别,可以分为导体、绝缘体和半导体三大类。
[下一页]半导体的特性硅原子的序数是14、原子核外有14个电子,最外层有4个电子,称为价电子,带4个单位负电荷。
通常把原子核和内层电子看作一个整体,称为惯性核。
惯性核带有4个单位正电荷,最外层有4个价电子带有4个单位负电荷,因此,整个原子为电中性。
[下一页]1.1.2 本征半导体在本征半导体的晶体结构中,每一个原子与相邻的四个原子结合。
每一个原子的价电子与另一个原子的一个价电子组成一个电子对。
这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓共价键的结构。
一般来说,共价键中的价电子不完全像绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、升温、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为自由电子,这种物理现象称作为本征激发,价电子受激发挣脱原子核的束缚成为自由电子的同时,在共价键中便留下了一个空位子,称“空穴”。
如图所示。
当空穴出现时,相邻原子的价电子比较容易离开它所在的共价键而填补到这个空穴中来,使该价电子原来所在共价键中出现一个新的空穴,这个空穴又可能被相邻原子的价电子填补,再出现新的空穴。
价电子填补空穴的这种运动无论在形式上还是效果上都相当于带正电荷的空穴在运动,且运动方向与价电子运动方向相反。
为了区别于自由电子的运动,把这种运动称为空穴运动,并把空穴看成是一种带正电荷的载流子。
在本征半导体内部自由电子与空穴总是成对出现的,因此将它们称作为电子-空穴对。
当自由电子在运动过程中遇到空穴时可能会填充进去从而恢复一个共价键,与此同时消失一个“电子-空穴”对,这一相反过程称为复合。
在一定温度条件下,产生的“电子空穴对”和复合的“电子空穴对”数量相等时,形成相对平衡,这种相对平衡属于动态平衡,达到动态平衡时,“电子-空穴对”维持一定的数目。
半导体基础知识
容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。 不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。 所谓半导体是指导电能力介于导体和绝缘体之间的物质。如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。半 导体大体上可以分为两类,即本征半导体和杂质半导体。本征半导体是指纯净的半导体,这里的纯净包括两个意思, 一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。本征半导体的特点是导 电能力极弱,且随温度变化导电能力有显著变化。杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质) 所形成的半导体。杂质半导体有两类:N 型半导体和 P 型半导体。
多晶则是有多个单晶晶粒组成的晶体,在其晶界处的颗粒间的晶体学取向彼此不同,其周期性与规则性也在此 处受到破坏。
7.常用半导体材料的晶体生长方向有几种?
我们实际使用单晶材料都是按一定的方向生长的,因此单晶表现出各向异性。单晶生长的这种方向直接来自晶 格结构,常用半导体材料的晶体生长方向是<111>和<100>。
29.半导体芯片制造对厂房洁净度有什么要求?
空气中的一个小尘埃将影响整个芯片的完整性、成品率,并影响其电学性能和可*性,所以半导体芯片制造工艺需 在超净厂房内进行。1977 年 5 月,原四机部颁布的《电子工业洁净度等级试行规定》如下:
电子工业洁净度等级试行规定
洁净室等 洁净度 温度(℃) 相对湿度 正压值 噪声
电阻率 ρ=1/σ,单位为 Ω*cm
9.PN 结是如何形成的?它具有什么特性?
如果用工艺的方法,把一边是 N 型半导体另一边是 P 型半导体结合在一起,这时 N 型半导体中的多数载流子电子 就要向 P 型半导体一边渗透扩散。结果是 N 型区域中邻近 P 型区一边的薄层 A 中有一部分电子扩散到 P 型区域中去了, 如图 2-6 所示(图略)。薄层 A 中因失去了这一部分电子 而带有正电。同样,P 型区域中邻近 N 型区域一边的薄层 B 中有一部分空穴扩散到 N 型区域一边去了,如图 2-7 所示(图略)。结果使薄层 B 带有负电。这样就在 N 型和 P 型两 种不同类型半导体的交界面两侧形成了带电薄层 A 和 B(其中 A 带正电,B 带负电)。A、B 间便产生了一个电场, 这个带电的薄层 A 和 B,叫做 PN 结,又叫做阻挡层。
半导体的基本知识
1-1半导体的基本知识课 题:半导体基本知识教学目的、要求:1、了解半导体的导电特性; 2、掌握PN 结及其单向导电性。
教学重点、难点:1、PN 结形成的过程;(难点) 2、PN 结的单向导电性。
(重点) 授 课 方 法:多媒体课件讲授,提纲及重点板书。
授 课 提 纲:教 学 内 容: 组织教学准备教学材料,清点学生人数。
(课前2分钟) 引入新课半导体器件是用半导体材料制成的电子器件。
常用的半导体器件有二极管、三极管、场效应晶体管等。
半导体器件是构成各种电子电路最基本的元件。
从本节课开始,我们先从半导体的基本知识开始,介绍常用的半导体器件。
要求大家本征半导体的特点,掌握PN 结的形成及单向导电性。
(2分钟) 进入新课第一章 常用半导体器件§1-1 半导体的基本知识【板书】一、什么是半导体【板书】1、物质按导电能力的分类【标题板书+内容多媒体】(8分钟)自然界中的物质按其导电能力可以分为三大类:导体、绝缘体和半导体。
物质的导电特性取决于原子结构。
⑴导体:一般为低价元素,如铜、铁、铝等金属,其最外层电子受原子核的束缚力很小,因而极易挣脱原子核的束缚成为自由电子。
因此在外电场作用下,这些电子产生定向移动形成电流,呈现出较好的导电特性。
⑵绝缘体:高价元素(如惰性气体)和高分子物质(如橡胶,塑料)最外层电子受原子核的束缚力很强,极不易摆脱原子核的束缚成为自由电子,所以其导电性极差, 可作为绝缘材料。
⑶半导体:半导体材料最外层电子既不像导体那样极易摆脱原子核的束缚,成为自由电子,也不像绝缘体那样被原子核束缚得那么紧,因此,半导体的导电特性介于二者之间。
半导体有硅(Si)、锗(Ge)和砷化镓(GaAs)及金属的氧化物和硫化物。
最常用的是硅和锗。
2、半导体的特点【标题板书+内容多媒体】(5分钟)半导体之所以被用来制造电子元器件,不是在于它的导电能力处于导体与绝缘体之间,而是由于它的导电能力在外界某种因素作用下发生显著的变化,这种特点表现如下:⑴半导体的电导率可以因为加入杂质而发生显著的变化。
第一章半导体基础知识
第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。
首先介绍构成PN结的半导体材料、PN结的形成及其特点。
其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。
然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。
〖本章学时分配〗本章分为4讲,每讲2学时。
第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。
半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。
2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。
在热力学温度零度和没有外界激发时,本征半导体不导电。
3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。
这一现象称为本征激发(也称热激发)。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。
4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。
1.半导体基础知识doc
基础知识半导体的研究和应用,虽然历史不长,但在科学、技术以及国民经济中已起着十分重要的作用。
在机械、冶金、化工、电子、空间技术以及国防工业等领域有着广泛的应用,差不多国民经济的每一个部门都要用到半导体。
半导体工业的兴起,被认为是上世纪六十年与原子能同等重要的世界科学新成就。
集成度探测器灵敏度整流元件高耐压大功率光电转换率1.绝缘体、半导体和导体物质就其导电性质而言,可分为绝缘体、半导体和导体。
金、银、铜、铁、铝等金属,具有良好的导电性能,称为导体。
橡胶、木材、玻璃、玛瑙、电木等不能导电的物质,称为绝缘体。
导电能力介于导体和绝缘体之间的材料,称为半导体。
如:硅、锗、氧化铜、硫化铝等。
物体的导电能力一般用材料的电阻率的大小来衡量,它的单位是欧姆.厘米(Ω·cm)。
电阻率越小,导电能力越强,电阻率越大,导电能力越弱。
2.半导体材料的种类半导体材料按化学成分和内部结构,大致可分为以下几类:●元素半导体又称为单质半导体。
在元素周期表中介于金属和非金属之间的元素。
其中具有实用价值的有硅、锗、硒。
50年代,锗在半导体中占主导地位,到60年代后期逐渐被硅材料取代。
用硅制造的半导体器件,耐高温和抗辐射性能较好,因此,硅成为应用最多的一种半导体材料,目前的集成电路大多数(70%以上)是用硅材料制造的.硅的物理化学性质:硅是元素周期表中四族元素,自然界中含量仅次于氧,居第二。
在自然界中硅主要以二氧化硅及硅酸盐的形式存在。
结晶形硅是一种有灰色金属光泽的晶体,与金刚石具有类似的晶格,性质硬而脆。
元子量、原子密度、比重、本征载流子浓度、本征电阻率---;硅的许多化合物及在许多化学反应中的行为与磷很相似。
硅极易与卤素化合。
在1000℃以上与氮反应,生成氮化硅。
化学性质不活泼,在常温下很稳定,不溶于所有的酸(包括氢氟酸)。
在高温下,化学活泼性大大增加。
●化合物半导体化合物半导体是由两种或两种以上的元素化合而成的半导体材料。
第一章半导体器件基础知识
江西应用技术职业学院
16
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2. 最高反向工作电压 UR
工作时允许加在二极管两端的反向电压值。通常将击穿电
压 UBR 的一半定义为 UR 。
第
二
3. 反向电流 IR
节
通常希望 IR 值愈小愈好。
半 导
4. 最高工作频率 fM
体 二
如果给PN外加反向电压,即P区接电源的负极,N区接电源的
正极,称为PN结反偏,如图所示。
外加电压在PN结上所形成的外电场与PN结内电场的方向相同, 第
增强了内电场的作用,破坏了原有的动态平衡,使PN结变厚,加 强了少数载流子的漂移运动,由于少数载流子的数量很少,所以 只有很小的反向电流,一般情况下可以忽略不计。这时称PN结为
江西应用技术职业学院
22
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2.光电二极管 光电二极管又称光敏二极管,是一种将光信号转换为电信号的 特殊二极管(受光器件)。光电二极管的符号如图所示。
受光面
受光面
第
二
节
半
光电二极管工作在反向偏置下,无光照时,流过光电二极管的电 导
管
第五节
击穿并不意味管子损坏,若控制击穿电流,电
压降低后,还可恢复正常。
江西应用技术职业学院
15
第一章 半导体器件基础知识
三、温度对二级管特性的影响
本章概述
1.温度升高1℃,硅和锗二极管导通时的正向压降UF将
减小2.5mv左右。
第一节
2.温度每升高10℃,反向电流增加约一倍。
(完整word版)半导体基础知识
1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。
电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。
绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。
绝缘体导电性:极差。
如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
半导体的基本知识PN结及其单向导电性
+4
+4
+4
价电子填
补空穴而
使空穴移
动,形成
+4
+4
+4
空穴电流
+4 空穴的+移4 动 +4
自由电子的定向运动形成了电子电流,空穴的定向运动 也可形成空穴电流,它们的方向相反。只不过空穴的运
动是17靠相邻共价键中的价电子依次上第充1页章填空穴第下1来次页课实现的第返1。7回页
现代电子技术基础
半导体导电机理动画演示
33
上第1页章
第下1次页课
第返33回页
现代电子技术基础
(3)杂质对半导体导电性的影响
掺入杂 质对本征半导体的导电性有很大的 影响,一些典型的数据如下:
1 本征硅的原子浓度: 4.96×1022/cm3
2 T=300 K室温下,本征硅的电子和空穴浓度: n = p =1.4×1010/cm3
3 掺杂后 N 型半导体中的自由电子浓度: n=5×1016/cm3
杂质元素形成的。 b. P型半导体产生大量的空穴和负离子。
c. 空穴是多数载流子,电子是少数载流子。
d. 因空穴带正电,称这种半导体为P(positive)型或 空穴型半导体。
32
上第1页章
第下1次页课
第返32回页
现代电子技术基础
当掺入三价元素的密度大于五价元素的密度时,可 将N型转为P型; 当掺入五价元素的密度大于三价元素的密度时,可 将P型转为N型。
- - - - - -+ ++ +++
- - - - - -+ ++ +++
半导体的基本知识
3、N型和P型半导体
(1)N型半导体:电子型
在本征半导体中掺入五价杂质原子,例如掺入磷原子,可形成N型半导体。
多数载流子自由电子,少数载流子空穴。
(2)P型半导体:空穴型
在本征半导体中掺入三价杂质原子,如硼等形成了P型半导体。
相对导体及绝缘体,半导体元件的导电原理学生是难以理解的,故半导体元件的导电原理是本章难点。
教材处理思路
这两节课是电子技术基础科目里的的重要章节,半导体的导电原理及PN结的单向导电性是电子技术的基本内容,只有理解相关原理,才能掌握电子电路正确的分析设计方法。
技校学生,他们普遍对学习欠缺主动性,所以教师必须用各种方法激发其兴趣,吸引其注意力。而这两节课采用多种教学方法,让学生成为课堂的主角,通过对教学内容的分解,同时培养学生的竞争意识,预计能收到良好的教学效果。
多数载流子自由电子,少数载流子空穴。
由上述分析我们得出:杂质半导体内部有两种载流子(自由电子、空穴)参与导电。当杂质半导体加上电场时,两种载流子产生定向运动共同形成半导体中的电流。主要靠自由电子导电的杂质半导体是N型半导体,主要靠空穴导电的杂质半导体是P型半导体。
二、PN结及其单向导电性、
1、PN结的形成
P9 1.2.
引导法。指导学生分组讨论,点名回答,教师针对性的补充说明,设下悬念,提高学生对本堂课的兴趣。
讲授法。
难点化解方法:
由物理现象开始,引导学生明确区分电子载流子和空穴载流子的差别,从而深入理解半导体导电的方式。
提问:半导体的分类?
总结对比法。
讲授法。
讲授法。
第1章半导体器件
在反向击穿状态下,让通过管子的电流在一定范围 内变化,这时管子两端电压变化很小,稳压二极管就 是利用这一点达到“稳压”效果的。
2 何谓杂质半 导体?N型半导 体中的多子是 什么?少子是 什么?
3 P型半导体中的空 穴多于自由电子,是 否意味着带正电?N 型半导体是否带负 电?
10
1.1 半导体基础知识
g. PN结及其形成过程
杂质半导体的导电能力虽然比本征半导体极大增强,但它 们并不能称为半导体器件。
空间电荷区
P区
在一块晶片的两端分别注入三价 元素硼和五价元素磷
内电场 外电场
V
IS
13
1.1 半导体基础知识
i. PN结的电流方程
一般地:
qu
i I s (e kT 1)
可以简化为,
u
i
I
I
s
(eUT
1)
当T=300K时,
u
i I s (e 0.026 1)
14
1.1 半导体基础知识
j. PN结的伏安特性曲线
当u>> UT时,
u
i IseUT
反向截止区内反向饱和电流很小,可近似视为零值。
外加反向电压超过反向击穿电压UBR时,反向电流突然增大,二 极管失去单向导电性,进入反向击穿区。
23
1.2 半导体二极管
正向导通区的讨论
I (mA) 60
当外加正向电压大于死区电压时,二 极管由不导通变为导通,电压再继续增
第一章 半导体基础知识
稳定 电流IZ
U<UZ, 截止, UD= U U>UZ, 稳压, UD= UZ
U
U UZ R IZ
三、晶体管
(一)晶体管特性 输入特性
— iB=f1(uBE)∣UCE=常数
UCE≥1V
uBE > Uon , 发射结导通→ iB 导通后,uBE ≈ Uon 且Uon≈ 0.7 V 0.2V 硅 锗
VCC / Rc=12mA, ∴ T放大不成立。 或:设稳压管不导通, uo =Vcc-IcRc=12-24= - 12V<0.2V, T深度饱和, uo = UCES=0.1V 假设
成立
深度 饱和
习题1.18
T: 锗管, UCES=-0.1V;稳压管UZ=5V,求:
=50
IR IB IC
ui=0V和-5V时T的状态与uo值。
D
Uon + V ID R UR _
1.
V单独作用 --折线模型
0
求Q点
若V>Uon, D通
UD= Uon UR = V- Uon ID= (V- Uon)/R
V
+ D
UD
Uon
-
+ R UR _
ID
2.
交流量ui作用→微变等效模型 ur = ui /(R+rd)
0
3. 叠加
u R= U R+ u r
一、二极管的等效电路
(一)折线等效电路 实 际 模 型 u
考 虑 Uon 模 型
i
i
理 想 模 型 u
K
Uon
K
非理想二极管符号
理想二极管符号
+ u - 1. 理想二极管 u>0,D ?
K
+ u -
K
1.1 半导体基础知识
2. 本征半导体中的两种载流子 本征半导体中的两种载流子
运载电荷的粒子称为载流子。 运载电荷的粒子称为载流子。 无外加电场,电子和空穴运动是 无外加电场 电子和空穴运动是 随机、无规则的,不形成电流 不形成电流。 随机、无规则的 不形成电流。 有外加电场, 有外加电场,自由电子做定向 运动形成电子电流; 运动形成电子电流;价电子按 一定方向填补空穴,等效成空穴 一定方向填补空穴 等效成空穴 运动形成空穴电流。 运动形成空穴电流。 载流子 本征半导体中有两种载 本征半导体中有两种载 流子:自由电子和空穴。 流子:自由电子和空穴。
P区空穴 区空穴 浓度远高 于N区 区
N区自由动使靠近接触面P区的空穴浓度降低、靠近接触面 扩散运动使靠近接触面 区的空穴浓度降低、靠近接触面N 区的空穴浓度降低 区的自由电子浓度降低, 区出现负离子区, 区的自由电子浓度降低,P 区出现负离子区,N 区出现正离子 形成空间电荷区, 不利于扩散运动的继续进行。 区,形成空间电荷区,产生内电场 不利于扩散运动的继续进行。 形成空间电荷区 产生内电场,不利于扩散运动的继续进行
PN 结的形成
模拟电子技术基础
第四版 童诗白 华成英 主编
高等教育出版社
第一章 常用半导体器件
1.1 1.2 1.3 1.4 半导体基础知识 半导体二极管 晶体三极管 场效应管
1.1 半导体基础知识
1.1.1本征半导体 1.1.1本征半导体
一、半导体 自然界物质按其导电能力分为导体、半导体、绝缘体。 自然界物质按其导电能力分为导体、半导体、绝缘体。 1.导体 自然界中很容易导电的物质称为导体, 1.导体 自然界中很容易导电的物质称为导体,金属一般 都是导体。 都是导体。 2.绝缘体 有的物质几乎不导电,称为绝缘体, 2.绝缘体 有的物质几乎不导电,称为绝缘体,如惰性气 橡皮、陶瓷、塑料和石英。 体、橡皮、陶瓷、塑料和石英。 3.半导体 有一类物质的导电特性处于导体和绝缘体之间, 3.半导体 有一类物质的导电特性处于导体和绝缘体之间, 称为半导体,如锗、 砷化镓和一些硫化物、氧化物等。 称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。 常用的半导体材料是硅(Si)和锗(Ge)。 和锗(Ge) 常用的半导体材料是硅(Si)和锗(Ge)。
半导体基础知识
3. 反向电流 IR
指二极管加反向峰值工作电压时的反向电 流。反向电流大,说明管子的单向导电性 差,因此反向电流越小越好。反向电流受 温度的影响,温度越高反向电流越大。硅 管的反向电流较小,锗管的反向电流要比 硅管大几十到几百倍。
以上均是二极管的直流参数,二极管的应用是 主要利用它的单向导电性,主要应用于整流、限幅、 保护等等。下面介绍两个交流参数。
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-25)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
二极管的电路符号: P
面接触型
N
(1-26)
二、伏安特性
I
死区电压 硅管 0.6V,锗管0.2V。
受主原子。
硼原子
P 型半导体中空穴是多子,电子是少子。 (1-16)
三、杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P 型半导体
N 型半导体
杂质型半导体多子和少子的移动都能形成电流。
但由于数量的关系,起导电作用的主要是多子。 近似认为多子与杂质浓度相等。
+4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小信号作用 Q越高,rd越小。 静态电流
四、二极管的主要参数
• • • • 最大整流电流IF:最大平均值 最大反向工作电压UR:最大瞬时值 反向电流 IR:即IS 最高工作频率fM:因PN结有电容效应
五、稳压二极管
1. 伏安特性
由一个PN结组 成,反向击穿后 在一定的电流范 围内端电压基本 不变,为稳定电 压。
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响
五、主要参数
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
多子浓度高
多子浓度很 低,且很薄
面积大
晶体管有三个极、三个区、两个PN结。
二、晶体管的放大原理
(发射结正偏) uBE U on 放大的条件 (集电结反偏) uCB 0,即 uCE uBE
3
在杂质半导体中,温度变化时, 载流子的数目变化吗?少子与多 子变化的数目相同吗?少子与多 子浓度的变化相同吗?
硼(B)
三、PN结的形成及其单向导电性
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。 N区自由电 子浓度远高 于P区。
扩散运动 扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低,产生内电场。
面接触型:结面积大, 结电容大,故结允许 的电流大,最高工作 频率低。
平面型:结面积可小、 可大,小的工作频率 高,大的结允许的电 流大。
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u )
i IS (e
u UT
1)
(常温下 UT 26m V )
材料
限流电阻
斜率? 进入稳压区的最小电流 不至于损坏的最大电流
2. 主要参数
稳定电压UZ、稳定电流IZ
最大功耗PZM= IZM UZ 动态电阻rz=ΔUZ /ΔIZ 若稳压管的电流太小则不稳压,若稳压管的电流太大则会 因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电 流的限流电阻!
§1.3
晶体三极管
少数载流 子的运动 因集电区面积大,在外电场作用下大 部分扩散到基区的电子漂移到集电区 因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合 因发射区多子浓度高使大量 电子从发射区扩散到基区 基区空穴 的扩散
扩散运动形成发射极电流IE,复合运动形成基极电 流IB,漂移运动形成集电极电流IC。
• 电流分配:
理想开关 导通时 UD=0 截止时IS=0
近似分析 中最常用
导通时UD=Uon 截止时IS=0
应根据不同情况选择不同的等效电路!
2. 微变等效电路
当二极管在静态基础上有一动态信号作用时,则可将二极 管等效为一个电阻,称为动态电阻,也就是微变等效电路。
ui=0时直流电源作用
uD U T 根据电流方程, rd iD ID
3、本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
为什么要将半导体变成导电性很差的本征半导体?
1. 输入特性
iB f (u BE ) U CE
为什么像PNΒιβλιοθήκη 的伏安特性?为什么UCE增大曲线右移? 为什么UCE增大到一定值曲线 右移就不明显了?
对于小功率晶体管,UCE大于1V的一条输入特性曲线 可以取代UCE大于1V的所有输入特性曲线。
2. 输出特性
饱和区
iC f (uCE ) I B
iC ICEO βiB <βiB
uCE VCC ≥ uBE ≤ uBE
晶体管工作在放大状态时,输出回路的电流 iC几乎仅仅 决定于输入回路的电流 iB,即可将输出回路等效为电流 iB 控制的电流源iC 。
四、温度对晶体管特性的影响
T (℃) I CEO uBE不变时iB ,即iB不变时uBE
绪
论
一、电子技术的发展 二、模拟信号与模拟电路 三、电子信息系统的组成 四、模拟电子技术基础课的特点 五、如何学习这门课程
一、电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无 孔不入”,应用广泛!
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机 • 网络:路由器、ATM交换机、收发器、调制解调器 • 工业:钢铁、石油化工、机加工、数控机床 • 交通:飞机、火车、轮船、汽车 • 军事:雷达、电子导航 • 航空航天:卫星定位、监测 • 医学:γ刀、CT、B超、微创手术 • 消费类电子:家电(空调、冰箱、电视、音响、摄像机、照 相机、电子表)、电子玩具、各类报警器、保安系统
2. 扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
结电容: C j Cb Cd 结电容不是常量!若PN结外加电压频率高到一定程 度,则失去单向导电性!
问题
• 为什么将自然界导电性能中等的半导体材料制 成本征半导体,导电性能极差,又将其掺杂, 改善导电性能? • 为什么半导体器件的温度稳定性差?是多子还 是少子是影响温度稳定性的主要因素? • 为什么半导体器件有最高工作频率?
2、本征半导体的结构
共价键:相邻原子的一对最外层电 子(价电子),成为共用电子
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴 自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
任何瞬间的任何 值均是有意义的
模拟信号:连续性。大多数物理量为模拟信号。
2. 模拟电路
模拟电路是对模拟信号进行处理的电路。 最基本的处理是对信号的放大,有功能和性能各异的放
大电路。 其它模拟电路多以放大电路为基础。
三、电子信息系统的组成
传感器 接收器 隔离、滤 波、放大 运算、转 换、比较 功放 执行机构
信号的 提取
信号的 预处理
信号的 加工
信号的驱 动与执行
模拟电子电路
A/D转换
计算机或其 它数字系统
D/A转换
模拟电子系统 数字电子电路(系统) 模拟-数字混合电子电路
四、模拟电子技术基础课的特点
1、工程性
实际工程需要证明其可行性。强调定性分析。 实际工程在满足基本性能指标的前提下总是容许存
§2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
一、二极管的组成
点接触型:结面积小, 结电容小,故结允许 的电流小,最高工作 频率高。
硅Si 锗Ge
击穿 电压
导通电压
0.5~0.8V 0.1~0.3V
反向饱 和电流
开启 电压
温度的 电压当量
开启电压
0.5V 0.1V
反向饱和电流
1µA以下 几十µA
从二极管的伏安特性可以反映出: 1. 单向导电性 u UT i I ( e 1) 正向特性为 S
指数曲线
若正向电压 u UT,则i ISe
电子技术的发展很大程度上反映在元器件的发展 上。从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
电子管、晶体管、集成电路比较
半导体元器件的发展
• • • • 1947年 1958年 1969年 1975年 贝尔实验室制成第一只晶体管 集成电路 大规模集成电路 超大规模集成电路
I E= I B+ I C
IE-扩散运动形成的电流 IB-复合运动形成的电流 IC-漂移运动形成的电流
直流电流 放大系数
IC IB
iC iB
交流电流放大系数
I CEO (1 ) I CBO
穿透电流
集电结反向电流
为什么基极开路集电极回 路会有穿透电流?
三、晶体管的共射输入特性和输出特性
在一定的误差范围的。 定量分析为“估算”。 近似分析要“合理”。 抓主要矛盾和矛盾的主要方面。 电子电路归根结底是电路。不同条件下构造不同模型。
2. 实践性
常用电子仪器的使用方法 电子电路的测试方法 故障的判断与排除方法 EDA软件的应用方法
五、如何学习这门课程
1. 掌握基本概念、基本电路和基本分析方法
PN 结的形成
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。 漂移运动 因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
PN 结的单向导电性
对应于一个IB就有一条iC随uCE变化的曲线。
为什么uCE较小时iC随uCE变 化很大?为什么进入放大状态 曲线几乎是横轴的平行线?
iC
iB
iC iB
U CE 常量
放大区 截止区 β是常数吗?什么是理想晶体管?什么情况下 ?
晶体管的三个工作区域
状态 截止 放大 饱和
uBE <Uon ≥ Uon ≥ Uon