第十一蛋白质生物合成
蛋白质的生物合成习题
第十一章蛋白质的生物合成习题一、填空题1、核糖体含有的与tRNA有关的3个功能部位是位、位和位。
2、氨基酸与tRNA形成氨酰-tRNA的过程被称为,它由特定的催化,共消耗个ATP,此酶可以通过机制尽可能降低误载的氨酰-tRNA的生成。
3、蛋白质合成时,原核细胞的起始氨基酸为,真核细胞的起始氨基酸是。
4、翻译时阅读mRNA的方向都是从,多肽链延伸的方向是从,正确的氨基酸的掺入取决于之间的相互作用。
5、在原核生物蛋白质过程中,起始密码子AUG定位于核糖体的位点,这个位点也是可结合的位点。
当终止密码子进入核糖体的部位以后,或便识别并结合上去。
二、选择题1、翻译过程中不需要GTP水解的一步是()(A) 翻译的起始(B) 氨酰-tRNA进入A位(C) 转肽反应(D) 移位反应2、与密码子AUG(5′→3′)配对的反密码子是()(A)UGA (B)CAU (C)CGT (D)UAC3、以下最能反映一次翻译循环移位反应结束以后核糖体状态的是()(A)P部位含有肽酰-tRNA,A部位空着(B) P部位含有空载的tRNA,A部位含有肽酰-tRNA(C) P部位含有氨酰-tRNA,A部位含有肽酰-tRNA(D) P部位含有肽酰-tRNA,A部位含有空载的tRNA4、一种抗生素干扰核糖体的移位,那么它对细菌的翻译造成的影响是()(A) 合成出的蛋白质比正常的短(B) 没有(C)合成出的蛋白质大小正常,但没有功能(D)无蛋白质产生5、蛋白质生物合成中多肽的氨基酸排列顺序取决于()(A)相应tRNA的专一性(B)相应氨酰-tRNA合成酶的专一性(C)相应mRNA中核苷酸排列顺序(D)相应tRNA上的反密码子三、判断题1、每种生物都是有自己特有的一套遗传密码。
()2、蛋白质合成所需的能量都由ATP直接供给。
()3、密码子从5'至3'读码,反密码子则从3'至5'读码。
()4、基因表达的终产物都是蛋白质。
生物化学-生化知识点_第十一章 蛋白质的生物合成
第十一章蛋白质的生物合成11-1 遗传密码(下册 P504,37章)蛋白质是生物主要的功能分子,它参与所有的生命活动过程,并起着主导作用。
蛋白质的合成由核酸所控制,决定蛋白质结构的遗传信息编码在核酸分子中。
遗传密码:编码氨基酸的核苷酸序列,通常指核苷酸三联体决定氨基酸的对应关系。
一一一三联密码:核酸分子中只有四种碱基,要为蛋白质分子20种氨基酸编码。
三个碱基编码64个,又称三联密码。
密码子:mRNA上有三个相邻核苷酸组成一个密码子,代表某种氨基酸、肽链合成的起始或终止信号。
蛋白质翻译:在RNA控制下根据核酸链上每3个核苷酸决定一种氨基酸的规则,合成出具有特定氨基酸顺序的蛋白质过程。
全部64个密码子破译后,编写出的遗传密码字典。
见P511 表37-5。
一一一遗传密码的基本特性一1一密码的基本单位遗传密码按5‘→3‘方向编码,为不重叠、无标点的三联体密码子。
起始密码子兼Met:AUG。
终止密码子:UAA、UAG和UGA。
其余61个密码子对应20种氨基酸。
一2一密码的简并性同一种氨基酸有两个或更多密码子的现象称为密码的简并性。
同一种氨基酸不同密码子称为同义密码子,氨基酸密码子的简并见P512表37-6。
简并可以减少有害突变,对物种稳定有一定作用。
一3一密码的变偶性(摆动性)编码同一个氨基酸的密码子前两位碱基都相同,第三位碱基不同,为变偶性。
即密码简并性往往表现在密码子第三位碱基上,如Gly的密码子为GGU、GGC、和GGA。
一4一密码的通用性和变异性通用性:各种低等和高等生物,包括病毒、细菌及真核生物基本上共用一套遗传密码。
变异性:已知线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。
一5一密码的防错系统密码的编排方式使得密码子中一个碱基被置换,其结果常常是编码相同的氨基酸或是为物理化学性质接近的氨基酸取代。
11-2 蛋白质合成及转运下册 P5171、氨基酸是怎样被选择及掺入到多肽链当中去的。
第十一(15)章蛋白质的
摆动规则
反密码子第一个碱基 A C G U I 密码子第三个碱基 U G C、U A、G A、C、U
5′
3′
二、氨基酸的“搬运工具”----tRNA
1、tRNA的功能区 (四个功能位点)
氨基酸臂
与氨基酸结合
氨基酸臂
DHU环 与氨酰-tRNA合成酶结合 反密码环 识别、结合密码子 TψC环 核糖体结合位点
⑥变偶性:(摆动性) 密码子上第一、二位上碱基不变,第三位碱基可 改变
密码子的专一性主要是由前两位的碱基决定,而 第三位碱基有较大的灵活性。密码子的第三碱基 对反密码子的第一位碱基,更常出现这种摆动现 象。
摆动规则 Crick于1966年提出,用来解释一种tRNA反密码子如 何能够识别一种氨基酸的几个同义密码子以及某些含有稀 有碱基(如次黄嘌呤)的反密码子是怎样识别由正常碱基 构成的密码子的现象。 该规则的内容是: 密码子在与反密码子之间进行碱基配对的时候,前 两对碱基严格遵守标准的碱基配对规则,第三对碱基则具 有一定的自由度。但并非任何碱基之间都可以配对,当反 密码子第一位碱基是A或C者,只能识别一种密码子;第一 位碱基是G或U者,则能识别两种密码子;第一位碱基是I 者,则能识别三种密码子。
H2N-CH-C-O-tRNA
细胞质中进行
R
O
2、催化氨基酸活化的酶:氨酰-tRNA合成酶
绝对专一性:1种酶只催化1种AA活化。
此酶具有水解活性,有校对功能。 活化一个氨基酸消耗2分子ATP。
甲酰甲硫氨酰-tRNA
3、氨基酸的活化过程
氨基酸羧基通过酸酐键与AMP上的5-磷酸基相连
二、肽链合成的起始 1、起始密码子的识别 原核翻译系统起始密码子的识别主要是依赖于 mRNA 5′-端的SD序列与16S rRNA3′-端的反SD序 列之间的互补配对。 mRNA 的SD序列下游的第一个AUG用作起始密码子。
第十章 蛋白质的生物合成
⑸,反应过程: 反应过程:
C A C P N R H O H H C O
2
C
A O O P C HN H
2
P H
O
C
氨酰-tRNA合成酶 合成酶 氨酰 2 M + g A A T M P P + P P i
P
C
R
结合反应分两步进行 ①,氨酰-AMP-酶复合物的形成 氨酰 酶复合物的形成
A T P + A a g M
的功能) 三,核糖体(rRNA 的功能) 核糖体( 1,核糖体是蛋白质生物合成的场所 , 2,核糖体的组分 ,
直径 颗粒重(道尔顿) 颗粒重(道尔顿) rRNA 蛋白质 沉降系数 亚基 rRNA 蛋白质 原核生物 18 nm 2.8× 2.8×106 60~ 60~65% 30~35( 30~35(1/3) 70 S 30 S 50 S 16 S 21 5 S,23 S 34 真核生物 20~ 20~22 nm 4.0× 4.0×106 55% 45% 80 S 60 S
蛋白质体外合成实验: 蛋白质体外合成实验: Cys-tRNACys 合成酶催化合成 Cys*-tRNACys, Ni 做催化剂使 Cys 还原成 Ala,将此 Ala*-tRNACys , 放入到网织红细胞的无细胞体系中进行蛋白质的生 物合成,结果 Ala 渗入到原来应是 Cys 的位置. 的位置. 物合成, —— 说明 Aa 与 mRNA 之间无识别关系 说明氨酰-tRNA合成酶高专一性的重要性 合成酶高专一性的重要性 说明氨酰
2,遗传密码的基本特点 , ⑴,密码的基本单位 密码的基本单位是: 编码, 密码的基本单位是:按 5′→ 3′编码,不 编码 重叠,无标点的三联体密码子 三联体密码子. 重叠,无标点的三联体密码子. ⑵,密码的简并性 同一种氨基酸由两个或两个以上的密码子为 其编码的现象,称为密码的简并性 密码的简并性. 其编码的现象,称为密码的简并性. 对应于同一种氨基酸的不同密码子称为同义 对应于同一种氨基酸的不同密码子称为同义 密码子. 密码子.
第十一章 蛋白质的生物合成复习题-带答案
第十一章蛋白质的生物合成一、名词解释126、翻译答案:(translanion)以mRNA为模板,氨酰—tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。
127、密码子答案:(codon)mRNA中碱基顺序与蛋白质中氨基酸顺序的对应关系是通过密码实现的,mRNA中每三个相邻的碱基决定一个氨基酸,这三个相邻的碱基称为一个密码子。
128、密码的简并性答案:(degeneracy)一个氨基酸具有两个以上密码子的现象。
129、同义密码子答案:(synonym codon)为同一种氨基酸编码的各个密码子,称为同义密码子。
130、反密码子答案:(anticodon)指tRNA反密码子环中的三个核苷酸的序列,在蛋白质合成过程中通过碱基配对,识别并结合到mRNA的特殊密码子上.131、多核糖体答案:(polysome)mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体。
二、填空题158、在细菌细胞里,独立于染色体之外的遗传因子叫,它是一个状双链DNA,在基因工程中,它作为。
答案:质粒;环;基因载体159、hnRNA加工过程中,在mRNA上出现并代表蛋白质的DNA序列叫,不在mRNA上出现,不代表蛋白质的DNA序列叫。
答案:外显子;内含子160、蛋白质的生物合成是以mRNA为模板,以为原料直接供体,以为合成场所。
答案:氨酰-tRNA;核糖体161、生物界共有个密码子,其中个为氨基酸编码,起始密码子为,终止密码子为,,。
答案:64;61;AUG;UAA、UAG、UGA162、原核生物的起始tRNA以表示,真核生物的起始tRNA以表示,延伸中的甲硫氨酰tRNA以表示。
答案:tRNA f;tRNAi;tRNAm163、植物细胞中蛋白质生物合成可在,和三种细胞器中进行。
答案:核糖体、线粒体、叶绿体164、原核生物中的释放因子有三种,其中RF—1识别终止密码子,;RF—2识别,;真核中的释放因子只有一种。
第十一章 蛋白质的生物合成
氨基酸活化的总反应式是:
氨基酰-tRNA 合成酶 氨基酸 + ATP + tRNA + H2O 酰-tRNA + AMP + PPi
氨基
2.在核糖体上合成肽链
氨基酰-tRNA通过反密码臂上的三联体反密码 子识别mRNA上相应的遗传密码,并将所携带的 氨基酸按mRNA遗传密码的顺序安臵在特定的位 臵,最后在核糖体中合成肽链。
四、mRNA
是蛋白质合成的直接模板,指导肽链的合 成。 mRNA分子上的核苷酸顺序决定蛋白质分子 的氨基酸顺序。
第二节 遗传密码
mRNA分子中所存储的蛋白质合成信息,是由组成 它的四种碱基(A、G、C和U)以特定顺序排列成 三个一组的三联体代表的,即每三个碱基代表一 个氨基酸信息。 这种代表遗传信息的三联体称为密码子,或三联 体密码子。 因此 mRNA 分子的碱基顺序即表示了所合成蛋白 质的氨基酸顺序。
转肽
肽酰转移酶
肽基转移酶
延长过程中肽链的生成
移位
肽链合成的终止与释放
识别mRNA的终止密码子,水解所 合成肽链与tRNA间的酯键,释放 肽链 R1识别UAA、UAG R2识别UAA、UGA R3影响肽链的释放速度 RR帮助P位点的tRNA残基脱落,而 后核糖体脱落
终止
多核糖体
在细胞内一条mRNA链上结合着多 个核糖体,甚至可多到几百个。 蛋白质开始合成时,第一个核糖 体在mRNA的起始部位结合,引入 第一个蛋氨酸,然后核糖体向 mRNA的3’端移动一定距离后,第 二个核糖体又在mRNA的起始部位 结合,现向前移动一定的距离后, 在起始部位又结合第三个核糖体, 依次下去,直至终止。每个核糖 体都独立完成一条多肽链的合成, 所以这种多核糖体可以在一条 mRNA链上同时合成多条相同的多 肽链,这就大大提高了翻译的效 率
第十一章 蛋白质生物合成
遗传信息的传递——中心法则
蛋白质合成的场所是核糖体,原料是20种 L-氨基酸,反应所需能量由ATP、GTP提 供,此外还有Mg2+、K+ 等金属离子参与。 蛋白质合成体系主要由mRNA、tRNA、 rRNA、有关的酶以及几十种蛋白质因子 组成。
A G C C T G
U C G G A C
(三)、rRNA及核糖体
核糖体是由几十种蛋白质和几种rRNA组成的 亚细胞颗粒,其中蛋白质与rRNA的重量比约为 1:2。核糖体是蛋白质合成的场所。
1.不同来源核糖体的大小和RNA组成
核糖体(S) 亚基(S) 50 rRNA (S) 23 5 30 16 28 60
原核生物
70
5.8
5
真核生物
80
终止因子的结合使肽酰转移酶活性变为水解酶活性,肽基不转移
给A位tRNA,而转移给H2O,并把已合成的多肽链从核糖体和 tRNA 上释放出来,无负荷的tRNA随机从核糖体脱落,该核糖体立即离开 mRNA,在IF3存在下,消耗GTP而解离为30S 和50S非功能性亚基。再 重复下一轮过程。
蛋白质的合成是一个高耗能过程
EF-Tu-GTP+下一个要进入的氨酰-tRNA 形成复合物,将这个氨 酰-tRNA 送入核糖体A位,同时GTP GDP + Pi,EFTu-GDP释放。
EF-Tu-GDP+ EF-Ts
EF-Tu-Ts + GDP
EF-Tu-Ts + GTP
EF-Tu-GTP + EF-Ts
重新参与下一轮循环
AA活化 肽链起始 进位 移位
2个高能磷酸键(ATP) 1个(70S复合物形成,GTP) 1个(GTP) 1个(GTP)
生物化学第十一章蛋白质的生物合成讲课文档
1. 核蛋白体大小亚基分离
IF-1
IF-3
IF1:与A位结合防止其它tRNA进入;协助IF3 IF3:促进亚基解离、小亚基与mRNA的结合
第三十页,共65页。
2. mRNA在小亚基定位结合
(如何实现)
5' IF-3
AUG IF-1
第三十一页,共65页。
3'
目录
mRNA的S-D序列
3. 起始氨基酰tRNA( fMet-tRNAf )结合到小亚基
IF-2 GTP
5'
AUG
3'
IF-1 IF-3
IF2:小分子G蛋白,与GTP结合,促进fMet-tRNAfMet进入P位
第三十三页,共65页。
目录
4. 核蛋白体大亚基结合,起始复合物形成
IF-2 GGDTPPPi
5'
AUG
3'
IF-3
第二页,共65页。
mRNA 的结构
原核生物的多顺反子
5 PPP
ORF
ORF
真核生物的单顺反子
5 mG - PPP
3
ORF
蛋白质
3
蛋白质
非编码序列
核蛋白体结合位点
编码序列
起始密码子
终止密码子
第三页,共65页。
目录
P501
(二)遗传密码
遗传密码:指核苷酸序列与氨基酸种类的对应关系
1954年物理学家伽莫夫(大爆炸理论)提出了三联体密码子假说
P602
在起始密码子上游约10个核苷酸处通常有一段富含Pu的序列 ”AGGAGG”。这一序列最初由Shine—Dalgaino首先发现的,因
此称为SD序列。
核酸及蛋白质的生物合成
第十一章核酸及蛋白质的生物合成1. DNA的生物合成:以亲代DNA双链为模板按碱基配对原则合成出与亲代链相同的两个DNA双链。
1)半保留复制:DNA复制时以亲代DNA两条链为模板指导合成与其互补的DNA链,在子代DNA 中,一条链来于亲代DNA,另一条链是新合成的。
Cl加入大肠杆菌的培养基中培养12①同位素实验:Meselson 和Stahl将同位素15N标记的15NH4代,使大肠杆菌的DNA都带上15N的标记,然后将该大肠杆菌转入14N的普通培养基中培养后,分离子一代、子二代、子三代、子四代DNA,进行氯化铯密度梯度离心,实验证明DNA的半保留复制。
②意义:表明DNA在代谢上的稳定性,保证亲代的遗传信息稳定地传递给后代。
2)DNA复制的起点和方向:能独立复制的单位叫复制子,每个复制子都含有控制复制起始的起始点。
原核生物的染色体只有一个复制子;真核生物DNA有多个复制子。
双链DNA解开形成两条单链,分别作模板进行复制,此结构为复制叉。
大多数生物的DNA复制是双向、对称的。
3)半不连续复制:DNA复制时,两条链都能作为模板同时合成两条新的互补链,一条连续复制,另一条则不连续。
领头链是不间断延长的,随从链则生成一个个冈崎片段后连接成一条。
①前导链/领头链:两条链均按5’→3’方向合成,一条链3’末端的方向朝复制叉前进的方向,可连续合成;②滞后链/随从链:另一条5’末端朝着复制叉前进的方向,不连续合成。
4)DNA复制的酶系四种脱氧三磷酸核苷酸DNA pol/DDDP催化dNTP聚合到核酸链①5’→3’聚合活性②核酸外切酶活性5)DNA聚合酶:原核生物DNA polⅠ——聚合作用5´→3´外切酶活性:切除引物、切除突变的片段;3’→5’外切酶活性:校对功能。
引物酶:一种特殊的RNA聚合酶;在DNA复制开始时,在5´–端(5´3´方向)合成一小段RNA引物,确定起始部位、引导复制开始。
生物化学 第十一章
16SRNA 3′ HO-A-U-U-C-C-U-C-C-A-C-U-A…… 5′
细 菌 mRNA 5′ ……C-C-U-A-G-G-A-G-G-U-U-U-G-A-C-C-U-A-U-G-…… 3′
噬菌体
SD序 mRNA 5′ ……C-U-U-G-G列-A-G-G-C-U-U-U-U-U-U-A-U-G-…… 3′
精氨酸 精氨酸 终止密码 异亮氨酸
终止密码 终止密码
色氨酸 起始密码
二、核糖体 大肠杆菌核糖体
1. 组成与结构
真核细胞核糖体
16SrRNA 21种蛋白质
23SrRNA
5SrRNA
34种蛋白 质
18SrRNA ~33种蛋白质
28SrRNA 5SrRNA 5.8SrRNA 49种蛋白质
70S 80S
2. 功能位点
分类标志
反密码子:位于 tRNA反密码环可 与mRNA 的密码子 碱基配对的三个碱 基称为反密码子
2. 同工受体tRNA 概念:结合同一种氨基酸的tRNA
原因:tRNA 的数目(30余种)大于氨基酸数 3. 起始tRNA 概念:专一性识别起始密码子(AUG)tRNA
真核细胞: tRNA携带的是甲硫氨酸(Met) 原核细胞:tRNA携带的是甲酰甲硫氨酸(fMet)
2. 遗传密码 概念:mRNA编码区核苷酸的排列顺序与肽链中氨基酸的排列顺序的对应方
式为遗传密码。现已知,mRNA编码区三个相邻的核苷酸对应一个氨基酸,即三个 相邻的核苷酸为一个遗传密码,也称为三联体密码
mRNA 5′碱基 U
C
A
G
U 苯丙 苯丙 亮 亮 亮 亮 亮 亮 异亮 异亮 异亮 蛋(甲硫) 缬 缬 缬 缬
密码的特点: (1)无间断性。密码阅读方向5′-3′,密码之间无标点符号。
第十一章 蛋白质的生物合成及加工修饰
第十一章蛋白质的生物合成及加工修饰(The Biosynthesis and transport of protein)在不同的蛋白质分子中,氨基酸有着特定的排列顺序,这种特定的排列顺序不是随机的,而是严格按照蛋白质的编码基因中的碱基排列顺序决定的。
基因的遗传信息在转录过程中从DNA转移到mRNA,再由mRNA将这种遗传信息表达为蛋白质中氨基酸顺序的过程叫做翻译。
翻译的过程也就是蛋白质分子生物合成的过程,在此过程中需要200多种生物大分子参加,其中包括核糖体、mRNA、tRNA及多种蛋白质因子。
第一节参与蛋白质生物合成的物质一、合成原料自然界由mRNA编码的氨基酸共有20种,只有这些氨基酸能够作为蛋白质生物合成的直接原料。
某些蛋白质分子还含有羟脯氨酸、羟赖氨酸、γ-羧基谷氨酸等,这些特殊氨基酸是在肽链合成后的加工修饰过程中形成的。
下图给出部分特殊氨基酸分子式:二、mRNA是合成蛋白质的直接模板蛋白质是在胞质中合成的,而编码蛋白质的信息载体DNA 却在细胞核内,所以必定有一种中间物质用来传递DNA 上的信息,实验证明:mRNA 是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板,因此得名信使RNA。
原核细胞中每种mRNA分子常带有多个功能相关蛋白质的编码信息,以一种多顺反子的形式排列,在翻译过程中可同时合成几种蛋白质;而真核细胞中,每种mRNA一般只带有一种蛋白质编码信息,是单顺反子的形式。
mRNA以它分子中的核苷酸排列顺序携带从DNA传递来的遗传信息,作为蛋白质生物合成的直接模板,决定蛋白质分子中的氨基酸排列顺序。
不同的蛋白质有各自不同的mRNA,mRNA除含有编码区外,两端还有非编码区。
非编码区对于mRNA的模板活性是必需的,特别是5'端非编码区在蛋白质合成中被认为是与核糖体结合的部位。
mRNA特点:短命原核:半衰期几秒-几分钟真核:半衰期数小时。
功能是蛋白质合成的模板,多肽链氨基酸排列顺序就取决于mRNA 的核苷酸的排列顺序。
《生物化学》课程配套练习核酸与蛋白质生物合成参考答案
第十一章核酸生物合成第十二章蛋白质的生物合成练习参考答案1.名词解释:1)复制:DNA的生物合成,以亲本DNA为模板,根据碱基互补原则,合成与亲代DNA相同分子的过程。
2)冈崎片段:DNA复制过程中,合成方向与复制叉移动方向相反的DNA片断。
3)半保留复制:DNA生物合成过程中,子代双链DNA分子中有一条DNA链来自亲本。
这种合成方式称为半保留复制。
4)半不连续复制:DNA复制过程中,一条链复制是连续的,另一条是不连续的,这种复制方式称为半不连续复制。
5)前导链:DNA复制过程中,复制方向与复制叉移动方向相同,连续合成的DNA链称为前导链;6)滞后链:在复制过程中,复制方向与复制叉移动方向相反,形成不连续的片断,后连接成完整链的DNA链,称为滞后链。
7)转录:以DNA为模板,在RNA聚合酶指导下,合成RNA并把遗传信息传给RNA的过程,称为转录。
8)遗传密码:即指核苷酸三联体决定氨基酸的对应关系,这种编码氨基酸序列的核苷酸称为密码子。
2. 写出原核生物DNA复制过程;原核生物与真核生物DNA复制的区别?答:(1)原核生物DNA复制过程可分为:起始,延伸和终止。
1)复制的起始;2)复制的延伸;3)复制的终止(请分别说明)(2)原核生物与真核生物DNA复制的区别:1)聚合酶的不同;2)复制的起点不同;3)复制的速度不同4)DNA复制的调节;(详细内容看课件及参考书)3.比较原核生物和真核生物转录过程有哪些不同点?答:1)聚合酶的不同;2)启动子的不同;3)终止过程的不同;4)转录的调节控制;4)转录后加工不同。
(详细内容看课件及参考书)4.哪些理化因素能引起DNA分子损伤?体内有何种DNA修复机制?答:(1)某些理化因素,如紫外线照射、电离辐射和化学诱变剂等等。
(2)修复机制有:错配修复,直接修复,切除修复,重组修复和易错修复。
5.大肠杆菌蛋白质合成体系由哪些物质组成?各起什么作用?答:参与蛋白质生物合成的物质:(1)20 基本氨基酸作为材料。
第十一章 蛋白质的生物合成复习题-带答案
第十一章蛋白质的生物合成一、名词解释126、翻译答案:(translanion)以mRNA为模板,氨酰—tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。
127、密码子答案:(codon)mRNA中碱基顺序与蛋白质中氨基酸顺序的对应关系是通过密码实现的,mRNA中每三个相邻的碱基决定一个氨基酸,这三个相邻的碱基称为一个密码子。
128、密码的简并性答案:(degeneracy)一个氨基酸具有两个以上密码子的现象。
129、同义密码子答案:(synonym codon)为同一种氨基酸编码的各个密码子,称为同义密码子。
130、反密码子答案:(anticodon)指tRNA反密码子环中的三个核苷酸的序列,在蛋白质合成过程中通过碱基配对,识别并结合到mRNA的特殊密码子上.131、多核糖体答案:(polysome)mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体。
二、填空题158、在细菌细胞里,独立于染色体之外的遗传因子叫,它是一个状双链DNA,在基因工程中,它作为。
答案:质粒;环;基因载体159、hnRNA加工过程中,在mRNA上出现并代表蛋白质的DNA序列叫,不在mRNA上出现,不代表蛋白质的DNA序列叫。
答案:外显子;内含子160、蛋白质的生物合成是以mRNA为模板,以为原料直接供体,以为合成场所。
答案:氨酰-tRNA;核糖体161、生物界共有个密码子,其中个为氨基酸编码,起始密码子为,终止密码子为,,。
答案:64;61;AUG;UAA、UAG、UGA162、原核生物的起始tRNA以表示,真核生物的起始tRNA以表示,延伸中的甲硫氨酰tRNA以表示。
答案:tRNA f;tRNAi;tRNAm163、植物细胞中蛋白质生物合成可在,和三种细胞器中进行。
答案:核糖体、线粒体、叶绿体164、原核生物中的释放因子有三种,其中RF—1识别终止密码子,;RF—2识别,;真核中的释放因子只有一种。
蛋白质生物合成
商洛职业技术学院教案教案首页
教案续页
EF是一类直接参与多肽链延长阶段的蛋白因子。
其作用主要是促进氨基酰-tRNA进入核蛋白体的受位,并促进移位过程。
RF是与多肽链合成终止有关的蛋白因子。
其作用主要是识别mRNA 上的终止密码,协助多肽链的释放。
五、供能物质及无机离子
蛋白质生物合成过程中需要ATP或GTP提供能量,并需镁离子和钾离子参与。
第二节蛋白质的生物合成过程——翻译
蛋白质合成需要以mRNA为模板,氨基酸为原料,tRNA为转运氨基酸的工具,以核蛋白体为合成场所,在多种酶和辅助因子等200多种成分共同参与下完成。
准备过程:氨基酸的活化与转运氨基酰-tRNA合成酶具有绝对专一性,对氨基酸、tRNA两种底物都有高度特异的识别功能,并将氨基酸连接在对应的tRNA上,从而保证了遗传信息的准确翻译。
一、
一、肽链合成的起始
由核糖体、大小亚基,模板mRNA及起始tRNA组装形成起始复合物的过程,需GTP、三种IF及Mg2+的参与。
教案末页。
第十一章 第三节 蛋白质的生物合成
(exit site)
二、蛋白质生物合成过程
(一)原核生物翻译起始复合物形成
核蛋白体大小亚基分离; mRNA在小亚基定位结合; 起始氨基酰-tRNA的结合; 核蛋白体大亚基结合。
第十一章
•核蛋白体大小亚基分离
50S
E PA
IF-3 30S
IF-1
熟悉
•参与复制的酶类和因子及基本过程; •蛋白质合成的基本过程; •PCR技术原理及基因工程基本过程。 •逆转录过程;
了解
•染色体DNA的损伤与修复及其修复方式; •蛋白质合成与医学的关系:分子病。
学会 •DNA复制、RNA转录的基本原理; 能
够解释分子疾病和治疗靶点。
第十一章
第三节 蛋白质的生物合成(翻译)
起始密码(initiation coden): AUG
终止密码(termination coden): UAA,UAG,UGA
第十一章
遗 传 密 码 表
遗传密码的特点
1.方向性 2.连续性 3.简并性 4.通用性 5.摆动性
摆动配对
转运氨基向配对结合,
第十一章
•mRNA在小亚基定位结合
AUG
E PA
IF-3 30S
IF-1
第十一章
•起始氨基酰-tRNA的结合
fMet
IF-2 UAG
GDP
AUG
E PA
IF-3
30S
IF-1
第十一章
•核蛋白体大亚基结合
fMet
50S
UAG
IF-2 GDP
AUG
E PA
IF-3 30S
IF-1
第十一章
中国农业大学分子生物学导论第十一章 蛋白质合成练习题
第十一章蛋白质的生物合成本章教学要求:1、掌握参与蛋白质合成的因素和其在蛋白质合成过程中的作用。
2、掌握原核生物蛋白质合成的过程,熟记参与的酶、各种蛋白质因子和能量的消耗。
3、了解真核生物蛋白质合成的特点。
一、填空:1. 大肠杆菌蛋白质合成时,促进核糖体沿mRNA移动的因子是。
2. 肽链延伸包括、、和四个步骤的重复进行。
3. 肽链的延长反应中,氨酰-tRNA是进入到核糖体的部位。
4. 蛋白质生物合成中有三个终止密码子,是、和。
5. 起始密码子是,它又是编码的密码子。
6. Pr生物合成时,核糖体沿mRNA的方向移动;肽链从端向端延长。
二、单项选择:1. 蛋白质生物合成的部位是:()A.核小体B.线粒体C.细胞核D.核糖体2. 蛋白质生物合成过程中,催化肽键形成的转肽酶存在于下面哪个部位?()A.核糖体大亚基B.核糖体小亚基C.tRNA分子上D.胞液中3. 蛋白质生物合成时,平均每生成一个肽键共消耗多少个高能磷酸键?()A.2B.3C. 4D.54. 大肠杆菌蛋白质生物合成中,下述过程除何者外都涉及GTP(或ATP)?()A.氨酰-tRNA的形成B.氨酰-tRNA进入A部位C.核糖体沿mRNA移动D.肽键的生成5. 大肠杆菌核糖体大亚基的沉降系数是:()A. 30SB. 40SC.50SD.60S6. 核糖体A位点的功能是:()A. 活化氨基酸B. 催化肽键生成C. 从tRNA水解新生肽链D. 接受新进位的氨酰-tRNA7. 原核生物蛋白质生物合成中的起始AA-tRNA是()。
A. Ala-tRNAB. Lys-tRNAC. fMet-tRNAD. Met-tRNA8. 蛋白质生物合成时,氨基酸的活化部位是()。
A. 氨基B. 羧基C. 烷基D. 羟基9. 下面有关密码子的说法哪项是错误的?()A. 一个密码子代表一个氨基酸,因此每种氨基酸只有一个密码子B. mRNA上每三个相邻的碱基组成一个密码子C. AUG 既是甲硫氨酸的密码子又是起始密码子D. 有些密码子不代表任何氨基酸,有终止肽链合成的作用10. 若一个tRNA反密码子的第一位碱基是I时,它可以识别几个密码子?()A. 1B. 2C. 3D. 411. 与mRNA的ACG密码子相对应的tRNA的反密码子是()A. UGCB. CGUC. TGCD. CGT12. 真核生物在蛋白质生物合成中的启动AA-tRNA是:()A.Leu-tRNAB.Ala-tRNAC.fMet-tRNAD. Met-tRNA13. 大肠杆菌蛋白质生物合成过程中使核糖体大小亚基保持分离状态的蛋白质因子是:A. IF1B.IF2C.IF3D.EF1三、判断题:1. 原核生物蛋白质合成中肽链延长所需的能量全部来源于A TP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多肽N — 蛋—- 丝----丝--- --苏----酪—-谷----谷(N)--缬--C
(2)遗传密码的简并性
好几种密码子代表同一种氨基酸的特性称为密码的简并性。 大多数氨基酸都有此种现象,只有色氨酸和甲硫氨基酸仅 有一个密码子。 密码的简并性对于保持生物物种的稳定性起着重要的作用。
5′-UUA-UUG-CUU-CUC -CUA -CUG - - - - 3′
GCA
③反密码子的识别能力 当第一个碱基为U或
降低,他们可读两种 一个碱基为嘌呤 一个碱基为嘧啶 密码子。 321 321 反密码子 反密码子 (3')X-Y-C (3')I X-Y-A 当第一位碱基为 时, 识别一个密码子 (5')Y-X-U 密码子 (5')Y-X-G tRNA 就可读三种不同 密码子 123 123 的密码子。这样最少 321 321 反密码子 (3')X-Y-U 反密码子 需要 32种tRNA来翻译 (3')X-Y-G 61种密码子。 识别两个密码子 密码子 (5')Y-X-A 密码子 (5')Y-X-C tRNA反密码子的第 (5')Y-X-G (5')Y-X-U 一个碱基C或A时, 结合是专一的,即 反密码子 (3')Y-X-I 识别三个密码子 这种tRNA只能阅读 密码子 (5')X-Y-A (5')X-Y-U 一个密码子。
1969年Nirenberg(美)由于在破译DNA密码方面的贡献与Holly
改变人工合成mRNA置 人工合成mRNA置于无 和 Khorana等人分享诺贝尔生理医学奖。研究证明编码区三 于无细胞提取液中, 细胞提取液中,并加 个相邻的核苷酸对应一个氨基酸,即三个相邻的核苷酸为一 加入氨基酸ATP等合成 入氨基酸ATP等合成原 个遗传密码,也称为三联子或三联体密码。 原料和Mg2+。很快会编 料和Mg2+。很快会编码 码出另外两种多肽。 出相应的多肽。 遗传密码的破译(NirenbergKhorana法):
(核不均一RNA) (mRNA前体)
α-鹅膏蕈碱αamanitine
>10-3mol/L
10-9~ 10-8mol/L
10-5 ~10-4mol/L
(不感)
2. 遗传密码 概念:
mRNA编码区核苷酸的排列顺序与其所编码的肽链中氨基酸的
排列顺序的对应方式为遗传密码。 编码区
N-Leu-Leu -Leu-Leu -Leu-Leu - -- -C
5′-UUG-UUG-CUC-CUC -CUA -CUG - - - - 3′
N-Leu-Leu -Leu-Leu -Leu-Leu -- - -C
(3)密码的变偶性
Met Gly Ser Cys 5' 5' 5' 5'
GGI UCG UGC mRNA 5′--A-U-G-A-G-C-U-C-G-C-C-C-U-U-A-C-G-A-A-C-A-G-G-U-U-‥‥C3 ′
mRNA AUG GGG CUC CGC UUG ACA AAU UUA CAC GAA ‥ ‥ UAG
对应方式 1:1? 2:1? 3:1? 5'3'对应NC 多肽链
mRNA编码区核苷酸排列顺序
肽链氨基酸排列顺序
Met-Gly-Leu-Arg-Leu-Thr-Asn-Leu-His-Glu ‥ ‥Stop
mRNA 5′--A-U-G-A-G-C-U-C-G-C-C-C-U-U-A-C-G-A-A-C-A-G-G-U-U-‥‥C3 ′
多肽
N
— 蛋—丝—丝— 脯— 亮— 精—苏— 甘—C
mRNA 5 ′ -A-U-G-C-G-C-U-C-G-C-C-C-U-U-A-C-G-A-A-C-A-G-G-U-U ‥‥C3 ′
第十一章 蛋白质合成
第一节 蛋白质合成体系 一、mRNA含有指导合成蛋白质的遗传信息 1. mRNA结构:
原核细胞
mRNA
SD序列 引导序列
外显子1
外显子2
外显子3
5'
AUG ‥‥ UUA
AUG ‥‥ UUA
3'
真核细胞
mRNA
编码序列
编码序列
AUG
拖尾序列
5′ 帽子
‥‥ ‥‥ ‥‥ ‥‥ ‥‥ UUA
UAC
密码子的第3位碱基与 tRNA的反密码子的第1 位碱基配对较松散,具 有摇摆性,即每个密码 子的前两个碱基起决定 性的作用,并具有重要 的生物学意义,即减少 差错。
从起始密码子开始由5'3'每三 密码子阅读方向5'3' 个为一组阅读框依次进行阅读
特点①密码子的简并性往往只涉及第三位例如丙氨酸的密码子: GCU、GCC、GCA、GCG,前两个碱基都相同,只有第三位碱基不 同;组氨酸:CAU、CAC;几乎所有氨基酸的密码子都可用XYA G 或XY U . C
5′AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3′
N-Lys -Lys -Lys -Lys -Lys -Lys -Lys -Lys -Lys -Lys -Lys -Lys-C
5′AUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAU3′ N-Ile-Tyr-Ile-Tyr-Ile-Tyr-Ile-Tyr-Ile-Tyr-C N-Tyr-Ile-Tyr-Ile-Tyr-Ile-Tyr-Ile-Tyr-Ile-C
遗传密码表
mRNA 5′
中 间 碱 基
U U
mRNA 3′
-碱基
U U
C 丝 丝 丝 丝 脯 脯 脯 脯 苏 苏 苏 苏 丙 丙 丙 丙
A 酪 酪 终止 终止 组 组 谷氨酰胺 谷氨酰胺 天冬酰胺 天冬酰胺 赖 赖 天冬 天冬 谷 谷
G G 半胱 半胱 终止 色 精 精 精 精 精 丝 丝 精 精 甘 甘 甘 甘
-碱基
苯丙 苯丙
苯丙 亮 亮 亮 亮 亮 亮 异亮 异亮 异亮 蛋(甲硫) 缬 缬 缬 缬
U C A G U C A A G U C A G U C A G
C
A
G
3.遗传密码的特点:
(1)密码的无间断性。密码阅读方向5'→3',密码之间无标点符 号。必须从起始密码开始每三个相邻的碱基为一组,连续不断 地阅读密码,直到终止密码子。如果某一个核苷酸 漏读、重读, 或者在编码区插入、删除一个核苷酸就会使该处之后的读码发 生错误,这称为移码。由移码引起的突变叫“移码突变”。
3'尾巴
PolyA(200)
原核细胞mRNA的编码序列可指导几条肽链的合成,称为多顺 反子mRNA
真核细胞mRNA的编码序列只指导一条肽链的合成,称为单顺 反子mRNA
真核细胞RNA聚合酶的性质与RNA
类 型
存在 功能
RNA聚合酶Ⅰ
Ⅱ
Ⅲ
分 布
转录产物
核 仁
rRNA前体
核
质
核
质
hnRNA
tRNA和5SrRNA
②减少由于基因点突变造成的差错;
Ala密码子
GCU GCC GCA GCG
GCC
如果DNA出现点突 变引起mRNA改变
GCU GCG GCA
翻译的蛋白 质是否改变? 可能不变
Ala密码子 GCU GCC Ala Ala Ala Ala GCC GCU GCG Ala Ala
GCA
GCG
Ala
Ala