人教版数学2016届九年级上学期期末模拟试题(含解析)
【人教版】2016届九年级上期末数学试卷及答案解析
九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c >0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.2015-2016学年四川省绵阳市江油市九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2x(x﹣3)﹣5(x﹣3)=0,再把方程左边进行因式分解得(x ﹣3)(2x﹣5)=0,方程就可化为两个一元一次方程x﹣3=0或2x﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的x 的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时x的取值范围是0<x<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c >0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为x==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当x=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与x轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当x=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为 a∴同圆外切正三角形的边长=2×a×tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2×8=AB×AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣x2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于x轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程x2﹣3x+2=0进行因式分解,变为(x﹣2)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x1=2,x2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4×1×(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)抛物线上是存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案
2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。
2015-2016学年新人教版九年级上期末数学试卷(含答案)
2015-2016学年新人教版九年级上期末数学试卷(含答案)九年级数学试卷考试时间:120分钟满分:120分一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x-1)²-2的顶点坐标是(。
)。
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)2.判断一元二次方程x²-2x+1=0的根的情况是(。
)。
A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x²-4x-3=0,下列配方结果正确的是(。
)。
A.(x-4)²=19B.(x-2)²=7C.(x+2)²=7D.(x+4)²=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是(。
)。
A.100(1+x)=121B.100(1-x)=121C.100(1-x)²=121D.100(1+x)²=1215.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是(。
)。
A。
B。
C。
D.6.已知:点A(x₁,y₁)、B(x₂,y₂)、C(x₃,y₃)是函数y=-3x图象上的三点,且x₁<x₂<x₃,则y₁、y₂、y₃的大小关系是(。
)。
A.y₁<y₂<y₃B.y₃<y₂<y₁C.y₂<y₃<y₁D.无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志。
从而估计该地区有黄羊(。
)。
A.200只B.400只C.800只D.1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为(。
)。
A。
3π/4 B。
2016-2017学年九年级上数学期末模拟检测试卷含答案
APO2016-2017学年九年级上数学期末模拟检测试卷含答案2016---2017学年度上学期期末模拟检测九年数学试题一、选择题(每题3分,共30分)1.若方程(m-1)x m2+1-2x-m=0是关于x 的一元二次方程,则m 的值为( ) A .-1 B .1 C .5 D .-1或12. 下图中不是中心对称图形的是( )A B C D 3.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°, 则∠AOD 等于 ( )A .160°B .150°C .140°D .120°4.如图,圆锥体的高h 23cm =,底面圆半径r 2cm =,则圆锥体的全面 积为( )cm 2A. π12B.π8C. π34D. π)434(+5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 A .12 B .14 C .16 D .1126. 关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是7.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠A=36°,则∠C 等于( ) A . 36° B . 54°C . 60°D . 27°8.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为( ) A .1)2(22--=x y B . 32)4(22+-=x yC .9)2(22--=x yD .33)4(22--=x y 9.在Rt△ABC 中,∠C=Rt∠ ,AC=3cm, AB=5cm,若以C 为圆心,4cm 为半径画一个圆,则下列结论中,正确的是( )A.点A 在圆C 内,点B 在圆C 外B.点A 在圆C 外,点B 在圆C 内C.点A 在圆C 上,点B 在圆C 外D.点A 在圆C 内,点B 在圆C 上10.如图,已知双曲线(k<0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣6,4),则△AOC 的面积为( ) A.12 B.9 C.6 D.4 二、填空题(每小题3分,24分)11.若一个三角形的三边长满足方程x 2-6x+8=0,则此三角形的周长为 .12. 如图,已知PA ,PB 分别切⊙O 于点A 、B ,60P ∠=o ,8PA =,那么弦AB 的长是 。
人教版2016-2017学年九年级(上册)期末数学试卷及答案
人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。
若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。
抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。
最新2016-2017学年人教版九年级上册数学期末测试卷及答案(1)
第 1 页 共 2 页2016---2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A .y =2(x -1)2-3B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 65.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .2C .2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .35°B .45°C .55°D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定第3题图 第6题图第4题图 第12题图第 2 页 共 2 页 17.(共8分)解方程:(1)122=+x x (2)0)3(2)3(2=-+-x x18.(共6分)已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠.(1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.19.(共6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .20.(共8分)某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.21.(共8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22、(共8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°.(1)求∠ABC 的度数;(2)求证:AE 是⊙O 的切线;。
河南省洛阳市孟津县九年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中九年级全册数学试题
某某省某某市孟津县2016届九年级数学上学期期末考试试题一、选择题(共8小题,每小题3分,满分24分)1.以下关于x的方程一定是一元二次方程的是()A.ax2+bx+c=0 B.2(x﹣1)2=2x2+2C.(k+1)x2+3x=2 D.(k2+1)x2﹣2x+1=02.若a<1,化简﹣1=()A.a﹣2 B.2﹣a C.a D.﹣a3.如图,在△ABC中两条中线BE、CD相交于点O,记△DOE的面积为S1,△COB的面积为S2,则S1:S2=()A.1:4 B.2:3 C.1:3 D.1:24.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=1 B.(x﹣2)2=﹣1 C.(x﹣2)2=3 D.(x+2)2=35.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.6.如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ,②sinα>sinβ,③cosα>cosβ.正确的结论为()A.①② B.②③ C.①③ D.①②③7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.258.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.12二、填空题(共7小题,每小题3分,满分21分)9.如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为.10.已知,则x3y+xy3=.11.如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°=.12.已知y=++3,则=.13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是.15.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y 轴的垂线,照此规律依次作下去,则点的坐标为.三、解答题(共8小题,满分55分)16.计算:6tan230°﹣2sin60°﹣2cos45°.17.关于x的一元二次方程(x﹣2)(x﹣3)=m有两个不相等的实数根x1,x2,求m的取值X围;若x1,x2满足等式x1x2﹣x1﹣x2+1=0,求m的值.18.在Rt△ABC中,∠C=90°,∠A=60°,∠A,∠B,∠C的对边分别为a,b,c,a+b=3+,请你根据此条件,求斜边c的长.19.小明为班上联欢会设计一个摸扑克牌获奖游戏,先将梅花2、3、4、5和红心2、3、4、5 分别洗匀,并分开将正面朝下放在桌子上,游戏者在4X梅花牌中随机抽1X,再在4X红心牌中随机抽1X,规定:当再次所抽出的牌面上数字之积为奇数时,他就可获奖.(1)利用树状图或列表方法表示游戏所有可能出现的结果;(2)游戏者获奖的概率是多少?20.如图,在△ABC中,∠BAC=90°,BC的垂直平分线交BC于点E,交CA的延长线于D,交AB于点F,求证:AE2=EF•ED.21.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)22.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD上一动点(点P异于A、D两点),Q是BC 上任意一点,连结AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.(1)填空:△APE∽△,△DPF∽△.(2)设AP的长为x,△APE的面积为y1,△DPF的面积为y2,分别求出y2和y1关于x的函数关系式;(3)在边AD上是否存在这样的点P,使△PEF的面积为?若存在求出x的值;若不存在请说明理由.23.阅读下面材料:小明遇到下面一个问题:如图1所示,AD是△ABC的角平分线,AB=m,AC=n,求的值.小明发现,分别过B,C作直线AD的垂线,垂足分别为E,F.通过推理计算,可以解决问题(如图2).请回答,=.参考小明思考问题的方法,解决问题:如图3,四边形ABCD中,AB=2,BC=6,∠ABC=60°,BD平分∠ABC,CD⊥BD.AC与BD相交于点O.(1)=.(2)tan∠DCO=.某某省某某市孟津县2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.以下关于x的方程一定是一元二次方程的是()A.ax2+bx+c=0 B.2(x﹣1)2=2x2+2C.(k+1)x2+3x=2 D.(k2+1)x2﹣2x+1=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、错误,当a=0时,是一元一次方程;B、错误,是一元一次方程;C、错误,当k=﹣1时,是一元一次方程;D、正确,符合一元二次方程的定义.故选D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.若a<1,化简﹣1=()A.a﹣2 B.2﹣a C.a D.﹣a【考点】二次根式的性质与化简.【专题】计算题.【分析】根据公式=|a|可知:﹣1=|a﹣1|﹣1,由于a<1,所以a﹣1<0,再去绝对值,化简.【解答】解:﹣1=|a﹣1|﹣1,∵a<1,∴a﹣1<0,∴原式=|a﹣1|﹣1=(1﹣a)﹣1=﹣a,故选:D.【点评】本题主要考查二次根式的化简,难度中等偏难.3.如图,在△ABC中两条中线BE、CD相交于点O,记△DOE的面积为S1,△COB的面积为S2,则S1:S2=()A.1:4 B.2:3 C.1:3 D.1:2【考点】相似三角形的判定与性质;三角形的重心.【分析】根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故选:A.【点评】本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.4.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=1 B.(x﹣2)2=﹣1 C.(x﹣2)2=3 D.(x+2)2=3【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,“配方”一步.【解答】解:x2﹣4x+1=0移项得,x2﹣4x=﹣1,两边加4得,x2﹣4x+4=﹣1+4,即:(x﹣2)2=3.故选C.【点评】此题最重要的一步是在等式两边同时加上一次项系数一半的平方.5.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】压轴题;图表型.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有20种情况,恰好是一男一女的有12种情况,所以,P(恰好是一男一女)==.故选:D.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.6.如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ,②sinα>sinβ,③cosα>cosβ.正确的结论为()A.①② B.②③ C.①③ D.①②③【考点】锐角三角函数的增减性.【分析】首先根据图形可得:∠α>∠β,然后根据各锐角函数的增减性,即可求得答案.【解答】解:根据图形得:∠α>∠β,∴tanα>tanβ,sinα>sinβ,cosα<cosβ.∴①②正确.故选A.【点评】此题考查了锐角函数的增减性与三角形外角的性质.注意当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【专题】计算题.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.【点评】本题考查了等腰直角三角形和方位角,根据方位角求出三角形各角的度数是解题的关键.8.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.12【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解答】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.故选C.【点评】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边.二、填空题(共7小题,每小题3分,满分21分)9.如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为±6.【考点】根的判别式.【分析】若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.【解答】解:∵方程3x2﹣mx+3=0有两个相等的实数根,∴△=m2﹣4×3×3=0,解得m=±6,故答案为±6.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.已知,则x3y+xy3= 10 .【考点】二次根式的化简求值.【专题】计算题.【分析】由已知得x+y=2,xy=1,把x3y+xy3分解因式再代入计算.【解答】解:∵,∴x+y=2,xy=1,∴x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=(2)2﹣2=10.【点评】解题时注意,灵活应用二次根式的乘除法法则,切忌把x、y直接代入求值.11.如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°=2﹣.【考点】解直角三角形.【专题】几何综合题;压轴题.【分析】此题可设AB=AC=2x,由已知可求出CD和AD,那么也能求出BD=AB﹣AD,从而求出tan15°.【解答】解:由已知设AB=AC=2x,∵∠A=30°,CD⊥AB,∴CD=AC=x,则AD2=AC2﹣CD2=(2x)2﹣x2=3x2,∴AD=x,∴BD=AB﹣AD=2x﹣x=(2﹣)x,∴tan15°===2﹣.故答案为:2﹣.【点评】此题考查的知识点是解直角三角形,关键是由直角三角形中30°角的性质与勾股定理先求出CD与AD,再求出BD.12.已知y=++3,则= 2.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的值,进而得出y的值,代入代数式进行计算即可.【解答】解:∵与有意义,∴,解得x=4,∴y=3,∴==2.故答案为:2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为 2.7 cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用.【分析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.首先在等腰直角△BOD中,得到BD=OD=2cm,则CE=2cm,然后在直角△COE中,根据正切函数的定义即可求出OE的长度.【解答】解:过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7cm.故答案为2.7.【点评】本题考查了解直角三角形的应用,属于基础题型,难度中等,通过作辅助线得到CE=BD=2cm 是解题的关键.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是16 .【考点】利用频率估计概率.【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故答案为:16.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点的坐标为.【考点】规律型:点的坐标.【专题】规律型.【分析】首先利用三角形中位线定理可求出B1C1的长和C1A1的长,即C1的横坐标和纵坐标,以此类推即可求出点的坐标.【解答】解:∵过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,∴B1C1和C1A1是三角形OAB的中位线,∴B1C1=OA=,C1A1=OB=,∴C1的坐标为(,),同理可求出B2C2==,C2A2==∴C2的坐标为(,),…以此类推,可求出B n=,A n=,∴点的坐标为,故答案为:.【点评】本题考查了规律型:点的坐标的求解,用到的知识点是三角形中位线定理,解题的关键是正确求出C1和C2点的坐标,由此得到问题的一般规律.三、解答题(共8小题,满分55分)16.计算:6tan230°﹣2sin60°﹣2cos45°.【考点】特殊角的三角函数值.【分析】把特殊角的三角函数值代入计算即可.【解答】解:6tan230°﹣2sin60°﹣2cos45°=6×()2﹣2×﹣2×=2﹣3﹣=﹣1﹣.【点评】本题考查的是特殊角的三角函数值的计算,解决此类题目的关键是熟记特殊角的三角函数值.17.关于x的一元二次方程(x﹣2)(x﹣3)=m有两个不相等的实数根x1,x2,求m的取值X围;若x1,x2满足等式x1x2﹣x1﹣x2+1=0,求m的值.【考点】根的判别式;根与系数的关系.【分析】原方程可化为x2﹣5x+6﹣m=0,于是得到△=b2﹣4ac=25﹣24+4m=1+4m,根据方程(x﹣2)(x﹣3)=m有两个不相等的实数根,得到△>0,求得m>﹣根据根与系数的关系得到x1+x2=5,x1x2=6﹣m解方程即可得到结论.【解答】解:原方程可化为x2﹣5x+6﹣m=0,△=b2﹣4ac=25﹣24+4m=1+4m,∵方程(x﹣2)(x﹣3)=m有两个不相等的实数根,∴△>0,∴1+4m>0,∴m>﹣∵x1+x2=5,x1x2=6﹣m∴5﹣6+m+1=0,∴m=0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.在Rt△ABC中,∠C=90°,∠A=60°,∠A,∠B,∠C的对边分别为a,b,c,a+b=3+,请你根据此条件,求斜边c的长.【考点】解直角三角形.【分析】首先计算出∠B的度数,再根据三角函数可得a=csin60°,b=csin30°,代入a+b=3+中可计算出c的值.【解答】解:∵∠C=90°,∠A=60°,∴∠B=30°,∴a=csin60°,b=csin30°,∴csin60°+csin30°=3+,∴c=2.【点评】此题主要考查了解直角三角形,关键是掌握三角函数的定义.19.小明为班上联欢会设计一个摸扑克牌获奖游戏,先将梅花2、3、4、5和红心2、3、4、5 分别洗匀,并分开将正面朝下放在桌子上,游戏者在4X梅花牌中随机抽1X,再在4X红心牌中随机抽1X,规定:当再次所抽出的牌面上数字之积为奇数时,他就可获奖.(1)利用树状图或列表方法表示游戏所有可能出现的结果;(2)游戏者获奖的概率是多少?【考点】列表法与树状图法.【专题】计算题.【分析】(1)利用树状图法展示所有16种等可能的结果数;(2)先找出数字之积为奇数所占的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有16种等可能的结果数;(2)游戏者获奖的概率==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.20.如图,在△ABC中,∠BAC=90°,BC的垂直平分线交BC于点E,交CA的延长线于D,交AB于点F,求证:AE2=EF•ED.【考点】相似三角形的判定与性质.【专题】证明题.【分析】利用直角三角形的性质以及等角对等边得出∠B=∠EAB,∠B=∠D,进而得出△AEF∽△DEA,即可得出答案.【解答】解:∵∠BAC=90°,∴∠B+∠C=90°,∠D+∠C=90°,∴∠B=∠D,∵BC的垂直平分线交BC于点E,∠BAC=90°.∴BE=EA,∴∠B=∠BAE,∴∠D=∠BAE,∵∠FEA=∠AED,∴△FEA∽△AED,∴=∴AE2=EF•ED.【点评】此题主要考查了相似三角形的判定与性质以及直角三角形的性质,根据已知得出∠EAB=∠D 是解题关键.21.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.【点评】本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.22.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD上一动点(点P异于A、D两点),Q是BC 上任意一点,连结AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.(1)填空:△APE∽△ADQ ,△DPF∽△DAQ .(2)设AP的长为x,△APE的面积为y1,△DPF的面积为y2,分别求出y2和y1关于x的函数关系式;(3)在边AD上是否存在这样的点P,使△PEF的面积为?若存在求出x的值;若不存在请说明理由.【考点】相似形综合题.【分析】(1)根据相似三角形的判定定理证明即可;(2)根据相似三角形的面积比等于相似比的平方计算即可;(3)根据题意列出一元二次方程,解方程即可.【解答】解:(1)∵PE∥DQ,∴△APE∽△ADQ,∵PF∥AQ,∴△DPF∽△DAQ,故答案为:ADQ;DAQ;(2)设△ADQ的面积为y,∴S=×AD×AB=3,由△APE∽△ADQ得:y1:y=()2=,∴y1=x2,同理可得y2=(3﹣x)2;(3)∵PE∥DQ,PF∥AQ,∴四边形PEQF是平行四边形,∴△PEF的面积等于(y﹣y1﹣y2)=﹣x2+x当y=时,则﹣x2+x=,解这个方程得:x=,即存在这样的点P,当x=时是△PEF的面积为.【点评】本题考查的是相似三角形的知识的综合运用,掌握相似三角形的判定定理和性质定理是解题的关键.23.阅读下面材料:小明遇到下面一个问题:如图1所示,AD是△ABC的角平分线,AB=m,AC=n,求的值.小明发现,分别过B,C作直线AD的垂线,垂足分别为E,F.通过推理计算,可以解决问题(如图2).请回答,=.参考小明思考问题的方法,解决问题:如图3,四边形ABCD中,AB=2,BC=6,∠ABC=60°,BD平分∠ABC,CD⊥BD.AC与BD相交于点O.(1)=.(2)tan∠DCO=.【考点】相似三角形的判定与性质.【分析】小明的思路是先证明△BDF∽△CDE,得出,再证明△ABF∽△ACE,得出,因此得出.(1)根据小明的结论得;(2)作AE⊥BD于E,证明△AOE∽△COD,求出AE、BE、DE、OD、的长即可求出tan∠DCO的值.【解答】解:;(1);(2)作AE⊥BD于E,如图所示:∵CD⊥BD,AE⊥BD,∴AE∥CD,∴△AOE∽△COD,∴,∵CD=3,∴AE=1,∵BD平分∠ABC=60°,∴∠ABD=∠DBC=30°,∴BD=3,∵AB=2,∴BE=,∴DE=2,∴OD=2×=,∴tan∠DCO=.【点评】本题考查了相似三角形的判定与性质以及锐角三角函数的运用;证明三角形相似是解决问题的关键.。
2016年秋人教版九年级数学上册期末检测题含答案
2016年秋人教版九年级数学上册期末检测题含答案(时刻:120分钟 满分:120分) 、选择题侮小题3分,共30分) 1. (2015 •深圳)下列图形既是中心 c 是轴对称 图形的是1>(D)1)( n —-6,则a 的值为(C )2.已知m , n 是关于x 的一元二次方程x2 — 3x + a = 0的两个解,若(mA . — 10B . 4C .— 4D . 103. (2015 •泰安 的—形涂黑, )如图,在方格纸中,随机选择标有序号①②③④⑤中 与图中阴影部分构成轴对称图形的概率是 (C )A 1厂2厂3 代5 B.5 C.5D.4 x +n2与二次函数y = x2 + m 的D4.在同一坐标系中,一次函数y 戶—象可能是(D )A11C5.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN 上,矩形PAOB 的形状、大小随之且不与M , N 重合,当P 点在MN 上移动时, 1变化,则/ 3的长度(C ) .不变? B .变小 …_ E,第不能确定,第6题图) 第9题图)6.如图, △ A1B1C1 ,再将△ A1B1C1绕点O 旋转180°后得到△ A2B2C2 ,则下列讲 法正确的是(D )A . A1 的坐标为(3 , 1)B . S 四边形 ABB1A1 = 3C . B2C = 2 2,第10题图)在平面直角坐标系中,将厶ABC 向右平移3个单位长度后得D . / AC2O = 457. (2015 •巴中)某种品牌运动服通过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是(B)A . 560(1 + x)2 = 315 B. 560(1 - x)2 = 315C. 560(1 -2x)2 = 315D. 560(1 -x2) = 3158. (2015 •宁波)二次函数y= a(x-4)2-4(a^0)的图象在2v x v3 这一段位于x轴的下方,在6v x v 7这一段位于x轴的上方,则a的值为(A)A. 1B. - 1C. 2D. - 29 .(2015 -海南)如图,将。
【人教版】2016-2017学年度九年级数学上期末模拟题(含答案解析)
广西玉林市2016-2017年九年级数学上册期末模拟题一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某市2014年1月21日至24日每天的最高气温与最低气温如表:日期1月21日1月22日1月23日1月24日最高气温8℃7℃5℃6℃最低气温﹣3℃﹣5℃﹣4℃﹣2℃其中温差最大的一天是( )A.1月21日B.1月22日C.1月23日D.1月24日2.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为( )A.7.49×107B.7.49×106C.74.9×105D.0.749×1073..下列四个图形中,不是中心对称图形的是( )A.B.C.D.4.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=95.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)6.下列每组数分别表示三根木棒的长度,将它们首尾连接后,不能摆成三角形的一组是()A.2,3,5 B.3,4,6 C.4,5,7 D.5,6,87.函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠28.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=A. 80°B. 90°C. 100°D. 无法确定9.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:评委 1 2 3 4 5 6 7 得分9.8 9.5 9.7 9.8 9.4 9.5 9.4 若比赛的计分方法是:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为 ( )A.9.56 B.9.57 C.9.58 D.9.5910.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2 B.150m2 C.330m2 D.450m211.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0解集是( )A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5 12.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 二、填空题(本大题共6小题,每小题3分,共18分) 13.比较大小:12-____5-; 2_____(2)----. 14.如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,AC=8,NB=5,则线段MN= .15.已知a 4b 2n 与2a 3m+1b 6是同类项,则m= ,n= .16.在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x ,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y ,组成一对数(x ,y ).则小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率为 .17.方程2x 7x 5-=的解是________________. 18.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 三、计算题(本大题共1小题,共6分) 19.计算:四、解答题(本大题共5小题,共42分) 20. “先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?21.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE .22.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A (植物园),B (花卉园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是 ; (2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.DCAB EF23.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.24.如图,二次函数y=ax2-4x+c的图象过原点,与x轴交于点A(-4,0).(1)求此二次函数的解析式.(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.25.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)五、综合题(本大题共1小题,共12分)26.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.广西玉林市2016-2017年九年级数学上册期末模拟题答案1.B2.B3.C4.C5.A .6.A7.C .8.B9.C 10.B. 11.D . 12.D 13.___>__;__<_;14.4 ;15.答案为:1,3.16.P(和等于5)=.17.x=-518. 答案:1或019.略 20.解:原式=(+)•(x+2)(x ﹣2)=•(x+2)(x ﹣2)=x 2+4,∵(﹣3)2+4=32+4=9+4,∴她的计算结果也是正确的.21.证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF = 【解析】略22.【解答】解:(1)本次调查的样本容量是15÷25%=60;(2)选择C 的人数为:60﹣15﹣10﹣12=23(人), 补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约由1380人.故答案为:60. 23.【解答】(1)证明:∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC 为⊙O 的切线,∴OA ⊥AC ,∴∠OAD+∠CAD=90°, ∵OA=OD ,∴∠OAD=∠ODA ,∵∠1=∠BDO ,∴∠1=∠CAD ; (2)解:∵∠1=∠CAD ,∠C=∠C ,∴△CAD ∽△CDE ,∴CD :CA=CE :CD ,∴CD 2=CA •CE ,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2, 设⊙O 的半径为x ,则OA=OD=x ,则Rt △AOC 中,OA 2+AC 2=OC 2, ∴x 2+42=(2+x )2,解得:x=.∴⊙O 的半径为. 24.【解析】(1)依题意,得解得∴二次函数的解析式为y=-x 2-4x.(2)令P(m,n),则S △AOP =AO ·|n|=×4|n|=8,解得n=±4, 又∵点P(m,n)在抛物线y=-x 2-4x 上, ∴-m 2-4m=±4,分别解得m 1=-2,m 2=-2+2和m 3=-2-2, ∴P 1(-2,4),P 2(-2+2,-4),P 3(-2-2,-4).25.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.26.解答:解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).。
人教版九年级数学上学期期末考试试卷及答案
人教版九年级数学上学期期末考试试卷及答案人教版2015-2016年度九年级数学上学期期末考试试卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.若抛物线 $y=x^2-2x+c$ 与 $y$ 轴的交点为 $(0,-3)$,则下列说法不正确的是()A。
抛物线开口向上B。
抛物线的对称轴是 $x=1$C。
当 $x=1$ 时,$y$ 的最大值为 $-4$D。
抛物线与 $x$ 轴的交点为 $(-1,0)$,$(3,0)$2.若关于 $x$ 的一元二次方程 $(m-1)x^2+5x+m^2-3m+2=$ 的常数项为 $0$,则 $m$ 的值等于()A。
$1$。
B。
$2$。
C。
$1$ 或 $2$。
D。
$3$3.三角形的两边长分别为 $3$ 和 $6$,第三边的长是方程$x^2-6x+8=$ 的一个根,则这个三角形的周长是()A。
$9$。
B。
$11$。
C。
$13$。
D。
$14$4.下列函数解析式中,一定为二次函数的是()A。
$y=3x-1$。
B。
$y=ax^2+bx+c$。
C。
$s=2t^2-2t+1$。
D。
$y=x^2+2$5.关于 $x$ 的一元二次方程 $x-mx+2m-1=$ 的两个实数根分别是 $x_1$,$x_2$,且 $2x_1^2+x_2=7$,则 $(x_1-x_2)^2$ 的值是()A。
$25$。
B。
$12$。
C。
$13$。
D。
$2$6.在平面直角坐标系中,线段 $OP$ 的两个端点坐标分别是 $O(0,0)$,$P(4,3)$,将线段 $OP$ 绕点 $O$ 逆时针旋转$90^\circ$ 到 $OP'$ 位置,则点 $P'$ 的坐标为()A。
$(3,4)$。
B。
$(-4,3)$。
C。
$(-3,4)$。
D。
$(4,-3)$7.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有 $40$ 个,除颜色外其它完全相同。
XXX通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 $15\%$ 和 $45\%$,则口袋中白色球的个数很可能是()A。
2016届九年级上期末考试数学质量监测卷含答案
2016年九年级一模数学试卷一.选择题(每小题3分,共24分)1.在:-1,0,2,2四个数中,最大的数是 ( ) A.-1 B.0 C.2 D.22.如图是由5个完全相同的小正方体组合成一个立体图形,,它的左视图是3.大量事实证明,环境污染治理刻不容缓,全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万吨用科学记数法表示为( )A.142×103B.14.2×104C.1.42×105D.0.142×104 4.如图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE 5.下列计算正确的是( )A.a 3÷a 2=aB.( - 2a 2 )3=8a 6C.2a 2 +a 2 =3a 4D.( a - b )2=a 2 - b 26.在下列调查中,适宜采用普查方式的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .监测一批电灯泡的使用寿命D .了解郑州电视台《郑州大民生》栏目的收视率7.抛物线y=(x ﹣1)2+2的顶点坐标是( )A.(-1,2)B.(-1,- 2)C.(1,-2)D.(1,2)8.如图,矩形ABCD 中,AB=4,AD=6,延长BC 到点E ,使CE=2,连接DE ,动点F 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点F 的运动时间为t 秒,当t 的值为( )秒时,△ABF 和△DCE 全等。
A .1 B .1或3 C .1或7 D .3或7 二.填空题(每小题3分,共21分) 9.计算:|﹣2|=10.已知a 、b 、c 、d 是成比例线段,即dcb a ,其中a=3cm ,b=2cm ,c=6cm ,则线段d= . 11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是 .12.如图,点A 是反比例函数y=图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k= .第12题图 第13题图 第14题图 第15题图13.如图,已知函数y=2x+b 与函数y=kx ﹣3的图象交于点P ,则不等式kx ﹣3>2x+b 的解集是 . 14.圆内接四边形ABCD ,两组对边的延长线分别相交于点E 、F ,且∠E=40°,∠F=60°,求∠A= °15.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为 .三、解答题(本大题共8个小题,共75分)16.(本题8分)先化简,再求值:2344(1)11x x x x x ++--÷++,其中x 是方程220x x +=的解.17.(本题9分)如图,在O 中,AC 与BD 是圆的直径,BE AC ⊥,CF BD ⊥,垂足分别为E 、F . (1)四边形ABCD 是什么特殊的四边形?请判断并说明理由; (2)求证:BE CF =18.(本题9分)为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出)。
2016-2017学年人教版初三数学第一学期期末试卷含答案
2016-2017学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S 的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。
2016年秋九年级上期末数学模拟
2016年秋九年级上期末考数学模拟试卷班级 姓名 座号 成绩一、选择题(每题4分,共40分)1、若线段c 满足a cc b=,且线段4a =cm ,9b =cm ,则线段c =( )A 、6cmB 、7cmC 、8cmD 、10cm2、关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( ) A 、1 B 、3 C 、3- D 、3±3、一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A 、至少有1个球是白球 B 、至少有1个球是黑球 C 、至少有2个球是黑球 D 、至少有2个球是白球4、如图1,△ABC ∽△111A B C ,那么它们的相似比是( ) A 、2:1 B 、2:2 C 、3:2 D 、1:15、已知一水坝的迎水坡的坡比1:3i =,那么迎水坡的坡角的度数为( )A 、30°B 、45°C 、60°D 、75°6、在Rt △ABC 中,90C ∠=︒,3tan 4A =,15AB =,则BC =( ) A 、3 B 、6 C 、8 D 、97、已知关于x 的一元二次方程2221x mx m -+-,则该方程根的情况( ) A 、方程有两个不相等的实数根 B 、方程有两个相等的实数根 C 、方程无实数根 D 、无法确定8、如图2,△ABC 中,AD 是边BC 上的中线,点G 是△ABC 的重心,已知△ABC 的面积为12,则△AGC 的面积为( )A 、2B 、4C 、6D 、59、如图3,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )。
A 、线段EF 的长逐渐增长B 、线段EF 的长逐渐减小C 、线段EF 的长始终不变D 、线段EF 的长与点P 的位置有关10、如图4,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( ) A 、31 B 、322 C 、42 D 、53二、填空题(每题4分,共24分)11、当x = 时,分式26x -有意义.12、一元二次方程2245x x =的解是______________.第15题图B CA 图11A 1B 1C GDCBA图2图3图413、如图5,公园原有一块正方形空地,后来从这块空地上划出部分区域栽种鲜花,原空地一边减少了1米,另一边减少了2米,剩余空地面积为12平方米,求原来正方形空地的边长。
九年级数学上学期期末模拟试卷(含解析)-人教版初中九年级全册数学试题
2016-2017学年某某市某某区双建中学九年级(上)期末数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例2.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方3.下列命题中,正确的个数是()①13个人中至少有2人的生日是同一个月是必然事件②为了解我班学生的数学成绩,从中抽取10名学生的数学成绩是总体的一个样本③一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次④小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个.A.1 B.2 C.3 D.44.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.5.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y36.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比,已知这本书的长为20cm,则它的宽约为()A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm7.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.19.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA 运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.10.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题共8小题,每小题3分,共24分)11.若把二次函数y=x2+6x+2化为y=(x﹣h)2+k的形式,其中h,k为常数,则h+k=.12.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“<”连接y1,y2,y3为.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.14.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.15.如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=5, =,则EC=.16.已知正六边形ABCDEF的边心距为cm,则正六边形的半径为cm.17.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.18.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.三、解答题(本大题共6小题,共36分)19.反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数的解析式;(2)求△AOC的面积.20.如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.21.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).22.如图,甲、乙分别是4等分、3等分的两个圆转盘,指针固定,转盘转动停止后,指针指向某一数字.(1)直接写出转动甲盘停止后指针指向数字“1”的概率;(2)小华和小明利用这两个转盘做游戏,两人分别同时转动甲、乙两个转盘,停止后,指针各指向一个数字,若两数字之积为非负数则小华胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.23.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A出发沿AB边想向点B以2cm/s的速度移动,点Q从点B出发沿BC边向点C以4cm/s的速度移动,如果P、Q同时出发,经过几秒后△PBQ和△ABC相似?24.如图,直线y=x+2分别交x,y轴于A,C,点P是该直线与反比例函数在第一象限内的一个交点,PB⊥x轴交于点B,且S△ABP=9.(1)求证:△AOC∽△ABP;(2)求点P的坐标;(3)设点R与点P在同一反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于点T,当△BRT与△AOC相似时,求点R的坐标.2016-2017学年某某市某某区双建中学九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例【考点】反比例函数的定义.【分析】在本题中,P=I2R,即I2和R的乘积为定值,所以根据反比例的概念应该是I2和R 成反比例,而并非I与R成反比例.【解答】解:根据P=I2R可以得到:当P为定值时,I2与R的乘积是定值,所以I2与R成反比例.故选:B.【点评】本题渗透初中物理中“电流”有关的知识,当P为定值时,I2与R成反比例.把I2看作一个整体时,I2与R成反比例,而不是I与R成反比例,这是易忽略的地方,应引起注意.2.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方【考点】位似变换.【分析】如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,位似图形是特殊的相似形,因而满足相似形的性质,因而正确的是C.【解答】解:∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE 是△ABC放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.【点评】本题主要考查了位似图形的定义,位似是特殊的相似.3.下列命题中,正确的个数是()①13个人中至少有2人的生日是同一个月是必然事件②为了解我班学生的数学成绩,从中抽取10名学生的数学成绩是总体的一个样本③一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次④小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据必然事件的定义对①进行判断;根据样本的定义对②进行判断;根据概率的意义对③进行判断;根据频率估计概率对④进行判断.【解答】解:13个人中至少有2人的生日是同一个月是必然事件,所以①正确;为了解我班学生的数学成绩,从中抽取10名学生的数学成绩是总体的一个样本,所以②正确;一名篮球运动员投篮命中概率为0.7,他投篮10次,不一定会命中7次,所以③错误;小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个,所以④正确.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出===2,即可得出答案.【解答】解:∵DE∥BC,EF∥AB,AD=2BD,∴==2, ==2,∴=,故选:A.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.5.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】首先确定反比例函数的系数与0的大小关系,然后根据题意画出图形,再根据其增减性解答即可.【解答】解:∵﹣a2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的函数值的大小,同学们要灵活掌握.6.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比,已知这本书的长为20cm,则它的宽约为()A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm【考点】黄金分割.【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【解答】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点评】本题考查了黄金分割的应用.关键是明确黄金分割所涉及的线段的比.7.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【考点】扇形面积的计算.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选B.【点评】本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式,此题难度一般.8.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.1【考点】列表法与树状图法.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出概率即可.【解答】解:用A和a分别表示粉色有盖茶杯的杯盖和茶杯;用B和b分别表示白色有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb所以颜色搭配正确的概率是;故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA 运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P 可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x ≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.【解答】解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=x﹣x2;故D选项错误.故选:C.【点评】本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.10.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB 的解析式设出直线AC的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.若把二次函数y=x2+6x+2化为y=(x﹣h)2+k的形式,其中h,k为常数,则h+k= ﹣10 .【考点】二次函数的三种形式.【分析】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式,从而得出h,k的值,进而求出h+k的值.【解答】解:∵y=x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7,∴h=﹣3,k=﹣7,h+k=﹣3﹣7=﹣10.【点评】考查二次函数的解析式的三种形式.12.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“<”连接y1,y2,y3为y2<y3<y1.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=中,﹣k2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,∵﹣1<0,∴点A(﹣1,y1)位于第二象限,∴y1>0;∵0<2<3,∴B(1,y2)、C(2,y3)在第四象限,∵2<3,∴y2<y3<0,∴y2<y3<y1.故答案为:y2<y3<y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次指针指向的数都是奇数的情况,再利用概率公式即可求得答案.【解答】解:列表得如下:1 2 31 1、1 1、2 1、32 2、1 2、2 2、33 3、1 3、2 3、3∵由表可知共有9种等可能结果,其中两次指针指向的数都是奇数的有4种结果,∴两次指针指向的数都是奇数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球20 个.【考点】利用频率估计概率.【分析】根据利用频率估计概率得到摸到红色球和蓝色球的频率稳定在35%和55%,由此得到摸到黄球的概率=1﹣35%﹣55%=10%,然后用10%乘以总球数即可得到黄球的个数.【解答】解:∵某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,∴摸到黄球的概率=1﹣35%﹣55%=10%,∴口袋中黄球的个数=200×10%=20,即口袋中可能有黄球20个.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=5, =,则EC= 2 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,推出△BE0∽△DAO,根据相似三角形的性质得到,求得BE=3,即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BE0∽△DAO,∴,∵AD=5,∴BE=3,∴CE=5﹣3=2,故答案为:2.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.16.已知正六边形ABCDEF的边心距为cm,则正六边形的半径为 2 cm.【考点】正多边形和圆.【分析】根据题意画出图形,连接OA、OB,过O作OD⊥AB,再根据正六边形的性质及锐角三角函数的定义求解即可.【解答】解:如图所示,连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OAD=60°,∴OD=OA•sin∠OAB=AO=,解得:AO=2..故答案为:2.【点评】本题考查的是正六边形的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.17.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为: =.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP= 1或4或2.5 .【考点】相似三角形的判定;矩形的性质.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【解答】解:①当△APD∽△PBC时, =,即=,解得:PD=1,或PD=4;②当△PAD∽△PBC时, =,即=,解得:DP=2.5.综上所述,DP的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.三、解答题(本大题共6小题,共36分)19.(2015春•某某期末)反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数的解析式;(2)求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先求出A、B两点坐标,再列出方程组即可解决问题.(2)求出点C坐标,根据三角形面积公式即可求解.【解答】解:(1)∵反比例函数y=的图象经过点A(m,2),点B(﹣2,n),∴m=1,n=﹣1,∵y=kx+b经过点A(1,2),B(﹣2,﹣1),∴∴,∴一次函数解析式为y=x+1.(2)∵一次函数y=x+1交y轴于C(0,1),连接OA,∴S△AOC=×1×1=.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会求一次函数与坐标轴的交点坐标,属于中考常考题型.20.(2011•某某)如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.【考点】相似三角形的判定与性质.【分析】可证明△ACD∽△ABC,则=,即得出AC2=AD•AB,从而得出AC的长.【解答】解:在△ABC和△ACD中,∵∠ACD=∠B,∠A=∠A,∴△ABC∽△ACD,∴=.即AC2=AD•AB=AD•(AD+BD)=2×6=12,∴AC=2.【点评】本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.21.(2015•某某)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【考点】切线的性质;扇形面积的计算.【分析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.【点评】此题考查了切线的性质、等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.(2015秋•某某期末)如图,甲、乙分别是4等分、3等分的两个圆转盘,指针固定,转盘转动停止后,指针指向某一数字.(1)直接写出转动甲盘停止后指针指向数字“1”的概率;(2)小华和小明利用这两个转盘做游戏,两人分别同时转动甲、乙两个转盘,停止后,指针各指向一个数字,若两数字之积为非负数则小华胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)由题意可知转盘中共有四个数,其中“1”只有一种,进而求出其概率;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小华、小明获胜的情况,继而求得小华、小明获胜的概率,比较概率大小,即可知这个游戏是否公平.【解答】解:(1)甲盘停止后指针指向数字“1”的概率=;(2)列表得:﹣1 0 2 1 转盘A两个数字之积转盘B1 ﹣1 02 1﹣2 2 0 ﹣4 ﹣2﹣1 1 0 ﹣2 ﹣1∵由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P(小华获胜)=,P(小明获胜)=.∴这个游戏对双方不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(2010春•吴江市期末)如图,在△ABC中,AB=8cm,BC=16cm,点P从点A出发沿AB 边想向点B以2cm/s的速度移动,点Q从点B出发沿BC边向点C以4cm/s的速度移动,如果P、Q同时出发,经过几秒后△PBQ和△ABC相似?【考点】相似三角形的性质.【分析】设经过x秒两三角形相似,分别表示出BP、BQ的长度,再分①BP与BC边是对应边,②BP与AB边是对应边两种情况,根据相似三角形对应边成比例列出比例式求解即可.【解答】解:设经过x秒后△PBQ和△ABC相似.则AP=2x cm,BQ=4x cm,∵AB=8cm,BC=16cm,∴BP=(8﹣2x)cm,①BP与BC边是对应边,则=,即=,解得x=0.8,②BP与AB边是对应边,则=,即=,解得x=2.△PBQ和△ABC相似.【点评】本题考查了相似三角形对应边成比例的性质,表示出边BP、BQ的长是解题的关键,需要注意分情况讨论,避免漏解而导致出错.24.(2016秋•某某区期末)如图,直线y=x+2分别交x,y轴于A,C,点P是该直线与反比例函数在第一象限内的一个交点,PB⊥x轴交于点B,且S△ABP=9.(1)求证:△AOC∽△ABP;(2)求点P的坐标;(3)设点R与点P在同一反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于点T,当△BRT与△AOC相似时,求点R的坐标.【考点】反比例函数综合题.【分析】(1)由一对公共角相等,一对直角相等,利用两对角相等的三角形相似即可得证;(2)先求点A、C的坐标,根据点A、C分别在x、y轴上,设出A(a,0),C(0,c)代入直线的解析式可知;由△AOC∽△ABP,利用线段比求出BP,AB的值从而可求出点P的坐标即可;(3)把P坐标代入求出反比例函数,设R点坐标为(x,y),根据△BRT与△AOC相似分两种情况,利用线段比联立方程组求出x,y的值,即可确定出R坐标.【解答】解:(1)∵∠CAO=∠PAB,∠AOC=∠ABP=90°,∴△AOC∽△ABP;(2)设A(a,0),C(0,c)由题意得,解得:,∴A(﹣4,0),C(0,2),即AO=4,OC=2,又∵S△ABP=9,∴AB•BP=18,又∵PB⊥x轴,∴OC∥PB,∴△AOC∽△ABP,∴=,即=,∴2BP=AB,∴2BP2=18,∴BP2=9,∴BP=3,∴AB=6,∴P点坐标为(2,3);(3)设反比例函数的解析式为y=,由题意得=3,解得k=6,∴反比例函数的解析式为y=,设R点的坐标为(x,y),∵P点坐标为(2,3),∴反比例函数解析式为y=,当△BTR∽△AOC时,∴=,即=,则有,解得:,此时R的坐标为(+1,);当△BRT∽△COA时,∴=,即=,解得:x1=3,x2=﹣1(不符合题意应舍去),此时R坐标为(3,2),综上,R的坐标为(+1,)或(3,2).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,一次函数与反比例函数的交点,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省营口市大石桥市水源二中2016届九年级数学上学期期末模拟试题一、选择题(每题3分,共30分)1.若方程(m﹣1)﹣2x﹣m是关于x的一元二次方程,则m的值为( )A.﹣1 B.1 C.5 D.﹣1或12.下列图形中不是中心对称图形的是( )A.B. C.D.3.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°4.如图,圆锥体的高h=2cm,底面圆半径r=2cm,则圆锥体的全面积为( )cm2.A.12πB.8π C.4πD.(4+4)π5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.B.C.D.6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是( )A.k>B.k≥C.k>且k≠1D.k≥且k≠17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,联结BC,若∠A=36°,则∠C等于( )A.36°B.54°C.60°D.27°8.将二次函数y=2x2﹣8x﹣1化成y=a(x﹣h)2+k的形式,结果为( )A.y=2(x﹣2)2﹣1 B.y=2(x﹣4)2+32 C.y=2(x﹣2)2﹣9 D.y=2(x﹣4)2﹣33 9.在Rt△ABC中,∠C=Rt∠,AC=3cm,AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是( )A.点A在圆C内,点B在圆C外B.点A在圆C外,点B在圆C内C.点A在圆C上,点B在圆C外D.点A在圆C内,点B在圆C上10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣二、填空题(每小题3分,24分)11.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为__________.12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是__________.13.在半径为的圆中,60°的圆心角所对的弧长等于__________.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=__________.15.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为__________.16.若小唐同学掷出的铅球在场地上砸出一个直径约为10cm、深约为2cm的小坑,则该铅球的直径约为__________cm.17.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程__________.18.一块草坪的护栏是由50段形状相同的抛物线组成,如图,为牢固期间,每段护栏需按间距0.4m加设不锈钢管做成的立柱.为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据,则需要不锈钢管的总长度为__________.(米)三、解答题(共96分)19.解方程(1)x(2x﹣1)=2(1﹣2x)(2)x2﹣5x﹣4=0.20.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为__________;(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.21.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)22.在一个不透明的盒子里,装有四个分别写有数字﹣2、﹣1、1、2的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,然后搅匀,再从盒子里随机取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;(2)求两次取出乒乓球上的数字之和等于0的概率.23.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点G.(1)求证:点E是的中点;(2)求证:CD是⊙O的切线;(3)若AD=6,⊙O的半径为5,求弦DF的长.24.(14分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)为了使顾客尽量满意,每件商品的售价定为多少元时,每个月的利润恰为2200元?25.(14分)如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.【分析问题】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.【解决问题】请你通过计算求出图2中∠BPC的度数;【比类问题】如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2.(1)∠BPC的度数为__________;(2)直接写出正六边形ABCDEF的边长为__________.26.(14分)如图,在平面直角坐标系中,函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,=.(1)求这个二次函数的表达式;(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.2015-2016学年辽宁省营口市大石桥市水源二中九年级(上)期末数学模拟试卷一、选择题(每题3分,共30分)1.若方程(m﹣1)﹣2x﹣m是关于x的一元二次方程,则m的值为( )A.﹣1 B.1 C.5 D.﹣1或1【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:由(m﹣1)﹣2x﹣m是关于x的一元二次方程,得m2+1=2,且m﹣1≠0.解得m=﹣1,故选:A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.下列图形中不是中心对称图形的是( )A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形.故错误;B、是中心对称图形.故错误;C、是中心对称图形.故错误;D、不是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.4.如图,圆锥体的高h=2cm,底面圆半径r=2cm,则圆锥体的全面积为( )cm2.A.12πB.8π C.4πD.(4+4)π【考点】圆锥的计算.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:A.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是( )A.k>B.k≥C.k>且k≠1D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,联结BC,若∠A=36°,则∠C等于( )A.36°B.54°C.60°D.27°【考点】切线的性质.【分析】根据题目条件易求∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.【解答】∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故选D.【点评】本题考查了三角形内角和定理,切线的性质,圆周角定理的应用,关键是求出∠BOA度数.8.将二次函数y=2x2﹣8x﹣1化成y=a(x﹣h)2+k的形式,结果为( )A.y=2(x﹣2)2﹣1 B.y=2(x﹣4)2+32 C.y=2(x﹣2)2﹣9 D.y=2(x﹣4)2﹣33 【考点】二次函数的三种形式.【分析】利用配方法整理即可得解.【解答】解:y=2x2﹣8x﹣1,=2(x2﹣4x+4)﹣8﹣1,=2(x﹣2)2﹣9,即y=2(x﹣2)2﹣9.故选C.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的操作是解题的关键.9.在Rt△ABC中,∠C=Rt∠,AC=3cm,AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是( )A.点A在圆C内,点B在圆C外B.点A在圆C外,点B在圆C内C.点A在圆C上,点B在圆C外D.点A在圆C内,点B在圆C上【考点】点与圆的位置关系.【分析】首先运用勾股定理求出BC的长度,然后运用判断点与圆的位置关系的方法,进行判断、解析,即可解决问题.【解答】解:由勾股定了得:BC2=AB2﹣AC2,∴=4,∴若以C为圆心,4cm为半径画一个圆,点A在圆C内,点B在圆C上,故选D.【点评】该题主要考查了点与圆的位置关系及其应用问题;牢固掌握判断点与圆的三种位置关系的判定方法是解题的关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【考点】二次函数图象与系数的关系.【专题】存在型.【分析】根据二次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.【点评】本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.二、填空题(每小题3分,24分)11.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为6,10,12.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题;压轴题.【分析】求△ABC的周长,即是确定等腰三角形的腰与底的长求周长.首先求出方程的根,根据三角形三边关系定理列出不等式,然后解不等式即可.【解答】解:解方程x2﹣6x+8=0得x1=4,x2=2;当4为腰,2为底时,4﹣2<4<4+2,能构成等腰三角形,周长为4+2+4=10;当2为腰,4为底时4﹣2=2<4+2不能构成三角形,当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12,故△ABC 的周长是6或10或12.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是8.【考点】切线的性质;等边三角形的判定与性质.【分析】由PA,PB分别切⊙O于点A、B,根据切线长定理,即可求得PA=PB,又由∠P=60°,即可证得△PAB是等边三角形,由PA=8,则可求得弦AB的长.【解答】解:∵PA,PB分别切⊙O于点A、B,∴PA=PB,∵∠P=60°,∴△PAB是等边三角形,∴AB=PA=PB,∵PA=8,∴AB=8.故答案为:8.【点评】此题考查了切线长定理与等边三角形的判定与性质.此题比较简单,解题的关键是注意熟记切线长定理,注意数形结合思想的应用.13.在半径为的圆中,60°的圆心角所对的弧长等于2.【考点】弧长的计算.【分析】弧长公式为l=,把半径和圆心角代入公式计算就可以求出弧长.【解答】解:l===2,故答案为:2.【点评】此题主要考查了弧长计算,关键是掌握弧长计算公式.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=3.【考点】概率公式.【专题】计算题.【分析】先求出这个不透明的盒子中装有2+n个球,根据概率公式列出算式=,从而求出答案.【解答】解:这个不透明的盒子中装有2+n个球,又∵从中随机摸出一个球,它是白球的概率为,∴=,解得n=3,故答案为3.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为m>1.【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴的没有交点,即△=b2﹣4ac<0,即可求出m的取值范围.【解答】解:∵若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,∴△=b2﹣4ac=(﹣2)2﹣4×1×m<0,即4﹣4m<0,解得:m>1,故答案为:m>1.【点评】本题主要考查抛物线与x轴的交点.熟记抛物线与x轴的交点个数与系数的关系是解决此题的关键.16.若小唐同学掷出的铅球在场地上砸出一个直径约为10cm、深约为2cm的小坑,则该铅球的直径约为14.5cm.【考点】垂径定理的应用;勾股定理.【专题】应用题.【分析】根据题意,把实际问题抽象成几何问题,即圆中与弦有关的问题,根据垂径定理,构造直角三角形,小坑的直径就是圆中的弦长,小坑的深就是拱高,利用勾股定理,设出未知数,列出方程,即可求出铅球的直径.【解答】解:根据题意,画出图形如图所示,由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,∴AC=CB=5,设铅球的半径为r,则OC=r﹣2,在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,即(r﹣2)2+52=r2,解得:r=7.25,所以铅球的直径为:2×7.25=14.5 cm.【点评】解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.17.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.一块草坪的护栏是由50段形状相同的抛物线组成,如图,为牢固期间,每段护栏需按间距0.4m加设不锈钢管做成的立柱.为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据,则需要不锈钢管的总长度为80.(米)【考点】二次函数的应用.【分析】根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出a,c的值的解析式;根据对称性求B3、B4的纵坐标后再求出总长度.【解答】解:由题意得B(0,0.5)、C(1,0)设抛物线的解析式为:y=ax2+c(a≠0),,代入得:故解析式为:y=﹣x2+;∵当x=0.2时,y=0.48,当x=0.6时,y=0.32,∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)=1.6(米),∴所需不锈钢管的总长度为:1.6×50=80(米).故答案为:80.【点评】本题考查了二次函数的应用,数学建模思想是运用数学知识解决实际问题的常规手段,建立恰当的坐标系很重要.三、解答题(共96分)19.解方程(1)x(2x﹣1)=2(1﹣2x)(2)x2﹣5x﹣4=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)根据因式分解,可得方程的解;(2)根据公式法,可得方程的解.【解答】解:(1)移项,得x(2x﹣1)+2(2x﹣1)=0,因式分解,得(2x﹣1)(x+2)=0.于是,得2x﹣1=0或x+2=0.解得x1=,x2=﹣2;(2)x2﹣5x﹣4=0,a=1,b=﹣5,c=﹣4,△b2﹣4ac=25﹣4×1×(﹣4)=41,x==,.【点评】本题考查了解方程,利用了因式分解法解方程,公式法解方程.20.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为(﹣2,3);(2)画出△ABO绕点O顺时针旋转90°后的△O A1B1,并求线段AB扫过的面积.【考点】作图-旋转变换.【专题】计算题;作图题.【分析】(1)先画出直角坐标系,然后根据第二象限点的坐标特征写出A点坐标;(2)先利用网格特点和旋转的性质画出点A和B的对应点A1、B1,即可得到△OA1B1,再利用勾股定理计算出OA和OB,然后根据扇形面积公式计算S扇形OAA1﹣S扇形BOB1的即可.【解答】解:(1)如图1,点A的坐标为(﹣2,3);(2)如图2,△OA1B1为所作;OA==,OB==线段AB扫过的面积=S扇形OAA1﹣S扇形BOB1=﹣=π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形的面积公式.21.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)【考点】一元二次方程的应用.【专题】几何图形问题;数形结合.【分析】本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x)米2,进而即可列出方程,求出答案.【解答】解法(1):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:(32﹣x)=540整理得:x2﹣52x+100=0解得:x1=50(舍去),x2=2答:道路宽为2米.解法(2):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:20×32﹣x+x2=540整理得:x2﹣52x+100=0解得:x1=2,x2=50(舍去)答:道路宽应是2米.【点评】这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.22.在一个不透明的盒子里,装有四个分别写有数字﹣2、﹣1、1、2的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,然后搅匀,再从盒子里随机取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;(2)求两次取出乒乓球上的数字之和等于0的概率.【考点】列表法与树状图法.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)求两次取出乒乓球上的数字之和等于0个数,即可求得其概率.【解答】解:(1)画树形图得:所以两次取出乒乓球上的数字相同的概率==(2)由(1)可知:两次取出乒乓球上的数字之和等于0的概率P=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点G.(1)求证:点E是的中点;(2)求证:CD是⊙O的切线;(3)若AD=6,⊙O的半径为5,求弦DF的长.【考点】切线的判定;勾股定理;圆周角定理.【分析】(1)连接OD.欲证明点E为的中点,只需证明∠DOC=∠BOC即可;(2)若证明CD是⊙O的切线,需要证明∠ODC=90°,即OD⊥CD;(3)利用垂径定理推知△ADG和△ODG都是直角三角形,所以在这两个直角三角形中利用勾股定理来求线段DG的长度.【解答】(1)连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD∥OD∴∠OAD=∠BOC,∠D OC=∠ODA,∴∠DOC=∠BOC,∴∴点E为的中点(2)∵在△BOC与△DOC中,∴△BOC≌△DOC(SAS)∴∠CDO=∠CBO=90°,∴CD为⊙O的切线;(3)∵AB⊥DF∴2DG=DF设AG=x,则OG=5﹣x在Rt△ADG和Rt△ODG中,由勾股定理得:62﹣x2=52﹣(5﹣x)2解得:∴DG=∴DF=2DG=9.6【点评】本题综合考查了切线的判定与性质、圆周角定理以及勾股定理.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(14分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)为了使顾客尽量满意,每件商品的售价定为多少元时,每个月的利润恰为2200元?【考点】二次函数的应用.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.【解答】解:(1)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元),∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.【点评】此题考查二次函数的实际应用,借助二次函数解决实际问题,体现建模思想的渗透.25.(14分)如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.【分析问题】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.【解决问题】请你通过计算求出图2中∠BPC的度数;【比类问题】如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2.(1)∠BPC的度数为120°;(2)直接写出正六边形ABCDEF的边长为2.【考点】四边形综合题.【分析】【解决问题】如图4,将△PBC逆时针旋转90°得△P′BA,连接PP′,就可以求得∠P′BP=90°,P′B=PB,求出∠BP′P的度数,由勾股定理就可以求出PP′的值,在△P′AP中由勾股定理的逆定理可以得出△P′AP是直角三角形,求出∠PP′A的度数,从而可以求出结论;(1)仿照【分析】中的思路,将△BPC绕点B逆时针旋转120°,得到了△BP′A,然后连结PP′.如图所示,根据旋转的性质可得:△PBC≌△P′BA,从而得出△BPP′为等腰三角形,PB=P′B=4,PC=P′A=2,∠BPC=∠BP′A,由∠ABC=120°,就有∠PBP′=120°,∠BP′P=30°,可以求得PP′=,由勾股定理的逆定理就可以求出∠AP′P=90°从而得出结论;(2)延长A P′作BG⊥AP′于点G,在Rt△P′BG中,P′B=4,∠BP′G=60°,就可以得出P′G=2,BG=,则AG=P′G+P′A=2+2=4,在Rt△ABG中,根据勾股定理得AB=.【解答】解:【解决问题】如图4,将△PBC逆时针旋转90°得△P′BA,连接PP′,∴△AP′B≌△CPB,∴P′B=PB=,P′A=PC=1,∠1=∠2.∠AP′B=∠BPC.∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠1+∠3=90°,即∠P′BP=90°.∴∠BP′P=45°.在Rt△P′BP中,由勾股定理,得PP′2=4.∵P′A=1,AP=∴P′A2=1,AP2=5,∴P′A2+PP′2=AP2,∴△P′AP是直角三角形,∴∠AP′P=90°.∴∠AP′B=45°+90°=135°,∴∠BPC=135°;(1)仿照【分析】中的思路,将△BPC绕点B逆时针旋转120°,得到了△BP′A,连结PP′.如图5,∴△PBC≌△P′BA,∴P′B=PB=4,PC=P′A=2,∠BPC=∠BP′A,∴△BPP′为等腰三角形,∵∠ABC=120°,∴∠PBP′=120°,∴∠BP′P=30°,作BG⊥PP′于G,∴∠P′GB=90°,PP′=2P′G.∵P′B=PB=4,∠BP′P=30°,∴BG=2,∴P′G=2∴PP′=,在△APP′中,∵PA=,PP′=,P′A=2,∴PA2=52,PP′2=48,P′A2=4,∴P′A2+P′P2=PA2,∴△PP′A是直角三角形,∴∠AP′P=90°.∴∠BPC=∠BP′A=30°+90°=120°.(2)延长A P′作BG⊥AP′于点G,如图6,在Rt△P′BG中,P′B=4,∠BP′G=60°,∴P′G=2,BG=,∴AG=P′G+P′A=2+2=4,在Rt△ABG中,根据勾股定理得AB=.故答案为:120°;2.【点评】本题是一道四边形的综合试题,考查了旋转在正多边形中的运用,全等三角形的判定及性质的运用,勾股定理的运用,勾股定理的逆定理的运用,等腰三角形的性质的运用,解答本题时运用等腰三角形的性质解答是关键26.(14分)如图,在平面直角坐标系中,函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,=.(1)求这个二次函数的表达式;(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.【考点】二次函数综合题.【专题】综合题.【分析】(1)分别确定A、B、C的坐标,利用待定系数法可得二次函数的表达式;(2)根据A、C、E、F为顶点的四边形为平行四边形,可得点F的可能坐标,再由点F在抛物线上,可最终确定;(3)分两种情况讨论,①MN在x轴上,②MN在x轴下,表示出N的坐标,代入抛物线解析式可得半斤的长度.【解答】解:(1)∵点B的坐标为(3,0),OB=OC,∴点C的坐标为(0,﹣3),又∵=,∴OA=1,∴点A的坐标为(﹣1,0),将A、B、C三点坐标代入可得:,解得:,故这个二次函数的表达式为:y=x2﹣2x﹣3.(2)在该抛物线上存在点F(2,﹣3),使以点A、C、E、F为顶点的四边形为平行四边形.理由:由(1)得D(1,﹣4),则直线CD的解析式为:y=﹣x﹣3,故E点的坐标为(﹣3,0),∵以A、C、E、F为顶点的四边形为平行四边形,∴F点的坐标为(2,﹣3)或(﹣2,﹣3)或(﹣4,3),代入抛物线的表达式检验,只有(2,﹣3)符合.∴抛物线上存在点F(2,﹣3),使以点A、C、E、F为顶点的四边形为平行四边形.(3)①如图,当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),代入抛物线的表达式,解得R=,其中R=(不合题意,舍去),∴R=.。