最新精校word版答案全---济宁市2019届高三3月份一模考试试题(数学理)

合集下载

山东省济宁市2019届高三第一次模拟考试数学(理)试卷 含解析

山东省济宁市2019届高三第一次模拟考试数学(理)试卷 含解析

2018—2019学年度济宁市高考模拟考试数学(理工类)试题2019.3第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合则( )A. [1,3]B. (1,3]C. [2,3]D. [-l,+∞)【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={x|y=ln(x﹣1)}={x|x>1},∴A∩B={x|1<x≤3}=(1,3].故选:B.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.若复数,其中i为虚数单位,则下列结论正确的是( )A. z的虚部为B.C. 为纯虚数D. z的共轭复数为【答案】AC【解析】【分析】利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案【详解】∵z,∴z的虚部为﹣1,|z|,z2=(1﹣i)2=﹣2i为纯虚数,z的共轭复数为1+i.,故选:AC.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.执行如图所示的程序框图,若输入a的值为,则输出的S的值是( )A. B.C. D.【答案】C【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得a=﹣1,S=0,k=1满足条件k<5,执行循环体,S=﹣1,a=1,k=2满足条件k<5,执行循环体,S,a=3,k=3满足条件k<5,执行循环体,S,a=5,k=4满足条件k<5,执行循环体,S,a=7,k=5此时,不满足条件k<5,退出循环,输出S的值为.故选:C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.若变量满足则的最大值是( )A. B. 1 C. 2 D.【答案】D【解析】由约束条件作出可行域,化目标函数为直线方程的一般式,通过圆心到直线的距离,求解即可.【详解】由变量x,y满足作出可行域如图,化z=2x+y为2x+y﹣z=0,由图可知,当直线y=﹣2x+z与圆相切于A时,直线在y轴上的截距最大,z最大,此时.z.故选:D.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.函数是定义在R上的奇函数,且若则( )A. B. 9 C. D. 0【答案】A【解析】【分析】由函数的奇偶性可知f(﹣x)=﹣f(x),将f(1+x)=f(1﹣x)变形可得f(﹣x)=f(2+x),综合分析可得f(x+4)=f(x),即函数f(x)是周期为4的周期函数,据此可得f(2019)=﹣f(1),即可得答案.【详解】根据题意,函数f(x)是定义在R上的奇函数,则f(﹣x)=﹣f(x),又由f(1+x)=f(1﹣x),则f(﹣x)=f(2+x),则有f(x+2)=﹣f(x),变形可得f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(2019)=f(﹣1+505×4)=f(﹣1)=﹣f(1)=﹣9;故选:A.【点睛】本题考查抽象函数的应用,涉及函数的周期性,奇偶性,关键是分析函数f(x)的周期性,是中档题.6.已知平面,直线,满足,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【解析】【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【详解】当m∥n时,若,则充分性不成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的既不充分也不必要条件.故选:D.【点睛】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.若则( )A. B. C. D.【答案】A【解析】【分析】直接利用三角函数的诱导公式和同角三角函数关系式的应用求出结果.【详解】sinx=3sin(x-)=﹣3cosx,解得:tanx=﹣3,所以:cosxcos(x)=﹣sinxcosx==,故选:A.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,诱导公式,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.8.如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】结合图形及统计的基础知识逐一判定即可.【详解】7天假期的楼房认购量为:91、100、105、107、112、223、276;成交量为:8、13、16、26、32、38、166.对于①,日成交量的中位数是26,故错;对于②,日平均成交量为:,有1天日成交量超过日平均成交量,故错;对于③,根据图形可得认购量与日期不是正相关,故错;对于④,10月7日认购量的增幅大于10月7日成交量的增幅,正确.故选:B【点睛】本题考查了统计的基础知识,解题关键是弄清图形所表达的含义,属于基础题,9.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为( )A.B.C.D.【答案】A【解析】【分析】先将几何体的三视图转换为几何体进一步求出几何体的外接球半径,最后求出体积.【详解】根据几何体的三视图转换为几何体为:下底面为等腰三角形腰长为,高为2的直三棱柱,故外接球的半径R,满足,解得:R=,所以:V=.故选:A.【点睛】本题考查的知识要点:三视图和几何体的转换,几何体的体积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.已知函数的零点构成一个公差为的等差数列,把函数的图象沿轴向右平移个单位,得到函数的图象.关于函数,下列说法正确的是( )A. 在上是增函数B. 其图象关于直线对称C. 函数是偶函数D. 在区间上的值域为【答案】D【解析】【分析】化简f(x)=2sin(ωx),由三角函数图象的平移得:g(x)=2sin2x,由三角函数图象的性质得y=g(x)的单调性,对称性,再由x时,求得函数g(x)值域得解.【详解】f(x)=sinωx cosωx=2sin(ωx),由函数f(x)的零点构成一个公差为的等差数列,则周期T=π,即ω=2,即f(x)=2sin(2x),把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)的图象,则g(x)=2sin[2(x)]=2sin2x,当≤2x≤,即≤x≤, y=g(x)是减函数,故y=g(x)在[,]为减函数,当2x=即x(k∈Z),y=g(x)其图象关于直线x(k∈Z)对称,且为奇函数,故选项A,B,C错误,当x时,2x∈[,],函数g(x)的值域为[,2],故选项D正确,故选:D.【点睛】本题考查了三角函数图象的平移、三角函数图象的性质及三角函数的值域,熟记三角函数基本性质,熟练计算是关键,属中档题11.已知双曲线的左、右焦点分别为,实轴长为4,渐近线方程为,点N在圆上,则的最小值为( )A. B. 5 C. 6 D. 7【答案】B【解析】【分析】求得双曲线的a,b,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接CF2,交双曲线于M,圆于N,计算可得所求最小值.【详解】由题意可得2a=4,即a=2,渐近线方程为y=±x,即有,即b=1,可得双曲线方程为y2=1,焦点为F1(,0),F2,(,0),由双曲线的定义可得|MF1|=2a+|MF2|=4+|MF2|,由圆x2+y2﹣4y=0可得圆心C(0,2),半径r=2,|MN|+|MF1|=4+|MN|+|MF2|,连接CF2,交双曲线于M,圆于N,可得|MN|+|MF2|取得最小值,且为|CF2|3,则则|MN|+|MF1|的最小值为4+3﹣2=5.故选:B.【点睛】本题考查双曲线的定义、方程和性质,考查圆的方程的运用,以及三点共线取得最值,考查数形结合思想和运算能力,属于中档题.12.已知当时,关于的方程有唯一实数解,则所在的区间是( )A. (3,4)B. (4,5)C. (5,6)D. (6.7)【答案】C【解析】【分析】把方程xlnx+(3﹣a)x+a=0有唯一实数解转化为有唯一解,令f(x)(x>1),利用导数研究其最小值所在区间得答案.【详解】由xlnx+(3﹣a)x+a=0,得,令f(x)(x>1),则f′(x).令g(x)=x﹣lnx﹣4,则g′(x)=10,∴g(x)在(1,+∞)上为增函数,∵g(5)=1﹣ln5<0,g(6)=2﹣ln6>0,∴存在唯一x0∈(5,6),使得g(x0)=0,∴当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.则f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C【点睛】本题考查利用导数研究函数的单调性,考查函数零点的判定,考查数学转化思想方法,熟练运用零点存在定理得x0﹣lnx0﹣4=0并反代入f(x0)是本题关键,属中档题.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为______.【答案】32【解析】【分析】根据条件求出样本间隔,即可得到结论.【详解】样本间隔为23﹣14=9,则第一个编号为5,第四个编号为14+2×9=14+18=32,故答案为:32【点睛】本题主要考查系统抽样的应用,熟记系统抽样的原则与方法,求出样本间隔是解决本题的关键.比较基础.14.的展开式中,的系数为______.(用数字作答).【答案】80【解析】【分析】把(x﹣2y)5按照二项式定理展开,可得(2x+y)(x﹣2y)5的展开式中,x2y4的系数.【详解】∵(2x+y)(x﹣2y)5=(2x+y)(x5﹣10x4y+40x3y2﹣80x2y3+80xy4﹣32y5),∴x2y4的系数为2×80﹣80=80,故答案为:80.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,项的系数的性质,属于基础题.15.如图所示,在正方形OABC内随机取一点,则此点取自黑色部分的概率为______.【答案】【解析】【分析】结合定积分计算阴影部分平面区域的面积,再根据几何概型概率计算公式易求解.【详解】正方形的面积为e2,由lnxdx=(xlnx﹣x)1,由函数图像的对称性知黑色区域面积为2lnxdx=2即S阴影=2,故此点取自黑色部分的概率为,故答案为:【点睛】本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.16.在△ABC中,记若.则sinA的最大值为______.【答案】【解析】【分析】把给定的,用基础向量,来表示,借助余弦定理和基本不等式求出cosA的最小值,从而得sinA的最大值.【详解】∵在△ABC中,记334,,⊥,∴5•40cosA,当且仅当时取到等号.又因为sin2A+cos2A=1,所以sinA的最大值为.故答案为【点睛】本题考查向量向量基本定理,余弦定理,基本不等式的应用,熟练运用向量向量基本定理及余弦定理,合理构造基本不等式是关键,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.等差数列的公差为正数,,其前项和为;数列为等比数列,,且.(I)求数列与的通项公式;(II)设,求数列的前项和.【答案】(Ⅰ) ,;(Ⅱ) .【解析】【分析】(Ⅰ)等差数列{a n}的公差d为正数,数列{b n}为等比数列,设公比为q,运用等差数列和等比数列的通项公式和求和公式,解方程可得公差和公比,即可得到所求通项公式;(Ⅱ)求得c n=b n2n2n+2(),数列的分组求和和裂项相消求和,化简整理即可得到所求和.【详解】解:(Ⅰ)设等差数列的公差为d,等比数列的公比为q,则解得∴,.(Ⅱ)由(Ⅰ)知.∴,∴.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的分组求和和裂项相消求和,考查化简整理的运算能力,属于中档题.18.如图,在四棱锥P—ABCD中,底面ABCD为平行四边形,底面ABCD,.(I)求证:平面PCA⊥平面PCD;(II)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】【分析】(Ⅰ)推导出CD⊥AC,PA⊥CD,从而CD⊥平面PCA,由此能证明平面PCA⊥平面PCD.(Ⅱ)以A为坐标原点,AB,AC,AP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角E﹣AB﹣D 的余弦值.【详解】解:(Ⅰ)在平行四边形ABCD中,∠ADC=60°,,,由余弦定理得,∴,∴∠ACD=90°,即CD⊥AC,又PA⊥底面ABCD,CD底面ABCD,∴PA⊥CD,又,∴CD⊥平面PCA.又CD平面PCD,∴平面PCA⊥平面PCD.(Ⅱ)如图,以A为坐标原点,AB,AC,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.则,,,,.设,,则∴x=0,,,即点E的坐标为∴又平面ABCD的一个法向量为∴sin45°解得∴点E的坐标为,∴,,设平面EAB的法向量为由得令z=1,得平面EAB的一个法向量为∴.又二面角E-AB-D的平面角为锐角,所以,二面角E-AB-D的余弦值为【点睛】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率.(I)求频率分布直方图中的值;(II)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;(III)由频率分布直方图可以认为,该校学生的体重近似服从正态分布,其中若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.【答案】(Ⅰ)a=0.004,b=0.026,c=0007;(Ⅱ)详见解析;(Ⅲ)正常.【解析】【分析】(Ⅰ)由茎叶图中的数据,用样本的频率估计总体的频率,求得对应的概率值,再计算a、b、c的值;(Ⅱ)用由题意知随机变量X服从二项分布B(3,0.7),计算对应的概率值,写出分布列,求出数学期望值;(Ⅲ)由题意知ξ服从正态分布N(60,25),计算P(μ﹣2σ≤ξ<μ+2σ)的值,再判断学生的体重是否正常.【详解】解:(Ⅰ)由图(2)知,100名样本中体重低于50公斤的有2人,用样本的频率估计总体的概率,可得体重低于50公斤的概率为,则,在上有13人,该组的频率为0.13,则,所以,即c=0.07.(Ⅱ)用样本的频率估计总体的概率,可知从全体学生中随机抽取一人,体重在的概率为0.07×10=0.7,随机抽取3人,相当于三次独立重复试验,随机变量X服从二项分布,则,,,,所以,X的概率分布列为:E(X)=3×0.7=2.1(Ⅲ)由N(60,25)得由图(2)知.所以可以认为该校学生的体重是正常的.【点睛】本题考查了茎叶图与频率分布直方图的应用问题,也考查了概率分布与数学期望的计算问题,熟记频率分布直方图性质,熟练计算二项分布是关键,是中档题.20.已知椭圆的离心率为,且椭圆C过点.(I)求椭圆C的方程;(II)设椭圆C的右焦点为F,直线与椭圆C相切于点A,与直线相交于点B,求证:的大小为定值.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】【分析】(Ⅰ)由题意可知,解得a2=3,b2=2,即可求出椭圆C的方程,(Ⅱ)显然直线l的斜率存在,设l:y =kx+m,联立,根据直线l与椭圆相切,利用判别式可得m2=3k2+2,求出点A,B的坐标,根据向量的运算可得可得•0,即∠AFB=90°,故∠AFB的大小为定值.【详解】解:(Ⅰ)∵椭圆C过点,∴①∵离心率为∴②又∵③由①②③得,,.∴椭圆C的方程为C:.(Ⅱ)显然直线l的斜率存在,设l:y=kx+m.由消y得由得.∴∴∴切点A的坐标为又点B的坐标为,右焦点F的坐标为,∴,,∴∴∠AFB=90°,即∠AFB的大小为定值.【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,准确转化题目,准确计算切点坐标是关键,属于中档题.21.已知函数.(I)讨论的单调性;(II)若时,恒成立,求实数的取值范围.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)通过讨论a的范围,结合函数的单调性求出函数的最小值,从而确定a的范围即可.【详解】解:(Ⅰ)函数f(x)的定义域为,,①当时,,f(x)在上为增函数.②当a>0时,由得;由得,所以f(x)在上为减函数,在上为增函数.综上所述,①当时,函数f(x)在上为增函数②当a>0时,f(x)在上为减函数,在上为增函数.(Ⅱ)①当a=0时,因为,所以恒成立,所以a=0符合题意.②当a<0时,,因为,所以不恒成立,舍去.③当a>0时,由(Ⅰ)知f(x)在上为减函数,f(x)在上为增函数.下面先证明:.设,因为,所以p(a)在上为增函数.所以,因此有.所以f(x)在上为增函数.所以.设,则,.由得;由得.所以在上为减函数,在上为增函数.所以.所以q(a)在上为增函数,所以.所以.所以恒成立.故a>0符合题意.综上可知,a的取值范围是.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系中,已知点M的直角坐标为(1,0),直线的参数方程为(t为参数);以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(I)求直线的普通方程和曲线C的直角坐标方程;(II)直线和曲线C交于A,B两点,求的值.【答案】(Ⅰ)直线l的普通方程为,曲线C的直角坐标方程为;(Ⅱ)1.【解析】【分析】(Ⅰ)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用一元二次方程根和系数的关系求出结果.【详解】解:(Ⅰ)将中的参数t消去可得:由得,由可得:所以直线l的普通方程为,曲线C的直角坐标方程为(Ⅱ)将代入得:设A,B两点对应的参数分别为,,则,所以【点睛】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.已知函数.(1)当时,解不等式;(2)若的值域为[2,+∞),求证:.【答案】(1)或;(2)详见解析.【解析】【分析】(1)代入a,b的值,通过讨论x的范围,求出不等式的解集即可;(2)求出a+b=2,根据绝对值不等式的性质证明即可.【详解】(1)解:当a=b=1时,i)当时,不等式可化为:,即,所以ii)当时,不等式可化为:2>x+2,即x<0,所以iii)当x>1时,不等式可化为:2x>x+2,即x>2,所以x>2综上所述:不等式的解集为(2)证明,∵f(x)的值域为,∴a+b=2,∴a+1+b+1=4∴,当且仅当,即a=b=1时取“=”即.【点睛】本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,熟练利用绝对值三角不等式得到a,b的关系是关键,是一道中档题.。

2019年山东省济宁市高考数学一模试卷(理科)(解析版)

2019年山东省济宁市高考数学一模试卷(理科)(解析版)

2019年山东省济宁市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(x﹣1)},则A∩B=()A.[1,3]B.(1,3]C.[2,3]D.[﹣1,+∞)2.(5分)若复数z=,其中i为虚数单位,则下列结论正确的是()A.z的虚部为﹣i B.|z|=2C.z2为纯虚数D.z的共轭复数为﹣1﹣i3.(5分)执行如图所示的程序框图,若输入a的值为﹣1,则输出的S的值是()A.B.C.D.4.(5分)若变量x,y满足,则z=2x+y的最大值是()A.﹣B.1C.2D.5.(5分)函数f(x)是定义在R上的奇函数,且f(1+x)=f(1﹣x),若f(1)=9,则f (2019)=()A.﹣9B.9C.﹣3D.06.(5分)已知直线m,n和平面α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)若sin x=3sin(x﹣),则cos x cos(x+)=()A.B.C.D.8.(5分)如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为()A.0B.1C.2D.39.(5分)《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为()A.B.πC.6πD.8π10.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的零点构成一个公差为的等差数列,把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)的图象关于函数g (x),下列说法正确的是()A.在[]上是增函数B.其图象关于直线x=对称C.函数g(x)是偶函数D.在区间[]上的值域为[﹣,2]11.(5分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1、F2,实轴长为4,渐近线方程为y=,|MF1|﹣|MF2|=4,点N在圆x2+y2﹣4y=0上,则|MN|+|MF1|的最小值为()A.2B.5C.6D.712.(5分)已知当x∈(1,+∞)时,关于x的方程xlnx+(3﹣a)x+a=0有唯一实数解,则a所在的区间是()A.(3,4)B.(4,5)C.(5,6)D.(6,7)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为.14.(5分)(2x+y)(x﹣2y)5的展开式中,x2y4的系数为.(用数字作答)15.(5分)如图所示,在正方形OABC内随机取一点,则此点取自黑色部分的概率为.16.(5分)在△ABC中,记=﹣3,=,若⊥,则sin A的最大值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)等差数列{a n}的公差为正数,a1=1,其前n项和为S n;数列{b n}为等比数列,b1=2,且b2S2=12,b2+S3=10.(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=b n+,求数列{c n}的前n项和T n.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,P A⊥底面ABCD,∠ABC=60°,AB=,AD=2,AP=3.(Ⅰ)求证:平面PCA⊥平面PCD;(Ⅱ)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角E ﹣AB﹣D的余弦值.19.(12分)某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…第六组[70,75),得到如图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率.(Ⅰ)求频率分布直方图中a,b,c的值;(Ⅱ)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;(Ⅲ)由频率分布直方图可以认为,该校学生的体重ξ近似服从正态分布N(μ,σ2),其中μ=60,σ2=25.若P(μ﹣2σ≤ξ<μ+2σ)>0.9545,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由20.(12分)已知椭圆C:=1(a>b>0)的离心率为,且椭圆C过点P(1,).(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的右焦点为F,直线l与椭圆C相切于点A,与直线x=3相交于点B,求证:∠AFB的大小为定值.21.(12分)已知函数f(x)=x﹣alnx+a﹣1(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若x∈[e a,+∞)时,f(x)≥0恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知点M的直角坐标为(1,0),直线l的参数方程为(t为参数);以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)直线l和曲线C交于A,B两点,求的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+b|(a>0,b>0).(Ⅰ)当a=b=1时,解不等式f(x)>x+2;(Ⅱ)若f(x)的值域为[2,+∞),求≥1.2019年山东省济宁市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={x|y=ln(x﹣1)}={x|x>1},∴A∩B={x|1<x≤3}=(1,3].故选:B.2.【解答】解:∵z==,∴z的虚部为﹣1,|z|=,z2=(1﹣i)2=﹣2i为纯虚数,z的共轭复数为1+i.∴正确的选项为C.故选:C.3.【解答】解:模拟程序的运行,可得a=﹣1,S=0,k=1满足条件k<5,执行循环体,S=﹣1,a=1,k=2满足条件k<5,执行循环体,S=﹣,a=3,k=3满足条件k<5,执行循环体,S=,a=5,k=4满足条件k<5,执行循环体,S=,a=7,k=5此时,不满足条件k<5,退出循环,输出S的值为.故选:C.4.【解答】解:由变量x,y满足作出可行域如图,化z=2x+y为2x+y﹣z=0,由图可知,当直线y=﹣2x+z与圆相切于A时,直线在y轴上的截距最大,z最大,此时.z=.故选:D.5.【解答】解:根据题意,函数f(x)是定义在R上的奇函数,则f(﹣x)=﹣f(x),又由f(1+x)=f(1﹣x),则f(﹣x)=f(2+x),则有f(x+2)=﹣f(x),变形可得f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(2019)=f(﹣1+505×4)=f(﹣1)=﹣f(1)=﹣9;故选:A.6.【解答】解:直线m,n和平面α,n⊂α,则“m∥n”与“m∥α”相互推不出.∴“m∥n”是“m∥α”的既不充分也不必要条件.故选:D.7.【解答】解:sin x=3sin(x﹣)=﹣3cos x,解得:tan x=﹣3,所以:cos x cos(x+)=﹣sin x cos x==,故选:A.8.【解答】解:对于①日成交量的中位数是26,故①错误,对于②因为日平均成交量为=,日成交量超过日平均成交量的只有10月7日1天,故②错误,对于③认购量与日期不是正相关,故③错误,对于④10月7日认购量的增幅为164套,10月7日成交量的增幅为128套,即10月7日认购量的增幅大于10月7日成交量的增幅.故④正确,综合①②③④得:正确个数为1,故选:B.9.【解答】解:根据几何体的三视图转换为几何体为:下底面为等腰三角形腰长为,高为2的直三棱柱,故外接球的半径R,满足,解得:R=,所以:V=.故选:A.10.【解答】解:f(x)=sinωx+cosωx=2sin(ωx+),由函数f(x)的零点构成一个公差为的等差数列,则周期T=π,即ω=2,即f(x)=2sin(2x+),把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)的图象,则g(x)=2sin[2(x﹣)+]=2sin2x,易得:y=g(x)是在[,]为减函数,其图象关于直线x=(k∈Z)对称的奇函数,故选项A,B,C错误,当x时,2x∈[,],函数g(x)的值域为[﹣,2],故选项D正确,故选:D.11.【解答】解:由题意可得2a=4,即a=2,渐近线方程为y=±x,即有=,即b=1,可得双曲线方程为﹣y2=1,焦点为F1(﹣,0),F2,(,0),由双曲线的定义可得|MF1|=2a+|MF2|=4+|MF2|,由圆x2+y2﹣4y=0可得圆心C(0,2),半径r=2,|MN|+|MF1|=4+|MN|+|MF2|,连接CF2,交双曲线于M,圆于N,可得|MN|+|MF2|取得最小值,且为|CF2|==3,则则|MN|+|MF1|的最小值为4+3﹣2=5.故选:B.12.【解答】解:由xlnx+(3﹣a)x+a=0,得,令f(x)=(x>1),则f′(x)=.令g(x)=x﹣lnx﹣4,则g′(x)=1﹣=>0,∴g(x)在(1,+∞)上为增函数,∵g(5)=1﹣ln5<0,g(6)=2﹣ln6>0,∴存在唯一x0∈(5,6),使得g(x0)=0,∴当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.则f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.∴f(x)min=f(x0)=.∵x0﹣lnx0﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:样本间隔为23﹣14=9,则第四个编号为14+2×9=14+18=32,故答案为:3214.【解答】解:∵(2x+y)(x﹣2y)5=(2x+y)(x5﹣10x4y+40x3y2﹣80x2y3+80xy4﹣32y5),∴x2y4的系数为2×80﹣80=80,故答案为:80.15.【解答】解:正方形的面积为e2,由lnxdx=(xlnx﹣x)|=1,由lnydy=1,故S阴影=2,故此点取自黑色部分的概率为,故答案为:16.【解答】解:∵在△ABC中,记=﹣3=﹣﹣3=﹣4,==﹣,⊥,∴=﹣5•+4=0cos A===≥=,当且仅当时取到等号.又因为sin2A+cos2A=1,所以sin A的最大值为.故答案为三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【解答】解:(Ⅰ)等差数列{a n}的公差d为正数,a1=1,数列{b n}为等比数列,设公比为q,b1=2,且b2S2=12,b2+S3=10,可得2q(2+d)=12,2q+3+3d=10,解得q=2,d=1,则a n=1+n﹣1=n,b n=2n;(Ⅱ)c n=b n+=2n+=2n+2(),则前n项和T n=(2+4+…+2n)+2(1﹣+﹣+…+)=+2(1﹣)=2n+1﹣.18.【解答】证明:(Ⅰ)在平行四边形ABCD中,∠ADC=60°,CD=,AD=2,由余弦定理得AC2=AD2+CD2﹣2AD•CD cos∠ADC=12+3﹣2×=9,∴AC2+CD2=AD2,∴∠ACD=90°,∴CD⊥AC,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又AC∩CD=C,∴CD⊥平面PCA,又CD⊂平面PCD,∴平面PCA⊥平面PCD.解:(Ⅱ)E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,如图,以A为坐标原点,AB,AC,AP分别为x,y,z轴,建立空间直角坐标系,则A(0,0,0),B(,0,0),C(0,3,0),D(﹣,3,0),P(0,0,3),设E(x,y,z),=,(0≤λ≤1),则(x,y,z﹣3)=λ(0,3,﹣3),∴E(0,3λ,3﹣3λ),∵平面ABCD的一个法向量=(0,0,1),∴sin45°=|cos<>|=,解得λ=,∴点E的坐标为(0,1,2),∴=(0,1,2),=(),设平面EAB的法向量=(x,y,z),则,取z=1,得=(0,﹣2,1),设二面角E﹣AB﹣D的平面角为θ,则cosθ==,∴二面角E﹣AB﹣D的余弦值为.19.【解答】解:(Ⅰ)由图(2)知,100名样本中体重低于50公斤的有2人,用样本的频率估计总体的频率,可得体重低于50公斤的概率为=0.02;所以a==0.004;在[50,55]上有13人,该组的频率为0.13,则b==0.065,所以2c==0.14,即c=0.07;(Ⅱ)用样本的频率估计总体的频率,可知从全校学生中随机抽取1人,体重在[55,65)的概率为0.07×10=0.7,随机抽取3人,相当于3次独立重复实验,随机变量X服从二项分布B(3,0.7),则P(X=0)=•0.70•0.33=0.027,P(X=1)=•0.7•0.32=0.189,P(X=2)=•0.72•0.3=0.441,P(X=3)=•0.73•0.30=0.343;所以X的概率分布列为:数学期望为E(X)=3×0.7=2.1;(Ⅲ)由题意知ξ服从正态分布N(60,25),其中σ=5;则P(μ﹣2σ≤ξ<μ+2σ)=P(50≤ξ<70)=0.96>0.9545,所以可以认为该校学生的体重是正常的.20.【解答】解:(Ⅰ)由题意可知,解得a2=3,b2=2,c2=1,∴椭圆C的方程为+=1.证明(Ⅱ)显然直线l的斜率存在,设l:y=kx+m,联立,得(3k2+2)x2+6kmx+3m2﹣6=0△=36k2m2﹣12(3k2+2)(m2﹣2)=0,得m2=3k2+2,设A(x1,y1),则x1=﹣=﹣=﹣,∴y1=kx1+m=﹣+m==,∴A(﹣,),∵点B为(3,3k+m),右焦点F(1,0),∴=(﹣﹣1,),=(2,3k+m),∴•=﹣﹣2++2=0,∴∠AFB=90°,即∠AFB的大小为定值.21.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=1﹣=,①当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,②当a>0时,由f′(x)=0,解得:x=a,故f(x)在(0,a)递减,在(a,+∞)递增,综上,当a≤0时,f(x)在(0,+∞)递增,当a>0时,f(x)在(0,a)递减,在(a,+∞)递增;(Ⅱ)①当a=0时,∵x≥1,∴f(x)=x﹣1≥0恒成立,故a=0符合题意,②当a<0时,e a<0,∵f(1)=a<0,故f(x)≥0不恒成立,舍,③当a>0时,由(Ⅰ)知f(x)在(0,a)递减,在(a,+∞)递增,下面先证明:e a>a(a>0),设p(a)=e a﹣a,∵p′(a)=e x﹣1>0,∴p(a)在(0,+∞)递增,p(a)≥p(0)=1>0,故e a>a,故f(x)在[e a,+∞)递增,故f(x)min=f(e a)=e a﹣a2+a﹣1,设q(a)=e a﹣a2+a﹣1(a>0),则q′(a)=e a﹣2a+1,q″(a)=e a﹣2,由q″(a)>0,解得:a>ln2,由q″(a)<0,解得:0<a<ln2,故q′(a)在(0,ln2)递减,在(ln2,+∞)递增,故q′(a)≥q′(ln2)=3﹣2ln2>0,故q(a)在(0,+∞)递增,故q(a)>q(0)=0,故f(x)min>0,故f(x)≥0恒成立,故a>0符合题意,综上,a的范围是[0,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.【解答】解:(Ⅰ)直线l的参数方程为(t为参数);转换为直角坐标方程为:x﹣y﹣1=0,曲线C的极坐标方程为ρsin2θ=2cosθ.转换为直角坐标方程为:y2=2x.(Ⅱ)将直线l的参数方程为(t为参数);代入y2=2x,得到:(t1和t2为A、B对应的参数)所以:,t 1•t2=﹣4,则:===1.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当a=b=1时,f(x)=|x﹣1|+|x+1|>x+2,(i)当x<﹣1时,不等式可化为:﹣2x>x+2,即x<﹣,故x<﹣1,(ii)当﹣1≤x≤1时,不等式可化为:2>x+2,即x<0,故﹣1≤x<0,(iii)当x>1时,不等式可化为2x>x+2,即x>2,故x.2,综上,不等式的解集是{x|x>2或x<0};(Ⅱ)证明f(x)=|x﹣a|+|x+b|≥|a+b|,∵f(x)的值域是[2,+∞),故a+b=2,故a+1+b+1=4,故=(+)=(2++)当且仅当=,即a=b=1时取“=”,即≥1.。

2019届山东省高三3月模拟考试理数试卷【含答案及解析】

2019届山东省高三3月模拟考试理数试卷【含答案及解析】

2019届山东省高三3月模拟考试理数试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设集合,,则 ( )A. B. C. D.2. 已知复数满足,则复数在复平面内的对应点位于( )A. 第一象限________B. 第二象限________C. 第三象限________D. 第四象限3. 已知命题:对任意,总有;:“ ”是“ ,”的充分不必要条件,则下列命题为真命题的是( )A. B. C. D.4. 已知函数,则函数的图象大致为( )A. B. C. D.5. 运行下边的程序框图,如果输出的数是13,那么输入的正整数的值是( )A. 5B. 6C. 7D. 86. 下列结论中错误的是()A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点(),则D. 若扇形的周长为 6 ,半径为 2 ,则其圆心角的大小为 1 弧度7. 某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.8. 已知双曲线的一条渐近线被圆截得弦长为(其中为双曲线的半焦距),则该双曲线的离心率为( )A. B. C. D.9. 设实数满足约束条件,若目标函数的最小值为-6,则实数等于( )A. 2B. 1C. -2D. -110. 定义在上的奇函数满足,当时,.若在区间上,存在个不同的整数,满足,则的最小值为( )A. 15B. 16C. 17D. 18二、填空题11. 已知向量,其中,,且,则__________ .12. 在上随机取一个数,则事件“ 成立”发生的概率为 __________ .13. 在二项式的展开式中,含项的系数是,则__________ .14. 对于函数,若其定义域内存在两个不同实数,使得成立,则称函数具有性质,若函数具有性质,则实数的取值范围为 __________ .15. 已知抛物线焦点为,直线过焦点且与抛物线交于两点,为抛物线准线上一点且,连接交轴于点,过作于点,若,则__________ .三、解答题16. 在中,内角的对边分别是,已知为锐角,且.(Ⅰ)求的大小;(Ⅱ)设函数,其图象上相邻两条对称轴间的距离为 .将函数的图象向左平移个单位,得到函数的图象,求函数在区间上的值域.17. 如图,在四棱锥中,底面是直角梯形,,,,,是等边三角形,且侧面底面,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)求平面与平面所成的二面角(锐角)的余弦值.18. 甲、乙、丙三人组成一个小组参加电视台举办的听曲猜歌名活动,在每一轮活动中,依次播放三首乐曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜错,则活动立即结束;若三人均猜对,则该小组进入下一轮,该小组最多参加三轮活动.已知每一轮甲猜对歌名的概率是,乙猜对歌名的概率是,丙猜对歌名的概率是,甲、乙、丙猜对与否互不影响.(I)求该小组未能进入第二轮的概率;(Ⅱ)记乙猜歌曲的次数为随机变量,求的分布列和数学期望.19. 已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且,, .(Ⅰ)求数列和的通项公式;(Ⅱ)令,求数列的前项和为 .20. 已知椭圆与双曲线有共同焦点,且离心率为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)设为椭圆的下顶点,为椭圆上异于的不同两点,且直线与的斜率之积为 .(ⅰ)试问所在直线是否过定点?若是,求出该定点;若不是,请说明理由;(ⅱ)若为椭圆上异于的一点,且,求的面积的最小值.21. 设函数, .(Ⅰ)判断函数零点的个数,并说明理由;(Ⅱ)记,讨论的单调性;(Ⅲ)若在恒成立,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】。

山东省济宁市2019届高三数学第一次模拟考试试题理201903130327

山东省济宁市2019届高三数学第一次模拟考试试题理201903130327
16.在△ABC中,记 .则sinA的最大值为▲.
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(本小题满分12分)
等差数列 的公差为正数, ,其前 项和为 ;数列 为等比数列, ,
A.0B.1C.2D.3
9.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为
A.
B.
C.
D.
10.已知函数 的零点构成一个公差为 的等差数列,把函数 的图象沿 轴向右平移 个单位,得到函数 的图象.关于函数 ,下列说法正确的是
A.在 上是增函数B.其图象关于直线 对称
7.若
A. B. c. D.
8.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为
(I)求频率分布直方图中 的值;
(Ⅱ)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;
(III)由频率分布直方图可以认为,该校学生的体重 近似服从正态分布 ,其中 ,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
20.(本小题满分12分)
第I卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

山东省济宁市2019届高三一模(数学理)word版含答案1

山东省济宁市2019届高三一模(数学理)word版含答案1

山东省济宁市 2019年高三年级考试数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答第Ⅰ卷前,学生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选了答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数i i21+(i 是虚数单位)的实部是 ( )A .52B .-52C .51D .-51 2.集合}2{},,,{},2,3{=⋂==N M b a N M a若,则M ∪N=( )A .{0,1,2}B .{0,1,3}C .{0,2,3}D .{1,2,3} 3.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……,用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是 ( )4.ABCD 为矩形,AB=3,BC=1,O 为AB 的中点,在矩形ABCD 内随机取一点P ,点P 到点O的距离大于1的概率为 ( )A .6πB .61π-C .31π-D .3π 5.若把函数x x y sin cos 3-=的图象向右平移)0(>m m 个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .3π B .π32 C .6π D .π656.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有 ( ) A .36种 B .30种 C .42种 D .60种7.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为( )A .24㎝3B .48㎝3C .32㎝3D .28㎝3 8.某地区为了解中学生的日平均睡眠时间(单位:h ),随机选择了n 位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次构成公差为0.1的等差数列,又第一小组的频数是10,则=n ( )A .80B .90C .100D .110 9.如果关于x 的不等式1|4|||≥++-x a x 的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)10.下列命题中为真命题的是( )A .若21,0≥+≠xx x 则 B .“1=a 是“直线0=-ay x 与直线0=+ay x 互相垂直”的充要条件 C .直线b a ,为异面直线的充要条件是直线b a ,不相交D .若命题"01,:"2>--∈∃x x R x p ,则命题p 的否定为:“01,2≤--∈∀x x R x ”11.以抛物线x y 202=的焦点为圆心,且与双曲线191622=-y x 的两斩近线都相切的圆的方程为( )A .0642022=+-+x y x B .0362022=+-+x y xC .0161022=+-+x y xD .091022=+-+x y x12.不等式)1(400>⎪⎩⎪⎨⎧+-≤≥≥k kkx y y x 所表示的平面区域为M ,若M 的面积为S ,则1-k kS 的最小值为( )A .30B .32C .34D .36第Ⅱ卷(非选择题,共90分)注意事项: 1.第Ⅱ卷,必须使用0.5毫米的黑色签字笔书写,作图时,可用2B 铅笔,要字体工整, 笔迹清晰,严格在题号所指示的答题域内 作答。

2019届山东省济宁市高三第一次模拟考试数学(理)试题

2019届山东省济宁市高三第一次模拟考试数学(理)试题

2019届山东省济宁市高三第一次模拟考试数学(理工类)试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}2230,ln 1,A x x x B x y x A B =--≤==-⋂=则 A ,[1,3]B .(1,3]c .[2,3]D .[-l ,+∞)2.若复数21z i=+,其中i 为虚数单位,则下列结论正确的是 A .z 的虚部为1- B .2z =C .2z 为纯虚数D .z 的共轭复数为1i --3.执行如图所示的程序框图,若输入a 的值为1-,则输出的S 的值是 A .12- B .12 C .74D .63204.若变量,x y 满足221020x y x z x y y ⎧+≤⎪≥=+⎨⎪≥⎩,则的最大值是 A.B .1C .2D5.函数()f x 是定义在R 上的奇函数,且()()()()11,19,2019f x f x f f +=-==若则 A .9-B .9C .3-D .06.已知平面α,直线,m n ,满足n α⊂,则“//m n ”是“//m α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.若sin 3sin cos cos 22x x x x ππ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,则 A .310B .310-c .34D .34-8.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为A .0B .1C .2D .3 9.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为A .3B C .6π D .8π10.已知函数()()sin 0f x x x ωωω=>的零点构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向右平移6π个单位,得到函数()g x 的图象.关于函数()g x ,下列说法正确的是 A .在,42ππ⎡⎤⎢⎥⎣⎦上是增函数B .其图象关于直线2x π=对称C .函数()g x 是偶函数D .在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为2⎡⎤⎣⎦ 11.已知双曲线()2222:10x y C a b a b-=>0,>的左、右焦点分别为12F F 、,实轴长为4,渐近线方程为121,42y x MF MF =±-=,点N 在圆2240x y y +-=上,则1MN MF +的最小值为A .2B .5C .6D .712.已知当()1,x ∈+∞时,关于x 的方程()ln 30x x a x a +-+=有唯一实数解,则a 所在的区间是 A .(3,4)B .(4,5)C .(5,6)D .(6.7)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为 ▲ . 14.()()522x y x y +-的展开式中,24x y 的系数为 ▲ .(用数字作答).15.如图所示,在正方形OABC 内随机取一点,则此点取自黑色部分的概率为 ▲ .16.在△ABC 中,记3,.m CB AC n CB m n =-=⊥若.则sinA 的最大值为 ▲ .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)等差数列{}n a 的公差为正数,11a =,其前n 项和为n S ;数列{}n b 为等比数列,12b =, 且222312,10b S b S =+=. (I)求数列{}{}n n a b 与的通项公式; (Ⅱ)设1n n nc b S =+,求数列{}n c 的前n 项和n T .18.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 为平行四边形,PA ⊥底面ABCD ,60,3ABC AB AD AP ∠====.(I)求证:平面PCA ⊥平面PCD ; (Ⅱ)设E 为侧棱PC 上的一点,若直线BE 与底面ABCD 所成的角为45°,求二面角E AB D --的余弦值.19.(本小题满分12分)某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率. (I)求频率分布直方图中,,a b c 的值;(Ⅱ)从全校学生中随机抽取3名学生,记X 为体重在[55,65)的人数,求X 的概率分布列和数学期望; (III)由频率分布直方图可以认为,该校学生的体重ξ近似服从正态分布()2,Nμσ,其中()260,25.220.9545P μσμσξμσ==-≤<+>若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.20.(本小题满分12分)已知椭圆()222210x y C a b a b +=>>:的离心率为3,且椭圆C过点P ⎛ ⎝⎭. (I)求椭圆C 的方程;(Ⅱ)设椭圆C 的右焦点为F ,直线l 与椭圆C 相切于点A ,与直线3x =相交于点B ,求证:AFB ∠的大小为定值.21.(本小题满分12分)已知函数()()ln 1f x x a x a a R =-+-∈. (I)讨论()f x 的单调性;(Ⅱ)若)(),0ax e f x ⎡∈+∞≥⎣时,恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知点M 的直角坐标为(1,0),直线l的参数方程为122x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数);以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos p θθ=. (I)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)直线l 和曲线C 交于A ,B 两点,求2211MAMB+的值.23.(本小题满分10分)选修4—5:不等式选讲 已知函数()()0,0f x x a x b a b =-++>>.(I)当1a b ==时,解不等式()2f x x >+; (Ⅱ)若()f x 的值域为[2,+∞),求证:11111a b +≥++.。

2019年山东省济宁市高考模拟考试数学试题(理)含答案

2019年山东省济宁市高考模拟考试数学试题(理)含答案

2019年济宁市高考模拟考试数学(理)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答第I 卷前,考生务必将自己的姓名,考号填写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,{}3,4,5M =,{}2,3N =,则集合()U N M =ð A .{}2 B .{}1,3 C .{}2,5 D .{}4,52.复数z 满足(32)43i z i -=+(i 为虚数单位),则复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.设a R ∈,“1,a ,16为等比数列”是“4a =”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.以下四个结论,正确的是①质检员从匀速传递的产品生产流水线上,每间隔10分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在频率分布直方图中,所有小矩形的面积之和是1;③在回归直线方程ˆ0.212y x =+中,当变量x 每增加一个单位时,变量y 一定增加0.2个单位;④对于两个分类变量X 与Y ,求出其统计量2K 的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大.A.①④B.②③C.①③D.②④5.设实数,x y 满足:3432y x x y z x y x ≥⎧⎪+≤=-⎨⎪≥-⎩,则的最大值为A.2-B.8-C.4D.26.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有A.140种B.80种C.70种D.35种7.在ABC ∆中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足13AN NM =,若(),AN AB AC R λμλμ=+∈,则λμ+的值为 A.14 B. 13 C. 12 D.1 8.已知定义在R 上的函数()()21x m f x m R -=-∈为偶函数,记()()22,log 5a f b f =-=,()2,,c f m a b c =,则的大小关系为A.a b c <<B. c a b <<C. a c b <<D. c b a <<9.已知定义在R 上的函数()()sin 0f x x ωω=>的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则使()y g x =是减函数的区间为 A.,43ππ⎛⎫ ⎪⎝⎭ B.,44ππ⎛⎫- ⎪⎝⎭ C.0,3π⎛⎫ ⎪⎝⎭ D.,03π⎛⎫- ⎪⎝⎭10.定义在1,ππ⎡⎤⎢⎥⎣⎦上的函数()f x ,满足()1f x f x ⎛⎫= ⎪⎝⎭,且当()1,ln x f x x π⎡⎤∈=⎢⎥⎣⎦时,若函数()()1g x f x ax ππ⎡⎤=-⎢⎥⎣⎦在,上有零点,则实数a 的取值范围是 A.ln ,0ππ⎡⎤-⎢⎥⎣⎦ B.[]ln ,0ππ- C.1ln ,e ππ⎡⎤-⎢⎥⎣⎦ D. 1,2e π⎡⎤--⎢⎥⎣⎦第Ⅱ卷 (非选择题 共100分)注意事项:1.第Ⅱ卷共3页,必须使用0.5毫米的黑色墨水签字笔书写,要字体工整,笔迹清晰,严格在题号所指示的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共5小题,每小题5分,共25分.11.已知0i a >(1i =,2,3,…,n ),观察下列不等式:122a a +≥1233a a a ++≥;12344a a a a +++≥ ……照此规律,当*n N ∈(2n ≥)时,12n a a a n +++≥… ▲ .12.不等式1022x xdx ->⎰的解集为 ▲ . 13.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如上图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为 ▲ .( 1.732=,sinl5°≈0.2588,sin7.5°≈0.1305)14.一个三棱锥的三视图如右图所示,则其外接球的体积是 ▲ .15.已知椭圆C 1:()222210x y a b a b+=>>与双曲线C 2:221x y -=有公共的焦点,双曲线C 2的一条渐近线与以椭圆C 1的长轴为直径的圆相交于A 、B 两点,与椭圆C 1交于M 、N 两点,若AB =,则椭圆C 1的标准方程是 ▲ .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,三内角A 、B 、C 的对边分别为a 、b 、c sinsin sin A B C =+ (I)求角B 的大小,(Ⅱ)设()sin cos ,1,2,cos 22m A A n A π⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,求m n 的取值范围. 17.(本小题满分12分)某大学有甲、乙两个校区.从甲校区到乙校区有A 、B 两条道路.已知开车走道路A 遭遇堵车的概率为15;开车走道路B 遭遇堵车的概率为p .现有张、王、李三位教授各自开车从甲校区到乙校区给学生上课,张教授、王教授走道路A ,李教授走道路B ,且他们是否遭遇堵车相互之间没有影响.若三人中恰有一人遭遇堵车的概率为25. 求(I)走道路B 遭遇堵车的概率p ;(Ⅱ)三人中遭遇堵车的人数X 的概率分布列和数学期望.18.(本小题满分12分)如图,四边形ABCD 与BDEF 均为菱形,∠DAB=∠DBF=60°,且FA=FC ,AC 、BD 交于点O .(I)求证:FC//平面EAD ;(II)求证:AC ⊥平面BDEF .(III)求二面角F —AB —C(锐角)的余弦值.19.(本小题满分12分)知数列{}n a 的前n 项和为n S ,且满足()22n n S a n N *=-∈,数列{}n b 为等差数列,且满足2183,b a b a ==.(I)求数列{}n a ,{}n b 的通项公式;(II)令()111n n n c a +=--,关于k 的不等式()40971100,k c k k N *≥≤≤∈的解集为M ,求所有()k k a b k M +∈的和S .20.(本小题茹分郴分)设()()()1,ln 2.71828x a f x e x g x a x e x -⎛⎫=-==⋅⋅⋅ ⎪⎝⎭.(I)当1a >时,讨论函数()()()xf x F xg x e =-的单调性;(II)求证:当0a =时,不等式()f x >()0,x ∈+∞都成立.21.(本小题满分14分)如图,已知线段AE ,BF 为抛物线()2:20C x py p =>的两条弦,点E 、F 不重合.函数()01x y a a a =>≠且的图象所恒过的定点为抛物线C 的焦点.(I)求抛物线C 的方程;(Ⅱ)已知()12,114A B ⎛⎫- ⎪⎝⎭、,,直线AE 与BF 的斜率互为相反数,且A ,B 两点在直线EF 的两侧.①问直线EF 的斜率是否为定值?若是,求出该定值;若不是,请说明理由. ②求OE OF 的取值范围.。

山东省济宁市2019届高三上学期开学数学试卷(理科)Word版含解析

山东省济宁市2019届高三上学期开学数学试卷(理科)Word版含解析

山东省济宁市2019届高三上学期开学数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={y|y=log 2x ,x >1},B={y|y=()x ,0<x <1},则A ∩B 等于( )A .{y|<y <1}B .{y|0<y }C .∅D .{y|0<y <1}2.设函数f (x )=ax 2+b (a ≠0),若∫f (x )dx=2f (x 0),x 0>0,则x 0=( )A .2B .C .1D . 3.偶函数y=f (x )在区间(﹣∞,﹣1]上是增函数,则下列不等式成立的是( )A .f (﹣1)>f () B .f ()>f (﹣) C .f (4)>f (3) D .f (﹣)>f ()4.已知函数f (x )=,则y=f (x )的图象大致为( )A .B .C .D .5.设f (x )=log a x (a >0,a ≠1).若f (x 1x 2…x 2017)=6,则f (x 13)+f (x 23)+…+f (x 20173)=( )A .64B .4C .18D .26.log 0.72,log 0.70.8,0.9﹣2的大小顺序是( )A .log 0.72<log 0.70.8<0.9﹣2B .log 0.70.8<log 0.72<0.9﹣2C .0.9﹣2<log 0.72<log 0.70.8D .log 0.72<0.9﹣2<log 0.70.87.函数y=的导数是( )A .﹣B .C .﹣D .﹣8.设常数a >0,函数f (x )=为奇函数,则a 的值为( )A .1B .﹣2C .4D .39.已知f (x )是定义在R 上的函数,满足f (x )+f (﹣x )=0,f (x ﹣1)=f (x+1),当x ∈[0,1)时,f(x )=3x ﹣1,则f (log12)的值为( )A .﹣B .﹣C .﹣D .10.已知函数f (x )满足f (x )•f (x+2)=2,若f (3)=2,则fA.2 B.﹣2 C.4 D.1二、填空题:本大题共5小题,每小题5分,共25分.11.设p:x<﹣3或x>1,q:x<﹣2或x>1,则¬p是¬q的条件.<1(a>0且a≠1),a的取值范围为.12.loga13.若2a=5b=10,则等于.14.曲线和y=x2在它们的交点处的两条切线与x轴所围成的三角形的面积是.15.设函数,其中[x]表示不超过x的最大整数,若直线y=kx+k(k>0)与函数y=f (x)的图象恰有三个不同的交点,则k的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(x+).求:(1)f(﹣8);(2)f(x)在R上的解析式.17.已知函数f(x)=log(﹣x2﹣2x+8).2(1)求f(x)的定义域和值域;(2)写出函数f(x)的单调区间.18.设命题p:∀x∈[1,2],﹣lnx﹣a≥0,命题q:∃x0∈R,使得x2+2ax﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.19.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(Ⅰ)试写出y关于x的函数关系式;(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?20.已知函数f(x)=x﹣1+(a∈R).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值;(3)当a=1时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.21.设函数f(x)=x2+aln(x+1).(Ⅰ)求函数f (x )的单调区间;(Ⅱ)若函数F (x )=f (x )+ln有两个极值点x 1,x 2且x 1<x 2,求证F (x 2)>.山东省济宁市2019届高三上学期开学数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={y|y=log2x,x>1},B={y|y=()x,0<x<1},则A∩B等于()A.{y|<y<1} B.{y|0<y} C.∅D.{y|0<y<1}【考点】交集及其运算.【分析】由已知分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={y|y=log2x,x>1}={y|y>0},B={y|y=()x,0<x<1}={y|},∴A∩B={y|}.故选:A.2.设函数f(x)=ax2+b(a≠0),若∫f(x)dx=2f(x0),x>0,则x=()A.2 B.C.1 D.【考点】定积分.【分析】求出f(x)的定积分,由∫f(x)dx=2f(x0),x>0求解x的值.【解答】解:∵函数f(x)=ax2+b(a≠0),由∫f(x)dx=2f(x),得=,2f(x)=2,由,解得.故选:D.3.偶函数y=f(x)在区间(﹣∞,﹣1]上是增函数,则下列不等式成立的是()A.f(﹣1)>f()B.f()>f(﹣)C.f(4)>f(3)D.f(﹣)>f()【考点】函数奇偶性的性质.【分析】f (x )是偶函数,则f (﹣x )=f (x ),在区间(﹣∞,﹣1]上是增函数,利用单调性比较不等式大小.【解答】解:由题意:f (x )是偶函数,则f (﹣x )=f (x ),在区间(﹣∞,﹣1]上是增函数.对于A :f ()=f (),∵,∴f (﹣1)<f ();对于B :f (x )是偶函数,即f (﹣x )=f (x ),f ()=f (﹣);对于C :f (4)=f (﹣4),f (3)=f (﹣3),∵﹣4<﹣3,∴f (4)>f (3);对于D :f ()=f (﹣),∵∴f (﹣)>f ().故选:D .4.已知函数f (x )=,则y=f (x )的图象大致为( )A .B .C .D .【考点】对数函数图象与性质的综合应用;对数函数的图象与性质.【分析】考虑函数f (x )的分母的函数值恒小于零,即可排除A ,C ,由f (x )的定义域能排除D ,这一性质可利用导数加以证明【解答】解:设则g ′(x )=∴g (x )在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g (x )<g (0)=0∴f (x )=<0得:x >0或﹣1<x <0均有f (x )<0排除A ,C ,又f (x )=中,,能排除D .故选 B5.设f (x )=log a x (a >0,a ≠1).若f (x 1x 2…x 2017)=6,则f (x 13)+f (x 23)+…+f (x 20173)=( )A .64B .4C .18D .2【考点】对数函数的图象与性质.【分析】根据对数函数的性质求出答案即可.【解答】解:若f (x 1x 2…x 2017)=6,则f (x 13)+f (x 23)+…+f (x 20173)=3f (x 1x 2…x 2017)=18,故选:C .6.log 0.72,log 0.70.8,0.9﹣2的大小顺序是( )A .log 0.72<log 0.70.8<0.9﹣2B .log 0.70.8<log 0.72<0.9﹣2C.0.9﹣2<log0.72<log0.70.8 D.log0.72<0.9﹣2<log0.70.8【考点】对数值大小的比较.【分析】由已知利用对数函数和指数函数的单调性直接求解.【解答】解:∵log0.72<log0.71=0,0=log0.71<log0.70.8<log0.70.7=1,0.9﹣2>0.90=1,∴log0.72<log0.70.8<0.9﹣2.故选:A.7.函数y=的导数是()A.﹣ B.C.﹣D.﹣【考点】导数的运算.【分析】直接由导数的运算法则和基本初等函数的求导公式计算.【解答】解:由y=,所以=.故选C.8.设常数a>0,函数f(x)=为奇函数,则a的值为()A.1 B.﹣2 C.4 D.3【考点】函数奇偶性的性质.【分析】函数f(x)=为奇函数,可得f(﹣x)+f(x)=0,代入化简,即可求出a的值.【解答】解:∵函数f(x)=为奇函数,∴f(﹣x)+f(x)=0,即+=0,化简得(1+a•2x)(2x﹣a)+(1﹣a2x)(2x+a)=0;故2•2x(1﹣a2)=0,解得,a=1或a=﹣1;∵a>0,∴a=1.故选:A.9.已知f(x)是定义在R上的函数,满足f(x)+f(﹣x)=0,f(x﹣1)=f(x+1),当x∈[0,1)时,f(x)=3x﹣1,则f(log12)的值为()A.﹣B.﹣ C.﹣ D.【考点】对数函数图象与性质的综合应用;函数奇偶性的性质.【分析】由f(x)+f(﹣x)=0、f(x﹣1)=f(x+1),判断出函数是奇函数、函数是周期函数并可求出周期,再由奇函数的性质、周期函数的性质、对数的运算律,将f(log12)进行转化到已知区间求值即可.【解答】解:由f(x)+f(﹣x)=0得,f(﹣x)=﹣f(x),所以f(x)是定义在R上的奇函数,由f(x﹣1)=f(x+1)得,f(x)=f(x+2),所以f(x)是定义在R上以2为周期的周期函数,则f(log12)=f(﹣)=﹣f(),因为2<<3,所以0<﹣2<1,因为当x∈[0,1)时,f(x)=3x﹣1,所以f(﹣2)==12×﹣1=,所以f(log12)=﹣f()=﹣f(﹣2)=﹣,故选:C.10.已知函数f(x)满足f(x)•f(x+2)=2,若f(3)=2,则fA.2 B.﹣2 C.4 D.1【考点】函数的值.【分析】由于f(x)•f(x+2)=2,以x+2代x得f(x+2)•f(x+4)=2,所以f(x)=f(x+4).函数f(x)是周期函数,4是一个周期.在f(x)•f(x+2)=2中,令x=1得出f(1),f(3)关系式,求解即可【解答】解:∵函数f(x)满足f(x)•f(x+2)=2,∴以x+2代x得f(x+2)•f(x+4)=2,∴f(x)=f(x+4),函数f(x)是周期函数,4是一个周期.f=f(1),又在f(x)•f(x+2)=2中,令x=1得出f(1)•f(3)=2,∵f(3)=2∴f(1)=1,∴f=1.故答案为:1.二、填空题:本大题共5小题,每小题5分,共25分.11.设p:x<﹣3或x>1,q:x<﹣2或x>1,则¬p是¬q的必要不充分条件.【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出¬p,¬q,根据集合的包含关系判断即可.【解答】解:∵p:x<﹣3或x>1;q:x<﹣2或x>1,∴¬p:﹣3≤x≤1,¬q:﹣2≤x≤1,根据充分必要条件的定义可判断:¬p是¬q的必要不充分条件,故答案为:必要不充分.12.loga<1(a>0且a≠1),a的取值范围为a>1,或0<a<.【考点】对数函数的单调性与特殊点.【分析】当a>1 时,∵<0,故不等式成立,当 0<a<1 时,不等式即<logaa,依据单调性解a的取值范围.【解答】解:∵<1,当a>1 时,∵<0,故不等式成立.当 0<a<1 时,不等式即<logaa,∴0<a<,综上,a的取值范围为 a>1,或0<a<,故答案为:a>1,或0<a<.13.若2a=5b=10,则等于 1 .【考点】对数的运算性质.【分析】根据对数的运算性质和对数的定义即可求出.【解答】解:2a=5b=10,∴a=log210,b=log510,∴=lg2, =lg5,∴=+=lg2+lg5=1,故答案为:1.14.曲线和y=x2在它们的交点处的两条切线与x轴所围成的三角形的面积是.【考点】直线的点斜式方程.【分析】本题可以先求出交点坐标,再求解交点处的两个方程,然后分别解出它们与x轴的交点坐标,计算即可.【解答】解:联立方程解得曲线和y=x2在它们的交点坐标是(1,1),则易得两条切线方程分别是y=﹣x+2和y=2x﹣1,y=0时,x=2,x=,于是三角形三顶点坐标分别为(1,1);(2,0);(,0),s=×,即它们与x轴所围成的三角形的面积是.15.设函数,其中[x]表示不超过x的最大整数,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是[,).【考点】函数的零点与方程根的关系.【分析】画图可知f(x)就是周期为1的函数,且在[0,1)上是一直线y=x的对应部分的含左端点,不包右端点的线段,要有三解,只需直线y=kx+k过点(3,1)与直线y=kx+k过点(2,1)之间即可.【解答】解:∵函数,∴函数的图象如下图所示:∵y=kx+k=k(x+1),故函数图象一定过(﹣1,0)点若f(x)=kx+k有三个不同的根,则y=kx+k与y=f(x)的图象有三个交点当y=kx+k过(2,1)点时,k=,当y=kx+k过(3,1)点时,k=,故f(x)=kx+k有三个不同的根,则实数k的取值范围是[,)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(x+).求:(1)f(﹣8);(2)f(x)在R上的解析式.【考点】函数奇偶性的性质.【分析】(1)根据解析式先求出f(8),由奇函数的性质求出f(﹣8);(2)设x<0则﹣x>0,代入解析式化简得f(﹣x),由奇函数的性质求出f(x),利用分段函数表示出f(x).【解答】解:(1)∵当x∈[0,+∞)时,f(x)=x(x+),∴f(8)=8×(8+)=80,∵f(x)是R上的奇函数,∴f(﹣8)=﹣f(8)=﹣80;(2)设x<0,则﹣x>0,∵当x∈[0,+∞)时,f(x)=x(x+),∴f(﹣x)=﹣x(﹣x﹣)=x(x+),∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x)=﹣x(x+),综上得,.(﹣x2﹣2x+8).17.已知函数f(x)=log2(1)求f(x)的定义域和值域;(2)写出函数f(x)的单调区间.【考点】对数函数的图象与性质.【分析】(1)由﹣x2﹣2x+8>0,能求出f(x)的定义域,设μ(x)=﹣x2﹣2x+8=﹣(x+1)2+9,由此能求出f(x)的值域.(2)由y=logx是增函数,而μ(x)在[﹣1,2)上递减,在(﹣4,﹣1]上递增,能求出f(x)的单调2区间.(﹣x2﹣2x+8),【解答】解:(1)∵f(x)=log2∴﹣x2﹣2x+8>0,解得﹣4<x<2,∴f(x)的定义域为(﹣4,2).设μ(x)=﹣x2﹣2x+8=﹣(x+1)2+9,∵﹣4<x<2,∴μ(x)∈(0,9],9].∴f(x)的值域为(﹣∞,log2x是增函数,而μ(x)在[﹣1,2)上递减,在(﹣4,﹣1]上递增,(2)∵y=log2∴f(x)的单调递减区间为[﹣1,2),单调递增区间为(﹣4,﹣1].18.设命题p:∀x∈[1,2],﹣lnx﹣a≥0,命题q:∃x0∈R,使得x2+2ax﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.【考点】复合命题的真假.【分析】命题p:,令,利用导数研究其单调性极值与最值,即可得出;命题q:x2+2ax﹣8﹣6a≤0解集非空,△=≥0,基础a的范围.命题“p或q”是真命题,命题“p且q”是假命题,p真q假或p假q真.即可得出.【解答】解:命题p:,令,=,∴fmin(x)=f(1)=,∴.命题q:x2+2ax﹣8﹣6a≤0解集非空,△=4a2+24a+32≥0,∴a≤﹣4,或a≥﹣2.命题“p或q”是真命题,命题“p且q”是假命题,p真q假或p假q真.(1)当p真q假,﹣4<a<﹣2;(2)当p假q真,综合,a的取值范围.19.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(Ⅰ)试写出y关于x的函数关系式;(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?【考点】根据实际问题选择函数类型;利用导数求闭区间上函数的最值.【分析】(Ⅰ)设出相邻桥墩间距x米,需建桥墩个,根据题意余下工程的费用y为桥墩的总费用加上相邻两墩之间的桥面工程总费用即可得到y的解析式;(Ⅱ)把m=640米代入到y的解析式中并求出y′令其等于0,然后讨论函数的增减性判断函数的最小值时m的值代入中求出桥墩个数即可.【解答】解:(Ⅰ)相邻桥墩间距x米,需建桥墩个则(Ⅱ)当m=640米时,y=f (x )=640×(+)+1024f ′(x )=640×(﹣+)=640×∵f ′(26)=0且x >26时,f ′(x )>0,f (x )单调递增,0<x <26时,f ′(x )<0,f (x )单调递减 ∴f (x )最小=f (x )极小=f (26)=8704∴需新建桥墩个.20.已知函数f (x )=x ﹣1+(a ∈R ). (1)若曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值;(3)当a=1时,若直线l :y=kx ﹣1与曲线y=f (x )没有公共点,求k 的最大值. 【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. 【分析】(1)求出原函数的导函数,依题意f ′(1)=0,从而可求得a 的值;(2)f ′(x )=1﹣,分①a ≤0时②a >0讨论,可知f (x )在∈(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增,从而可求其极值;(3)令g (x )=f (x )﹣(kx ﹣1)=(1﹣k )x+,则直线l :y=kx ﹣1与曲线y=f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解,分k >1与k ≤1讨论即可得答案.【解答】解:(1)由,得f ′(x )=1﹣,∴f ′(1)=1﹣,由曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,得,即a=e ;(2)由f ′(x )=1﹣,知若a ≤0,则f ′(x )>0,函数f (x )在实数集内为增函数,无极值; 若a >0,由f ′(x )=1﹣=0,得x=lna ,当x ∈(﹣∞,lna )时,f ′(x )<0,当x ∈(lna ,+∞)时,f ′(x )>0. ∴f (x )在(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增;(3)当a=1时,f (x )=x ﹣1+,令g (x )=f (x )﹣(kx ﹣1)=(1﹣k )x+,则直线l :y=kx ﹣1与曲线y=f (x )没有公共点, 等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,g ()=﹣1+<0,又函数g (x )的图象连续不断,由零点存在定理可知g (x )=0在R 上至少有一解, 与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k=1时,g (x )=>0,知方程g (x )=0在R 上没有实数解.∴k 的最大值为1.21.设函数f (x )=x 2+aln (x+1). (Ⅰ)求函数f (x )的单调区间;(Ⅱ)若函数F (x )=f (x )+ln有两个极值点x 1,x 2且x 1<x 2,求证F (x 2)>.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)由函数f (x )的定义域为(﹣1,+∞),=,令g (x )=2x 2+2x+a ,则△=4﹣8a .由根的判断式进行分类讨论,能求出函数f (x )的单调区间.(Ⅱ)由F ′(x )=f ′(x ),知函数F (x )有两个极值点时,0<a <,0<<1,由此推导出x 2=∈(﹣,0),且g (x 2)=0,即a=﹣(2+2x 2),F (x 2)=﹣()ln(1+x 2)+ln,构造函数h (x )=x 2﹣(2x 2+2x )ln (1+x )+ln,能够证明F (x 2)>.【解答】解:(Ⅰ)函数f (x )的定义域为(﹣1,+∞),=,(x >﹣1),令g (x )=2x 2+2x+a ,则△=4﹣8a . ①当△<0,即a时,g (x )>0,从而f ′(x )>0,故函数f (x )在(﹣1,+∞)上单调递增;②当△=0,即a=时,g (x )≥0,此时f ′(x )≥0,此时f ′(x )在f ′(x )=0的左右两侧不变号, 故函数f (x )在(﹣1,0)上单调递增;③当△>0,即a <时,g (x )=0的两个根为,,当,即a ≤0时,x 1≤﹣1,当0<a <时,x 1>﹣1.故当a ≤0时,函数f (x )在(﹣1,)单调递减,在(,+∞)单调递增;当0<a <时,函数f (x )在(﹣1,),(,+∞)单调递增,在(,)单调递减.(Ⅱ)∵F (x )=f (x )+ln,∴F ′(x )=f ′(x ),∴当函数F (x )有两个极值点时0<a <,0<<1,故此时x 2=∈(﹣,0),且g (x 2)=0,即a=﹣(2+2x 2),∴F (x 2)=+aln (1+x 2)+ln=﹣()ln (1+x 2)+ln,设h (x )=x 2﹣(2x 2+2x )ln (1+x )+ln,其中﹣,则h ′(x )=2x ﹣2(2x+1)ln (1+x )﹣2x=﹣2(2x+1)ln (1+x ),由于﹣时,h ′(x )>0,故函数h (x )在(﹣,0)上单调递增,故h (x ).h (﹣)=.∴F (x 2)=h (x 2)>.。

山东省济宁市2019届高三数学第一次模拟考试试题理(含解析)

山东省济宁市2019届高三数学第一次模拟考试试题理(含解析)

山东省济宁市2019届高三数学第一次模拟考试试题理(含解析)2019.3第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合则( )A. [1,3]B. (1,3]C. [2,3]D. [-l,+∞)【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={x|y=ln(x﹣1)}={x|x>1},∴A∩B={x|1<x≤3}=(1,3].故选:B.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.若复数,其中i为虚数单位,则下列结论正确的是( )A. z的虚部为B.C. 为纯虚数D. z的共轭复数为【答案】AC【解析】【分析】利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案【详解】∵z,∴z的虚部为﹣1,|z|,z2=(1﹣i)2=﹣2i为纯虚数,z的共轭复数为1+i.,故选:AC.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.执行如图所示的程序框图,若输入a的值为,则输出的S的值是( )A. B.C. D.【答案】C【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得a=﹣1,S=0,k=1满足条件k<5,执行循环体,S=﹣1,a=1,k=2满足条件k<5,执行循环体,S,a=3,k=3满足条件k<5,执行循环体,S,a=5,k=4满足条件k<5,执行循环体,S,a=7,k=5此时,不满足条件k<5,退出循环,输出S的值为.故选:C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.若变量满足则的最大值是( )A. B. 1 C. 2 D.【答案】D【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的一般式,通过圆心到直线的距离,求解即可.【详解】由变量x,y满足作出可行域如图,化z=2x+y为2x+y﹣z=0,由图可知,当直线y=﹣2x+z与圆相切于A时,直线在y轴上的截距最大,z最大,此时.z.故选:D.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.函数是定义在R上的奇函数,且若则( )A. B. 9 C. D. 0【答案】A【解析】【分析】由函数的奇偶性可知f(﹣x)=﹣f(x),将f(1+x)=f(1﹣x)变形可得f(﹣x)=f (2+x),综合分析可得f(x+4)=f(x),即函数f(x)是周期为4的周期函数,据此可得f(2019)=﹣f(1),即可得答案.【详解】根据题意,函数f(x)是定义在R上的奇函数,则f(﹣x)=﹣f(x),又由f(1+x)=f(1﹣x),则f(﹣x)=f(2+x),则有f(x+2)=﹣f(x),变形可得f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(2019)=f(﹣1+505×4)=f(﹣1)=﹣f(1)=﹣9;故选:A.【点睛】本题考查抽象函数的应用,涉及函数的周期性,奇偶性,关键是分析函数f(x)的周期性,是中档题.6.已知平面,直线,满足,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】D【解析】【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【详解】当m∥n时,若,则充分性不成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的既不充分也不必要条件.故选:D.【点睛】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.若则( )A. B. C. D.【答案】A【解析】【分析】直接利用三角函数的诱导公式和同角三角函数关系式的应用求出结果.【详解】sinx=3sin(x-)=﹣3cosx,解得:tanx=﹣3,所以:cosxcos(x)=﹣sinxcosx==,故选:A.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,诱导公式,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.8.如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】结合图形及统计的基础知识逐一判定即可.【详解】7天假期的楼房认购量为:91、100、105、107、112、223、276;成交量为:8、13、16、26、32、38、166.对于①,日成交量的中位数是26,故错;对于②,日平均成交量为:,有1天日成交量超过日平均成交量,故错;对于③,根据图形可得认购量与日期不是正相关,故错;对于④,10月7日认购量的增幅大于10月7日成交量的增幅,正确.故选:B【点睛】本题考查了统计的基础知识,解题关键是弄清图形所表达的含义,属于基础题,9.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为( )A.B.C.D.【答案】A【解析】【分析】先将几何体的三视图转换为几何体进一步求出几何体的外接球半径,最后求出体积.【详解】根据几何体的三视图转换为几何体为:下底面为等腰三角形腰长为,高为2的直三棱柱,故外接球的半径R,满足,解得:R=,所以:V=.故选:A.【点睛】本题考查的知识要点:三视图和几何体的转换,几何体的体积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.已知函数的零点构成一个公差为的等差数列,把函数的图象沿轴向右平移个单位,得到函数的图象.关于函数,下列说法正确的是( ) A. 在上是增函数 B. 其图象关于直线对称C. 函数是偶函数D. 在区间上的值域为【解析】【分析】化简f(x)=2sin(ωx),由三角函数图象的平移得:g(x)=2sin2x,由三角函数图象的性质得y=g(x)的单调性,对称性,再由x时,求得函数g(x)值域得解.【详解】f(x)=sinωx cosωx=2sin(ωx),由函数f(x)的零点构成一个公差为的等差数列,则周期T=π,即ω=2,即f(x)=2sin(2x),把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)的图象,则g(x)=2sin[2(x)]=2sin2x,当≤2x≤,即≤x≤, y=g(x)是减函数,故y=g(x)在[,]为减函数,当2x=即x(k∈Z),y=g(x)其图象关于直线x(k∈Z)对称,且为奇函数,故选项A,B,C错误,当x时,2x∈[,],函数g(x)的值域为[,2],故选项D正确,故选:D.【点睛】本题考查了三角函数图象的平移、三角函数图象的性质及三角函数的值域,熟记三角函数基本性质,熟练计算是关键,属中档题11.已知双曲线的左、右焦点分别为,实轴长为4,渐近线方程为,点N在圆上,则的最小值为( ) A. B. 5 C. 6 D. 7【解析】【分析】求得双曲线的a,b,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接CF2,交双曲线于M,圆于N,计算可得所求最小值.【详解】由题意可得2a=4,即a=2,渐近线方程为y=±x,即有,即b=1,可得双曲线方程为y2=1,焦点为F1(,0),F2,(,0),由双曲线的定义可得|MF1|=2a+|MF2|=4+|MF2|,由圆x2+y2﹣4y=0可得圆心C(0,2),半径r=2,|MN|+|MF1|=4+|MN|+|MF2|,连接CF2,交双曲线于M,圆于N,可得|MN|+|MF2|取得最小值,且为|CF2|3,则则|MN|+|MF1|的最小值为4+3﹣2=5.故选:B.【点睛】本题考查双曲线的定义、方程和性质,考查圆的方程的运用,以及三点共线取得最值,考查数形结合思想和运算能力,属于中档题.12.已知当时,关于的方程有唯一实数解,则所在的区间是( )A. (3,4)B. (4,5)C. (5,6)D. (6.7)【答案】C【解析】【分析】把方程xlnx+(3﹣a)x+a=0有唯一实数解转化为有唯一解,令f(x)(x>1),利用导数研究其最小值所在区间得答案.【详解】由xlnx+(3﹣a)x+a=0,得,令f(x)(x>1),则f′(x).令g(x)=x﹣lnx﹣4,则g′(x)=10,∴g(x)在(1,+∞)上为增函数,∵g(5)=1﹣ln5<0,g(6)=2﹣ln6>0,∴存在唯一x0∈(5,6),使得g(x0)=0,∴当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.则f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C【点睛】本题考查利用导数研究函数的单调性,考查函数零点的判定,考查数学转化思想方法,熟练运用零点存在定理得x0﹣lnx0﹣4=0并反代入f(x0)是本题关键,属中档题.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为______.【答案】32【解析】【分析】根据条件求出样本间隔,即可得到结论.【详解】样本间隔为23﹣14=9,则第一个编号为5,第四个编号为14+2×9=14+18=32,故答案为:32【点睛】本题主要考查系统抽样的应用,熟记系统抽样的原则与方法,求出样本间隔是解决本题的关键.比较基础.14.的展开式中,的系数为______.(用数字作答).【答案】80【解析】【分析】把(x﹣2y)5按照二项式定理展开,可得(2x+y)(x﹣2y)5的展开式中,x2y4的系数.【详解】∵(2x+y)(x﹣2y)5=(2x+y)(x5﹣10x4y+40x3y2﹣80x2y3+80xy4﹣32y5),∴x2y4的系数为2×80﹣80=80,故答案为:80.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,项的系数的性质,属于基础题.15.如图所示,在正方形OABC内随机取一点,则此点取自黑色部分的概率为______.【答案】【解析】【分析】结合定积分计算阴影部分平面区域的面积,再根据几何概型概率计算公式易求解.【详解】正方形的面积为e2,由lnxdx=(xlnx﹣x)1,由函数图像的对称性知黑色区域面积为2lnxdx=2即S阴影=2,故此点取自黑色部分的概率为,故答案为:【点睛】本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.16.在△ABC中,记若.则sinA的最大值为______.【答案】【解析】【分析】把给定的,用基础向量,来表示,借助余弦定理和基本不等式求出cosA的最小值,从而得sinA的最大值.【详解】∵在△ABC中,记334,,⊥,∴5•40cosA,当且仅当时取到等号.又因为sin2A+cos2A=1,所以sinA的最大值为.故答案为【点睛】本题考查向量向量基本定理,余弦定理,基本不等式的应用,熟练运用向量向量基本定理及余弦定理,合理构造基本不等式是关键,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.等差数列的公差为正数,,其前项和为;数列为等比数列,,且.(I)求数列与的通项公式;(II)设,求数列的前项和.【答案】(Ⅰ) ,;(Ⅱ) .【解析】【分析】(Ⅰ)等差数列{a n}的公差d为正数,数列{b n}为等比数列,设公比为q,运用等差数列和等比数列的通项公式和求和公式,解方程可得公差和公比,即可得到所求通项公式;(Ⅱ)求得c n=b n2n2n+2(),数列的分组求和和裂项相消求和,化简整理即可得到所求和.【详解】解:(Ⅰ)设等差数列的公差为d,等比数列的公比为q,则解得∴,.(Ⅱ)由(Ⅰ)知.∴,∴.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的分组求和和裂项相消求和,考查化简整理的运算能力,属于中档题.18.如图,在四棱锥P—ABCD中,底面ABCD为平行四边形,底面ABCD,.(I)求证:平面PCA⊥平面PCD;(II)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】【分析】(Ⅰ)推导出CD⊥AC,PA⊥CD,从而CD⊥平面PCA,由此能证明平面PCA⊥平面PCD.(Ⅱ)以A为坐标原点,AB,AC,AP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角E﹣AB﹣D的余弦值.【详解】解:(Ⅰ)在平行四边形ABCD中,∠ADC=60°,,,由余弦定理得,∴,∴∠ACD=90°,即CD⊥AC,又PA⊥底面ABCD,CD底面ABCD,∴PA⊥CD,又,∴CD⊥平面PCA.又CD平面PCD,∴平面PCA⊥平面PCD.(Ⅱ)如图,以A为坐标原点,AB,AC,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.则,,,,.设,,则∴x=0,,,即点E的坐标为∴又平面ABCD的一个法向量为∴sin45°解得∴点E的坐标为,∴,,设平面EAB的法向量为由得令z=1,得平面EAB的一个法向量为∴.又二面角E-AB-D的平面角为锐角,所以,二面角E-AB-D的余弦值为【点睛】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率.(I)求频率分布直方图中的值;(II)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;(III)由频率分布直方图可以认为,该校学生的体重近似服从正态分布,其中若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.【答案】(Ⅰ)a=0.004,b=0.026,c=0007;(Ⅱ)详见解析;(Ⅲ)正常.【解析】【分析】(Ⅰ)由茎叶图中的数据,用样本的频率估计总体的频率,求得对应的概率值,再计算a、b、c的值;(Ⅱ)用由题意知随机变量X服从二项分布B(3,0.7),计算对应的概率值,写出分布列,求出数学期望值;(Ⅲ)由题意知ξ服从正态分布N(60,25),计算P(μ﹣2σ≤ξ<μ+2σ)的值,再判断学生的体重是否正常.【详解】解:(Ⅰ)由图(2)知,100名样本中体重低于50公斤的有2人,用样本的频率估计总体的概率,可得体重低于50公斤的概率为,则,在上有13人,该组的频率为0.13,则,所以,即c=0.07.(Ⅱ)用样本的频率估计总体的概率,可知从全体学生中随机抽取一人,体重在的概率为0.07×10=0.7,随机抽取3人,相当于三次独立重复试验,随机变量X服从二项分布,则,,,,所以,X的概率分布列为:E(X)=3×0.7=2.1(Ⅲ)由N(60,25)得由图(2)知.所以可以认为该校学生的体重是正常的.【点睛】本题考查了茎叶图与频率分布直方图的应用问题,也考查了概率分布与数学期望的计算问题,熟记频率分布直方图性质,熟练计算二项分布是关键,是中档题.20.已知椭圆的离心率为,且椭圆C过点.(I)求椭圆C的方程;(II)设椭圆C的右焦点为F,直线与椭圆C相切于点A,与直线相交于点B,求证:的大小为定值.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】【分析】(Ⅰ)由题意可知,解得a2=3,b2=2,即可求出椭圆C的方程,(Ⅱ)显然直线l的斜率存在,设l:y=kx+m,联立,根据直线l与椭圆相切,利用判别式可得m2=3k2+2,求出点A,B的坐标,根据向量的运算可得可得•0,即∠AFB=90°,故∠AFB的大小为定值.【详解】解:(Ⅰ)∵椭圆C过点,∴①∵离心率为∴②又∵③由①②③得,,.∴椭圆C的方程为C:.(Ⅱ)显然直线l的斜率存在,设l:y=kx+m.由消y得由得.∴∴∴切点A的坐标为又点B的坐标为,右焦点F的坐标为,∴,,∴∴∠AFB=90°,即∠AFB的大小为定值.【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,准确转化题目,准确计算切点坐标是关键,属于中档题.21.已知函数.(I)讨论的单调性;(II)若时,恒成立,求实数的取值范围.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)通过讨论a的范围,结合函数的单调性求出函数的最小值,从而确定a的范围即可.【详解】解:(Ⅰ)函数f(x)的定义域为,,①当时,,f(x)在上为增函数.②当a>0时,由得;由得,所以f(x)在上为减函数,在上为增函数.综上所述,①当时,函数f(x)在上为增函数②当a>0时,f(x)在上为减函数,在上为增函数.(Ⅱ)①当a=0时,因为,所以恒成立,所以a=0符合题意.②当a<0时,,因为,所以不恒成立,舍去.③当a>0时,由(Ⅰ)知f(x)在上为减函数,f(x)在上为增函数.下面先证明:.设,因为,所以p(a)在上为增函数.所以,因此有.所以f(x)在上为增函数.所以.设,则,.由得;由得.所以在上为减函数,在上为增函数.所以.所以q(a)在上为增函数,所以.所以.所以恒成立.故a>0符合题意.综上可知,a的取值范围是.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系中,已知点M的直角坐标为(1,0),直线的参数方程为(t为参数);以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(I)求直线的普通方程和曲线C的直角坐标方程;(II)直线和曲线C交于A,B两点,求的值.【答案】(Ⅰ)直线l的普通方程为,曲线C的直角坐标方程为;(Ⅱ)1.【解析】【分析】(Ⅰ)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用一元二次方程根和系数的关系求出结果.【详解】解:(Ⅰ)将中的参数t消去可得:由得,由可得:所以直线l的普通方程为,曲线C的直角坐标方程为(Ⅱ)将代入得:设A,B两点对应的参数分别为,,则,所以【点睛】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.已知函数.(1)当时,解不等式;(2)若的值域为[2,+∞),求证:.【答案】(1)或;(2)详见解析.【解析】【分析】(1)代入a,b的值,通过讨论x的范围,求出不等式的解集即可;(2)求出a+b=2,根据绝对值不等式的性质证明即可.【详解】(1)解:当a=b=1时,i)当时,不等式可化为:,即,所以ii)当时,不等式可化为:2>x+2,即x<0,所以iii)当x>1时,不等式可化为:2x>x+2,即x>2,所以x>2综上所述:不等式的解集为(2)证明,∵f(x)的值域为,∴a+b=2,∴a+1+b+1=4∴,当且仅当,即a=b=1时取“=”即.【点睛】本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,熟练利用绝对值三角不等式得到a,b的关系是关键,是一道中档题.21。

山东济宁2019高三下3月第一次重点考试-数学(理)

山东济宁2019高三下3月第一次重点考试-数学(理)

山东济宁2019高三下3月第一次重点考试-数学(理)数学(理工类)试题 2018,3参考公式:假如事件A 、B 互斥,那么P(A+B)=P(A)+P(B)、 假如事件A 、B 独立,那么P(A ·B)=P(A)·P(B)、第I 卷(选择题共60分)【一】选择题:本大题共l2小题、每题5分。

共60分、在每题给出的四个选项中。

只有一项为哪一项符合题目要求的、 1、复数21i z ()i=-,那么复数1z +在复平面上对应的点位于 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、全集U=R ,集合A={21y |y ln(x ),x R =+∈},集合B={21x ||x |-≤},那么如下图的阴影部分表示的集合是 A 、{01>3x |x x ≤<或} B 、{|0<1x x ≤} C 、{|>3x x } D 、{|13x x ≤≤}①设有一个回归方程y =2—3x ,变量x 增加一个单位时,y 平均增加3个单位; ②命题P :“2000,--1>0x R x x ∃∈”的否定⌝P :“,102x R x -x-∀∈≤”;③设随机变量X 服从正态分布N(0,1),假设P(X>1)=p ,那么P(-1<X<0)=12-p ;④在一个2×2列联表中,由计算得k 2=6、679,那么有99%的把握确认这两个变量间有关系、A 、1个B 、2个C 、3个D 、4个4、平面四边形ABCD 中+=0,(-)=0AB CD AB AD AC ,那么四边形ABCD 是 A 、矩形B 、正方形C 、菱形D 、梯形5、()f x 是定义在R 上的奇函数,假设关于x ≥0,都有f (x +2)=()f x ,且当[0,2]x ∈时,()=-1x f x e ,那么(2013)+(-2014)f f = A 、1-eB 、e-1、C 、-l-eD 、e+l6、假如右边程序框图的输出结果是6,那么在判断框中①表示的“条件”应该是A 、i ≥3B 、i ≥4C 、i ≥5D 、i ≥67、设x ,y 满足约束条件23-1+1x x y y x ≥⎧⎪≥⎨⎪≥⎩,假设目标函数=+(>0,>0)z ax by a b 的最小值为2,那么ab 的最大值为 A 、1B 、12C 、14D 、168、m ,n 是空间两条不同的直线,,,αβγ是三个不同的平面,那么以下命题正确的选项是A 、假设//αβ,m α⊂,n β⊂,那么//m nB 、假设=,=,//m n m n αγβγ,那么//αβ C 、假设,,m βαβ⊂⊥那么m α⊥D 、假设,//,m m βα⊥那么αβ⊥9、某大学的8名同学预备拼车去旅游,其中大【一】大【二】大【三】大四每个年级各两名,分乘甲、乙两辆汽车。

山东省济宁市2019届高三数学第一次模拟考试试题理201903130327

山东省济宁市2019届高三数学第一次模拟考试试题理201903130327

2018—2019学年度济宁市高考模拟考试数学(理工类)试题2019.3本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}2230,ln 1,A x x x B x y x A B =--≤==-⋂=则A ,[1,3] B .(1,3] c .[2,3] D .[-l ,+∞)2.若复数,其中i 为虚数单位,则下列结论正确的是 21z i=+A .z 的虚部为 B .1-2z =C .为纯虚数D .z 的共轭复数为2z 1i --3.执行如图所示的程序框图,若输入a 的值为,则1-输出的S 的值是 A . B .12-12C .D .7463204.若变量满足的最大,x y 221020x y x z x y y ⎧+≤⎪≥=+⎨⎪≥⎩,则值是 A .B .1C .2D5.函数是定义在R 上的奇函数,且 ()f x ()()()()11,19,2019f x f x f f +=-==若则A .B .9C .D .09-3-6.已知平面,直线,满足,则“”是“”的 α,m n n α⊂//m n //m αA .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.若 sin 3sin cos cos 22x x x x ππ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,则A .B .c .D . 310310-3434-8.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为A .0B .1C .2D .39.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为AB C . 6πD .8π10.已知函数的零点构成一个公差为的等差数列,把()()sin 0f x x x ωωω=+>2π函数的图象沿轴向右平移个单位,得到函数的图象.关于函数,下()f x x 6π()g x ()g x 列说法正确的是 A .在上是增函数B .其图象关于直线对称,42ππ⎡⎤⎢⎥⎣⎦2x π=C .函数是偶函数D .在区间上的值域为 ()g x 2,63ππ⎡⎤⎢⎥⎣⎦2⎡⎤⎣⎦11.已知双曲线的左、右焦点分别为,实轴长为4,渐()2222:10x y C a b a b-=>0,>12F F 、近线方程为,点N 在圆上,则的121,42y x MF MF =±-=2240x y y +-=1MN MF +最小值为A .B .5C .6D .7212.已知当时,关于的方程有唯一实数解,则所在()1,x ∈+∞x ()ln 30x x a x a +-+=a 的区间是 A .(3,4)B .(4,5)C .(5,6)D .(6.7)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为 ▲ .14.的展开式中,的系数为()()522x y x y +-24x y ▲ .(用数字作答).15.如图所示,在正方形OABC 内随机取一点,则此点取自黑色部分的概率为 ▲ .16.在△ABC 中,记.则3,.m CB AC n CB m n =-=⊥若sinA 的最大值为 ▲ .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本小题满分12分)等差数列的公差为正数,,其前项和为;数列为等比数列,, {}n a 11a =n n S {}n b 12b =且.222312,10b S b S =+=(I)求数列的通项公式; {}{}n n a b 与(Ⅱ)设,求数列的前项和. 1n n nc b S =+{}n c n n T18.(本小题满分12分)如图,在四棱锥P—ABCD 中,底面ABCD 为平行四边形,底面ABCD ,PA ⊥.60,3ABC AB AD AP ∠==== (I)求证:平面PCA ⊥平面PCD ; (Ⅱ)设E 为侧棱PC 上的一点,若直线BE 与底面ABCD 所成的角为45°,求二面角的余弦值. E AB D --19.(本小题满分12分)某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率. (I)求频率分布直方图中的值;,,a b c (Ⅱ)从全校学生中随机抽取3名学生,记X 为体重在[55,65)的人数,求X 的概率分布列和数学期望;(III)由频率分布直方图可以认为,该校学生的体重近似服从正态分布,其中ξ()2,Nμσ,则认为该校学生的体重是正常()260,25.220.9545P μσμσξμσ==-≤<+>若的.试判断该校学生的体重是否正常?并说明理由.20.(本小题满分12分)已知椭圆,且椭圆C 过点.()222210x y C a b a b +=>>:P ⎛ ⎝(I)求椭圆C 的方程;(Ⅱ)设椭圆C 的右焦点为F ,直线与椭圆C 相切于点A ,与直线相交于点B ,求证:l 3x =的大小为定值. AFB ∠21.(本小题满分12分)已知函数. ()()ln 1f x x a x a a R =-+-∈(I)讨论的单调性;()f x (Ⅱ)若恒成立,求实数的取值范围.)(),0ax e f x ⎡∈+∞≥⎣时,a(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,已知点M 的直角坐标为(1,0),直线的参数方程为(txOy l 1x y ⎧=+⎪⎪⎨⎪=⎪⎩为参数);以坐标原点O 为极点,轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程x 为.2sin2cos p θθ=(I)求直线的普通方程和曲线C 的直角坐标方程; l (Ⅱ)直线和曲线C 交于A ,B 两点,求的值.l 2211MAMB+23.(本小题满分10分)选修4—5:不等式选讲 已知函数. ()()0,0f x x a x b a b =-++>>(I)当时,解不等式; 1a b ==()2f x x >+(Ⅱ)若的值域为[2,+∞),求证:. ()f x 11111a b +≥++。

山东省济宁市2019届高三下学期3月第一次模拟考试物理试题 Word版含答案

山东省济宁市2019届高三下学期3月第一次模拟考试物理试题 Word版含答案

2018—2019学年度济宁市高考模拟考试理科综合能力测试2019.03可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 S 32 C1 35.5 P 31 Ca 40Pb 207第I 卷一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

二、选择题:本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中。

第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求,全部选对的得6分。

选对但不全的得3分,有选错的得0分。

14.日本福岛核事故是世界上最大的核事故之一,2019年2月13日首次“触及”到了该核电站内部的核残渣,其中部分残留的放射性物质的半衰期可长达1570万年。

下列有关说法正确的是A .23892U 衰变成20682Pb 要经过4次β衰变和7次α衰变B .天然放射现象中产生的α射线的速度与光速相当,穿透能力很强C .将由放射性元素组成的化合物进行高温分解,会改变放射性元素的半衰期D .放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的15.据报道,2020年我国将发射首颗“人造月亮”,其亮度是月球亮度的8倍,可为城市提供夜间照明。

假设“人造月亮”在距离地球表面500km 的轨道上绕地球做匀速圆周运动(不计地球自转的影响),下列有关“人造月亮”的说法正确的是A .发射速度小于第一宇宙速度B .角速度大于月球绕地球运行的角速度C .向心加速度大于地球表面的重力加速度D .在运行轨道上处于完全失重状态,重力加速度为016.如图所示,质量为m 的长木板放在水平地面上,站在木板上的人用斜向右下方的力F 推箱子,三者都保持静止。

人和箱子的质量也均为m ,重力加速度为g 。

下列说法正确的是A .人对长木板的压力大小为mgB .长木板对地面的压力大于3mgC .箱子受到的摩擦力的方向水平向左D .地面对长木板的摩擦力的方向水平向左17.如图所示,两电荷量分别为-Q 和+2Q 的点电荷固定在直线MN 上,两者相距为L ,以+2Q 的点电荷所在位置为圆心、2L 为半径画圆,a 、b 、c 、d 是圆周上四点,其中a 、b 在MN 直线上,c 、d 两点连线垂直于MN ,下列说法正确的是A .c 、d 两点的电势相同B .a 点的电势高于b 点的电势C .c 、d 两点的电场强度相同D .a 点的电场强度小于b 点的电场强度18.如图所示,理想变压器原线圈接一正弦交变电源,其电压的有效值恒定不变,两个副线圈的匝数分别为n 1和n 2,所接电阻分别为R 1和R 2,且R 2=2R 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018—2019学年度济宁市高考模拟考试
数学(理工类)试题
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:
1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.
第I 卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{}(){}
2
230,ln 1,A x x x B x y x A B =--≤==-⋂=则
A ,[1,3]
B .(1,3] c .[2,3] D .[-l ,+∞)
2.若复数2
1z i
=
+,其中i 为虚数单位,则下列结论正确的是 A .z 的虚部为1- B .2z =
C .2
z 为纯虚数
D .z 的共轭复数为1i --
3.执行如图所示的程序框图,若输入a 的值为1-,则输出的S 的值是 A .12
- B .
12 C .
74
D .6320
4.若变量,x y 满足2210
20x y x z x y y ⎧+≤⎪
≥=+⎨⎪≥⎩
,则的最大值是 A

B .1
C .2
D
5.函数()f x 是定义在
R
上的奇函数,且
()()()()11,19,2019f x f x f f +=-==若则
A .9-
B .9
C .3-
D .0
6.已知平面α,直线,m n ,满足n α⊂,则“//m n ”是“//m α”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件
D .既不充分也不必要条件
7.若sin 3sin cos cos 22x x x x ππ⎛⎫

⎫=-+= ⎪ ⎪⎝
⎭⎝
⎭,则 A .
310
B .310
-
c .
34
D .34
-
8.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为
A .0
B .1
C .2
D .3
9.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为
A .
3
B C .6π D .8π
10.已知函数()()sin 0f x x x ωωω=>的零点构成一个公差为2
π
的等差数列,把函数()f x 的图象沿x 轴向右平移
6
π
个单位,得到函数()g x 的图象.关于函数()g x ,下列说法
正确的是 A .在,42ππ⎡⎤

⎥⎣⎦
上是增函数
B .其图象关于直线2
x π
=
对称
C .函数()g x 是偶函数
D .在区间2,63ππ⎡⎤

⎥⎣⎦
上的值域为2⎡⎤⎣⎦ 11.已知双曲线()22
22:10x y C a b a b
-=>0,>的左、右焦点分别为12F F 、,实轴长为4,渐近
线方程为121
,42
y x MF MF =±-=,点N 在圆2240x y y +-=上,则1MN MF +的最小值为
A .2+
B .5
C .6
D .7
12.已知当()1,x ∈+∞时,关于x 的方程()ln 30x x a x a +-+=有唯一实数解,则a 所在的区间是 A .(3,4)
B .(4,5)
C .(5,6)
D .(6.7)
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为 ▲ .
14.()()5
22x y x y +-的展开式中,24
x y 的系数为
▲ .(用数字作答).
15.如图所示,在正方形OABC 内随机取一点,则此点取自黑色部分的概率为 ▲ .
16.在△ABC 中,记3,.m CB AC n CB m n =-=⊥若.则sinA 的最大值为 ▲ .
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)
等差数列{}n a 的公差为正数,11a =,其前n 项和为n S ;数列{}n b 为等比数列,12b =, 且222312,10b S b S =+=. (I)求数列{}{}n n a b 与的通项公式; (Ⅱ)设1
n n n
c b S =+,求数列{}n c 的前n 项和n T .
18.(本小题满分12分)
如图,在四棱锥P —ABCD 中,底面ABCD 为平行四边形,
PA ⊥
底面ABCD ,60,3ABC AB AD AP ∠===. (I)求证:平面PCA ⊥平面PCD ;
(Ⅱ)设E 为侧棱PC 上的一点,若直线BE 与底面ABCD 所成的角为45°,求二面角E AB D --的余弦值.
19.(本小题满分12分)
某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率.
(I)求频率分布直方图中,,a b c 的值;
(Ⅱ)从全校学生中随机抽取3名学生,记X 为体重在[55,65)的人数,求X 的概率分布列和数学期望;
(III)由频率分布直方图可以认为,该校学生的体重ξ近似服从正态分布()
2
,N μσ,其中
()260,25.220.9545
P μσμσξμσ==-≤<+>若,则认为该校学生的体重是正常的.试
判断该校学生的体重是否正常?并说明理由.
20.(本小题满分12分)
已知椭圆()222210x y C a b a b +=>>:
的离心率为3,且椭圆C
过点P ⎛ ⎝⎭
. (I)求椭圆C 的方程;
(Ⅱ)设椭圆C 的右焦点为F ,直线l 与椭圆C 相切于点A ,与直线3x =相交于点B ,求证:AFB ∠的大小为定值.
21.(本小题满分12分)
已知函数()()ln 1f x x a x a a R =-+-∈. (I)讨论()f x 的单调性;
(Ⅱ)若)
(),0a x e f x ⎡∈+∞≥⎣时,恒成立,求实数a 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy 中,已知点M 的直角坐标为(1,0),直线l
的参数方程为12x y ⎧=+⎪⎪⎨
⎪=⎪⎩(t
为参数);以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为
2sin 2cos p θθ=.
(I)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)直线l 和曲线C 交于A ,B 两点,求
2
2
11MA
MB
+
的值.
23.(本小题满分10分)选修4—5:不等式选讲 已知函数()()0,0f x x a x b a b =-++>>. (I)当1a b ==时,解不等式()2f x x >+; (Ⅱ)若()f x 的值域为[2,+∞),求证:11
111
a b +≥++.。

相关文档
最新文档