2018年高考全国卷Ⅲ理数试题解析(精编版)(解析版)

合集下载

2018年高考全国3卷理科数学带答案解析-精选.pdf

2018年高考全国3卷理科数学带答案解析-精选.pdf

1( a
C. 24 3
D. 54 3
0 ,b 0 )的左,右焦点, O 是坐标原点.过
F2 作 C 的一
条渐近线的垂线,垂足为 P .若 PF1 6 OP ,则 C 的离心率为
A. 5
B.2
C. 3
12.设 a log 0.2 0.3 , b log 2 0.3 ,则
A . a b ab 0
B . ab a b 0
题考生都必须作答。第 22、 23 为选考题。考生根据要求作答。 (一)必考题:共 60 分。
17~ 21 题为必考题,每个试
17.( 12 分)
专业整理分享
等比数列 an 中, a1 1,a5 4a3 .
WORD 完美资料编辑
( 1)求 an 的通项公式;
( 2)记 Sn 为 an 的前 n 项和.若 Sm 63 ,求 m .
C. a b 0 ab
D . ab 0 a b
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
D. 2
13.已知向量 a= 1,2 , b= 2, 2 , c= 1,λ .若 c ∥ 2a + b ,则 ________.
14.曲线 y ax 1 ex 在点 0,1 处的切线的斜率为 2 ,则 a ________.
列联表如下:
79 81 2
80 .
超过 m
不超过 m
专业整理分享
第一种生产方式
WORD 完美资料编辑
15
5
第二种生产方式
5
15
( 3)由于 K 2
40(15 15 5 5) 2 20 20 20 20
10 6.635 ,所以有 99%的把握认为两种生产方式的效率有

2018年高考理科数学(3卷)答案详解(附试卷)

2018年高考理科数学(3卷)答案详解(附试卷)

2018年普通高等学校招生全国统一考试理科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。

1.已知集合,,则A .B .C .D . 【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-【解析】227cos212sin 199αα=-=-=. 【答案】B5.252()x x+的展开式中4x 的系数为A .10B .20C .40D .80【解析】由二项式定理得252()x x +的展开式的通项为251031552()2rr r r r rr T C x C x x --+⎛⎫== ⎪⎝⎭,由1034r -=,得2r =,∴252()x x+的展开式中4x 的系数为225240C =.【答案】C6.直线分别与轴,轴交于,两点,点在圆上,则△ABP 面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min =⨯⨯=S ,6232221max =⨯⨯=S . 20x y ++=x y A B P ()2222x y -+=[]26,[]48,⎡⎣22(2)2x y -+=图A6【答案】A7.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.422y x x =-++【答案】D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,)6()4(=<=x P x P ,则p= A .0.7B .0.6C .0.4D .0.3【解析】某群体中的每位成员使用移动支付的概率都为p ,看做独立重复事件,满足),10(~p B X .∵4.2=DX ,∴4.2)1(10=-p p ,解得6.0=p 或4.0=p .∵)6()4(=<=x P x P ,∴4661064410)1()1(p p C p p C -<-,解得021<-p ,即21>p . ∴6.0=p .【答案】B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. △3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , 2π3π4π6π∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A10【答案】B11.设F 1、F 2是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若,则的离心率为 AB.2CD【解析】双曲线C 的渐近线方程为by x a=±,即0bx ay ±=. ∴ 点F 2到渐近线的距离为b ba bc d =+=22,即b ||PF =2,∴ a b c ||PF ||OF |OP|=-=-=222222,∴ a |OP|||PF 661==,在Rt △OPF 2中,cbOF ||PF O PF ==∠||cos 222,在Rt △F 1PF 2中,bca cb |F |F ||PF ||PF |F |F ||PF O PF 4642cos 22221221221222-+=⋅-+=∠,∴ bca cbc b 464222-+=,化简得222364b a c =-,将222a c b -=代入其中得223a c =,1PF =C∴3222==ac e ,3=e .图A11【答案】C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C . 0a b ab +<<D .0ab a b <<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-. ∴0ab <,0a b +<. ∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述 0ab a b <+<.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9

精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标III卷)(解析版)

精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标III卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。

2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。

详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。

3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。

详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。

4. 若,则A. B. C. D.【答案】B详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C所以故选C.点睛:本题主要考查二项式定理,属于基础题。

6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。

2018理科数学高考真题全国卷Ⅲ试卷及答案详解,最全word版本_4573

2018理科数学高考真题全国卷Ⅲ试卷及答案详解,最全word版本_4573
2018 年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
1.已知集合 A x | x 1≥ 0 , B 0 ,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D.0 ,1,2
2. 1 i2 i
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:60 分。 18.(12 分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的 生产方式.为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产 任务的工作时间(单位:min)绘制了如下茎叶图:
设 n (x, y, z) 是平面 MAB 的法向量,则
n n
AM 0, AB 0.

2 2 y
x y 0.
z
0,
可取 n (1, 0, 2) .
DA 是平面 MCD 的法向量,因此
cos n, DA
n DA
5

| n || DA | 5
sin
n, DA
2
5

5
25
所以面 MAB 与面 MCD 所成二面角的正弦值是 .
一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知 m 79 81 80 . 2

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国卷3理科数学精校含答案

2018年高考全国卷3理科数学精校含答案

2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3 •考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有项是符合题目要求的.1.已知集合A x|x 1 > 0 , B0 , 1 , 2,则AI BA •0B •1C. 1 , 2D •0 , 1 ,22. 1i 2 iA • 3 iB •3i C. 3 i D • 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A B C4.若sin丄,则cos23877A .- B.-C.999I)5△ ABP 面积的取值范围是A . 2, 6B . 4,8427•函数y x x 2的图像大致为&某群体中的每位成员使用移动支付的概率都为 该群体的10位成员中使用移动支付的人数, A . 0.7B . 0.69. △ ABC 的内角 A , B , C 的对边分别为a ,则C“ n n A .-B.- 23DX2.4 , P X 4 P X6,则pC . 0.4D . 0.32 .2 2b , c,若 △ ABC 的面积为a b c4,C .n D .n465. x 2 - 的展开式中x 4的系数为 x A . 10 B . 206 .直线x y 20分别与x 轴,y 轴交于A , C . 40 D . 80y 22上,则B 两点,点P 在圆xC . 2,3 2D . 2 2,3 210•设A , B , C , D 是同一个半径为 4的球的球面上四点,△ ABC 为等边三角形且其面积为9.,3,则三棱锥D ABC 体积的最大值为 A • 12 3B • 18.3C . 24 3D . 54.32 2X y11. 设F i , F 2是双曲线C :p — 1 ( a 0 , b 0 )的左、右焦点,O 是坐标原点.过F 2a b作C 的一条渐近线的垂线,垂足为 P .若PFJ -./6 OP ,则C 的离心率为A . 5B . 2C .3D . . 212. 设 a log o.2 0.3 , b log 2 0.3,贝UA . a b ab 0B . ab a b 0C . a b 0 abD . ab0 ab二、填空题:本题共 4小题,每小题5分,共20分.13 .已知向量 a= 1,2 , b= 2, 2 , c= 1,入.若 c // 2a + b ,贝U _________________ . 14.曲线y ax 1 e x 在点0 , 1处的切线的斜率为2,则a __________ .n15 .函数f x cos 3x -在0 , n 的零点个数为 6 21, 1和抛物线C : y 4x ,过C 的焦点且斜率为 k 的直线与C 交于A , B两点.若/ AMB 90,贝V k ____________ .三、解答题:共70分.解答应写出文字说明、 证明过程或演算步骤. 第17~21题为必考题, 每个试题考生都必须作答.第 22、23题为选考题,考生根据要求作答.学科 .网(一)必考题:共 60分.17.(12 分)等比数列 a n 中,a ’ 1, a, 4a 3 .(2)记S n 为a n 的前n 项和.若S m 63,求m .16 .已知点M(1)求a n 的通项公式;18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种 新的生产方式•为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式•根据工人 完成生产任务的工作时间(单位:min )绘制了如下茎叶图:第一种牛.产方戌第二种乍产方式 & 6 5 5 68 Q 7 6 2 7 01223 456689^776543 3 214 4 52 110 0(1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2) 求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超 过m和不超过m 的工人数填入下面的列联表:(3)根据(2)abedaebd'附: K 219.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1) 证明:平面 AMD 丄平面BMC ; (2)当三棱锥 M ABC 体积最大时,求面 MAB 与面MCD 所成二面角的正弦值.2 220.(12分)已知斜率为k 的直线1与椭圆C7诗1交于A ,B 两点,线段AB 的中点为M 1, m m 0成等差数列,并求该数列的公差.(1) 证明:k -;2(2) 设F 为C 的右焦点,uuu uin uun P 为C 上一点,且FP FA FB 0 .证明: nunFAurn FPnu n FB221. (12 分)已知函数f x 2 x ax ln 1 x 2x .(1)若 a 0,证明:当1 x 0 时,f x 0 ;当x 0 时,f x 0;(2)若x 0是fx的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4—4:坐标系与参数方程](10分)x cos在平面直角坐标系xOy中,O O的参数方程为'(为参数),过点y sin(1)求的取值范围; (2)求AB中点P的轨迹的参数方程.0 , 2且倾斜角为的直线l与O O交于A, B两点.23. [选修4—5:不等式选讲](10分)设函数f x 2x 1 x 1 .(1)画出y fx的图像;.(1)求的取值范围; (2)求AB中点P的轨迹的参数方程.参考答案:17. (12 分)故 a n ( 2)n 1 或 a n 2n整数解.综上,m 6. 18. ( 12 分)解:(1)第二种生产方式的效率更高 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有多79分钟•因此第二种生产方式的效率更高(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5分钟.因此第二 种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布 在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所 需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第14. 3 15.3 16.213.2 解:(1 )设{a n }的公比为 ,由题设得 a n由已知得q 4 4q 2,解得 0 (舍去) (2)若 a n ( 2)n1,则 S n1 ( 2)n 3Sm63得(2)m 188,此方程没有正若 a n 2n 1,则 S n2n 1 .由S m 63得2m 64,解得m 6.75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至8上的一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高•学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分(2)由茎叶图知m 79 8180.2(3)由于K2 40(15 15 5 5)10 6.635,所以有99%的把握认为两种生产方20 20 20 20式的效率有差异.19. ( 12 分)解:(1)由题设知,平面CMD丄平面ABCD,交线为CD.因为BC丄CD,BC 平面ABCD , 所以BC丄平面CMD,故BC丄DM .因为M为CD上异于C,D的点,且DC为直径,所以DM丄CM.又BC I CM=C,所以DM丄平面BMC.而DM 平面AMD ,故平面AMD丄平面BMC.uuu(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M- ABC体积最大时,M为CD的中点.由题设得D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), M (0,1,1),UULW UUU UUUAM ( 2,1,1),AB (0,2,0), DA (2,0,0)设n (x, y, z)是平面MAB的法向量,则uuurn AM 0, 2x y z 0, uuu 即n AB 0. 2y 0.可取n (1,0,2).uuuDA是平面MCD的法向量,因此uuu/恕、n DA cos; n, DA utu-' 'In ||DA|,uuu sin[n,DA所以面MAB与面MCD所成二面角的正弦值是2/55 .20.( 12 分)解: ( 1 )设A(x1, y1), B(x2, y2),则2x42y1321,x242里13两式相减,并由勺一y2k得X-i x2为x2y1y2k 0.4 3由题设知彳生1,上迪m,于是2 2k 2.①4m3 1由题设得0 m ,故k .2 2(2)由题意得F(1,0),设P(x3,y3),则(X3 1必)(X1 1,yJ (X2 1,y2)(0,0)由(1)及题设得x3 3 (x1 x2) 1, y3(y1 y2) 2m 0.3 3 uuu 3又点P在C上,所以m ,从而P(1, ),|FP | .4 2 2uu|FA| ..(X1 1)22 (X1 1)23(1 X1uuu同理I FBI X 2uuu 所以I FA IuurI FBI14 2(X1 X2) 3.uuu 故2|FP I uuu|FA|uu uuu uuu设该数列的公差为uuu|FB |,即| FA |,| FP |,| FB | 成等差数列. d,则uuu2|d| || FB| IFAII 2|X1 X2I 舟届X2)24X1X2 .②将m 3代入①得所以I的方程为y 7,代入C的方程,并整理得47X214X0.故为X22,XX2—,代入②解得| d|28 3、,21 28所以该数列的公差为日或日28 2821.(12 分)解:(1 )当a0 时,f(x) (2 X)In(1 X)2X, f (X) ln(1 X)设函数g(x)X r,f (X) ln(1 X) ,则1 Xg(x)X(1 X)2.当1 X 0 时,g (X) 0;当X 0 时, g (X) 0 .故当X 1 时,g(x) g(0),且仅当X 0时,g(x) 0,从而f (x) 0,且仅当X 0时,f (X) 0.所以f(x)在(1,)单调递增学#科网又f(0) 0,故当1 X 0 时,f(x) 0 ;当X 0 时,f(x) 0.(2)( i )若 a 0,由(1 )知,当 x 0 时,f(x) (2 x)l n(1 x) 2x 0 f (0), 这与x 0是f (x)的极大值点矛盾• (ii )若a 0,设函数h(x)f (x)2 x ax 2ln(1x) 2A 2由于当 |x| min{1,1}时,2 x ax 2V|a|0,故h(x)与f(x)符号相同•又h(0) f (0) 0,故x 0是f (x)的极大值点当且仅当 x 0是h(x)的极大值点• i , 、1 2(2 x ax 2)2x(1 2ax) x 2(a 2x 2 4ax 6a 1) h (x)1 x(2ax 2)2 (x 1)(ax 2 x 2)2如果6a 1 0 ,则当06a 1 4a且 |x| min {1, | 时,h (x) 0,故 x不是h(x)的极大值点• 如果6a 10,则a 2 x 2 4ax 6a1 0存在根x 1 0,故当x (x 1,0),如果6a 1x (0,1)时,占八、、| x | min{1,一}时,h(x) 0,所以3(0,则咖& xxh (x)0 •所以 x 1 622.[选修4—4:坐标系与参数方程] 综上,a 【解析】(1)时,2—时, 2& 1:一21.1 kx 0不是h(x)的极大值点•24)1)(x 2 6x 12厂则当 x ( 1,0)时,h(x) 0;0是h(x)的极大值点,从而 x 0是f (x)的极大值(10 分)e O 的直角坐标方程为 x 2 l 与e O 交于两点.记tan k ,则I 的方程为1,解得k 1或k 1,即kx .2 . l 与e O 交于两点当且仅当(2,J ).综上, 的取值范围是(一,).4 4x t cos ,的参数方程为—(t 为参数,y v 2 tsinX t P cos , y .2 t P s in23.[选修4—5:不等式选讲](10分)3x, x -,21【解析】(1) f (x) x 2, 2 x3x, x 1.(2)由(1)知,y f (x)的图像与y 轴交点的纵坐标为 2,且各部分所在直线斜率 的最大值为3,故当且仅当 a 3且 b 2时, f (x) ax b 在 [0, ) 成立,因此 a b 的最小值为 5 .P 对应的参数分别为tA , tB ,t p ,则t pt A t p 且2 ,t A , t B 满足t 2 2.2tsin是 t A t B2、2sint pP 的坐标(x, y)满足(2) | 4).所以点P 的轨迹的参数方程是-sin2 , 2、2 ,2cos22 2为参数,一44).1, y f(X )的图像如图所示.。

2018年全国统一高考数学真题试卷及答案解析【全国卷三】

2018年全国统一高考数学真题试卷及答案解析【全国卷三】

2018年高考真题理科数学 (全国III卷)一、填空题:(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.若,则( )A. B. C. D.5.的展开式中的系数为( )A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y ²=2上,则∆ABP面积的取值范围是( )A.[2,6]B.[4,8]C.D.7.函数y=-+x²+2的图像大致为A . B.C. D.8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">( )A .0.7 B.0.6 C.0.4 D.0.39.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=( )A. B. C. D.10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为( )A. B.2 C. D.二、填空题(本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。

2018年普通高等学校招生全国统一考试(全国新课标Ⅲ卷) 理科数学试题及详解 精编版

2018年普通高等学校招生全国统一考试(全国新课标Ⅲ卷) 理科数学试题及详解 精编版

2018年普通高等学校招生全国统一考试(全国新课标3卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则( ) A . B .C .D . 1.答案:C解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.2.( )A .B .C .D . 2.答案:D解答:2(1)(2)23i i i i i +-=+-=+,选D.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )3.答案:A解答:根据题意,A 选项符号题意.4.若,则( )A .B .C .D .4.答案:B解答:227cos 212sin 199αα=-=-=.故选B.{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-5.的展开式中的系数为( )A .10B .20C .40D .80 5.答案:C解答:25103552()()2r rr r r r C x C x x--=⋅⋅,当2r =时,1034r -=,此时系数22552240r r C C ==.故选C.6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A . B . C . D .6.答案:A解答:由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==,圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==P 到直线20x y ++=的距离的取值范围为d -≤≤d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.7.函数的图像大致为( )7.答案:D解答:当0x =时,2y =,可以排除A 、B 选项;又因为3424()22y x x x x x '=-+=-+-,则()0f x '>的解集为(,(0,22-∞-U ,522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++()f x单调递增区间为(,2-∞-,(0,2;()0f x '<的解集为()22-+∞U ,()f x 单调递减区间为(,0)2-,)2+∞.结合图象,可知D 选项正确.8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( ) A .0.7 B .0.6 C .0.4D .0.38.答案:B解答:由~(10,)X B p ,∴10(1) 2.4DX p p =-=,∴21010 2.40p p -+=,解之得120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.9.的内角的对边分别为,,,若的面积为,则( ) A . B . C . D .9.答案:C解答:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1sin 2ABC S ab C ∆=,故tan 1C =,∴4C π=.故选C.10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为则三棱锥体积的最大值为( )A .B .C .D .10.答案:B解答:如图,ABC∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=,得6AB =,取BC 的中点H ,∴sin 60AH AB =⋅︒=23AG AH ==,∴球心O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A B C D ,,,ABC △D ABC -11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( ) AB .2CD11.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1|||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅, ∴222222222224)464463322b c bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=e ⇒=.12.设,,则( )A .B .C .D .12.答案:B解答:∵0.2log 0.3a =,2log 0.3b =,∴0.31log 0.2a =,0.31log 2b =, ∴0.311log 0.4a b +=,∴1101a b <+<即01a b ab+<<, 又∵0a >,0b <,∴0ab a b <+<,故选B.二、填空题:本题共4小题,每小题5分,共20分。

2018理科数学高考真题全国卷Ⅲ试卷及答案详解-最全word版本

2018理科数学高考真题全国卷Ⅲ试卷及答案详解-最全word版本

2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦, D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为 A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为 AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。

2018年全国3卷理科数学真题(解析版)

2018年全国3卷理科数学真题(解析版)

18年全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分.1.已知集合AT x |x ・120}, B={0. 1. 2},贝iJACBA. {0JB. HIC. {1 . 2}D. (0. k 2}【答案】C【解析】分析:由题意先解出集合A.进而得到结果。

详解:由集合A 得X2 1,所以AOBTL2}故答案选C.2. (1 +A. -3rB. -3+iC. 3-iD. 3 + i【答案】D【解析】分析:由0数的乘法运算展开即可。

详解:(I + iX2 • i) = 2 . 1 + 2」.『=3 + l故选D.3.中国古建筑借助棵卯将木构件连接起来.构件的凸出部分叫桦头,凹进部分叫卯眼,图中 木构件右边的小长方体是桦头.若如留摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯限的木构件的俯视图可以是fS徵方向A C D. DC DA. AB. BC.【答案】A【解析】分析:观察图形可得。

详解:观擦图形图可知,俯视图为_____:故答案为A.4.若gma-,则cos2a7SA. B. C.— D.—99【答案】B【解析】分析:由公式脉2«=1”28静(1可得。

,27详解:cos2a•1-2sin"a■1--1■-99故答案为B.5.的展开式中的系数为A.10B.20C.40D.80【答案】C【解析】分析:与出然后可得结果详解:由鼬可得T"」C^x2)5'r(-)r C;2r-x10JrX令10.3r=4,则r=2所iUC;-2,=C^x2z=40故选C.6直线x+y+2=0分别与轴,轴交于,两点,点在圆(x-2)'y'=2上,则△ABP面积的取值范围是A.|2.6|B.[4.8]C.匝.^1D.[20.3因【答案】A【解析】分析:先求出A・B两点坐标得到|AB|•再计算圆心到直线距离,得到点P到直线距离范围・由而枳公式计算叩可详解:•・Fgr+2=0分别与轴,轴交于,两点•・•点P在圆&.2尸+广=2上12+0+21 l W 同心为(2, 0).则圆心到I • L .项小一f —"夕故点P 到立线x +y f =0的距离的范"I 为[也3卤则 S &AB P -*!AB|<i 2-^d,e[16]故答案选A.D. DC. C A. A B. B【答案】D 【解析】分析:由特殊值排除即可详解:% = 0时.y = 2,排除ABy ,= + ・2\(2^・ 1)•场丘• y AO,排除C故正确答案选D.8.某群体中的每位成员使用移动支付的概率都为,备成员的支付方式相互独立,设为该群体 的10位成员中使用移动支付的人数,DX = 24, P(X = 4)<P(X 6),则pA. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析;判断出为二项分布.利用公mx)=np(l・p)进行计算即可•IXX)二np(l・P)••・p=04或p=06P(X=4)=C加」(】.p)6<P(X=6)=C,y(1-p)1,.-.(I『)2<^,可知1>>。

2018年全国卷3高考理科数学试题解析版

2018年全国卷3高考理科数学试题解析版

C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得

,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:

所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设

所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则

故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体

2018年普通高等学校招生全国统一考试(全国新课标Ⅲ卷) 理科数学试题及详解 精编版

2018年普通高等学校招生全国统一考试(全国新课标Ⅲ卷) 理科数学试题及详解 精编版

2018年普通高等学校招生全国统一考试(全国新课标3卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则( ) A . B .C .D . 1.答案:C解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.2.( )A .B .C .D . 2.答案:D解答:2(1)(2)23i i i i i +-=+-=+,选D.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )3.答案:A解答:根据题意,A 选项符号题意.4.若,则( )A .B .C .D .4.答案:B{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos 2α=897979-89-解答:227cos 212sin 199αα=-=-=.故选B.5.的展开式中的系数为( )A .10B .20C .40D .80 5.答案:C解答:25103552()()2r rr r r r C x C x x--=⋅⋅,当2r =时,1034r -=,此时系数22552240r r C C ==.故选C.6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A .B .C .D .6.答案:A解答:由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤1||[2,6]2ABP S AB d ∆=⋅∈.7.函数的图像大致为( )522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++7.答案:D解答:当0x =时,2y =,可以排除A 、B 选项;又因为3424(22y x x x x x '=-+=-+-,则()0f x '>的解集为(,(0,)22-∞-U ,()f x 单调递增区间为(,)2-∞-,(0,2;()0f x '<的解集为(()22-+∞U ,()f x单调递减区间为(2-,()2+∞.结合图象,可知D 选项正确.8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )A .0.7B .0.6C .0.4D .0.38.答案:B解答:由~(10,)X B p ,∴10(1) 2.4DX p p =-=,∴21010 2.40p p -+=,解之得120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.9.的内角的对边分别为,,,若的面积为,则( )A .B .C .D .9.答案:Cp X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6解答:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1sin 2ABC S ab C ∆=,故tan 1C =,∴4C π=.故选C.10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为体积的最大值为( ) A .B .C .D .10.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=6AB =,取BC 的中点H ,∴sin60AH AB =⋅︒=∴23AG AH ==O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( )AB .2C D11.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1|||PF OP ,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅, 222222224644633bb c a b c a c a c=⇒+-=⇒-=-223c a ⇒=e ⇒=A B C D ,,,ABC △D ABC -12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF OP C12.设,,则( )A .B .C .D .12.答案:B解答:∵0.2log 0.3a =,2log 0.3b =,∴0.31log 0.2a =,0.31log 2b =, ∴0.311log 0.4a b +=,∴1101a b <+<即01a bab +<<, 又∵0a >,0b <,∴0ab a b <+<,故选B.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。

2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。

详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。

3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。

详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。

4. 若,则A. B. C. D.【答案】B【解析】分析:由公式可得。

详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题。

6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。

7. 函数的图像大致为A. AB. BC. CD. D【答案】D【解析】分析:由特殊值排除即可详解:当时,,排除A,B.,当时,,排除C故正确答案选D.点睛:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。

8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析:判断出为二项分布,利用公式进行计算即可。

或,,可知故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题。

9. 的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。

详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。

10. 设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【解析】分析:作图,D为MO 与球的交点,点M为三角形ABC的重心,判断出当平面时,三棱锥体积最大,然后进行计算可得。

详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的重心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。

11. 设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. 2 C. D.【答案】C【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得。

详解:由题可知在中,在中,故选C.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题。

12. 设,,则A. B.C. D.【答案】B学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题。

二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量,,.若,则________.【答案】【解析】分析:由两向量共线的坐标关系计算即可。

详解:由题可得,即故答案为点睛:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。

14. 曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。

详解:则所以故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。

15. 函数在的零点个数为________.【答案】【解析】分析:求出的范围,再由函数值为零,得到的取值可得零点个数。

详解:由题可知,或解得,或故有3个零点。

点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

16. 已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.【答案】2【解析】分析:利用点差法进行计算即可。

详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,因为M’为AB中点,所以MM’平行于x轴因为M(-1,1)所以,则即故答案为2.点睛:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点, 分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率。

三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。

详解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题。

18. 某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【答案】(1)第二种生产方式的效率更高. 理由见解析(2)80(3)能【解析】分析:(1)计算两种生产方式的平均时间即可。

(2)计算出中位数,再由茎叶图数据完成列联表。

(3)由公式计算出,再与6.635比较可得结果。

详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高. (ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过(3)由于,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活。

19. 如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。

(2)先建立空间直角坐标系,然后判断出的位置,求出平面和平面的法向量,进而求得平面与平面所成二面角的正弦值。

(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,详解:故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问主要考查建立空间直角坐标系,利用空间向量求出二面角的平面角,考查数形结合,将几何问题转化为代数问题进行求解,考查学生的计算能力和空间想象能力,属于中档题。

20. 已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】分析:(1)设而不求,利用点差法进行证明。

(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解。

相关文档
最新文档