北京市西城区(普通校)2014-2015学年高一上学期期末考试数学试题 Word版含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2014 — 2015学年度第一学期期末试卷

高一数学 2015.1

试卷满分:150分 考试时间:120分钟

A 卷 [必修 模块4] 本卷满分:100分

一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一

项是符合要求的.

1.已知(0,2π)α∈,且sin 0<α,cos 0>α,则角α的取值范围是( ) (A )π(0,)2

(B )π(,π)2

(C )3π(π,

)2

(D )3π

(

,2π)2

2.已知向量(2,8)=a ,(4,2)=-b .若2=-c a b ,则向量=c ( ) (A )(0,18)

(B )(8,14)

(C )(12,12)

(D )(4,20)-

3.已知角α的终边经过点(3,4)P -,那么sin =α( ) (A )

35

(B )45

-

(C )

34

(D )34

-

4.在△ABC 中,D 是BC 的中点,则AD =( )

(A )

1

()2AB AC + (B )

1

()2AB AC - (C )1

()2

AB BC +

(D )1

()2

AB BC -

5.函数2

(sin cos )y x x =-的最小正周期为( ) (A )2π

(B )

3π2

(C )π

(D )

π2

6.如果函数cos()y x =+ϕ的一个零点是3

π

,那么ϕ可以是( ) (A )6

π (B )6

π-

(C )3

π

(D )3

π-

7.如图,在矩形ABCD 中,2AB =,BC =, E 是CD 的中点,那么AE DC ⋅=( )

(A )4

(B )2

(C (D )1

8.当[0,π]x ∈时,函数()cos f x x x =的值域是( )

(A )[2,1]-

(B )[1,2]-

(C )[1,1]-

(D )[-

9.为得到函数π

cos()6

y x =+

的图象,只需将函数sin y x =的图象( ) (A )向左平移π3个单位 (B )向右平移π

3个单位

(C )向左平移2π3个单位 (D )向右平移2π

3

个单位

10.已知a ,b 为单位向量,且m ⋅=a b ,则||t +a b ()t ∈R 的最小值为( )

(A (B )1

(C )||m

(D

二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.若向量(1,2)=a 与向量(,1)=-λb 共线,则实数=λ_____. 12.已知α是第二象限的角,且5

sin 13

α=,则cos =α_____. 13.若(,)22

ππ

∈-

θ,且tan 1>θ,则θ的取值范围是_____. 14.已知向量(1,3)=a ,(2,1)=-b ,(1,1)=c .若(,)=∈R c a +b λμλμ,则=λ

μ

_____. 15.函数2()sin sin cos f x x x x =+⋅的最大值是_____.

16.关于函数()sin(2)()6

f x x x π=-∈R ,给出下列三个结论:

① 对于任意的x ∈R ,都有2()cos(2)3

f x x π=-

; ② 对于任意的x ∈R ,都有()()22f x f x ππ

+=-;

③ 对于任意的x ∈R ,都有()()33

f x f x ππ

-=+.

其中,全部正确结论的序号是_____.

三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)

已知tan 2=-α,其中(,)2

π

∈πα. (Ⅰ)求π

tan()4

-

α的值; (Ⅱ)求sin 2α的值.

18.(本小题满分14分)

已知向量(cos ,sin )=ααa ,1(2=-b ,其中α是锐角. (Ⅰ)当30︒

=α时,求||+a b ; (Ⅱ)证明:向量+a b 与-a b 垂直; (Ⅲ)若向量a 与b 夹角为60︒

,求角α.

19.(本小题满分10分)

已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,

{|(())0}B x f f x ==,且A B =.

(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.

B 卷 [学期综合] 本卷满分:50分

一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.已知集合{,}A a b =,则满足{,,}A

B a b c =的不同集合B 的个数是_____.

2.若幂函数y x =α的图象过点(4,2),则=α_____.

3.函数2lg ,0,

()4,0,

x x f x x x >⎧=⎨-<⎩的零点是_____.

4.设()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是减函数.若()(2)f m f >,则 实数m 的取值范围是_____.

5.已知函数()f x 的定义域为D .若对于任意的1x D ∈,存在唯一的2x D ∈,使

M =成立,则称函数()f x 在D 上的几何平均数为M .已知函数

()31([0,1])g x x x =+∈,则()g x 在区间[0,1]上的几何平均数为_____.

二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)

已知函数()(2)()f x x x a =-+,其中a ∈R . (Ⅰ)若()f x 的图象关于直线1x =对称,求a 的值; (Ⅱ)求()f x 在区间[0,1]上的最小值. 7.(本小题满分10分)

已知函数()23x

x

f x a b =⋅+⋅,其中,a b 为常数.

相关文档
最新文档