NT90TNBSDC9VC中文资料

合集下载

DC10600M101_1111_4X(T C N)数据手册说明书

DC10600M101_1111_4X(T C N)数据手册说明书

广州大彩光电科技有限公司版权所有版本记录销售与服务广州大彩光电科技有限公司电话:************-601传真:************Email:*************(咨询和支持服务)网站:地址:广州黄埔区(科学城)玉树华新园C栋3楼网络零售官方旗舰店:https://目录1.硬件介绍 (1)1.1产品外观 (1)1.2硬件配置 (2)1.3调试工具 (2)2.产品规格 (3)3.可靠性测试 (6)3.1ESD测试 (6)3.1.1执行标准 (6)3.1.2测试环境 (6)3.1.3测试数据 (6)3.2高低温老化测试 (7)3.2.1测试环境 (7)3.2.2测试数据 (7)3.3群脉冲测试 (8)3.3.1执行标准 (8)3.3.2测试环境 (8)3.3.3测试数据 (8)3.4辐射测试 (8)3.4.1执行标准 (8)3.4.2测试环境 (9)3.4.3测试数据 (9)4.产品尺寸 (11)5.型号定义 (12)6.协议配置 (13)7. LUA脚本配置 (14)8.包装与物理尺寸 (15)9.产品架构 (16)10.开发软件 (17)10.1什么是虚拟串口屏 (17)10.2Keil与虚拟串口屏绑定调试 (18)11.开发文档 (19)12.免责声明 (20)1. 硬件介绍本章节主要介绍产品的一些外观参考图、硬件配置图和调试所需工具。

1.1 产品外观以下为该尺寸不同型号的外观参考图,如图1-1、图1-2、图1-3所示。

注:未涉及关键结构工艺修改或布局大调整,仅产品工艺或可靠性方面的变更迭代,公司不予对外发起变更,具体以收到的实物为准。

图1-1 10.1寸电阻触摸参考图图1-2 10.1寸电容触摸参考图图1-3 10.1寸无触摸参考图1.2 硬件配置以下为该尺寸产品硬件配置参考图,以电容屏举例说明,如图1-4所示。

图1-4硬件配置图1.3 调试工具以下为该产品调试工具参考图,以电容屏举例说明,如图1-5所示。

BD911中文资料

BD911中文资料

3 2 1
TO-220
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Sy mb o l
Parameter
VCBO Collector-Base Voltage (IE = 0)
VCEO Collector-Emitter Voltage (IB = 0)
IC = 10 A
IB = 2.5 A
VBE∗ Base-Emitter Voltage IC = 5 A
VCE = 4 V
hFE∗ DC Current Gain
IC = 0.5 A IC = 5 A IC = 10 A
VCE = 4 V VCE = 4 V VCE = 4 V
fT
Transition frequency IC = 0. 5 A
DC Current Gain (PNP type)
DC Transconductance(NPN type)
DC Transconductance(PNP type)
Collector-Emitter Saturation Voltage (NPN type)
Collector-Emitter Saturation Voltage (PNP type)
0.49 0.61 1.14 1.14 4.95 2.4 10.0
13.0 2.65 15.25 6.2 3.5 3.75
TO-220 MECHANICAL DATA
mm TYP. 1.27
16.4
MAX. 4.60 1.32 2.72
0.70 0.88 1.70 1.70 5.15 2.7 10.40
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. .

CNT-90操作手册(1)

CNT-90操作手册(1)

CNT-90操作手册基本控制对前后面板包括带菜单系统的用户界面的进一步描述会在该项说明之后介绍,这里简要介绍的目的是先给你熟悉以下仪器的界面。

INPUT A:A项输入打开菜单,从菜单上你能调整所有的A项设置,如阻抗衰减等等。

INPUT B:B项输入打开菜单,从菜单上你能调整所有的B项设置,如阻抗衰减等等。

SETTINGS:从该项菜单上你可以根据不同的测量功能及输出信道进行一些设置上的选择。

STANDBY LED备用LED:当频率计处于备用模式时该LED灯亮,表示电源仍然用在内部选择OCXO上(如果一个已经被安装)如果安装了铷振荡器则上电源LED持续是ON状态直到频率控制环路锁住(4-6分钟)。

STANDBY/ON备用/主用:触发几秒是电源开关,长按该按钮为备用模式。

将频率机打开并在关机时能储存设置。

MA TH/LIMIT:该菜单是用来选择一套公司用来修改测量结果,可以从键盘上输入3个恒值,还可以键入数值极限值用的统计报告和记录。

USER OPT用户选项:控制下列几项.1设置内存2界面3校验4自检5内部脉冲生成STA T/PLOT:输入已有的3种统计模式的一种,触发按键可切换模式V ALUE:输入通常的数值一个主参和若干辅参。

MEAS FUNC:菜单系列用来进行测量功能的选择,可以使用显示器下的快捷键来确认。

AUTO SET:自动调整输入触发电压到最佳值以选择测量功能光标控制。

CURSOR CONTROL:在显示器上进行内容切换,光标位置可以在四个方向上移动。

HOLD/RUN:在HOLD(点击一下)模式和RUN(连续按下)模式之见切换,如果采用HOLD 模式测量完成后自行停留在结果上。

RESTART重启:如果处于HOLD状态RESTART将重新开始一个新的测量。

EXIT/OK:确认菜单选项并退出菜单。

CANCEL:删除即不要确认选项的情况下退出。

SELECT:在不退出该菜单的情况下确认菜单选项。

连接器和指示器GRAPHIC DISPLAY(图形显示):300x97像素LED自带后备灯,输出测量结果的数值和图形形成显示,显示位于动态用户界面的中心,包括菜单系列指示器和信息栏。

TD7590 240KHZ 36V PWM Buck DC DC转换器数据手册说明书

TD7590 240KHZ 36V PWM Buck DC DC转换器数据手册说明书

General DescriptionThe TD7590 is a 240 KHz fixed frequency monolithic step down switch mode regulator with a built in internal Power MOSFET. It achieves 5A continuous output current over a wide input supply range with excellent load and line regulation.The device includes a voltage reference, oscillation circuit, error amplifier, internal PMOS and etc.The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An enable function, an over current protection function and a short circuit protection function are built inside. An internal compensation block is built in to minimize external component count.The TD7590 serves as ideal power supply units for portable devices. Features5A Constant Output Current80mΩR DSON Internal Power PMOSFET SwitchUp to 95% EfficiencyFixed 240KHz FrequencyWide 3.6V to 36V Input Voltage Range Output Adjustable from 1.222V to 34V Built in Frequency CompensationBuilt in Thermal Shutdown FunctionBuilt in Current Limit FunctionTO-263 Package is AvailableThe minimum dropout up to 0.3VApplicationsPortable DVDLCD Monitor / TVBattery ChargerADSL ModemTelecom / Networking EquipmentFigure 1 Package Type of TD7590TO263-5LPin ConfigurationsEXPOSED PAD ON BACKSIDECONNECT TO PIN3Figure 2 Pin Configuration of TD7590 (Top View)Pin Description Pin NumberPin Name Description1 Vin Supply V oltage Input Pin. TD7590 operates from a 3.6V to 36VDC voltage. Bypass Vin to GND with a suitably large capacitorto eliminate noise on the input.3 OutputPower Switch Output Pin. SW is the switch node that suppliespower to the output.2 GNDGround Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor groundpath to prevent switching current spikes from inducing voltage noise into TD7590.4 FB Feedback Pin. Through an external resistor divider network, FBsenses the output voltage and regulates it. The feedbackthreshold voltage is 1.222V .5 EN Enable Pin. EN is a digital input that turns the regulator on oroff .Drive EN pin high to turn on the regulator, drive it low toturn it off.Ordering Information5 ON/OFF 4 Feedback 3 Output 2 Gnd 1 VinTO263-5LFunction BlockFigure 3 Function Block Diagram of TD7590Absolute Maximum RatingsUnit Parameter SymbolValueInput Voltage V IN-0.3 to 36 VFeedback Pin Voltage V FB-0.3 to Vin VEnable Pin Voltage V EN-0.3 to 12 VSwitch Pin Voltage V SW-0.3 to Vin VOutput Power Limited Pout 36 W Operating Junction Temperature T J150 ºC Storage Temperature T STG-65 to 150 ºCLead Temperature (Soldering, 10 sec) T LEAD260 ºCESD (HBM) 2000 VThermal Resistance-Junction to Ambient RθJA 85 ºC / WThermal Resistance-Junction to Case RθJC 45 ºC / WNote1: Stresses greater than those listed under Maximum Ratings may cause permanent damageto the device. This is a stress rating only and functional operation of the device at these or anyother conditions above those indicated in the operation is not implied. Exposure to absolutemaximum rating conditions for extended periods may affect reliability.Recommended Operating ConditionsParameter Symbol Min. Max. UnitInput VoltageV IN 3.6 36 V Operating Junction Temperature T J -40 125 ºC Operating Ambient Temperature T A -40 85 ºCElectrical CharacteristicsV CC = 12V, T a = 25 unless otherwise specified.℃Parameters Symbol Test Condition Min.Typ. Max. UnitInput voltageV IN 3.6 36 V Shutdown Supply Current I STBY V EN =0V 30 90 uA Supply Current I CC V EN =2V , V FB = 1.3V 3.6 4 mA Feedback V oltage V FB V IN = 3.6V to 23V1.185 1.222 1.26VFeedback Bias Current I FBV FB = 1.3V 0.1 0.5 uASwitch Current Limit I LIM 6 6.5 A Oscillator FrequencyF OSC 200 240 280 KHzFrequency of CurrentLimit or Short Circuit Protection F OSC1 V FB =0V 42 KHzEN Pin ThresholdV EN 0.7 1.2 1.7 V I H V EN = 2.5V -0.1 -1 uA EN Pin Input Leakage CurrentI L V EN =0.5V -3 -10 uA Internal PMOS R DSON R DSON V IN =12V , V FB =0VV EN =12V , Iout=5A80 m ΩMax. Duty Cycle D MAX V FB =0V , I SW =0.1A 100 %Efficiency ηV IN =12V ,V out=5VIout=5A- 92 - %Thermal Shutdown T OTSD 165 ºCTypical Performance CharacteristicsFigure 5. Vfb vs. Temperature Figure 6. Icc vs. Temperature Figure 7. Efficiency vs. Load (Vin=10V) Figure 4. Switching Frequency vs. TemperatureTypical Application CircuitFig8. TD7590 Typical Application Circuit @ 5V/5ANote:In PCB layout. Reserved an area for CFF*****************************************/5ANote:In PCB layout. Reserved an area for CFFTD7590TD75905.5V~36V DC INPUT4.5V~36V DC INPUT5V5A3.3V5AR2=2KR1=6.2KR2=3.6KR1=6.2K15uh/5A15uh/5AD1 SB540D1 SB540330uF35V330uF 35VFig10. TD7590 Typical Application Circuit (with ceramic output capacitor) @ 5V/5ANote:In PCB layout. Reserved an area for CFFFig11. TD7590 Typical Application Circuit (with ceramic output capacitor) @ 3.3V/5ANote:In PCB layout. Reserved an area for CFFTD7590TD75905.5V~36V DC INPUT4.5V~36V DC INPUT5V5A3.3V5AR2=2KR1=6.2KR2=3.6KR1=6.2K15uh/5A15uh/5A D1 SB540D1 SB540330uF 35V330uF 35VSchottky Rectifier Selection GuideVin (Max)5A Load CurrentPart Number VendorSB540 236VSR540 6NA05QSA035 1Table 1 lists some rectifier manufacturers.SiteNo. Vendor WebInter www.niec.co.jp1 NihonSemiconductor2 FairchildSemiconductor3 GeneralRectifier 4 InternationalSemiconductor 5 On6 Pan Jit International Table 2 Schottky Diode manufacturers.Output Voltage VS R1, R2 Resistor Selection GuideVout = (1+R1/R2)*1.222VVout R1 R21.8V 3.9K 8.2K2.5V3.2K 3K3.3V 6.2K 3.6K5V 6.2K 2K9V 13K 2K12V 16K 1.8KTable 3. Vout VS. R1, R2 Select TableFunction DescriptionPin FunctionsV INThis is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulatorGndCircuit ground.SWInternal switch. The voltage at this pin switches between (V IN – V SAT) and approximately – 0.5V, with a duty cycle of approximately V OUT / V IN. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.FBSenses the regulated output voltage to complete the feedback loop.ENAllows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately30uA. Pulling this pin below a threshold voltage of approximately 0.7 V turns the regulator down, and pulling this pin above 1.3V (up to a maximum of 12V) shuts the regulator on. For automatic starup condition , can be implemented by the addition ofa resistive voltage divider from V IN to GND. Thermal ConsiderationsThe TD7590 (TO-263 package) junction temperature rise above ambient temperature with a 5A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 5A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.Setting the Output VoltageThe output voltage is set using a resistive voltage divider from the output voltage to FB. The voltage divider divides theoutput voltage down by the ratio:VFB = VOUT * R2 / (R1 + R2)Thus the output voltage is:VOUT = 1.222 * (R1 + R2) / R2R2 can be as high as 100KΩ, but a typicalvalue is 10KΩ. Using that value, R1 is determined by:R1 ~= 8.18 * (VOUT – 1.222) (KΩ)For example, for a 3.3V output voltage, R2 is10KΩ, and R1 is 17KΩ.InductorThe inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor results in less ripple current that inturn results in lower output ripple voltage. However, the larger value inductor has a larger physical size, higher series resistance, and/or lower saturation current. Choose an inductorthat does not saturate under the worst-caseload conditions. A good rule for determiningthe inductance is to allow the peak-to-peakripple current in the inductor to be approximately 30% of the maximum loadcurrent. Also, make sure that the peakinductor current (the load current plus half the peak-to-peak inductor ripple current) is belowthe TBDA minimum current limit. The inductance value can be calculated by the equation:L = (VOUT) * (VIN-VOUT) / VIN * f * ΔIWhere VOUT is the output voltage, VIN is the input voltage, f is the switching frequency, andΔI is the peak-to-peak inductor ripple current. Input CapacitorThe input current to the step-down converter is discontinuous, and so a capacitor is requiredto supply the AC current to the step-down converter while maintaining the DC input voltage. A low ESR capacitor is required to keep the noise at the IC to a minimum. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice.The input capacitor value should be greater than 10μF. The capacitor can be electrolytic, tantalum or ceramic. However since it absorbs the input switching current it requires an adequate ripple current rating. Its RMS current rating should be greater than approximately1/2 of the DC load current.For insuring stable operation should beplaced as close to the IC as possible. Alternately a smaller high quality ceramic0.1μF capacitor may be placed closer to the IC and a larger capacitor placed further away. If using this technique, it is recommended thatthe larger capacitor be a tantalum or electrolytic type. All ceramic capacitors should be places close to the TD7590.Output CapacitorThe output capacitor is required to maintainthe DC output voltage. Low ESR capacitorsare preferred to keep the output voltage ripple low. The characteristics of the outputcapacitor also affect the stability of the regulation control system. Ceramic, tantalum,or low ESR electrolytic capacitors are recommended. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance,and so the output voltage ripple is mostly independent of the ESR. The output voltage ripple is estimated to be:VRIPPLE ~= 1.4 * VIN * (fLC/fSW)^2Where VRIPPLE is the output ripple voltage, VIN is the input voltage, fLC is the resonant frequency of the LC filter, fSW is the switching frequency. In the case of tanatalum or low-ESR electrolytic capacitors, the ESR dominates the impedance at the switching frequency, and so the output ripple is calculated as:VRIPPLE ~= ΔI * RESR Where VRIPPLE is the output voltage ripple, ΔI is the inductor ripple current, and RESR is the equivalent series resistance of the output capacitors.Output Rectifier DiodeThe output rectifier diode supplies the currentto the inductor when the high-side switch is off. To reduce losses due to the diode forward voltage and recovery times, use a Schottky rectifier.Table 1 provides the Schottky rectifier part numbers based on the maximum input voltage and current rating.Choose a rectifier who’s maximum reverse voltage rating is greater than the maximuminput voltage, and who’s current rating isgreater than the maximum load current. Feedforward Capacitor (CFF)For output voltages greater than approximately8V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallelwith the output voltage setting resistor, R1. It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.This capacitor type can be ceramic, plastic, silver mica, etc.(Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)Note:In PCB layout.Reserved an area for CFF. Over Current Protection (OCP)The cycle by cycle current limit threshold is set between 6A and 6.5A. When the load current reaches the current limit threshold, the cycle by cycle current limit circuit turns off the high side switch immediately to terminate the current duty cycle. The inductor current stops rising. The cycle by cycle current limit protection directly limits inductor peak current. The average inductor current is also limited due to the limitation on peak inductor current. When the cycle by cycle current limit circuit is triggered, the output voltage drops as the duty cycle is decreasing.Thermal Management and Layout ConsiderationIn the TD7590 buck regulator circuit, high pulsing current flows through two circuit loops. The firstSeptember, 2006 Techcode Semiconductor Limitedloop starts from the input capacitors, to the VIN pin, to the VOUT pins, to the filter inductor, to the output capacitor and load, and then returns to the input capacitor through ground.Current flows in the first loop when the high side switch is on. The second loop starts from the inductor, to the output capacitors and load, to the GND pin of the TD7590, and to the VOUT pins of the TD7590. Current flows in the second loop when the low side diode is on.In PCB layout, minimizing the two loops area reduces the noise of this circuit and improves efficiency. A ground plane is recommended to connect input capacitor, output capacitor, and GND pin of the TD7590.In the TD7590 buck regulator circuit, the two major power dissipating components are theTD7590 and output inductor. The total power dissipation of converter circuit can be measured by input power minus output power.P total _loss = V IN× I IN– V O× I OThe power dissipation of inductor can be approximately calculated by output current and DCR of inductor.P inductor _loss= I O2 × R inductor× 1.1The junction to ambient temperature can be got from power dissipation in the TD7590 and thermal impedance from junction to ambient.T (jun-amb)=(P totalloss–P inductorloss)× ΘJAThe maximum junction temperature of TD7590 is 145°C, which limits the maximum load current capability. Please see the thermal de-rating curves for the maximum load current of theTD7590 under different ambient temperatures. The thermal performance of the TD7590 is trongly affected by the PCB layout. Extra care should be taken by users during the design process to nsure that the IC will operate under the recommended environmental conditions.Several layout tips are listed below for the best electric and thermal performance.1. Do not use thermal relief connection to the VIN and the GND pin. Pour a maximized copper area to the GND pin and the VIN pin to help thermal dissipation.2. Input capacitor should be connected to the VIN pin and the GND pin as close as possible.3. Make the current trace from VOUT pins to L to the GND as short as possible.4. Pour copper plane on all unused board area and connect it to stable DC nodes, like VIN, GND, or VOUT.5. Keep sensitive signal traces such as trace connecting FB pin away from the VOUT pins.September, 2006 Techcode Semiconductor LimitedPackage InformationTO263-5L Package Outline DimensionsDesign Notes。

FQP6N90C中文资料

FQP6N90C中文资料

VGS = 0 V, ID = 250 µA
900 --
ID = 250 µA, Referenced to 25°C -- 1.07
IDSS
Zero Gate Voltage Drain Current
VDS = 900 V, VGS = 0 V VDS = 720 V, TC = 125°C
--
2000 1500
C iss
C = C + C (C = shorted) iss gs gd ds
C =C +C oss ds gd
C =C rss gd
1000 500
C oss
※ Notes : 1. VGS = 0 V 2. f = 1 MHz
C rss
0
10-1
100
101
VDS, Drain-Source Voltage [V]
Parameter
TC = 25°C unless otherwise noted
Test Conditions
Min Typ Max Units
Off Characteristics
BVDSS ∆BVDSS / ∆TJ
Drain-Source Breakdown Voltage
Breakdown Voltage Temperature Coefficient
VDS = 25 V, VGS = 0 V, f = 1.0 MHz
-- 1360 1770 pF
-- 110 145
pF
--
11
15
pF
Switching Characteristics
td(on)
Turn-On Delay Time

NTB90N02T4中文资料

NTB90N02T4中文资料

NTB90N02, NTP90N02 Power MOSFET90 Amps, 24 VoltsN−Channel D2PAK and TO−220Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.Typical Applications•Power Supplies•Converters•Power Motor Controls•Bridge CircuitsMAXIMUM RATINGS (T= 25°C unless otherwise noted)1.When surface mounted to an FR4 board using 1″ pad size,(Cu Area 1.127 in2).2.When surface mounted to an FR4 board using minimum recommended padsize, (Cu Area 0.412 in2).*Chip current capability limited by package.N−ChannelDevice Package Shipping†ORDERING INFORMATIONNTP90N02TO−220AB50 Units/RailNTB90N02D2PAK50 Units/RailNTB90N02T4D2PAK800/T ape & Reel†For information on tape and reel specifications,including part orientation and tape sizes, pleaserefer to our T ape and Reel Packaging SpecificationsBrochure, BRD8011/D.ELECTRICAL CHARACTERISTICS(T J = 25°C unless otherwise noted)OFF CHARACTERISTICSON CHARACTERISTICS (Note 3)DYNAMIC CHARACTERISTICSSWITCHING CHARACTERISTICS (Note 4)SOURCE−DRAIN DIODE CHARACTERISTICS3.Pulse Test: Pulse Width ≤300 m s, Duty Cycle ≤ 2%.4.Switching characteristics are independent of operating junction temperatures.30I D , D R A I N C U R R E N T (A M P S )0R D S (o n ), D R A I N −T O −S O U R C E R E S I S T A N C E (W )Figure 5. On−Resistance Variation withTemperature T J , JUNCTION TEMPERATURE (°C)Figure 6. Drain−To−Source LeakageCurrent versus VoltageV DS , DRAIN−TO−SOURCE VOLTAGE (V)50−50100750−2512515041612820102040R D S (o n ), D R A I N −T O −S O U R C E R E S I S T A N C E (N O R M A L I Z E D )502560908010070C , C A P A C I T A N C E (p F )V G S , G A T E −T O −S O U R C E V O L T A G E (V )11000100110100Figure 9. Resistive Switching Time Variationversus Gate Resistance R G , GATE RESISTANCE (W )Figure 10. Diode Forward Voltage versusCurrentV SD , SOURCE−TO−DRAIN VOLTAGE (V)t , T I M E (n s ))10POWER MOSFET SWITCHINGSwitching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (D t)are determined by how fast the FET input capacitance can be charged by current from the generator.The published capacitance data is difficult to use for calculating rise and fall because drain−gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current (I G(A V)) can be made from a rudimentary analysis of the drive circuit so thatt +Q ńI G(AV)During the rise and fall time interval when switching a resistive load, V GS remains virtually constant at a level known as the plateau voltage, V SGP . Therefore, rise and fall times may be approximated by the following:t r +Q 2 R 2ń10(V GG *V GSP )t f +Q 2 R 2ńV GSPwhere:V GG = the gate drive voltage, which varies fromzero to V GGR G = the gate drive resistance and Q 2 and V GSPare read from the gate charge curve.During the turn−on and turn−off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network.The equations are:t d(off)+R G C iss In (V GG ńV GSP )t d(on)+R G C iss In [V GG ń(V GG *V GSP )]The capacitance (C iss ) is read from the capacitance curve at a voltage corresponding to the off−state condition when calculating t d(on) and is read at a voltage corresponding to the on−state when calculating t d(off).At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths,produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed.The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load;however, snubbing reduces switching losses.INFORMATION FOR USING THE D 2PAK SURFACE MOUNT PACKAGERECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONSSurface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.SOLDER STENCIL GUIDELINESPrior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. Solder stencils are used to screen the optimum amount. These stencils are typically 0.008 inches thick and may be made of brass or stainless steel. For packages such as the SC−59, SC−70/SOT−323, SOD−123, SOT−23, SOT−143, SOT−223, SO−8, SO−14, SO−16, and SMB/SMC diode packages, the stencil opening should be the same as the pad size or a 1:1 registration. This is not the case with the DPAK and D2PAK packages. If one uses a 1:1 opening to screen solder onto the drain pad, misalignment and/or “tombstoning” may occur due to an excess of solder. For these two packages, the opening in the stencil for the paste should be approximately 50% of the tab area. The opening for the leads is still a 1:1 registration. Figure 11 shows a typical stencil for the DPAK and D2PAK packages. The pattern of the opening in the stencil for the drain pad is not critical as long as it allows approximately 50% of the pad to be covered with paste.Figure 11. Typical Stencil for DPAK andD2PAK PackagesSOLDER PASTEOPENINGSSTENCILSOLDERING PRECAUTIONSThe melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.•Always preheat the device.•The delta temperature between the preheat and soldering should be 100°C or less.*•When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.•The soldering temperature and time shall not exceed 260°C for more than 10 seconds.•When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.•After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.•Mechanical stress or shock should not be applied during cooling.* *Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.* *Due to shadowing and the inability to set the wave height to incorporate other surface mount components, the D2PAK is not recommended for wave soldering.TYPICAL SOLDER HEATING PROFILEFor any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones,and a figure for belt speed. Taken together, these control settings make up a heating “profile” for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 12 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time.The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177−189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30degrees cooler than the adjacent solder joint.STEP 1PREHEAT ZONE 1STEP 2VENT “SOAK”STEP 3HEATING ZONES 2 & 5STEP 4HEATING ZONES 3 & 6STEP 5HEATING ZONES 4 & 7STEP 6VENT STEP 7COOLING 200°150°100°5°°C Figure 12. Typical Solder Heating ProfilePACKAGE DIMENSIONSD2PAKCASE 418B−04ISSUE HNOTES:STYLE 2:PIN 1.GATE2.DRAIN3.SOURCE4.DRAINTO−220CASE 221A−09ISSUE AASTYLE 5:PIN 1.GATE2.DRAIN3.SOURCE4.DRAINON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION。

场效应管参数表(2SJ)

场效应管参数表(2SJ)

常用场效应管参数表型号厂家用途构造沟道方式v111(V)区分ixing(A)pdpch(W)waixing2SJ11东芝DC, LF A,ChopJ P D20GDS-10m100m4-22SJ12东芝DC, LF A,ChopJ P D20GDS-10m100m4-22SJ13东芝DC, LF A,ChopJ P D20GDS-100m600m4-352SJ15富士通DC, LF A J P18GDO-10m200m4-12SJ16富士通DC, LF A J P18GDO-10m200m4-12SJ17C-MIC J P20GDO0.5m10m4-47 2SJ18LF PA J(V)P170GDO-5634-45 2SJ19NEC LF D J(V)P140GDO-100m800m4-41 2SJ20NEC LF PA J(V)P100GDO-101004-42 2SJ22C-MIC J P D80GDO0.5m50m4-48 2SJ39三菱LF A J P D50GDO-10m.15/CH4-81 2SJ40三菱LF A,A-SW J P D50GDO-10m300m4-151 2SJ43松下LF A J P D50GDS20m250m4-80A 2SJ44NEC LF LN A J P D40GDO-10m400m4-53A 2SJ45NEC LF A J P D40GDO-10m400m4-53A 2SJ47日立LF PA MOS P E-100DSX-71004-28A2SJ48日立LF PA, HSPSWMOS P E-120DSX-71004-28A2SJ49日立LF PA,HS PSW MOS P E-140DSX-71004-28A 2SJ49(H)日立HS PSW MOS P E-140DSX-71004-28A2SJ50日立LF/HF PA,HSPSWMOS P E-160DSX-71004-28A2SJ50(H)日立HS PSW MOS P E-160DSX-71004-28A 2SJ51日立LF LN A J P D40GDO-10m800m4-97A2SJ55日立LF/HF PA,HSPSWMOS P E-180DSX-81254-28A2SJ56日立LF/HF PA,HSPSWMOS P E-200DSX-81254-28A2SJ56(H)日立HF PA, HSPSWMOS P E-200DSX-81254-28A2SJ68日立LF LN A J P D-40DSX-10m300m4-79A 2SJ69日立LF LN A J P D-40DSX-10m300m4-79A2SJ70日立LF LN A J P D-40DSX-10m800m4-97A 2SJ72东芝LF LN A J P D25GDS-10m600m4-74A 2SJ73东芝LF LN A J P D25GDS-10m0.6/CH4-98 2SJ74东芝LF LN A J P D25GDS-10m400m4-90 2SJ75东芝LF LN A J P D25GDS-10m0.4/CH4-99 2SJ76日立LF D,HS PSW MOS P E-140DSX-500m304-116A 2SJ77日立LF D,HS PSW MOS P E-160DSX-500m304-116A2SJ77(K)日立HF PA, HSPSWMOS P E-160DSX-500m304-116A2SJ78日立LF D,HS PSW MOS P E-180DSX-500m304-116A 2SJ79日立LF D, HS PSW MOS P E-200DSX-500m304-116A2SJ79(K)日立HF PA, HSPSWMOS P E-200DSX-500m304-116A2SJ81日立LF PA MOS P-120DSX-71004-117A 2SJ82日立LF PA MOS P-140DSX-71004-117A 2SJ83日立LF PA MOS P-160DSX-71004-117A 2SJ84松下LF A J P D15GDS-10m200m4-105A 2SJ85日立LF PA MOS P2SJ86日立LF PA MOS P2SJ87日立LF PA MOS P2SJ90东芝LF LN A J P D30GDS-10m0.2/CH4-75 2SJ91东芝LF PA MOS P-140DSX-81204-118 2SJ92东芝LF PA MOS P-140DSX-71004-1192SJ96日立LF/HF PA, HSPSWMOS P-60DSX-81004-117A2SJ99日立LF/HF PA, HSPSWMOS P E-140DSS-81004-117B2SJ100日立LF/HF PA, HSPSWMOS P E-160DSS-81004-117B2SJ101日立LF/HF PA, HSPSWMOS P E-40DSS-5304-116B2SJ102日立LF/HF PA, HSPSWMOS P E-60DSS-5304-116B2SJ103东芝LF A,A-SW J P D50GDS-10m300m4-82B 2SJ104东芝LF A, A-SW J P D25GDS-10m400m4-82C 2SJ105东芝LF A,A-SW J P D50GDS-10m200m4-70A 2SJ106东芝LF A,A-SW J P D50GDS-10m150m4-105A 2SJ107东芝LF A,A-SW J P D25GDS-10m200m4-70B 2SJ108东芝LF LN A J P D25GDS-10m200m4-70B 2SJ109东芝LF LN A J P D30GDS-10m200m4-148 2SJ110东芝LF A,A-SW J P D25GDS-10m400m4-82C2SJ111东芝LF LN A J P D25GDS-10m400m4-82C2SJ112日立HS PSW, RFPAMOS P E-100DSS-101004-28B2SJ113日立HS PSW, RFPAMOS P E-100DSS-101004-1492SJ114日立HS PSW, RFPAMOS P E-200DSS-81004-1492SJ115东芝LF PA MSO P E-160DSS-81004-1192SJ116日立HS PSW, RFPAMOS P E-400DSS-81254-28B2SJ117日立HS PSW, RFPAMOS P E-400DSS-2404-116B2SJ118日立HS PSW, RFPAMOS P E-140DSS-81004-1492SJ119日立HS PSW, RFPAMOS P E-160DSS-81004-1492SJ120(L)日立HS PSW, RFPAMOS P E-40DSS-2104-1502SJ122日立HS PSW, RFPAMOS P E-60DSS-10504-116B2SJ123东芝LF PA, HS SW MOS P E-70DSS-10304-138 2SJ125三菱LF PA,A-SW J P D50DGO-10m150m4-128 2SJ126东芝HS SW MOS P E-60DSX-10404-182 2SJ127日立HS PSW MOS P E-120DSS-10504-116B2SJ128,128Z NEC SW MOS P E-100DSS±2204-276/Z:2812SJ129松下LF A J P D50GDS-10m300m4-213B 2SJ130(L)(S)日立HS SW MOS P E-300DSS-1204-150 2SJ131SW MOS P E-170DSS-101004-2072SJ132,132Z NEC SW MOS P E-30DSS±2204-276/Z:2812SJ133,133Z NEC SW MOS P E-60DSS±2204-276/Z:2812SJ134NEC SW MOS P E-100DSS±6204-164 2SJ135NEC SW MOS P E-100DSS±5304-274 2SJ136NEC SW MOS P E-60DSS±12404-164 2SJ137NEC SW MOS P E-60DSS±10304-274 2SJ138NEC SW MOS P E-100DSS±12604-164 2SJ139NEC SW MOS P E-100DSS±10354-274 2SJ140NEC SW MOS P E-60DSS±19604-164 2SJ141NEC SW MOS P E-60DSS±13354-274 2SJ142NEC SW MOS P E-100DSS±13354-2742SJ143NEC SW MOS P E-60DSS±16354-274 2SJ144东芝LF A-SW J P D50GDS-10m100m4-246B 2SJ145三菱LF A-SW J P D50GDO-10m150m2SJ146松下SW MOS P E-50DSS-100m150m4-193B 2SJ147东芝DDC, Motor D MOS P E-60DSS-12404-182 2SJ148东芝HS SW, A-SW MOS P E-60DSX-200m400m4-82D 2SJ151NEC SW MOS P E-100DSS±3354-164 2SJ152NEC SW MOS P E-100DSS±3304-274 2SJ153NEC SW MOS P E-60DSS±6404-164 2SJ154NEC SW MOS P E-60DSS±5304-274 2SJ155松下SW MOS P E-50DSS-3304-190 2SJ156松下SW MOS P E-50DSS-5304-190 2SJ157松下SW MOS P E-100DSS-3304-190 2SJ158松下SW MOS P E-100DSS-5304-190 2SJ159松下SW MOS P E-160DSS-3304-190 2SJ160日立LF PA MOS P E-120DSX-71004-149 2SJ161日立LF PA MOS P E-140DSX-71004-149 2SJ162日立LF PA MOS P E-160DSX-71004-149 2SJ163松下SW J P D65GDS-10m150m4-193D 2SJ164松下SW J P D65GDS-10m300m4-213C 2SJ165NEC HS SW MOS P E-50DSS-0.1250m4-104C 2SJ166NEC HS SW MOS P E-50DSS-0.1200m4-275A 2SJ167东芝HS SW, A-SW MOS P E-60DSS-200m300m4-70 2SJ168东芝HS SW, A-SW MOS P E-60DSS-200m200m4-105D 2SJ169日立SW-Reg, DDC MOS P E-60DSS-12504-116B 2SJ170日立SW-Reg, DDC MOS P E-80DSS-12504-116B 2SJ171日立SW-Reg, DDC MOS P E-50DSS-9.7404-116B2SJ172日立Motor/Relay-DMOS P E-60DSS-10404-116B2SJ173日立Motor/Relay-DMOS P E-60DSS-15504-116B2SJ174日立Motor/Relay-DMOS P E-60DSS-20754-116B2SJ175日立Motor/Relay-DMOS P E-60DSS-10254-2922SJ176日立Motor/Relay-DMOS P E-60DSS-15304-2922SJ177日立Motor/Relay-DMOS P E-60DSS-20354-2922SJ178NEC HS SW MOS P E-30DSS±10.754-53C 2SJ179NEC HS SW MOS P E-30DSS±1.524-216A2SJ180NEC HS SW MOS P E-30DSS±114-217 2SJ181(L)(S)日立SW-Reg, DDC MOS P E-600DSS-0.5204-1502SJ182(L) (S)日立Motor/Relay-DMOS P E-60DSS-3204-1502SJ183东芝Relay-D, DDC MOS P E-60DSS-5204-257 2SJ184NEC HS SW MOS P E-50DSS-100m250m4-104C 2SJ185NEC HS SW MOS P E-50DSS-100m200m4-275A 2SJ186日立SW-Reg, DDC MOS P E-200DSS-0.514-295 2SJ187三洋SW MOS P E-30DSS-1 3.54-252 2SJ188三洋SW MOS P E-30DSS-2204-346 2SJ189三洋SW MOS P E-30DSS-4304-346 2SJ190三洋SW MOS P E-60DSS-1 3.54-252 2SJ191三洋SW MOS P E-60DSS-2204-346 2SJ192三洋SW MOS P E-60DSS-4304-346 2SJ193三洋SW MOS P E-100DSS-1 3.54-252 2SJ194三洋SW MOS P E-100DSS-2204-346 2SJ195三洋SW MOS P E-100DSS-4304-346 2SJ196NEC SW MOS P E-60DSS±10.754-53C 2SJ197NEC SW MOS P E-60DSS±124-216A 2SJ198NEC SW MOS P E-100DSS±0.50.754-53D 2SJ199NEC SW MOS P E-100DSS±124-216A 2SJ200东芝LF PA MOS P E-180DSS-101204-184 2SJ201东芝LF PA MOS P E-200DSS-121504-337 2SJ202NEC SW MOS P E-16DSS-100m150m4-246C 2SJ203NEC SW MOS P E-16DSS-200m200m4-275A 2SJ204NEC SW MOS P E-30DSS-200m200m4-275A 2SJ205NEC SW MOS P E-16DSS±0.524-216A 2SJ206NEC SW MOS P E-30DSS±0.524-216A 2SJ207NEC SW MOS P E-16DSS±124-216A 2SJ208NEC SW MOS P E-16DSS±224-216A 2SJ209NEC SW MOS P E-100DSS-100m200m4-275A 2SJ210NEC SW MOS P E-60DSS-200m200m4-275A 2SJ211NEC SW MOS P E-100DSS-200m200m4-275A 2SJ212NEC SW MOS P E-60DSS±0.524-216A 2SJ213NEC SW MOS P E-100DSS±0.524-216A2SJ214(L) (S)日立Motor/Relay-DMOS P E-60DSS-105404-2942SJ215日立Motor/Relay-DMOS P E-60DSS-351254-149 Motor/Relay-2SJ216日立D MOS P E-60DSS-35604-2932SJ217日立Motor/Relay-DMOS P E-60DSS-451504-1492SJ218日立Motor/Relay-DMOS P E-60DSS-45754-2932SJ219(L) (S)日立Motor/Relay-DMOS P E-60DSS-15504-2942SJ220(L) (S)日立Motor/Relay-DMOS P E-60DSS-20754-2942SJ221日立Motor/Relay-DMOS P E-100DSS-20754-116B2SJ222日立Motor/Relay-DMOS P E-100DSS-15354-2922SJ223(L)(S)日立HS PSW MOS P E-60DSS-2104-1502SJ224东芝SW, DDC,Motor-DMOS P E-60DSS-12804-3412SJ225三洋HS SW MOS P E-30DSS-114-348 2SJ226三洋HS SW MOS P E-30DSS-2 1.54-347 2SJ227三洋HS SW MOS P E-30DSS-3 1.54-347 2SJ228三洋HS SW MOS P E-60DSS-0.814-348 2SJ229三洋HS SW MOS P E-60DSS-1.6 1.54-347 2SJ230三洋HS SW MOS P E-60DSS-2.5 1.54-347 2SJ231三洋HS SW MOS P E-100DSS-0.514-348 2SJ232三洋HS SW MOS P E-100DSS-2.5 1.54-347 2SJ233三洋HS SW MOS P E-100DSS-2.5 1.54-347 2SJ234(L)(S)日立HS PSW, DDC MOS P E-30DSS-2.5104-150 2SJ235(L)(S)日立HS PSW MOS P E-60DSS-3204-150 2SJ236日立HS PSW MOS P E-60DSS-10254-376 2SJ237日立HS PSW MOS P E-60DSS-15304-3762SJ238东芝SW, DDC,Motor-DMOS P E-60DSS-10.54-2562SJ239东芝SW, DDC,Motor-DMOS P E-60DSS-5204-2572SJ240东芝SW, DDC,Motor-DMOS P E-60DSS-20454-3352SJ241东芝SW, DDC,Motor-DMOS P E-60DSS-201004-3412SJ243NEC SW MOS P E-30DSS ±100m200m4-3562SJ244日立HS PSW, DDC MOS P E-12DSS±214-2952SJ245(L)日立HS PSW, DDC MOS P E-60DSS-5204-150 (S)2SJ246(L)日立HS PSW, DDC MOS P E-30DSS-7204-150 (S)2SJ247日立HS PSW MOS P E-100DSS-8404-116B2SJ248日立HS PSW, DDC MOS P E-100DSS-8254-2922SJ250日立HS PSW MOS P E-60DSS-10124-363A2SJ254三洋HS SW MOS P E-30DSS-8254-2842SJ255三洋HS SW MOS P E-30DSS-10254-2842SJ256三洋HS SW MOS P E-30DSS-18304-2842SJ257三洋HS SW MOS P E-30DSS-10504-3702SJ258三洋HS SW MOS P E-30DSS-12604-3702SJ259三洋HS SW MOS P E-30DSS-20704-3702SJ263三洋HS SW MOS P E-60DSS-6254-2842SJ264三洋HS SW MOS P E-60DSS-8254-2842SJ265三洋HS SW MOS P E-60DSS-15304-2842SJ266三洋HS SW MOS P E-60DSS-8504-3702SJ267三洋HS SW MOS P E-60DSS-10604-3702SJ268三洋HS SW MOS P E-60DSS-18704-3702SJ272三洋HS SW MOS P E-100DSS-4254-2842SJ273三洋HS SW MOS P E-100DSS-6254-2842SJ274三洋HS SW MOS P E-100DSS-12304-2842SJ275三洋HS SW MOS P E-100DSS-6504-3702SJ276三洋HS SW MOS P E-100DSS-8604-3702SJ277三洋HS SW MOS P E-100DSS-60704-3702SJ278日立HS PSW, DDC MOS P E-60DSS-114-2952SJ279(L)日立HS PSW, DDC MOS P E-60DSS-5204-150 (S)2SJ280(L)日立HS PSW, DDC MOS P E-60DSS-30754-294 (S)2SJ281三洋HS SW MOS P E-250DSS-3304-3462SJ284三洋HS SW MOS P E-30DSS-0.3250m4-3682SJ285三洋HS SW MOS P E-60DSS-0.2250m4-3682SJ287三洋HS SW MOS P E-30DSS-0.5 3.54-2522SJ288三洋HS SW MOS P E-60DSS-0.5 3.54-2522SJ290日立HS PSW MOS P E-60DSS-15504-116B2SJ291日立HS PSW MOS P E-60DSS-20604-116B2SJ292日立HS PSW MOS P E-60DSS-30754-116B2SJ293日立HS PSW MOS P E-60DSS-15304-2922SJ294日立HS PSW MOS P E-60DSS-20354-2922SJ295日立HS PSW MOS P E-60DSS-30354-292(S)2SJ297(L)(S)日立HS PSW, DDC MOS P E -60DSS -20604-2942SJ298日立HS PSW MOS P E -20DSS -5124-363A 2SJ299(L)(S)日立HS PSW MOS P E -20DSS -5204-1502SJ300日立HS PSWMOS P E -20DSS -10124-363A 2SJ302,302Z NEC SW, DDC MOS P E -60DSS ±16754-287/Z:3062SJ303NECSW, DDCMOS P E -60DSS ±14354-3042SJ304东芝HS, SW, DDC MOS P E -60DSS -14404-3352SJ306三洋HS SW MOS P E -250DSS -3254-2842SJ307三洋HS SW MOS P E -250DSS -6304-2842SJ308三洋HS SW MOS P E -250DSS -9404-2842SJ312东芝HS SW, DDC MOS P E -60DSS -14404-3412SJ313东芝LF PAMOS P E -180DSS -1254-3352SJ314-01L, S 富士电机MOS P E -60DSS -5204-3912SJ315东芝DDC MOS P E -60DSS -5204-2572SJ316三洋HS SW MOS P E -12DSS -1 3.54-2522SJ317日立SW, PA MOS P E -12DSS ±214-2952SJ318(L)(S)日立HS PSW MOS P E -20DSS -5204-1502SJ319(L)(S)日立HS PSW MOS P E -200DSS -3204-1502SJ320三洋HS SW MOS P E -250DSS -4254-2842SJ321日立HS PSW MOS P E -60DSS -15304-3762SJ322日立HS PSW MOS P E -60DSS -20354-3762SJ323日立HS PSWMOS P E -60DSS -30354-3762SJ324,324Z NEC SW, DDC MOS P E -30DSS ±2204-276/Z:2772SJ325,325Z NEC SW, DDC MOS P E -30DSS ±4204-276/Z:2772SJ326, 326Z NEC SW, DDC MOS P E -60DSS ±2204-276/Z:2772SJ327, 327Z NEC SW, DDC MOS P E -60DSS ±4204-276/Z:2772SJ328, 328Z NEC SW, DDC MOS P E -60DSS ±20754-287/Z:3062SJ329NEC SW, DDC MOS P E -60DSS ±15354-3042SJ330NEC SW, DDC MOS P E -60DSS ±20354-3042SJ331NECSW, DDCMOSPE-60DSS±301504-253(S)3782SJ333(L)(S)日立HS PSW MOS P E-30DSS-7204-150 2SJ334东芝HS SW, DDC MOS P E-60DSS-30454-335 2SJ337三洋HS SW MOS P E-12DSS-8304-384 2SJ341日立HS PSW MOS P E-20DSS-5124-363B 2SJ349东芝HS SW, DDC MOS P E-60DSS-20354-335 2SJ350日立HS PSW MOS P E-120DSS-6204-2922SJ351日立LF/RF PA, HSPSWMOS P E-180DSX-81004-1492SJ352日立LF/RF PA, HSPSWMOS P E-200DSX-81004-1492SJ353NEC MOS P E-60DSS±1.514-217 2SJ355NEC MOS P E-30DSS±224-SC-62 2SJ356NEC MOS P E-60DSS±224-SC-62 2SJ357NEC MOS P E-30DSS±324-MP-2 2SJ358NEC MOS P E-60DSS±324-MP-2 2SJ359东芝HS SW, DDC MOS P E-60DSS-5 1.24-387 2SJ360东芝HS SW, DDC MOS P E-60DSS-1 1.54-256 2SJ361日立HS PSW MOS P E-20DSS-214-295 2SJ363日立HS PSW MOS P E-30DSS-214-2952SJ365新电元HS SW MOS P E-60DSS-2104-2902SJ366新电元HS SW MOS P E-60DSS-5154-2902SJ367新电元HS SW MOS P E-60DSS-5304-3832SJ368新电元HS SW MOS P E-60DSS-5204-3042SJ369新电元HS SW MOS P E-60DSS-10404-3832SJ370新电元HS SW MOS P E-60DSS-10254-3042SJ371新电元HS SW MOS P E-60DSS-15504-3832SJ372新电元HS SW MOS P E-60DSS-15304-3042SJ373新电元HS SW MOS P E-60DSS-20604-3832SJ374新电元HS SW MOS P E-60DSS-20404-3042SJ375新电HS SW MOS P E-60DSS-30604-383元2SJ376新电元HS SW MOS P E-60DSS-30504-3042SJ377东芝HS SW, DDC MOS P E-60DSS-5204-257 2SJ378东芝HS SW, DDC MOS P E-60DSS-5 1.24-387 2SJ379东芝HS SW, DDC MOS P E-100DSS-8154-342 2SJ380东芝HS SW, DDC MOS P E-100DSS-12354-335 2SJ381三洋MOS P E-12DSS-2 3.54-252 2SJ382三洋MOS P E-12DSS-4202SJ383三洋MOS P E-12DSS-8302SJ384(L)(S)日立HS PSW MOS P E-60DSS-15504-294 2SJ386日立HS PSW MOS P E-30DSS-30.94-97B2SJ387(L) (S)日立HS PSW MOS P E-20DSS-10204-377,3782SJ388(L) (S)日立HS PSW MOS P E-30DSS-10204-377,3782SJ389(L) (S)日立HS PSW MOS P E-60DSS-10304-377,3782SJ390日立HS PSW MOS P E-60DSS-10254-292 2SJ399日立HS PSW MOS P E-30DSS-0.20.154-185B2SJ408(L) (S)日立HS PSW MOS P E-60DSS-501004-379,3802SJ409(L)(S)日立HS PSW MOS P E-100DSS-20754-294 2SJ410日立HS PSW MOS P E-200DSS-6304-292 2SJ128Z NEC SW MOS P E-100DSS±2204-281 2SJ132Z NEC SW MOS P E-30DSS±2204-281 2SJ133Z NEC SW MOS P E-60DSS±2204-281 2SJ302Z NEC SW,DDC MOS P E-60DSS±16754-306 2SJ324Z NEC SW,DDC MOS P E-30DSS±2204-277 2SJ325Z NEC SW,DDC MOS P E-30DSS±4204-277 2SJ326Z NEC SW,DDC MOS P E-60DSS±2204-277 2SJ327Z NEC SW,DDC MOS P E-60DSS±4204-277 2SJ328Z NEC SW,DDC MOS P E-60DSS±20754-3062SJ120(S)日立HS PSW, RFPAMOS P E-40DSS-2104-150。

MDM-9SBSM7-T中文资料

MDM-9SBSM7-T中文资料

How to Order - MDM-PCB SeriesMDM-PCB connectors are designed for use with flex circuitry, flat cable and printed circuit boards or multi-layer boards. They use the standard MDM metal shell and provide high density and high reliability in board-to-board,board-to-cable and cable-to-cable applications.MDM-PCB connectors are available in 8 shell sizes with 9 to 100 contacts. Terminations may be straight (BS) or at 90˚ right angle (BR,CBR) board thickness. Jackpost mounting for use with locking hardware is also available.SERIESINSULATOR MATERIALCONTACT ARRANGEMENTCONTACT TYPE TERMINATION TYPEMOUNTING HARDWARE (Shell Flange) MOUNTING HARDWARE FOR PCBTERMINATION TAIL LENGTH MODIFICATION CODE SHELL FINISH MODIFICATION CODESSERIESMOUNTING HARDWARE FOR PCB TERMINATION TAIL LENGTH MODIFICATION CODE SHELL FINISH MODIFICATION CODESINSULATOR MATERIALCONTACT ARRANGEMENTCONTACT TYPETERMINATION TYPEMOUNTING HARDWARE (Shell Flange)MDM - Micro "D" Metal Shell T -Threaded Insert#2-56 Thd for Shell Sizes 9 thru 51 #4-40 Thd for Shell Size 100No letter - noneNone - .109 (2.77) ±.015 (0.38) Standard L61 - .125 (3.18)L56 - .150 (3.81)L57 - .190 (4.83)L39 - .250 (6.35)L58 - .375 (9.52)None - Yellow Chromate/Cadmium over Nickel A174 - Electroless Nickel A172 - Gold over Nickel A141 - Irridite/Alodine A30 - Black Anodize (For special modification codes, consult customer service.)NOTE: Back molding material – Epoxy Hysol #MG40FSMDM * - - 25PP BSTL39 A174Liquid Crystal Polymer (LCP)9, 15, 21, 25, 31, 37, 51, and 100P -Pin (Plug)S -Socket (Receptacle)BS - Straight PCB Termination BR - Right Angle PCB TerminationCBR - Right Angle Narrow Profile PCB Terminations P -Jackposts M7 - Jackposts M83513/5-07 (Sizes 9-51)M17 - JackpostsM83513/5-17 (Size 100)No letter - none RoHS COMPLIANCE RBS (Board Straight) Series.120 ± .005(3.05 ± 0.13)Size 100(9-51).JACKPOST (100)#4-40 UNC-2B TYP ..186 (4.72) MAX. PLUG.109 ± 0.15(2.77 ± 0.38).050(1.27).050.050.100TYP ..150.050(1.27).050.050.150TYP .PCB Termination Arrangements* (Viewed from PCB solder side)9Contacts 31 Contacts 15 Contacts100 Contacts51 Contacts21 Contacts25 ContactsIdentification number shown for plug connector, use reverse order for socket connector.NOTE: Standard lead termination is #24 AWG, solid copper, solder or tin dipped All Termination Configurations .100 (2.54) x .100 (2.54) Grid Pattern, Offset .050 (1.27)NOTE: Dimensions shown are for reference only-consult factory for final design dimensions.REF.B±.007 (.18)Part Number By Shell Size A Max.C±.005 (.13)D Max.E Max.F Max.G Max.H Max.J Max.K Max.MDM-9PBS*MDM-9SBS*MDM-15PBS*MDM-15SBS*MDM-21PBS*MDM-21SBS*MDM-25PBS MDM-25SBS*MDM-31PBS*MDM-31SBS*MDM-37PBS*MDM-37SBS*MDM-51PBS*MDM-51SBS*MDM-100PBS*1.390 (35.31)1.390 (35.31)1.390 (35.31)1.390 (35.31)1.690 (43.93)1.690 (43.93)1.740 (44.20)1.740 (44.20)2.040 (51.82)2.040 (51.82)2.340 (59.44)2.340 (59.44)2.270 (67.66)2.270 (67.66)3.070 (77.98)1.150 (29.21)1.150 (29.21)1.150 (29.21)1.150 (29.21)1.450 (36.83)1.450 (36.83)1.500 (38.10)1.500 (38.10)1.800 (45.72)1.800 (45.72)2.100 (53.34)2.100 (53.34)2.000 (50.80)2.000 (50.80)2.800 (71.12).565 (14.35).565 (14.35).715 (18.16).715 (18.16).865 (21.97).865 (21.97).965 (24.51).965 (24.51)1.115 (28.32)1.115 (28.32)1.265 (32.13)1.265 (32.13)1.215 (30.86)1.215 (30.86)1.800 (45.72).785 (19.94).785 (19.94).935 (23.75).935 (23.75)1.085 (27.56)1.085 (27.56)1.185 (30.10)1.185 (30.10)1.335 (33.91)1.335 (33.91)1.485 (37.72)1.485 (37.72)1.435 (36.45)1.435 (36.45)2.175 (55.24).334 (8.48).402 (10.21).484 (12.29).552 (13.97).634 (16.10).702 (17.83).734 (18.64).802 (20.37).884 (22.45).952 (24.18)1.034 (26.26)1.102 (27.99).984 (24.99)1.052 (26.72)1.384 (35.15).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).228 (5.79).296 (7.52).271 (6.88).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).351 (8.92).351 (8.92).460 (11.68).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).165 (4.19).303 (7.70).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).355 (9.02).550 (12.70).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).555 (14.10).686 (17.42)BR (Board Right Angle) Series.300PCB Termination Arrangements (Viewed from bottom of connector, PCB solder side.)Identification number shown for plug connector, use reverse order for socket connector..100TYP ..150.150(3.81).150(4.45).150.150.150(5.72)9Contacts31 Contacts 15Contacts 37 Contacts 51 Contacts21 Contacts25 Contacts27 28 29 30 31 32 33 3435 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 511234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26100 ContactsNOTE: Standard lead termination is #24 AWG, gold plated, solid copper, solder or tin dripped.*For jackpost, add letter "P" or "M7" for sizes 9-51, "M17" for size 100.Part Number By Shell Size MDM-9PBR*MDM-9SBR*MDM-15PBR*MDM-15SBR*MDM-21PBR*MDM-21SBR*MDM-25PBR*MDM-25SBR*MDM-31PBR*MDM-31SBR*MDM-37PBR*MDM-37SBR*MDM-51PBR*MDM-51SBR*MDM-100PBR*MDM-100SBR*1.390 (35.31)1.390 (35.31)1.540 (39.12)1.540 (39.12)1.690 (42.93)1.690 (42.93)1.790 (45.47)1.790 (45.47)2.040 (51.82)2.040 (51.52)2.340 (59.44)2.340 (59.44)1.875 (47.63)1.875 (47.63) 2.74 (69.72) 2.74 (69.72)1.150 (29.21)1.150 (29.21)1.300 (33.02)1.300 (33.02)1.450 (36.83)1.450 (36.83)1.550 (39.37)1.550 (39.37)1.800 (45.72)1.800 (45.72)2.100 (53.34)2.100 (53.34)1.600 (40.64)1.600 (40.64)2.500 (63.50)2.500 (63.50).565 (14.35).565 (14.35).715 (18.16).715 (18.16).865 (21.97).865 (21.97).965 (24.51).965 (24.51)1.115 (28.32)1.115 (28.32)1.265 (32.13)1.265 (32.13)1.215 (30.86)1.215 (30.86)1.800 (45.72)1.800 (45.72).334 (8.48).402 (10.21).484 (12.29).552 (13.97).634 (16.10).702 (17.83).734 (18.64).802 (20.37).884 (22.45).952 (24.18)1.034 (26.26)1.102 (27.99).984 (24.99)1.052 (26.72)1.384 (35.15)1.508 (38.10).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).185 (4.70).253 (6.43).228 (5.79).296 (7.52).271 (6.88).394 (10.01).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).455 (11.56).565 (14.35).565 (14.35).755 (19.18).755 (19.18).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).308 (7.82).351 (8.92).351 (8.92).394 (10.01).394 (10.01)A Max.B±.007 (.18)C±.005 (.13)D Max.E Max.F Max.G Max.All Termination Configurations .100 (2.54) x .100 (2.54) Grid Pattern, Offset .050 (1.27).CBR (Condensed Board Right Angle) SeriesPCB Termination Arrangements (Viewed from bottom of connector, PCB solder side.)Identification number shown for plug connector, use reverse order for socket connector.135724101214161719212325272937394143454749512830323436384042444648505355575961636567697173755254565860626466687072747678808284868890929496981007779818385878991939597991820222631333524689111315JACKPOST 2-56..186 (4.72)MAX.PLUG .198 (5.03)DIA.TYP .(Size 9-51)FOR 31: 1.085(27.56) MAX.FOR 37: 1.185(30.10) MAX.FOR 51: 1.225(31.12) MAX.**JACKPOST .100 VIEW.108.020.020(2.54 ± 0.13)9Contacts View X15Contacts View X21Contacts View X25 Contacts View X100 Contacts View W51 Contacts View Y 37 Contacts View Y 31 Contacts View Y NOTE: Standard lead termination is #24 AWG, solid copper, solder or tin dripped. *For jackpost, add letter "P" or "M7" for sizes 9-51, "M17" for size 100.By Shell Size MDM-9PCBR*MDM-9SCBR*MDM-15PCBR*MDM-15SCBR*MDM-21PCBR*MDM-21SCBR*MDM-25PCBR*MDM-25SCBR*MDM-31PCBR*MDM-31SCBR*MDM-37PCBR*MDM-37SCBR*MDM-51PCBR*MDM-51SCBR*MDM-100PCBR*MDM-100SCBR*.785 (19.94) .785 (19.94) .935 (23.75) .935 (23.75) 1.085 (27.56) 1.085 (27.56) 1.185 (30.10) 1.185 (30.10) 1.335 (33.91) 1.335 (33.91) 1.485 (37.72) 1.485 (37.72) 1.435 (36.45) 1.435 (36.45) 2.170 (55.12) 2.170 (55.12).565 (14.35) .565 (14.35) .715 (18.16) .715 (18.16) .865 (21.97) .865 (21.97) .965 (24.51) .965 (24.51) 1.115 (28.32) 1.115 (28.32) 1.265 (32.13) 1.265 (32.13) 1.215 (30.86) 1.215 (30.86) 1.800 (45.72) 1.800 (45.72).334 (8.48) .402 (10.21) .484 (12.29) .552 (13.97) .634 (16.10) .702 (17.83) .734 (18.64) .802 (20.37) .884 (22.45) .952 (24.18) 1.034 (26.26) 1.102 (27.99) .984 (24.99) 1.052 (26.72) 1.384 (35.15) 1.508 (38.10).308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .308 (7.82) .351 (8.92) .351 (8.92) .394 (10.01) .394 (10.01).185 (4.70) .253 (6.43) .185 (4.70) .253 (6.43) .185 (4.70) .253 (6.43) .184 (4.70) .253 (6.43) .185 (4.70) .253 (6.43) .185 (4.70) .253 (6.43) .228 (5.79) .296 (7.52) .271 (6.88) .394 (10.01).420 (10.67) .420 (10.67) .420 (10.67) .420 (10.67) .420 (10.67) .420 (10.67) .420 (10.67) .420 (10.67) .520 (13.21) .520 (13.21) .520 (13.21) .520 (13.21) .650 (16.15) .650 (16.15) 1.000 (25.40) 1.000 (25.40).250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .250 (6.35) .300 (7.62) .300 (7.62) .400 (10.16) .400 (10.16).230 (5.81) .230 (5.81) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .130 (3.30) .150 (3.81) .150 (3.81) .200 (5.08) .200 (5.08)Max.±.005 (.13)±.010 (.25)±.010 (.25)Max.Max.Max.Max.All Termination Configurations .100 (2.54) x .100 (2.54) Grid Pattern, Offset .050 (1.27).。

NT90RHBOAC12VCB0.6中文资料

NT90RHBOAC12VCB0.6中文资料

FeaturesSmall size, light weight. Low coil power consumption, heavy contact load. Strong anti-shock and anti-vibration, high reliability, long life.Suitable for automobile, machine, electronic equipment, air conditioner and household appliance applications.PC board mounting.Ordering InformationNT90 R H A S DC12V C B 0.91 2 3 4 5 6 7 8 91 Part number :NT90T 、NT90T 22 Terminal : R: without Pin 6;NIL: With Pin 63 Load :H:30A ;N:40A4 Contact arrangement :1A:1A ;1B:1B ;1C:1C5 Enclosure :S: Sealed type ;D: Dust cover ;E: Covered ;O: Open type6 Coil rated Voltage(V):AC:12,24,110,120,220DC:3,5,6,9,12,15,18,24,48,1107 Contact material :C: Ag CdO ;S: Ag SnO 28 Resist heat class :B:130℃ F:155℃9 Coil power consumption :0.6:0.6W ;0.9:0.9W NIL:2VA Contact DataContact Arrangement1A SPSTNO f 1B(SPSTNC)f 1C(SPDT(B-M))Contact MaterialAg CdO Ag SnO 2 Ag SnO 2 In 2O 3Contact Rating (resistive)NO : 30A/240VAC,14VDC; NC:20A/240VAC ;30A/14VDC NO :40A/250VAC,30VDC; NC:30A/250VAC,30VDC (0.9W)Motor load :2HP 250VAC ;1.5HP 250V Lamp load :TV-5Max. Switching Power1100W 7200VA Max. Switching Voltage110VDC 250VAC Max. Switching Current:40A Contact Resistance or Voltage drop አ30m Item 3.12 of IEC255-7Electrical 105Item 3.30 of IEC255-7Operation life Mechanical107Item 3.31 of IEC255-7Coil ParameterAC Coil ParameterRATED VOLTAGEVACDASH NUMBERSRATEDMaxCOIL RESISTANCE ±10%PICK UP VOLTAGE VAC(max)(75%of rated voltage)RELEASE VOLTAGE VAC(min)(30%of rated voltage)COIL POWEROperate Time ms Release Time ms012AC 1215.6279.0 3.6024AC 2431.212018.07.2110AC 110143236082.533.0120AC 120156304090.036.0220AC22028613490165.066.02VA __CAUTION : 1.The use of any coil voltage less than the rated coil voltage will compromise the operation of the relay.2.Pickup and release voltage are for test purposes only and are not to be used as design criteria.10330.5×24.2×17 32.5×27.6×20.5 99312549.2 01311661.4元器件交易网003-9003 3.9102.250.3005-9005 6.5283.750.5006-90067.8404.500.6009-900911.790 6.750.9012-9001215.61609.00 1.2015-9001519.525010.25 1.5018-9001823.436013.50 1.8024-9002431.264018.00 2.4048-9004862.4256036.00 4.8110-9001101431344582.5011.00.91510003-6003 3.915 2.250.3005-6005 6.542 3.750.5006-60067.860 4.500.6009-600911.7135 6.750.9012-6001215.62409.00 1.2015-6001519.537510.25 1.5018-6001823.454013.50 1.8024-6002431.296018.00 2.4048-6004862.4384036.00 4.8110-6001101432016782.5011.00.61510CAUTION : 1.The use of any coil voltage less than the rated coil voltage will compromise the operation of the relay.2.Pickup and release voltage are for test purposes only and are not to be used as design criteria.Qualification inspection:Perform the qualification test as specified in the table of IEC255-19-1 and minimum sample size 24.Operation conditionInsulation Resistance 1000M min (at 500VDC)Item 7 of IEC255-5Dielectric Strength Between contactsBetween contact and coil 50Hz 1500V 50Hz 2500V 4000V without Pin 6 Item 6 of IEC255-5Item 6 of IEC255-5Shock resistance 200m/s 2 11msIEC68-2-27 Test Ea Vibration resistance 10~55Hz double amplitude 1.5mm IEC68-2-6 Test Fc Terminals strength 10NIEC68-2-21 Test Ua1Solderability235 x 2 3x 0.5s IEC68-2-20 Test Ta method 1Ambient Temperature -55~100 -55~125 Relative Humidity 85% (at 40 )IEC68-2-3 Test CaMass27g Open type 30g元器件交易网。

EP9179中文资料

EP9179中文资料
±10 100
Unit
% PPM/°C Meg Ohms Vdc
ቤተ መጻሕፍቲ ባይዱ
Recommended Operating Conditions
PW* D* TA Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature
Min
200 0
Schematic
27 IN 28 1 2 3 4 13 14 15 16 17 OUT
26
GROUND
18
SMD J-Lead Package
4 1 28 26 .055 PCA EP9130 Date Code .450 Max. Suggested Solder .365 Pad Layout .475
25 30 35 40 45 50 60 75 100 125 150 175 200 225 250
2.5±0.5 3.0±0.5 3.5±0.5 4.0±0.5 4.5±0.5 5.0±0.5 6.0±1.0 7.5±1.0 10.0±2.0 12.5±2.0 15.0±2.0 17.5±2.0 20.0±20 22.5±2.0 25.0±2.0
Unless Otherwise Noted Dimensions in Inches Tolerances: Fractional = ± 1/32 .XX = ± .030 .XXX = ± .010
ELECTRONICS
INC.
16799 SCHOENBORN ST. NORTH HILLS, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791
Max

NT90TPHCSDC9VCB2.2中文资料

NT90TPHCSDC9VCB2.2中文资料

FeaturesnSmall size, light weight. Low coil power consumption, heavy contact load. Strong anti-shock and anti-vibration, highreliability, long life.nSuitable for automobile, machine, electronic equipment, air conditioner and household appliance applications.Contact DataContact Arrangement 1A, 1B, 1CContact MaterialAg CdO Ag SnO 2 Ag SnO 2 In 2O 3Contact Rating (resistive)NO :30A/240VAC,14VDC; NC:20A/240VAC ;30A/14VDC NO;40A/250VAC,28VDC; NC:30A/250VAC,28VDC (0.9W)Max. Switching Power 1100W 7200VAMax. Switching Voltage110VDC 250VAC Max. Switching Current:40A Contact Resistance or Voltage drop 30m Ω Max Item 3.12 of IEC255-7Electrical 105 Item 3.30 of IEC255-7Operation life Mechanical107 Item 3.31 of IEC255-7Coil ParameterDC Coil ParameterAC Coil Parameter Coil voltage VDCCoil resistance Ω±10%Pick up voltageE VDC(max)(75%of rated voltage)Release voltage VDC(min)(10%of rated voltage)Coil power WOperate Time ms MaxRelease Time ms MaxRated voltage VACCoil resistance Ω±10%CoilpowerRated Max3 3.910/15 2.250.312(27)5 6.528/42 3.750.567.840/60 4.500.624(120)911.790/135 6.750.91215.6160/2409.00 1.2110(2360)1519.5250/37510.25 1.51823.4360/54013.50 1.8120(3040)2431.2640/96018.00 2.44862.42560/384036.00 4.8220(13490)11014313445/2016782.5011.00.9/0.615102VACAUTION : 1.The use of any coil voltage less than the rated coil voltage will compromise the operation of the relay.2.Pickup and release voltage are for test purposes only and are not to be used as design criteria.Operation conditionInsulation Resistance 1000M Ω min (at 500VDC)Item 7 of IEC255-5Dielectric Strength Between contactsBetween contact and coil 50Hz 1500V 50Hz 2500VItem 6 of IEC255-5Item 6 of IEC255-5Shock resistance 200m/s 2 11msIEC68-2-27 Test Ea method 1Vibration resistance 10~55Hz double amplitude 1.5mm IEC68-2-6 Test Fc Terminals strength 10NIEC68-2-21 Test Ua1Solderability230 ºC ± 2 ºC 10± 0.5s IEC68-2-20 Test Ta method 1Ambient Temperature -55~100 ºC -55~125 ºC Relative Humidity 85% (at 40 ºC)IEC68-2-3Test CaMass37gQualification inspection: Perform the qualification test as specified in the table IV of IEC255-19-1 and minimum sample size 24.79N T 90T P (T 92)LR95633132.4(50)×27×28.5元器件交易网。

MC9S12_datasheet中文

MC9S12_datasheet中文
目录
目录 .................................................................................................................................................. I 第一章 PWM模块 ...........................................................................................................................1 第一节 PWM模块介绍 .........................................................................................................1 第二节 PWM寄存器简介 .......................................................................2 2.1 PWME寄存器 ........................................................................................................2 2.2 PWMPOL寄存器...................................................................................................2 2.3 PWMCLK寄存器 ..................................................................

FQP9N90C中文资料

FQP9N90C中文资料

--
75 160
ns
VDS = 720 V, ID = 9.0A,
-- 45
58
nC
VGS = 10 V
-- 13
--
nC
(Note 4, 5) --
18
--
nC
Drain-Source Diode Characteristics and Maximum Ratings
IS
Maximum Continuous Drain-Source Diode Forward Current
V Top : 15.0GVS
10.0 V
8.0 V
101
7.0 V 6.5 V
6.0 V
Bottom : 5.5 V
100
10-1 10-1
※ Notes : 1. 250μ s Pulse Test 2. TC = 25℃
100
101
VDS, Drain-Source Voltage [V]
Figure 1. On-Region Characteristics
Features
• 8.0 A, 900V, RDS(on) = 1.4 Ω @VGS = 10 V • Low gate charge ( typical 45nC) • Low Crss ( typical 14pF) • Fast switching • 100% avalanche tested • Improved dv/dt capability
Units °C/W °C/W °C/W
©2003 Fairchild Semiconductor Corporation
Rev. A, September 2003

FQPF9N50C中文资料

FQPF9N50C中文资料

TJ, TSTG
Operating and Storage Temperature Range
TL
Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds
* Drain current limited by maximum junction temperature
101
100 10-1
0.2
150℃
25℃
※ Notes : 1. VGS = 0V 2. 250μ s Pulse Test
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-Drain voltage [V]
Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature
2. L = 8 mH, IAS = 9A, VDD = 50V, RG = 25 Ω, Starting TJ = 25°C 3. ISD ≤ 9A, di/dt ≤ 200A/µs, VDD ≤ BVDSS, Starting TJ = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature
Figure 1. On-Region Characteristics
2.0
VGS = 10V 1.5
1.0 VGS = 20V
0.5 ※ Note : TJ = 25℃

DS90LV031中文资料

DS90LV031中文资料

DS90LV031A3V LVDS Quad CMOS Differential Line DriverGeneral DescriptionThe DS90LV031A is a quad CMOS differential line driver de-signed for applications requiring ultra low power dissipation and high data rates.The device is designed to support data rates in excess of 400Mbps (200MHz)utilizing Low Voltage Differential Signaling (LVDS)technology.The DS90LV031A accepts low voltage TTL/CMOS input lev-els and translates them to low voltage (350mV)differential output signals.In addition the driver supports a TRI-STATE ®function that may be used to disable the output stage,dis-abling the load current,and thus dropping the device to an ultra low idle power state of 13mW typical.The EN and EN*inputs allow active Low or active High con-trol of the TRI-STATE outputs.The enables are common to all four drivers.The DS90LV031A and companion line re-ceiver (DS90LV032A)provide a new alternative to high power psuedo-ECL devices for high speed point-to-point in-terface applications.Featuresn >400Mbps (200MHz)switching ratesn 0.1ns typical differential skew n 0.4ns maximum differential skew n 2.0ns maximum propagation delay n 3.3V power supply design n ±350mV differential signalingn Low power dissipation (13mW at 3.3V static)n Interoperable with existing 5V LVDS devicesn Compatible with IEEE 1596.3SCI LVDS standard n Compatible with TIA/EIA-644LVDS standardn Industrial and Military operating temperature rangenAvailable in SOIC,TSSOP and Cerpack surface mount packagingn Standard Microcircuit Drawing (SMD)5962-9865201Connection DiagramFunctional DiagramTruth TableDRIVEREnables Input Outputs EN EN *D IN D OUT+D OUT−LHX Z Z All other combinations of ENABLE inputsL L H HH LTRI-STATE ®is a registered trademark of National Semiconductor Corporation.Dual-In-LineDS100095-1Order Number DS90LV031ATMor DS90LV031ATMTC or DS90LV031AWSee NS Package Number M16A or MTC16or W16AJuly 1999DS90LV031A 3V LVDS Quad CMOS Differential Line Driver©1999National Semiconductor Corporation Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage(V CC)−0.3V to+4V Input Voltage(D IN)−0.3V to(V CC+0.3V) Enable Input Voltage(EN,EN*)−0.3V to(V CC+0.3V) Output Voltage(D OUT+,D OUT−)−0.3V to+3.9V Short Circuit Duration(D OUT+,D OUT−)Continuous Maximum Package Power Dissipation@+25˚CM Package1088mW MTC Package866mW W Package845mW Derate M Package8.5mW/˚C above+25˚C Derate MTC Package 6.9mW/˚C above+25˚C Derate W Package 6.8mW/˚C above+25˚C Storage Temperature Range−65˚C to+150˚C Lead Temperature RangeSoldering(4sec.)+260˚C Maximum Junction Temperature+150˚C ESD Rating(Note10)(HBM,1.5kΩ,100pF)≥6kV Recommended Operating ConditionsMin Typ Max Units Supply Voltage(V CC)+3.0+3.3+3.6V Operating Free AirTemperature(T A)Industrial−40+25+85˚C Military-55+25+125˚CElectrical CharacteristicsOver supply voltage and operating temperature ranges,unless otherwise specified.(Notes2,3,4)Symbol Parameter Conditions Pin Min Typ Max UnitsV OD1Differential Output Voltage R L=100Ω(Figure1)D OUT−D OUT+250350450mV∆V OD1Change in Magnitude of V OD1for Complementary OutputStates435|mV|V OS Offset Voltage 1.125 1.25 1.375V ∆V OS Change in Magnitude of V OS forComplementary Output States525|mV|V OH Output Voltage High 1.38 1.6V V OL Output Voltage Low0.90 1.03VV IH Input Voltage High D IN,EN,EN*2.0V CC VV IL Input Voltage Low GND0.8V I IH Input Current V IN=V CC or2.5V−10±1+10µA I IL Input Current V IN=GND or0.4V−10±1+10µA V CL Input Clamp Voltage I CL=−18mA−1.5−0.8VI OS Output Short Circuit Current ENABLED,(Note11)D IN=V CC,D OUT+=0V orD IN=GND,D OUT−=0V D OUT−D OUT+−6.0−9.0mAI OSD Differential Output Short CircuitCurrent ENABLED,V OD=0V(Note11)−6.0−9.0mAI OFF Power-off Leakage V OUT=0V or3.6V,V CC=0V or Open−20±1+20µAI OZ Output TRI-STATE Current EN=0.8V and EN*=2.0VV OUT=0V or V CC−10±1+10µAI CC No Load Supply Current DriversEnabledD IN=V CC or GND V CC 5.08.0mAI CCL Loaded Supply Current DriversEnabled R L=100ΩAll Channels,D IN=V CC or GND(all inputs)2330mAI CCZ No Load Supply Current DriversDisabled D IN=V CC or GND,EN=GND,EN*=V CC2.6 6.0mA2Switching Characteristics-IndustrialV CC=+3.3V±10%,T A=−40˚C to+85˚C(Notes3,9,12)Symbol Parameter Conditions Min Typ Max Unitst PHLD Differential Propagation Delay High to Low R L=100Ω,C L=10pF(Figure2and Figure3)0.8 1.18 2.0nst PLHD Differential Propagation Delay Low to High0.8 1.25 2.0ns t SKD1Differential Pulse Skew|t PHLD−t PLHD|(Note5)00.070.4ns t SKD2Channel-to-Channel Skew(Note6)00.10.5ns t SKD3Differential Part to Part Skew(Note7)0 1.0ns t SKD4Differential Part to Part Skew(Note8)0 1.2ns t TLH Rise Time0.38 1.5ns t THL Fall Time0.40 1.5nst PHZ Disable Time High to Z R L=100Ω,C L=10pF(Figure4and Figure5)5nst PLZ Disable Time Low to Z5ns t PZH Enable Time Z to High7ns t PZL Enable Time Z to Low7ns f MAX Maximum Operating Frequency(Note14)200250MHzSwitching Characteristics-MilitaryV CC=+3.3V±10%,T A=−55˚C to+125˚C(Notes9,12)Symbol Parameter Conditions Min Max Unitst PHLD Differential Propagation Delay High to Low R L=100Ω,C L=10pF(Figure2and Figure3)0.8 2.0nst PLHD Differential Propagation Delay Low to High0.8 2.0ns t SKD1Differential Pulse Skew|t PHLD−t PLHD|(Note5)00.4ns t SKD2Channel-to-Channel Skew(Note6)00.5ns t SKD3Differential Part to Part Skew(Note7)0 1.0ns t SKD4Differential Part to Part Skew(Note8)0 1.2ns t TLH Rise Time 1.5ns t THL Fall Time 1.5nst PHZ Disable Time High to Z R L=100Ω,C L=10pF(Figure4and Figure5)5nst PLZ Disable Time Low to Z5nst PZH Enable Time Z to High7nst PZL Enable Time Z to Low7nsf MAX Maximum Operating Frequency(Note14)200MHzNote1:“Absolute Maximum Ratings”are those values beyond which the safety of the device cannot be guaranteed.They are not meant to imply that the devices should be operated at these limits.The table of“Electrical Characteristics”specifies conditions of device operation.Note2:Current into device pins is defined as positive.Current out of device pins is defined as negative.All voltages are referenced to ground except:V OD1and∆V OD1.Note3:All typicals are given for:V CC=+3.3V,T A=+25˚C.Note4:The DS90LV031A is a current mode device and only functions within datasheet specifications when a resistive load is applied to the driver outputs typical range is(90Ωto110Ω)Note5:t SKD1,|t PHLD−t PLHD|is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.Note6:t SKD2is the Differential Channel-to-Channel Skew of any event on the same device.Note7:t SKD3,Differential Part to Part Skew,is defined as the difference between the minimum and maximum specified differential propagation delays.This speci-fication applies to devices at the same V CC and within5˚C of each other within the operating temperature range.Note8:t SKD4,part to part skew,is the differential channel-to-channel skew of any event between devices.This specification applies to devices over recommended operating temperature and voltage ranges,and across process distribution.t SKD4is defined as|Max−Min|differential propagation delay.Note9:Generator waveform for all tests unless otherwise specified:f=1MHz,Z O=50Ω,t r≤1ns,and t f≤1ns.Note10:ESD Ratings:HBM(1.5kΩ,100pF)≥6kVNote11:Output short circuit current(I OS)is specified as magnitude only,minus sign indicates direction only.Note12:C L includes probe and jig capacitance.Note13:All input voltages are for one channel unless otherwise specified.Other inputs are set to GND.Note14:f MAX generator input conditions:t r=t f<1ns,(0%to100%),50%duty cycle,0V to3V.Output Criteria:duty cycle=45%/55%,VOD>250mV,all channels switching.3Parameter Measurement InformationDS100095-3FIGURE1.Driver V OD and V OS Test CircuitDS100095-4FIGURE2.Driver Propagation Delay and Transition Time Test CircuitDS100095-5FIGURE3.Driver Propagation Delay and Transition Time WaveformsDS100095-6FIGURE4.Driver TRI-STATE Delay Test Circuit4Parameter Measurement Information(Continued)Typical ApplicationApplications InformationGeneral application guidelines and hints for LVDS drivers and receivers may be found in the following application notes:LVDS Owner’s Manual (lit #550062-001),AN808,AN1035,AN977,AN971,AN916,AN805,AN903.LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 6.This configuration provides a clean signaling en-vironment for the quick edge rates of the drivers.The re-ceiver is connected to the driver through a balanced media which may be a standard twisted pair cable,a parallel pair cable,or simply PCB traces.Typically,the characteristic dif-ferential impedance of the media is in the range of 100Ω.A termination resistor of 100Ωshould be selected to match the media,and is located as close to the receiver input pins as possible.The termination resistor converts the current sourced by the driver into a voltage that is detected by the re-ceiver.Other configurations are possible such as a multi-receiver configuration,but the effects of a mid-stream connector(s),cable stub(s),and other impedance disconti-nuities as well as ground shifting,noise margin limits,and to-tal termination loading must be taken into account.The DS90LV031A differential line driver is a balanced cur-rent source design.A current mode driver,generally speak-ing has a high output impedance and supplies a constant current for a range of loads (a voltage mode driver on the other hand supplies a constant voltage for a range of loads).Current is switched through the load in one direction to pro-duce a logic state and in the other direction to produce the other logic state.The output current is typically 3.5mA,a minimum of 2.5mA,and a maximum of 4.5mA.The current mode requires (as discussed above)that a resistive termi-nation be employed to terminate the signal and to complete the loop as shown in Figure 6.AC or unterminated configu-rations are not allowed.The 3.5mA loop current will develop a differential voltage of 350mV across the 100Ωtermination resistor which the receiver detects with a 250mV minimum differential noise margin neglecting resistive line losses (driven signal minus receiver threshold (350mV –100mV =250mV)).The signal is centered around +1.2V (Driver Off-set,V OS )with respect to ground as shown in Figure 7.Note that the steady-state voltage (V SS )peak-to-peak swing is twice the differential voltage (V OD )and is typically 700mV.The current mode driver provides substantial benefits over voltage mode drivers,such as an RS-422driver.Its quies-cent current remains relatively flat versus switching fre-quency.Whereas the RS-422voltage mode driver increases exponentially in most case between 20MHz–50MHz.This is due to the overlap current that flows between the rails of the device when the internal gates switch.Whereas the cur-rent mode driver switches a fixed current between its output without any substantial overlap current.This is similar to some ECL and PECL devices,but without the heavy static I CC requirements of the ECL/PECL designs.LVDS requires >80%less current than similar PECL devices.AC specifica-tions for the driver are a tenfold improvement over other ex-isting RS-422drivers.DS100095-7FIGURE 5.Driver TRI-STATE Delay WaveformDS100095-8FIGURE 6.Point-to-Point Application5Applications Information(Continued)The TRI-STATE function allows the driver outputs to be dis-abled,thus obtaining an even lower power state when thetransmission of data is not required.The footprint of the DS90LV031A is the same as the industrystandard26LS31Quad Differential(RS-422)Driver and is astep down replacement for the5V DS90C031Quad Driver. Power Decoupling Recommendations:Bypass capacitors must be used on power pins.High fre-quency ceramic(surface mount is recommended)0.1µF inparallel with0.01µF,in parallel with0.001µF at the powersupply pin as well as scattered capacitors over the printedcircuit board.Multiple vias should be used to connect the de-coupling capacitors to the power planes.A10µF(35V)orgreater solid tantalum capacitor should be connected at thepower entry point on the printed circuit board.PC Board considerations:Use at least4PCB layers(top to bottom);LVDS signals,ground,power,TTL signals.Isolate TTL signals from LVDS signals,otherwise the TTLmay couple onto the LVDS lines.It is best to put TTL andLVDS signals on different layers which are isolated by apower/ground plane(s).Keep drivers and receivers as close to the(LVDS port side)connectors as possible.Differential Traces:Use controlled impedance traces which match the differen-tial impedance of your transmission medium(ie.cable)andtermination resistor.Run the differential pair trace lines asclose together as possible as soon as they leave the IC(stubs should be<10mm long).This will help eliminate re-flections and ensure noise is coupled as common-mode.Infact,we have seen that differential signals which are1mmapart radiate far less noise than traces3mm apart sincemagnetic field cancellation is much better with the closertraces.Plus,noise induced on the differential lines is muchmore likely to appear as common-mode which is rejected bythe receiver.Match electrical lengths between traces to reduce skew.Skew between the signals of a pair means a phase differ-ence between signals which destroys the magnetic field can-cellation benefits of differential signals and EMI will result.(Note the velocity of propagation,v=c/Er where c(thespeed of light)=0.2997mm/ps or0.0118in/ps).Do not relysolely on the autoroute function for differential traces.Care-fully review dimensions to match differential impedance andprovide isolation for the differential lines.Minimize the num-ber or vias and other discontinuities on the line.Avoid90˚turns(these cause impedance discontinuities).Use arcs or45˚bevels.Within a pair of traces,the distance between the two tracesshould be minimized to maintain common-mode rejection ofthe receivers.On the printed circuit board,this distanceshould remain constant to avoid discontinuities in differentialimpedance.Minor violations at connection points are allow-able.Termination:Use a resistor which best matches the differential impedance or your transmission line.The resistor should be between 90Ωand130Ω.Remember that the current mode outputs need the termination resistor to generate the differential volt-age.LVDS will not work without resistor termination.Typi-cally,connect a single resistor across the pair at the receiver end.Surface mount1%to2%resistors are best.PCB stubs, component lead,and the distance from the termination to the receiver inputs should be minimized.The distance between the termination resistor and the receiver should be<10mm (12mm MAX).Probing LVDS Transmission Lines:Always use high impedance(>100kΩ),low capacitance (<2pF)scope probes with a wide bandwidth(1GHz)scope. Improper probing will give deceiving results.Cables and Connectors,General Comments:When choosing cable and connectors for LVDS it is impor-tant to remember:Use controlled impedance media.The cables and connec-tors you use should have a matched differential impedance of about100Ω.They should not introduce major impedance discontinuities.Balanced cables(e.g.twisted pair)are usually better than unbalanced cables(ribbon cable,simple coax.)for noise re-duction and signal quality.Balanced cables tend to generate less EMI due to field canceling effects and also tend to pick up electromagnetic radiation a common-mode(not differen-tial mode)noise which is rejected by the receiver.For cable distances<0.5M,most cables can be made to work effec-tively.For distances0.5M≤d≤10M,CAT3(category3) twisted pair cable works well,is readily available and rela-tively inexpensive.Fail-safe Feature:The LVDS receiver is a high gain,high speed device that amplifies a small differential signal(20mV)to CMOS logic levels.Due to the high gain and tight threshold of the re-ceiver,care should be taken to prevent noise from appearing as a valid signal.The receiver’s internal fail-safe circuitry is designed to source/sink a small amount of current,providing fail-safe protection(a stable known state of HIGH output voltage)for floating,terminated or shorted receiver inputs.1.Open Input Pins.The DS90LV032A is a quad receiverdevice,and if an application requires only1,2or3re-ceivers,the unused channel(s)inputs should be left OPEN.Do not tie unused receiver inputs to ground or any other voltages.The input is biased by internal high value pull up and pull down resistors to set the output toa HIGH state.This internal circuitry will guarantee aHIGH,stable output state for open inputs.2.Terminated Input.If the driver is disconnected(cableunplugged),or if the driver is in a TRI-STATE or power-off condition,the receiver output will again be in a HIGH state,even with the end of cable100Ωtermination resis-tor across the input pins.The unplugged cable can be-come a floating antenna which can pick up noise.If the cable picks up more than10mV of differential noise,the receiver may see the noise as a valid signal and switch.To insure that any noise is seen as common-mode and not differential,a balanced interconnect should be used.Twisted pair cable will offer better balance than flat rib-bon cable.6Applications Information(Continued)3.Shorted Inputs.If a fault condition occurs that shortsthe receiver inputs together,thus resulting in a 0V differ-ential input voltage,the receiver output will remain in a HIGH state.Shorted input fail-safe is not supported across the common-mode range of the device (GND to 2.4V).It is only supported with inputs shorted and no ex-ternal common-mode voltage applied.External lower value pull up and pull down resistors (for a stronger bias)may be used to boost fail-safe in the presence of higher noise levels.The pull up and pull down resistors should be in the 5k Ωto 15k Ωrange to minimize loading and waveform distortion to the driver.The common-mode bias point should be set to approximately 1.2V (less than 1.75V)to be compatible with the internal circuitry.Pin DescriptionsPin Description1,7,9,15D IN Driver input pin,TTL/CMOS compatible2,6,10,14D OUT+Non-inverting driver output pin,LVDS levels3,5,11,13D OUT−Inverting driver output pin,LVDS levels4EN Active high enable pin,OR-ed with EN *12EN *Active low enable pin,OR-ed with EN16V CC Power supply pin,+3.3V ±0.3V 8GNDGround pinOrdering InformationOperating Package Type/Order NumberTemperature Number −40˚C to +85˚C SOP/M16A DS90LV031ATM −40˚C to +85˚CTSSOP/MTC16DS90LV031ATMTC Operating Package Type/Order NumberTemperature Number-55˚C to +125˚CCerpack/W16A DS90LV031AW-QMLDS100095-9FIGURE 7.Driver Output LevelsDS100095-10FIGURE 8.Typical DS90LV031A,D OUT (single ended)vs R L ,T A =25˚C7Applications Information(Continued)DS100095-11FIGURE9.Typical DS90LV031A,D OUT vs R L,V CC=3.3V,T A=25˚C8Physical Dimensions inches(millimeters)unless otherwise noted16-Lead(0.150"Wide)Molded Small Outline Package,JEDECOrder Number DS90LV031ATMNS Package Number M16A9Physical Dimensions inches(millimeters)unless otherwise noted(Continued)16-Lead(0.100"Wide)Molded Thin Shrink Small Outline Package,JEDECOrder Number DS90LV031ATMTCNS Package Number MTC1610Physical Dimensions inches(millimeters)unless otherwise noted(Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or(b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system,or to affect itssafety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 16-Lead CerpackOrder Number DS90LV031AW-QMLNS Package Number W16ADS90LV031A3VLVDSQuadCMOSDifferentialLineDriver National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。

EB-9V Battery-powered Automatic Flashing Module Us

EB-9V Battery-powered Automatic Flashing Module Us

KUTAI ELECTRONICS INDUSTRY CO., LTD.TEL : +886-7-8121771FAX : +886-7-8121775Website : Headquarters : No.3, Ln. 201, Qianfu St., Qianzhen Dist., Kaohsiung City 806037, TaiwanEB-9VBattery-powered Automatic Flashing ModuleUser Manual※Lithium Battery Not IncludedSECTION 1 : FEATURES●No external battery or DC power supply required, excitation power provided by an internal battery.●Small size, light weight and easy installation saving labor.●Automatic excitation detection requires no manual operation or settings.●Very low static power consumption, Up to 3 years between battery replacement in standby mode.●Excitation function repeats 3 times and stops automatically when voltage is established.●Battery low voltage indicator reminds user to change battery.●Up to three repeat flashing attempts and will automatically stop when voltage builds up.●Excitation failure indicator. Resets automatically when voltage builds up or engine is stopped.●Battery reverse polarity protection.●Excitation field F+, F- Reverse Polarity Protection.●Built in manual forced excitation push button.SECTION 2 : SPECIFICATIONSensing Voltage Input Lithium Battery SpecificationsVoltage 1 300 Vac 1 phase 2 wire Model no. Ultralife U9VL-J-PFrequency 50/60 Hz Voltage 9 VdcCurrent Normal discharge 700 mA Max Excitation Output Pulse discharge 1050 mA MaxVoltage 9 Vdc Capacity 1200 mAh @ 23 ˚CCurrent 700 mA Max.Service Life 10 yearsFlashing Output Conditions EnvironmentWhen voltage less than 10 Vac at frequency greater Operating Temperature -20 to +60 ˚Cthan 40 Hz Storage Temperature -40 to +60 ˚CRelative Humidity Max. 95%Flashing Output Time Vibration 5 Gs @ 60 HzExcitation output 5 seconds. Up to 3 attempts at 5second intervals Dimensions87.0 (L) x 41.5 (W) x 61.7 (H) mmTime Between Battery Change 3.42 (L) x 1.63 (W) x 2.43 (H) inch3 years Max. Weight( Use only Ultralife U9VL-J-P lithium battery ) 85 g +/- 2%0.19 lb +/- 2%___________________________________________________________________________________________ 2EB-9V___________________________________________________________________________________________ EB-9V3SECTION 3 : Explanation of Terminals, Indicators, and AdjustmentsSECTION 4 : Dimensions / Connection DiagramB AExternal DimensionsConnection Diagram※ Appearance and specifications of products are subject to change for improvement without prior notice.Low DC :Battery Voltage Low (red) Blinks every 5 sec when battery voltage lowPower :Power indicator (green)Blinks every 5 sec in standby modeIlluminates continuously during excitation output F+、F-:Excitation OutputConnects to generator excitation field Sensing Voltage input :1 300 VacMounting Holes * 2Manual :Manual forced excitation push button Pressing this button forces excitation output※ Both Power and Low DC indicators will blink when excitation fails。

FQA6N90C中文资料

FQA6N90C中文资料

(Note 2)
Avalanche Current
(Note 1)
Repetitive Avalanche Energy
(Note 1)
Peak Diode Recovery dv/dt
(Note 3)
Power Dissipation (TC = 25°C) - Derate above 25°C
Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Case-to-Sink Thermal Resistance, Junction-to-Ambient
FQA6N90C 900 6.4 4.0 25.6 ± 30 650 6.4 19.8 4.0 198 1.59
IDSS
Zero Gate Voltage Drain Current
VDS = 900 V, VGS = 0 V VDS = 720 V, TC = 125°C
--
--
--
--
IGSSF IGSSR
Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V
Turn-On Delay Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge

NTMFS2D5N08X MOSFET 产品说明说明书

NTMFS2D5N08X MOSFET 产品说明说明书

DATA SHEET MOSFET – Power, SingleN-Channel, STD Gate,SO8FL80 V, 2.1 m W, 181 ANTMFS2D5N08XFeatures∙Low QRR, Soft Recovery Body Diode∙Low R DS(on) to Minimize Conduction Losses∙Low QG and Capacitance to Minimize Driver Losses∙These Devices are Pb−Free, Halogen Free/BFR Free and are RoHSCompliantApplications∙Synchronous Rectification (SR) in DC−DC and AC−DC∙Primary Switch in Isolated DC−DC Converter∙Motor DrivesMAXIMUM RATINGS (T J = 25︒C unless otherwise stated)Parameter Symbol Value UnitDrain−to−Source Voltage V DSS80VGate−to−Source Voltage V GS±20VContinuous Drain Current (Note 1)T C = 25︒C I D181A T C = 100︒C128Power Dissipation (Note 1)T C = 25︒C P D148W Pulsed Drain Current T C = 25︒C, t p = 100 m s I DM761APulsed Source Current (Body Diode)I SM761Operating Junction and Storage Temperature Range T J, T STG−55 to+175︒CSource Current (Body Diode)I S224A Single Pulse Avalanche Energy(I PK = 55 A) (Note 3)E AS151mJLead Temperature for Soldering Purposes(1/8" from case for 10 s)T L260︒CStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.The entire application environment impacts the thermal resistance values shown.They are not constants and are only valid for the particular conditions noted.2.Actual continuous current will be limited by thermal and electromechanicalapplication board design3.E AS of 151 mJ is based on started T J = 25︒C, I AS = 55 A, V DD = 64 V, V GS =10V, 100% avalanche testedMARKINGDIAGRAM V(BR)DSS R DS(ON) MAX I D MAX80 V 2.1 m W @ 10 V181 AN−CHANNEL MOSFETG (4)DFN5 (SO−8FL)CASE 488AA2D5N08= Specific Device CodeA= Assembly LocationY= YearW= Work WeekZZ= Lot Traceabililty†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.D Device Package Shipping†ORDERING INFORMATIONNTMFS2D5N08XT1G DFN5(Pb−Free)1500 / Tape &ReelTHERMAL CHARACTERISTICSParameter Symbol Value Unit Thermal Resistance, Junction−to−Case R q JC 1.01︒C/W Thermal Resistance, Junction−to−Ambient (Notes 4, 5)R q JA394.Surface mounted on FR4 board using a 1 in2, 1 oz. Cu pad.5.R q JA is determined by the user’s board design.ELECTRICAL CHARACTERISTICS (T J = 25︒C unless otherwise specified)Parameter Symbol Test Condition Min Typ Max Unit OFF CHARACTERISTICSDrain−to−Source Breakdown Voltage V(BR)DSS V GS = 0 V, I D = 1 mA80VDrain−to−Source Breakdown Voltage (transient)D V(BR)DSS/D T JI D = 1 mA, Referenced to 25C31.6mV/︒CZero Gate Voltage Drain Current I DSS V DS = 80 V, T J = 25︒C1m AV DS = 80 V, T J = 125︒C250Gate−to−Source Leakage Current I GSS V DS = 0 V, V GS = 20 V100nA ON CHARACTERISTICSDrain−to−Source On Resistance R DS(on)V GS = 10 V, I D = 43 A 1.9 2.1m WV GS = 6 V I D = 21 A 2.9 3.7Gate Threshold Voltage V GS(TH)V GS = V DS, I D = 213 m A 2.4 3.6V Negative Threshold Temperature Coefficient D V GS(TH)/D T JV GS = V DS, I D = 213 m A,−7.5mV/︒C Forward Transconductance g FS V DS = 5 V, I D = 43 A135S CHARGES AND CAPACITANCESInput Capacitance C ISSV DS = 40 V, V GS = 0 V, f = 1 MHz 3800pFOutput Capacitance C OSS1100Reverse Transfer Capacitance C RSS17Output Charge Q OSS79nC Total Gate Charge Q G(TOT)V DD = 40 V, I D = 43 A, V GS = 6 V33V DD = 40 V, I D = 43 A, V GS = 10 V 53Threshold Gate Charge Q G(TH)12Gate−to−Source Charge Q GS18Gate−to−Drain Charge Q GD8Gate Plateau Voltage V GP 4.7V Gate Resistance R G f = 1 MHz0.8W SWITCHING CHARACTERISTICSTurn−On Delay Time t d(ON)Resistive Load, V GS = 0/10 V,V DD = 40 V, I D = 43 A, R G = 2.5 W 26nsRise Time t r9Turn−Off Delay Time t d(OFF)38Fall Time t f8DRAIN−SOURCE DIODE CHARACTERISTICSForward Diode Voltage V SD I S = 43 A, V GS = 0 V, T J = 25︒C0.82 1.2VI S = 43 A, V GS = 0 V, T J = 125︒C0.66Reverse Recovery Time t RRV GS = 0 V, I S = 43 A,dIS/dt = 1000 A/m s, V DD = 40 V 25nsCharge Time t a14Discharge Time t b11Reverse Recovery Charge Q RR183nC Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.Figure 1. On −Region CharacteristicsFigure 2. Transfer CharacteristicsFigure 3. On −Resistance vs. Gate VoltageFigure 4. On −Resistance vs. Drain CurrentFigure 5. Normalized ON Resistance vs.Junction Temperature Figure 6. Drain Leakage Current vs. DrainVoltage100200300400500I D , D r a i n C u r r e n t (A )V DS , Drain to Source Voltage (V)050100150200250300350400450500I D , D r a i n C u r r e n t (A )V GS , Gate to Source Voltage (V)02468101214161820R D S (O N ), D r a i n t o S o u r c e R e s i s t a n c e (m W )V GS , Gate to Source Voltage (V)00.511.522.533.54R D S (O N ), D r a i n t o S o u r c e R e s i s t a n c e (m W )I D , Drain Current (A)0.40.60.811.21.41.61.822.2R D S (O N ), D r a i n −S o u r c e O n R e s i s t a n c e (N o r m a l i z e d )T J , Junction Temperature (°C)1101001000I D S S , D r a i n L e a k a g e C u r r e n t (n A )V DS , Drain to Source Voltage (V)Figure 7. Capacitance CharacteristicsFigure 8. Gate Charge CharacteristicsFigure 9. Resistive Switching Time Variationvs. Gate ResistanceFigure 10. Diode Forward CharacteristicsFigure 11. Safe Operating Area (SOA)Figure 12. Avalanche Current vs Pulse Time(UIS)110100100010000C , C a p a c i t a n c e (p F )V DS , Drain to Source Voltage (V)246810V G S , G a t e t o S o u r c e V o l t a g e (V )Q G , Gate Charge (nC)1e −1e −1e −1e −t , R e s i s t i v e S w i t c h i n g T i m e (s e c )R G , Gate Resistance (W )0.00010.0010.010.1110100100010000I S ,S o u r c e C u rr e n t (A )V SD , Body Diode Forward Voltage (V)10100I D , D r a i n C u r r e n t (A )V DS , Drain to Source Voltage (V)110100I A S ,A v a l a n c h e C u r r e n t (A )t AV ,Time in Avalanche (s)02Figure 13. Gate Threshold Voltage vs.Junction TemperatureFigure 14. Maximum Current vs. CaseTemperatureFigure 15. Transient Thermal Response0.60.70.80.911.11.2V T H ,G a t e T h r e s h o l d V o l t a g e (N o r m a l i z e d )T J , Junction Temperature (°C)020406080100120140160180200255075100125150175I D , D r a i n C u r r e n t (A )T C , Case Temperature (°C)0.0010.010.1110Z q J C , E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c e (°C /W )t, Rectangular Pulse Duration (sec)M 3.00 3.40q0 −−−_ 3.8012 _DFN5 5x6, 1.27P(SO −8FL)CASE 488AA ISSUE NDATE 25 JUN 2018SCALE 2:1NOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.XXXXXX = Specific Device Code A = Assembly Location Y = Year W = Work Week ZZ = Lot Traceability2 XDIM MIN NOM MILLIMETERS A 0.90 1.00A10.00−−−b 0.330.41c 0.230.28D 5.15D1 4.70 4.90D2 3.80 4.00E 6.15E1 5.70 5.90E2 3.45 3.65e 1.27 BSC G 0.510.575K 1.20 1.35L 0.510.575L10.125 REF GENERICMARKING DIAGRAM*1MAX 1.100.050.510.335.104.206.103.850.711.500.71*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.5.00 5.306.00 6.30−Free indicator, “G” or microdot “ G ”,MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSADDITIONAL INFORMATIONTECHNICAL PUBLICATIONS:Technical Library:/design/resources/technical−documentation onsemi Website: ONLINE SUPPORT: /supportFor additional information, please contact your local Sales Representative at /support/sales。

RECOM电源DC DC转换器产品参数选择指南说明书

RECOM电源DC DC转换器产品参数选择指南说明书

FeaturesUnregulatedREDescriptionThe RE DC/DC converters are typically used in general purpose power isolation and voltageDC/DC Convert er1 Watt UL60950-1 certifiedCAN/CSA-C22.2 No 60950-1 certified IEC/EN60950-1 certified EN55032 compliant CB reportE358085Model NumberingNotes:Note3: standard part is without Continuous Short Circuit Protection add suffix …/P“ for Continuous Short Circuit Protection Note4: add suffix …/H“ for 2kVDC/1s Isolation or add suffix …/HP“ for 2kVDC/1s Isolation and Continuous Short Circuit ProtectionOrdering Examples:RE-123.3S/P: 12V Input Voltage, 3.3V Output Voltage, Single Output with continuous short circuit protectionRE-0509S/HP: 5V Input Voltage, 9V Output Voltage, Single Output with 2kVDC/1s isolation and continuous short circuit protectionnom. Input Voltage Output VoltageRE- __ __S/_Protection (3)Isolation Option (4)S ingleNote1: Efficiency is tested at nominal input and full load at +25°C ambientNote2: Max Cap Load is tested at nominal input and full resistive load and is defined as the capacitive load that will allow start up in under 1s without damage to the converterSpecifications (measured @ Ta= 25°C, nom. Vin, full load otherwise stated)REGULATIONSParameter Condition Value Output Accuracy±5.0% max. Line Regulation low line to high line±1.2% of 1.0% Vin typ.continued on next pageSpecifications (measured @ Ta= 25°C, nom. Vin, full load otherwise stated)PROTECTIONSParameter Type ValueShort Circuit Protection (SCP)without suffixwith suffix “/P”1 secondcontinuousIsolation Voltage (6)I/P to O/P without suffixtested for 1 secondrated for 1 minute1kVDC500VAC/60Hz with suffix“/H”tested for 1 secondrated for 1 minute2kVDC1kVAC/60HzIsolation Resistance10GΩ min. Isolation Capacitance20pF min. / 75pF max.Insulation Gradebasic (IEC/EN60950-1)functional (UL60950-1) Notes:Note6: For repeat Hi-Pot testing, reduce the time and/or the test voltageNote7: Refer to local safety regulations if input over-current protection is also required. Recommended fuse: slow blow typeSpecifications (measured @ Ta= 25°C, nom. Vin, full load otherwise stated)ENVIRONMENTALParameterConditionValueOperating Temperature Range full load @ free air convection (see graph)-40°C to +85°CMaximum Case Temperature +105°C Temperature Coefficient ±0.03%/K typ.Operating Altitude 2000m Operating Humidity non-condensing95% RH max.Pollution Degree PD2MTBFaccording to MIL-HDBK-217F, G.B.+25°C +85°C16400 x 103 hours 8600 x 103 hours-40-20020407060-30-10103050809085110100100806040907050302010O u t p u t L o a d [%]Ambient Temperature [°C]Derating Graph(@ free air convection)SAFETY AND CERTIFICATIONSCertificate Type (Safety)Report / File NumberStandard Information Technology Equipment, General Requirements for Safety SPCLVD1602031IEC60950-1:2005, 2nd Edition + A2:2013EN60950-1:2006 + A2:2013Information Technology Equipment, General Requirements for Safety E358085-A4-UL UL60950-1, 2nd Edition:2007CAN/CSA C22.2 No. 60950-1-03, 2nd Edition:2007Information Technology Equipment, General Requirements for Safety (CB)E322406-A4-CB-1IEC60950-1:2005, 2nd EditionEAC RU-AT.49.09571TP TC 004/2011RoHS 2+RoHS-2011/65/EU + AM-2015/863EMC ComplianceConditionStandard / CriterionElectromagnetic compatibility of multimedia equipment -Emission requirementswith external filter(refer to “EMC Filter Suggestion” below)EN55032, Class A EN55032, Class Bcontinued on next pageSpecifications (measured @ Ta= 25°C, nom. Vin, full load otherwise stated)Pinning InformationSpecifications (measured @ Ta= 25°C, nom. Vin, full load otherwise stated)PACKAGING INFORMATIONParameter Type Value Packaging Dimension (LxWxH)tube 520.0 x 16.0 x 9.0mm Packaging Quantity tube 25pcs Storage Temperature Range-55°C to +125°C Storage Humidity95% RH max.The product information and specifications may be subject to changes even without prior written notice.The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM’s explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorizeduse of RECOM products in such safety-critical applications.。

NIS-09C中文资料 离子型烟雾传感器

NIS-09C中文资料   离子型烟雾传感器
地址:深圳市福田区福华路福庆街鸿图大厦 1602 室 电话:0755-83607652 83376489 83376549 83370250 83370251 82500323 传真:0755-83376182 (0)13902971329 MSN: SUNS8888@ 邮编:518033 E-mail:szss20@ QQ: 195847376 深圳赛格展销部:深圳华强北路赛格电子市场 2583 号 电话:0755-83665529 25059422 技术支持: 0755-83394033 13501568376 欢迎索取免费详细资料、设计指南和光盘 ;产品凡多,未能尽录,欢迎来电查询。 北京分公司:北京海淀区知春路 132 号中发电子大厦 3097 号
NIS-09C 外形图
SUNSTAR自动化 / TEL: 0755-83376489 FAX:0755-83376182 E-MAIL:szss20@
SUNSTAR传感与控制 / TEL:0755-83376549 FAX:0755-83376182 E-MAIL:szss20@
如热敏电阻压敏电阻温度传感器温度变送器湿度传感器湿度变送器气体传感器气体变送器压力传感压力变送称重传感器物液位传感器物液位变送器流量传感器流量变送器电流压传感器溶氧传感器霍尔传感器图像传感器超声波传感器位移传感器速度传感器加速度传感器扭距传感器红外传感器紫外传感器火焰传感器激光传感器振动传感器轴角传感器光电传感器接近传感器干簧管传感器继电器传感器微型电泵磁敏阻传感器压力开关接近开关光电开关色标传感器光纤传感器齿轮测速传感器时间继电器计数器计米器温控仪固态继电器调压模块电磁铁电压表电流表等特殊传感器同时承接传感器应用电路产品设计和自动化工程项目
更多产品请看本公司产品专用销售网站: 商斯达中国传感器科技信息网:/ 商斯达工控安防网:/ 商斯达电子 元器件网:/ 商斯达微波光电产品网:/ 商斯达消费电子产品网:/// 商斯达军工产品网:/ 商斯达实业科技产品网:///传感器销售热线:
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.Pickup and release voltage are for test purposes only and are not to be used as design criteria.
Operation condition
Insulation Resistance Dielectric Strength Between contacts Between contact and coil Shock resistance Vibration resistance Terminals strength Solderability Ambient Temperature Relative Humidity Mass 1000M min (at 500VDC) Item 7 of IEC255-5 Item 6 of IEC255-5 Item 6 of IEC255-5 IEC68-2-27 T Ea est IEC68-2-6 Test Fc IEC68-2-21 Test Ua1&Ua2 IEC68-2-20 Test Ta method 1 IEC68-2-3 Test Ca 50Hz 1500V 50Hz 2500V 200m/s2 11ms 10~55Hz double amplitude 1.5mm 10N 235 2 3 0.5s -55~100 -55~125 85% (at 40 ) 31g Low profile type 35g
Dash numbers
Coil resistance 10%
Coil power W
Operate Time ms
Release Time ms
10 28 40 90 160 250 360 640 2560 13445
0.9
15
10
003-600 005-600 006-600 009-600 012-600 015-600 018-600 024-600 048-600 110-600
Qualification inspection:
Perform the qualification test as specified in the table of IEC255-19-1 and minimum sample size 24.
121
元器件交易网
NHG RELAYS
元器件交易网
Présente / Presents:
元器件交易网
NHG RELAYS
Safety approvals
Safety approval Load UL&CUR NO:40A/240VAC 30A/277VAC NC:30A/240VAC 20A/277VAC 2 HP 250VAC TV-5 1 1 HP 250VAC 2 HP:A 1HP/16AFLA/120VAC 2HP/12AFLA/240VAC B 30LRA/10AFLA/120VAC 30LRA/10AFLA/240VAC Insulation B-class F-class T V NO:40A/240VAC 14VDC NC:30A/240VAC 14VDC Insulation B-class F-class CQC NO:30A/240VAC NC:20A/240VAC
12
Time(m s ec)
10 8 6 4
119
0.701
元器件交易网
NHG RELAYS
Coil Parameter
DC Coil Parameter Coil voltage V Rated 003-900 005-900 006-900 009-900 012-900 015-900 018-900 024-900 048-900 110-900 3 5 6 9 12 15 18 24 48 110 Max. 3.9 6.5 7.8 11.7 15.6 19.5 23.4 31.2 62.4 143 Pick up voltage VDC(max) (75% of rated voltage) 2.25 3.75 4.50 6.75 9.00 10.25 13.50 18.00 36.00 82.50 Release voltage VDC(min) (10% of rated voltage) 0.3 0.5 0.6 0.9 1.2 1.5 1.8 2.4 4.8 11.0
2.Pickup and release voltage are for test purposes only and are not to be used as design criteria.
Operation condition
Insulation Resistance Dielectric Strength Between contacts Between contact and coil Shock resistance Vibration resistance Terminals strength Solderability Ambient Temperature Relative Humidity Mass 1000M min (at 500VDC) Item 7 of IEC255-5 Item 6 of IEC255-5 Item 6 of IEC255-5 IEC68-2-27 T Ea est IEC68-2-6 Test Fc IEC68-2-21 Test Ua1&Ua2 IEC68-2-20 Test Ta method 1 IEC68-2-3 Test Ca 50Hz 1500V 50Hz 2500V 200m/s2 11ms 10~55Hz double amplitude 1.5mm 10N 235 2 3 0.5s -55~100 -55~125 85% (at 40 ) 31g Low profile type 35g
T V NO: 40A/240VAC 14VDC NC: 30A/240VAC 14VDC Insulation B-class F-class
CQC NO: 30A/240VAC NC: 20A/240VAC
Insulation
B-class F-class
Reference Data
Wiring diagram(Bottom view) NOTES 1).Dimensions are in millimeters. 2).Inch equivalents are given for general information only.
Mounting (Bottom view)
Reference Data
27.6max. 1.087max.
0.882
0.787
Open type
0.724 1.279max.
Dimensions
0.150 0.150 0.606 0.303 0.303 0.551 0.350 0.606 0.303 0.303
0.551
0.701
0.043
0.043
0.1
0.606
0.1
3 5 6 9 12 15 18 24 48 110
3.9 6.5 7.8 11.7 15.6 19.5 23.4 31.2 62.4 143
15 42 60 135 240 375 540 960 3840 20167
2.25 3.75 4.50 6.75 9.00 10.25 13.50 18.00 36.00 82.50
DC Coil Parameter Coil voltage V Rated 003-900 005-900 006-900 009-900 012-900 015-900 018-900 024-900 048-900 110-900 3 5 6 9 12 15 18 24 48 110 Max. 3.9 6.5 7.8 11.7 15.6 19.5 23.4 31.2 62.4 143 Pick up voltage VDC(max) (75% of rated voltage) 2.25 3.75 4.50 6.75 9.00 10.25 13.50 18.00 36.00 82.50 Release voltage VDC(min) (10% of rated voltage) 0.3 0.5 0.6 0.9 1.2 1.5 1.8 2.4 4.8 11.0
3 5 6 9 12 15 18 24 48 110
3.9 6.5 7.8 11.7 15.6 19.5 23.4 31.2 62.4 143
15 42 60 135 240 375 540 960 3840 20167
2.25 3.75 4.50 6.75 9.00 10.25 13.50 18.00 36.00 82.50
Qualification inspection:
Perform the qualification test as specified in the table of IEC255-19-1 and minimum sample size 24.
元器件交易网
Coil Parameter
Dimensions
0.130 0.020 (0.146) 0.787max.
mm /inch
0.020
20max.
24.2max. 0.953max.
3.3 0.130
17max. 0.669max.
0.031 0.059 0.027 0.027 0.047 0.047
0.492
2.4 0.094 0.209
Safety approvals
Safety approval Load UL&CUR NO:40A/240VAC 30A/277VAC NC: 30A/240VAC 20A/277VAC 2HP 250VAC 1 1 HP 250VAC TV-5 2
相关文档
最新文档