2018年中考数学真题分类汇编(第一期)专题15频数与频率试题(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数与频率

一、填空题

1. (2018·湖南省常德·3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35 .

视力x 频数

4.0≤x<4.3 20

4.3≤x<4.6 40

4.6≤x<4.9 70

4.9≤x≤

5.2 60

5.2≤x<5.5 10

【分析】直接利用频数÷总数=频率进而得出答案.

【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,

则视力在4.9≤x<5.5这个范围的频率为:=0.35.

故答案为:0.35.

【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.

2. (2018•北京•2分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期

间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时

公交车用时的频数线路3035

t

≤≤3540

t<≤4045

t<≤4550

t<≤合计

A 59 151 166 124 500

B 50 50 122 278 500

C 45 265 167 23 500

地“用时不超过45分钟”的可能性最大.

【答案】C

【解析】样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C.

【考点】用频率估计概率

3. (2018•湖南省永州市•4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其

它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100 .

【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.

【解答】解:由题意可得,=0.03,

解得,n=100.

故估计n大约是100.

故答案为:100.

【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.

二.解答题

1.(2018•湖南省永州市•8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.

(1)参观的学生总人数为40 人;

(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15% ;(3)补全条形统计图;

(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.

【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;

(3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图;

(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.

【解答】解:(1)参观的学生总人数为12÷30%=40(人);

(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;

(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:

(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:

∵共有12种等可能的结果,甲同学被选中的有6种情况,

∴甲同学被选中的概率是:=.

故答案为:40;15%;.

【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

2. (2018·新疆生产建设兵团·10分)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.

请根据统计图解答下列问题:

(1)本次调查中,杨老师一共调查了20 名学生,其中C类女生有 2 名,D类男生有1 名;

(2)补全上面的条形统计图和扇形统计图;

(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.

【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;

(2)根据(1)中所求结果可补全图形;

(3)根据概率公式计算可得.

【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,

C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;

(2)补全图形如下:

(3)因为A类的3人中,女生有2人,

所以所选的同学恰好是一位女同学的概率为.

【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.

3. (2018·四川宜宾·8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.

请根据以上信息,完成下列问题:

(1)该班共有学生人;

(2)请将条形统计图补充完整;

(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.

【分析】(1)根据化学学科人数及其所占百分比可得总人数;

(2)根据各学科人数之和等于总人数求得历史的人数即可;

(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.

【解答】解:(1)该班学生总数为10÷20%=50人;

(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,

补全图形如下:

相关文档
最新文档