人教版八年级数学上册导学案 第十五章 分式 15.2.1分式的乘除

合集下载

人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章

教案

第十五章分式

15.1.1从分数到分式

教学目标

1.了解分式的概念,能用分式表示实际问题中的数量关系.

2.能确定分式有意义的条件.

教学重、难点

分式的概念

教学过程设计

一、创设问题,激发兴趣

XXX:

一艘轮船在静水中的最大航速为30km/h,它沿江以最大航速顺流航行90km所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?

问题1顺流航行的速度、逆流航行的速度与轮船

在静水中的速度、水流速度之间有什么关系?

顺流航行的速度=轮船在静水中的速度+水流速度;

逆流航行的速度=轮船在静水中的速度-水流速度.

问题2这个问题的等量关系是什么?

顺流航行90 km所用时间=逆流航行60 km所用时间.

问题3应怎样设未知数?如何根据等量干系列出方程?

解:设江水的流速为XXX.

依题意得:

追问式子与分数有甚么相同点和分歧点?它们与你学过的整式有甚么分歧?

问题4填空:

(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.

问题4填空:

(2)把体积为200cm3的水倒入底面积为33cm2的圆柱描述器中,水面高度为cm;把体积为V的水倒入底面积为S 的圆柱描述器中,水面高度为.追问1上面问题中得到的式子

,,,

哪些不是我们学过的整式?追问2式子

的特性?

二、常识使用,巩固提高

分式的定义:

,,

与以前学过的整式分歧,这些代数式有甚么配合一般地,如果A,B表示两个整式,并且B中含有字母,那末式子叫做分式(fraction).分式中,A叫做分子,B叫做分母.

人教数学 第15章分式 第4课时15.2.1分式的乘除(1) 导学教案

人教数学 第15章分式 第4课时15.2.1分式的乘除(1) 导学教案

教学 1.经历与分数乘除法类比得出分式乘除法法则的过程,会运用法则进行分子分母都是单项式的分式乘除运算. 目标 2.培养类比推理能力和运算能力,渗透转化思想.
( )谈话法 ( )讨论法
教 ( )复习导入
( )实验法
法 ( )情景导入
重点 分子和分母都是单项式的分式乘除运算. 难点 正确地进行运算.
关键 分式乘除的法则运用。
人教版八年级上册 第十五章分式 导学教案(共 15 课时)
15.2.1 分式的乘除(1) 导学教案 科目 数学 主备人 ** 授课人 **
班级: ** 班 总课时第( )节
课型
( )问题发现生成课( )问题综合解决课( )问题拓展训练课
课题 15.2.1 分式的乘除(1)
第 周 第 课时
授课时间
12 月 日
(3)
=
15a3b2
-y3z
(4)- =
xyz
7.计算:
3a 16b
(1)
4b
9a2
(2)
8a 2b 3
3a 4b4
-5ab 3a2
(3)
6c
10a2b
=
=
=
8.计算:
ma2 ma
(1)
nb
nb
18a3b2 -6ab2
(2)
5cd
5c2d2

八年级数学上册 第十五章《分式》15.2 分式的运算 15.2.1 分式的乘除 15.2.1.1 分

八年级数学上册 第十五章《分式》15.2 分式的运算 15.2.1 分式的乘除 15.2.1.1 分

15.2分式的运算

15.2.1分式的乘除

第1课时分式的乘除

◇教学目标◇

【知识与技能】

理解并掌握分式的乘除法那么,运用法那么进展运算,能解决一些与分式有关的实际问题.

【过程与方法】

经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.

【情感、态度与价值观】

通过让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验.

◇教学重难点◇

【教学重点】

掌握分式的乘除运算.

【教学难点】

分子、分母为多项式的分式乘除法运算.

◇教学过程◇

一、情境导入

观察以下运算:

.

猜一猜=?=?

二、合作探究

探究点1分式的乘法

典例1化简分式的结果是()

A. B. C. D.

[解析]进展分式乘除法运算时,先约分,再化简即可..

[答案] B

变式训练计算的结果是()

A.-1

B.0

[解析]原式==1.

[答案] C

探究点2分式的除法

典例2化简的结果是()

A.a2

B.

C. D.

[解析]先将分子因式分解,再将除法转化为乘法后约分即可.原式=.

[答案] D

变式训练计算:,其结果正确的选项是()

A. B.

C. D.

[答案] D

探究点3分式乘除混合运算

典例3计算的结果是()

A. B.-

C. D.-

[解析]先将除法转化为乘法,再根据分式的乘法法那么计算、约分即可.=-.

[答案] B

【技巧点拨】做分式乘除混合运算时,一般是先统一为乘法运算,所以分式乘除法的运算,归根到底是乘法的运算,运算的最后结果是最简分式或整式.

计算÷(y-x)·.

[解析]÷(y-x)·.

三、板书设计

【人教版】八年级上:第15章《分式》全章导学案(20页,含答案)

【人教版】八年级上:第15章《分式》全章导学案(20页,含答案)

第十五章 分 式

15.1 分 式

15.1.1 从分数到分式

1.了解分式的概念,理解分式有意义的条件,分式的值为零的条件. 2.能熟练地求出分式有意义的条件,分式的值为零的条件.

重点:理解分式有意义的条件,分式的值为零的条件.

难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

一、自学指导

自学1:自学课本P127-128页,掌握分式的概念,完成填空.(5分钟)

总结归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A

B 叫做分式,分式A

B 中,A 叫做分子,B 叫做分母.

点拨精讲:分式是不同于整式的另一类式子,它的分母中含有字母可以表示不同的数,所以分式比分数更具有一般性.

自学2:自学课本P128页“思考与例1”,理解分式有意义的条件,分式的值为零的条件.(5分钟)

总结归纳:分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式A B 才有意义;当B ≠0,A =0时,分式A

B

=0.

点拨精讲:分式的分数线相当于除号,也起到括号的作用.

二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)

课本P128-129页练习题1,2,3.

小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)

探究1 当x 取何值时:(1)分式12x 2x -3有意义?(2)分式12x 2x 2+3有意义?(3)分式

3x

2x -1无意义?(4)分式12x

|x|-3无意义?(5)分式|x|-22x +4的值为0?(6)分式x 2-9x -3

的值为0?

2020年人教版数学八年级上册学案15.2.1《分式的乘除》(含答案)

2020年人教版数学八年级上册学案15.2.1《分式的乘除》(含答案)

15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除

学习目标

1.理解分式乘除法的法则. 2.会进行分式乘除运算. 预习

阅读教材,完成预习内容. 知识探究

1.问题1和问题2中的v ab ·m n ,a m ÷b

n 怎么计算?

2.复习回顾: (1)23×45=2×43×5=815. (2)57×29=5×27×9=1063

. (3)23÷45=23×54=2×53×4=1012=56. (4)57÷29=57×92=5×97×2=4514

. 分数的乘除运算法则:

1.两个分数相乘,把________相乘的________作为________,把________相乘的积作为________; 2.两个分数相除,把除数的分子、分母________后,再与被除数________. 3.类比分数的乘除运算法则,总结出分式的乘除运算法则:

(1)乘法法则:分式乘分式,用分子的积作为积的________,分母的积作为积的________; (2)除法法则:分式除以分式,把除式的分子、分母________后,与被除式相乘. 用式子表达:

a b ·c d =a ·c b ·d a b ÷c d =a b ·d c =a ·d b ·c .

活动1 小组讨论 例1 计算:

(1)4x 3y ·y 2x 3; (2)ab 2

2c 2÷-3a 2b 2

4cd . 解:(1)原式=4x ·y 3y ·2x 3=4xy 6x 3y =23x

2.

(2)原式=ab 2

2c 2·4cd -3a 2b 2=-ab 2

人教版数学八年级上册第十五章初中数学教学课件分式的乘除

人教版数学八年级上册第十五章初中数学教学课件分式的乘除


:( 1
)
a a
2 2
4 2
a a
4 1
a -1 a2 4
( (
a - 2 )2 a - 1 )2
(a 1) (a-2 )(a+ 2 )
( a - 2 )(2 a - 1 ) ( a - 1 )(2 a - 2 ) ( a + 2 ) a-2 .
( a - 1() a + 2 )
(
2
)
x+2 x-2 x+2100 x+2
答案: x - 2
x+2
5.(江津·中考)
.
·
通过本课时的学习,需要我们 1、理解并掌握分式乘除法的法则,会进行分式乘除运算. 2、理解并掌握分式乘方的运算法则,熟练地进行分式乘
方的运算. 3、熟练地进行分式乘、除、乘方的混合运算. 4、能解决一些与分式乘除法有关的实际问题.
4
4
2.
·· ·
· ,,
分式乘方要把分子、分母分别乘方.
例5.计算: 一个人如果胸无大志,既使再有壮丽的举动也称不上是伟人。
大拖拉机的工作效率是 公顷/天,小拖拉机的工作效 (x-2)km/h,由题意 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
“丰收1号”小麦的试验田是边长为a 米的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长 为(a-1)米的正方形,两块试验田的小麦都收获了500千克. 立志难也,不在胜人,在自胜。

八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
(1)乘方;(2)除变乘;(3)多项式
分解因式;(4)约分得最简分式或整式
课堂练习
1.计算( a )3 的结果是( A )
2b
A. a3
8b 3
B.
a3 6b 3
C.
a3 2b 3
D. a 3
8b 3
课堂练习
2.计算
y x
y 2
2 y
的结果是
(
A
)
A. 4
B.x
C.y
xy
2
x
【变式】计算: .
x
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)

人教版数学八年级上册15.2.1分式的乘方及乘方与乘除的混合运算教案

人教版数学八年级上册15.2.1分式的乘方及乘方与乘除的混合运算教案

分式的乘方

【学习目标】

1、知识与技能:理解和掌握分式的乘方法则;会进行分式的乘方运算,分式的乘、除及乘

方的混合运算。

2、过程与方法:经历分式乘方法则的探究过程,培养学生的观察、类比、归纳等数学能力。

3、情感态度与价值观:感受数学的严谨性,对数学产生强烈的好奇心和求知欲。

一、知识准备

(1)=m ab )( ; =32)2x ( ;

=33)3x a ( ; (2)在下列横线上填“+”或“-”。

2)a -(= 2a ;② 3)a -(= 3a ③ 4)ab -(= 4)(ab

二、探究分式的乘方法则

1、根据乘方的意义和分式乘法的法则,计算下列各题:

()(

b a a b a a b a b a b a =••=

•=⎪⎭

⎝⎛2

()(

b a b b b a a a b a b a b a b a =••••=

••=⎪⎭

⎝⎛3

()(b a b b b b a a a a b a b a b a b a b a =••••••=

•••=⎪⎭

⎝⎛4

由以上计算的结果你能推出?=⎪⎭

⎝⎛n

b a (n 为正整数)的结果吗?

()(

b a b b b b a a a a b a b a b a b a b a n

=••••••••••••=

••••••=⎪⎭

⎝⎛

即:)()

b a b a n

=⎪⎭

⎝⎛

2、归纳分式乘方的法则:分式乘方要把分子、分母分别

三、例题精讲

例1 计算:(1)2

)32(x

y (2) 32)32(c b a - 解:原式= 2

2

)

3()2(x y - 解:原式=

= 2

2

人教版八年级上册数学第十五章《分式乘除》全章教学设计

人教版八年级上册数学第十五章《分式乘除》全章教学设计

人教版八年级上册数学第十五章《分式乘除》全章教学设计

教学目标

1. 理解分式的乘法和除法的概念和意义。

2. 掌握分式的乘法和除法的基本运算法则。

3. 能够独立解决包括分式乘法和除法的数学问题。

教学重点

1. 分式的乘法和除法的运算规则。

2. 分式乘除与整数的运算关系。

教学内容

本章主要包括以下内容:

1. 分式乘法的概念和方法。

2. 分式除法的概念和方法。

3. 分式乘法和除法的基本性质和规则。

教学步骤

步骤一:导入

通过激发学生对分式乘除的兴趣,引入本章的内容。可以用一些实际生活中的例子,例如购买食材时的分数量的计算,引发学生对分式乘除的认识。

步骤二:概念讲解

1. 首先,讲解分式乘法的概念和方法。通过示例和图示,让学生理解分式乘法的意义和操作步骤。

2. 然后,讲解分式除法的概念和方法。同样通过示例和图示,引导学生理解分式除法的意义和操作步骤。

步骤三:公式探究

1. 引导学生观察和分析分式乘法和除法的规律,总结出相应的运算法则。

2. 给学生一些练题,让他们通过实际计算验证所总结的运算法则。

步骤四:拓展应用

1. 给学生一些更加复杂的分式乘除的问题,让他们应用所学的知识解决问题。

2. 鼓励学生思考实际问题中分式乘除的应用场景,并尝试解决这些问题。

步骤五:归纳总结

总结本章的教学内容,强调分式乘除的基本规则和注意事项。

教学评估

1. 针对每个步骤的讲解,可以进行小组讨论和师生互动,及时发现和纠正错误。

2. 在步骤四的拓展应用中,可以分别对学生的解答进行评价和

反馈。

3. 可以设计一些综合性的题,对学生的掌握情况进行综合评估。

人教初中数学八上 15.2.1 分式的乘除(第1课时)分式的乘与除课件

人教初中数学八上  15.2.1 分式的乘除(第1课时)分式的乘与除课件
严格按照分式的乘除运算法则进行运算.
(1)原式=6xy2·3x1y2
=
6y2 x·3xy2
=
x22;
(2)原式=a+2b· (a-b)2 a(a-b) (a+2b)(a-2b)
=
a2a--2bab.
关闭 关闭
解析 解析
答案
一二
一二
2.分式乘除的运用 【例 2】 先化简,再求值:x22-4xx-4+4·(x+2),其中 x= 5.
=
������ ,
������-2
把 x=4 代入,得
������ = 4 =2.
������-2 4-2
(2)原式=(������(+������3+)3(���)���2-3)·3������������2(���(���x-3+)3)=3x,
把 x=-1代入,得
3
3x=3× - 1 =-1.
3
15.2 分式的运算
15.2.1 分式的乘除
第1课时 分式的乘与除
学前温故 新课早知
1.分数的乘除法则 分数乘分数,把分子、分母分别相乘的积作为 积的分子、分母 ;分数 除以分数,将除数的分子、分母 颠倒位置 后与被除数相乘. 2.约分 利用分式的基本性质,约去分式的分子和分母的 公因式 ,不改变分式 的值,这样的分式变形叫做约分.其关键是找出分子与分母 的 公因式 .

八年级数学 第十五章 分式15.2 分式的运算1 分式的乘除第2课时 分式的乘方教学1

八年级数学 第十五章 分式15.2 分式的运算1 分式的乘除第2课时 分式的乘方教学1
15.2 分式 的运算 (fēnshì)
15.2.1
(第2 分式的乘除(chéngchú)
课时
12/11/2021
第一页,共九页。
例4 计算 : (jìsuàn)
2x 3 x 5x3 2x5295x3
2x (5x3)(5x3) x
5x3
3
5x3
2x2 3
12/11/20分21 式乘除混合运算可以统一(tǒngyī)化为乘法运
第三页,共九页。
例5 计算 : (jìsuàn)
2a 3c
2b
2
2 a 2b 2
3c 2
12/11/2021
4 a 4b 2 9c2
第四页,共九页。
例5
计算(jìsuàn):ac2bd3
3
2da3 2ca2
a 6b 3 2 a c 2 c 3d 9 d 3 4a 2
a 6b 3 c 3d 9
d3 2a
c2 4a2
12/11/2021
a 3b 3
8 cd 6
第五页,共九页。
练习 1 : (liànxí)
计算
23mp2qn2
5p2q 4mn2
5mnp 3q
16a2 a4a2 a28a162a8 a2
12/11/2021
第六页,共九页。
练习 2 : (liànxí)

人教版-数学-八年级上册第15章《15.2.1 分式的乘除(1)》学案

人教版-数学-八年级上册第15章《15.2.1 分式的乘除(1)》学案

八年级数学 第15章《15.2.1 分式的乘除(1)》学案

学习目标:

1.理解分式乘除法的法则,会进行分式乘除运算;

2.熟练地进行分式乘除法的混合运算.

学习重难点;

1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算.

学习过程

一、自学导读

1.分数的乘法法则: 。

2.分数的除法法则:

3. 类比分数,分式有:(1)乘法法则:

(2)除法法则:

法则用式子表示为:

二、合作探究

1 计算:

;

三、课堂反馈

1.计算:⑴;222663124244

x x x x x x x -+-+--+⋅÷ ⑵ 93234962

22-⋅+-÷-+-a a b a b a a

2.计算:(1)229612316244y y y y y y --÷+⋅-+- (2)xy

y xy y x xy x xy x -÷+÷-+222)( 四.知识检测

1.计算: (1))3(2962y y y y -÷++- (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352 (3)()y x a

xy 28512-÷

(4)b a ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)222342()35()x y x x y x --⋅-

3计算(1)m 4122-+-m m ﹒1

42--m m b a b a +-22)2(÷22222b ab a b a ++-

(2)222

2442y xy x y x y x y x ++-÷+-

八年级数学上册 第十五章 分式 15.2 分式的运算 15.2.1 分式的乘除课件

八年级数学上册 第十五章 分式 15.2 分式的运算 15.2.1 分式的乘除课件
人教版
八年级 上册 数学(shùxué)
第一页,共二十三页。
15.2.1 分式(fēnshì)的乘除
第二页,共二十三页。
学习目标
使学生(xuésheng)理解并掌握分式的乘除法则, 理解其算理。运用法则进行分式乘除运 算,能解决一些与分式有关的实际问题
经历类比分数的乘、除运算(y源自文库n ,探 suàn) 索分式的乘、除运算(yùn suàn)法则的过程, 并能结合具体情境说明其合理性。
第二十三页,共二十三页。
第二十一页,共二十三页。
课后作业
(zuòyè)
第二十二页,共二十三页。
内容(nèiróng)总结
八年级 数学 上册。使学生理解并掌握分式的乘除法则,理解其算理。运用法则进行分式 乘除运算,能解决一些与分式有关的实际问题。[问题2]:大拖拉机m天耕地a公顷,小拖拉机n天 耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍。1.根据分数的乘除法的法则 计算:。两个分数相除, 把除式的分子分母颠倒位置后,。[注意]:运算结果(jiē guǒ)如不是最简 分式时,一定要进行约分,使运算结果(jiē guǒ)化为最简分式.。课后作业
( 3) m2 16m24m 123m
第十二页,共二十三页。
典题精讲
[解题技巧] (1)分式的分子,分母都是多项式的分式 除法先转化为乘法,然后把多项式进行因式分解,最后 约分(yuē fēn),化为最简分式. (2)如果除式是整式,则把它的分母看做”1”.

(部编)人教数学八年级上册《15.2.1分式乘除分式乘除法应用》教案3

(部编)人教数学八年级上册《15.2.1分式乘除分式乘除法应用》教案3

分式的运算

15.分式的乘除

第1课时分式的乘除

课题第1课时分式的乘除

理解并掌握分式的乘除法法那么,会实行

知识技能

式乘除法运算

经历从分数的乘除法运算

到分式的乘除法

运算的过程,培养学生类

比的探究水平,

数学思考加深对“从特殊

到一般〞的数学思想的理

解.

使用分式的乘除法法那么实行运算.

问题解决

教学中让学生在自主探究,合作交流中渗

情感态度透类比转化的思想,使学生感受探索的乐趣和成功的体验.

教学

使用分式的乘除法法那么实行运算.

重点

(续表)

分子、分母为多项式的分式乘除运算.

教学难点

授课类型 新授课 课时

教具 多媒体课件

教学活动

教学步骤

回忆

活动 一: 创设 情境 导入

新课

师生活动

设计意图

温故知

3 3

〔x +y 〕y

3abc

约分:(1)12ac 2=________;(2)

xy 2 =________;

新,为本节

x 2+xy x 2-y 2

(3)〔x +y 〕2=________;(4)〔x -y 〕2=________.

课作知识的

铺垫.

1.从学生

【课堂引入】分数的乘除:

已有的知识

24

〕×〔

5 2 〔

〕×〔

×=

〔 〕×〔

〕 ,×=

〔 〕×〔

35 7 9 出发,利用

24

2〔

〕 2×〔

〕 525〔

÷=

×

〕 =

,÷=

×

353〔

3×〔 〕 797

多媒体,激

5×〔

7×〔 〕

发学生强烈

分数的乘法法那

么:

分数乘分数,用________作为积的分子,________作为积的分母. 的好奇心和

除法法那么:

除以一个________的数等于________这个数的________.

求知欲.

b d 〔

人教版八年级上册第15章《分式》全章教案(21页,含反思)

人教版八年级上册第15章《分式》全章教案(21页,含反思)

第十五章分式

15.1分式

15. 1.1从分数到分式

1.以描绘实质问题中的数目关系为背景抽象出分式的观点,成立数学模型,并理解分式的观点.

2.能够经过分式的定义理解和掌握分式存心义的条件.

要点

理解分式存心义的条件及分式的值为零的条件.

难点

能娴熟地求出分式存心义的条件及分式的值为零的条件.

一、复习引入

1. 什么是整式?什么是单项式?什么是多项式?

2. 判断以下各式中 ,哪些是整式?哪些不是整式?

① 8m + n ;② 1+ x + y 2;③ a 2 b +ab 2

a +

b 2

;⑥

3

;⑦

3x 2- 4

3 ;④ ;⑤ a 2+ b 2 .

3

2

x 2+ 2x +1

2x

二、研究新知

1. 分式的定义

(1) 学生看教材的问题:一艘轮船在静水中的最大航速为

30 千米 /时,它沿江以最大航速

顺流航行 90 千米所用时间 ,与以最大航速逆流航行 60 千米所用的时间相等 ,江水的流速为

多少?

剖析:设江水的流速为 v 千米 / 时.

轮船顺流航行 90 千米所用的时间为

90

小时 ,逆流航行 60 千米所用时间为

60

小时,

30+ v 30- v

所以 90 = 60

.

30+ v 30- v

(2) 学生达成教材第 127 页“思虑”中的题.

察看:以上的式子 9060

S V

30+ v ,30-v , a , s ,有什么共同点?它们与分数有什么相同点和不

同点?

能够发现 ,这些式子都像分数相同都是

A

B (即 A ÷B) 的形式.分数的分子 A 与分母 B 都是

整数 ,而这些式子中的 A , B 都是整式 ,并且 B 中都含有字母.

人教版数学八年级上册第十五章15.1.2分式的基本性质(1)

人教版数学八年级上册第十五章15.1.2分式的基本性质(1)
问题:共性典型问题:图片展示(课前自主学习中两个或者至多三个典型共性问题的展示) 个性典型问题:图片展示(课前自主学习中两个或者至多三个典型个性问题的展示)
自学释疑、拓展提升
知识点一:分式的基本性质
自学问题:分式基本性质从数到式的变化;利用分式基本性质解决问题时,需要分子分母同乘或 除以同一个不等于0的整式。
问题解决:
问题1:观察教材129页例2(1)中的两个分式,在变形前后的分子、分母有什么变化?类比分数的 相应变形,你联想到什么?
归纳总结:
根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的 分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.
追问2:应用分式的基本性质时需要注意什么?
归纳:(1)分子、分母应同时做乘、除法中的同一种运算;
(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.
自学释疑、拓展提升
知识点一:分式的基本性质
典例分析:
例1.下列变形是否正确?如果正确,说出是如何变形的?如果不正确,说明理由.
典例分析:
例3.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:
1x1 y ①3 5
2x 1 y 6
② 0.8x 0.78y
0.பைடு நூலகம்x 0.4 y
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册导学案 第十五章 分式 15.2.1分式的乘除

【学习目标】

1. 掌握分式的乘除运算法则,并利用法则进行运算及解决有关的简单的实际问题;

2.能应用分式的乘除法法则进行乘除混合运算。

3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣。

【课前预习】

1.下列运算正确的是( ).

A .22423a a a +=

B .222()m n m n -=-

C .331a a a a ⎛⎫÷-⋅=- ⎪⎝⎭

D .()326x x -=-

2.已知22439

x x x -÷--,这是一道分式化简题,因为一不小心一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )

A .3x -

B .2x -

C .3x +

D .2x +

3.计算21133

x x x ⎛⎫-• ⎪+⎝⎭的结果是( ) A .13x x - B .13x x -- C .13x x + D .13x x

+- 4.下列运算正确的是( )

A .2a 3•a 4=2a 12

B .(﹣3a 2)3=﹣9a 6

C .a 2÷a×1a =a 2

D .a•a 3+a 2•a 2=2a 4

5.化简211m m m m

--÷的结果是 ( ) A .m B .1m C .1m - D .1m m

-

6.若a 与()b -互为相反数,则221921992020a b ab

+的值为( ) A .0 B .1 C .-1 D .2020

7.化简221121a a a a a

--÷++的结果是( ) A .12 B .1a a + C .1a a + D .12

a a ++ 8.下列计算结果正确的有( ) ①2313x x x x x ⋅=;②22323864a a

b a b ⎛⎫⋅-=- ⎪⎝⎭;③222111

a a a a a a ÷=-+-;④1a

b a b ÷⋅=;③()22221a b a b b a ab ⎛⎫⎛⎫-⋅-÷= ⎪ ⎪⎝⎭⎝⎭

. A .1个

B .2个

C .3个

D .4个 9.222142x x x

÷--的计算结果为( ) A .2x x + B .22x x + C .22x x - D .2(2)

x x + 10.植树节时,某班学生平均每人植树6棵.如果单独由女生完成,每人应植树15棵,那么单独由男生完成,每人应植树( )

A .9棵

B .10棵

C .12棵

D .14棵

【学习探究】

阅读课本,完成下列问题 1、约分:⑴233123ac c b a = ⑵ ()2xy y y x += ⑶ ()22y x xy x ++= ⑷()

222y x y x --= 2、分数的乘除:

32×54=()()()()⨯⨯,75×92=()()()()

⨯⨯,

32÷54=3

2×()()=()()⨯⨯32,75÷92=75×()()=()()⨯⨯75 分数的乘法法则: 分数乘分数,用 作为积的分子, 作为积的分母. 除法法则:除以一个 的数等于 这个数的 . 分式的乘除,猜一猜a b ×c d =()()()()⨯⨯, a b ÷c d =a b ×()()=()()()()

⨯⨯ 分式的乘法法则:分式乘分式,用 作为积的分子, 作为积的分母.

分式的除法法则:分式除以分式,把除式的分子、分母 位置后,与被除数 .

3、填空(1)=•c

a a

b (2)a b a 22•= (3)=÷a b a 22 (4)nx

my mx ny -•= 4、问题1、一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的n

m 时,水面的高度为多少?(提示:这个长方体容器的高怎么表示?)

5、问题2、大拖拉机m 天耕地a 2hm ,小拖拉机n 天耕地b 2hm ,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?

(分析)大拖拉机和小拖拉机的工作效率怎样表示?

所以:大拖拉机的工作效率是小拖拉机的工作效率的 ÷ = 倍.

互学探究

1、计算

(1)22)32(c b a -; (2)23332)2(2)(a

c d a cd b a •÷-

分式乘方的混合运算解题步骤是:

2、计算:(1))()()(422xy x y y x -÷-⋅- (2))()()(2232b a a

b a ab b a -⋅--⋅-

3、已知3=y x 则=+22y

xy x ( )A 、12 B 、 9 C 、 6 D 、 3 4、已知=a b 54,求2008

2009⎪⎭⎫

⎝⎛-•⎪⎭⎫

⎝⎛-a b a a b

a 的值。

5、计算 2

2222121221⎪⎭⎫

⎝⎛+÷-+-÷⎪⎭⎫ ⎝⎛---x x x x x x x x

拓展延伸:

先化简,再求值 11

12421

222-÷+--•+-a a a a a a ,其中a 满足02=-a a .

小结

乘法法则:__________________________________________________________

除法法则:___________________________________________________________

分式的乘除法混合运算顺序

【课后练习】

1.下列计算错误的是()

相关文档
最新文档