【人教版】二年级数学上册《第八单元测试卷》(附答案)

合集下载

人教版数学二年级上册第八单元测试附答案

人教版数学二年级上册第八单元测试附答案

第⑧单元测试卷一、单选题(共8题;共16分)1.5、0、3这三个数字组成的不同的三位数共有()个。

A. 4B. 6C. 32.有4个同学排成一排照合照,小丽只能站在左边的第一个位置上。

有()种不同的排法。

A. 8B. 7C. 63.用能摆成()个两位数。

A. 6B. 8C. 124.用下面的3枚硬币可以组成()种不同的币值。

A. 3B. 4C. 55.小丽和父母到影楼照全家福,站成一排,他们有()种排列方法。

A. 3B. 1C. 66.有三个队参加足球比赛,每两个队进行一场比赛,一共要比赛()场。

A. 4B. 6C. 8D. 37.3个人比赛打乒乓球,每两个人打一场,3个人共打了()场。

A. 2B. 3C. 68.四年级8个班级举行拔河比赛,每2个班级之间进行1场比赛,一共要进行几场比赛,以下那种算法是正确的()。

A. 8×7÷2B. 8×7C. 8+7+6+5+4+3+2D. (7+6+5+4+3+2+1)÷2二、判断题(共5题;共10分)9.有三个同学,每两人握一次手,一共要握6次手。

()10.某学校要从4名女同学和3名男同学中各选出1人代表学校参加演讲比赛。

一共有7种不同的组队方案。

()11.从四个人选2人参加比赛有6种不同选法。

()12.2件上衣和3条裤子搭配成一件衣服,一共有5种搭配方法()13.从5、2、7、0这4个数中选出两个组成两位数,可以组成9个两位数。

()三、填空题(共8题;共16分)14.丽丽有3件上衣,4条裙子,一件上衣和一条裙子任意搭配,有________种不同穿法。

15.从2、0、8、5中选三个数组成不同的三位数,最大的是________,最小的是________,它们相差________。

16.用6、7、8组成的最大的三位数与最小的三位数的差是________,和是________。

17.小亮有两件不同的上衣,两条不同的裤子,已知一件上衣和一条裤子搭成一身,他有________种搭法。

人教版二年级数学上册第8单元测试题2套含答案

人教版二年级数学上册第8单元测试题2套含答案

人教版二年级数学上册第8单元测试题2套含答案第八单元测试卷(一)一、填一填。

1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。

如果用0代替9,能摆成()个不同的两位数。

2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。

3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。

二、算一算。

8×9=6×7=5×4=9×7=5×7+20=5×6=4×9=7×8=6×9=7×9-9=三、在里填上“>”“<”或“=”。

4×624 25+835 2×612 19+83×830+62434-2015 5×732 42+106×9四、按要求做题。

有3个数6、7、8,任意选取其中2个求和。

1.用列表法求得数有几种可能。

2.用连线法求得数有几种可能。

五、解决问题。

1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。

5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?参考答案一、1.6 57、59、75、79、97、95 42.12 34、35、36、43、45、46、53、54、56、63、64、653.3 6二、72 42 20 63 55 30 36 56 54 54三、= < = > > < > <四、略五、1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35第八单元测试卷(二)1.想一想,填一填。

人教版数学二年级上册《第八单元测试题》含答案

人教版数学二年级上册《第八单元测试题》含答案

人教版数学二年级上学期第八单元测试一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有( )种穿法.A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢.这个游戏规则( ).A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛( )A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法( )A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.( )A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字.如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性( ).A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案.11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛.13.30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试________次.14.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.15.从北京经南京到上海,其中北京到南京有三种不同的线路火车,从南京到上海有四种不同的线路火车.那么我们可以有________条线路从北京到上海.16.区教育局要举行第十届教职工排球赛,这届比赛共有32支球队参加,平均分成4个小组,在小组内采用单循环制,小组前2名共8支球队再进行淘汰赛,一共要进行________场比赛.三、解答题(共10题;共51分)17.小丽有2件上衣,3条裤子,又买了2顶帽子.现在有多少种搭配方法?18.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?19.画一画,填一填.20.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?21.甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?22.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是 ,那么确保打开保险柜至少要试几次?23.,,三种图形有多少不同的排法?把这几种排法写出来.24.四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?25.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?26.用红、橙、黄、绿、蓝5种颜色给下面长方格子涂颜色,一个格子里涂一种颜色,一种颜色只可以使用一次,有几种不同的涂法?请把你设计的方案用图示法表示出来.答案与解析一、单选题1.【答案】 B【解析】【解答】解:衬衣①、裙子①,衬衣①、裙子②;衬衣②、裙子①;衬衣②、裙子②;衬衣③、裙子①;衬衣③、裙子②.共6种穿法.故答案为:B.【分析】每件衬衣都会有2条裙子与之搭配,共有3件衬衣,这样列举出所有穿法即可.2.【答案】 B【解析】【解答】解:积有:2×3=6,2×7=12,3×7=21,3×2=6,7×2=14,7×3=21,奇数有2个,偶数有4个,这个游戏规则不公平.故答案为:B.【分析】如果积是奇数、偶数的个数相同,这个游戏规则就公平.由此判断出所有的积即可判断是否公平.3.【答案】 A【解析】【解答】A先向右走有10种,A先向上有10种,共10+10=20(种)故答案为:A【分析】弄清楚行走的规则,先判断出向右走的路线有10种,向上走的路线也有10种,这样计算出总的种数即可.4.【答案】 C【解析】【解答】解:16×(16-1)÷2=16×15÷2=120(场)故答案为:120.【分析】每支球队在进行单循环比赛时,都要与其他球队进行一次比赛,所以用16乘15求出比赛的场次,因为有一半重复的场次,所以再除以2即可.5.【答案】 B【解析】【解答】解:(1)从A开始摘,A﹣B﹣C﹣D﹣E,A﹣B﹣D﹣C﹣E,A﹣B﹣D﹣E﹣C,A﹣D﹣B﹣C﹣E,A﹣D﹣B﹣E﹣C,A﹣D﹣E﹣B﹣C,共6种方法,(2)从D开始摘,D﹣E﹣A﹣B﹣C,D﹣A﹣E﹣B﹣C,D﹣A﹣B﹣E﹣C,D﹣A﹣B﹣C﹣E,共4种方法,共有:6+4=10(个),故选:B.【分析】根据题意,每次从某一串的最下端摘下一个礼物,摘了五次可将五件礼物全部摘下,那就从A开始摘,看看有几种方法,再从D开始摘,看看有几种方法,那问题即可解决.6.【答案】A【解析】【解答】4×3×2×1=24(个)故答案为:A【分析】0可以作为第一个数,所以左起第一位有4种选择,第二位有3种选择,第三位有2种选择,第四位只有一种选择,运用乘法原理计算数字总数.7.【答案】 A【解析】【解答】解:1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,3+1=4,3+2=5,3+3=6,3+4=7,3+5=8,4+ 1=5,4+2=6,4+3=7,4+4=8,4+5=9,4+6=10,5+1=6,5+2=7,5+3=8,5+4=9,5+5=10;和是奇数的12个,和是偶数的13个,所以小玲赢的可能性比小巧小.故答案为:A.【分析】运用排列组合的方法把所有的和都列举出来,然后数出和的奇数和偶数各有几个,哪种数多,相对应的谁赢的可能性就大.8.【答案】 C【解析】【解答】解:方法一:因为在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数的和有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,所以A、B、D是不可能的,方法二:2、5、8被3除,余数都是2,同余.所以取出7张卡片求和,余数变成了14.因为减去14,剩下的数可以被3整除(7张2的情况,和为14,减去14为0).或者14被3除,余数是2,即7张卡片求和,被3除,余数为2,只有29复合题意.故答案为:C.【分析】根据题意知道在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,由此即可做出选择.二、填空题9.【答案】 10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.10.【答案】6【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每种颜色的彩纸排头时,剩下的两种颜色的彩纸都有两种不同的排列方法,所以直接用2乘3即可求出不同的购买方案.11.【答案】 12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.12.【答案】120;15;18【解析】【解答】单循环赛:16×(16-1)÷2=16×15=120(场)淘汰塞:8+4+2+1=15(场)决出四强赛:8+4+6=18(场)故答案为:120,15,18.【分析】在进行单循环赛时,则每个球队都要与其他球队进行比赛,所以每个球队要进行15场比赛,这样就会有一半重复的,所以再除以2即可,在进行淘汰赛时,分别求出两队两队比赛的场次,然后再相加,在决出四强后再采用淘汰赛时,先求出16支球队决出四强前的比赛的场次,再求出四强后淘汰赛的场次,然后相加即可.13.【答案】435【解析】【解答】29+28+27+26+25+…+1=(29+1)×29÷2=30×29÷2=435(次)故答案为:435【分析】从最坏的情况考虑,第一把钥匙一直试到第29把还没有配上,那么最后一把锁就不用试了,一定是第30把的钥匙;按照这样的规律,第二把需要试28次……,直到最后一把试1次就可以了,把这些次数相加,根据数列求和的知识计算即可.14.【答案】 (1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.15.【答案】 12【解析】【解答】3×4=12(种)故答案为:12.【分析】从北京到南京的每条线路去上海时都有4种不同走法,所以用3乘4即可求出从北京到上海的路线走法.16.【答案】119【解析】【解答】解:32÷4=8(支)8×(8-1)÷2=28(场)28×4=112(场)8-1=7(场)112+7=119(场)故答案为:119.【分析】用32除以4求出每个小组球队的支数,根据排列组合的方法求出单循环赛的场次;每个小组取前2名时,4个小组则取了8个小队,所以用8乘8减1的差除以2即可求出淘汰赛的场次,然后再相加即可.三、解答题17.【答案】解:2×3×2=12(种)答:现在有12种搭配你方法.【解析】【分析】每件上衣都会有3条裤子与之搭配,每条裤子会有2顶帽子与之搭配,运用乘法原理计算搭配的总种类即可.18.【答案】解:(种)答:共可以表示60种不同的信号.【解析】【分析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置,现在是要从五个不同的元素中取三个,排在三个位置的问题.19.【答案】【解析】20.【答案】解:十项比赛,每位同学可以任报两项,那么有45种不同的报名方法.由鸽巢原理知有45+1=46(人)报名时满足题意.【解析】【分析】9+8+7+6+5+4+3+2+1=45(种),10项比赛共有45种不同的组合,假如每个组合都有1人报名,共有45人报名,那么再有1人报名,不管是报哪个组合,都会保证有两名或两名以上的同学报名参加的比赛项目相同.21.【答案】解:按甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置分四种情况讨论:如果甲在队伍最靠右的位置、乙在队伍最靠左的位置,那么丙还有6种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲在队伍最靠右的位置,而乙不在队伍最靠左的位置,那么乙还有4种站法,丙还有5种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲不在队伍最靠右的位置,而乙在队伍最靠左的位置,分析完全类似于上一种,因此同样有2400种站法如果甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置,那么先对甲、乙整体定位,甲、乙的位置选取一共有 (种)方法.丙还有4种站法,剩下的五个人进行全排列,站法总数有: (种)所以总站法种数为 (种)【解析】【分析】甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置有四种情况:第一种:甲在队伍最靠右的位置、乙在队伍最靠左的位置;第二种:甲在队伍最靠右的位置,而乙不在队伍最靠左的位置;第三种:甲不在队伍最靠右的位置,而乙在队伍最靠左的位置;第四种:甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置.最后把每一种站法加起来即可.22.【答案】解:四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑的位置就可以了, 可以任意选择个位置中的一个,其余位置放 ,共有种选择;第二种中,先考虑放 ,有种选择,再考虑的位置,可以有种选择,剩下的位置放 ,共有 (种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似, 的位置有种选择,其余位置放 ,共有种选择.综上所述,由加法原理,一共可以组成 (个)不同的四位数,即确保能打开保险柜至少要试次.【解析】【分析】先把和是9的4个非0的数字组合写出来,然后把每种组合的排列方法加起来即可.23.【答案】解:有六种不同的排法:,,,,,,,, ,,,,【解析】24.【答案】解:四人共赛局,总分为(分),因为总分各不相同,分配得:或.平局最多的应该是、、、的情况.总分是奇数的必有一局平局,当得分是分、分的同学分别与得分是分、分的同学打平后,得分是分、分的同学就还剩下分、分,互相打平就正好.所以平局最多是局.答:最多有3局平局.【解析】【分析】单循环比赛四队比赛总局数:3+2+1=6(局),每局比赛无论胜平负,得分总和都是2分,这样计算出总分是12分.然后把12分进行分配,根据每个人最后得分都不相同推理出最多有几局平局即可.25.【答案】解:如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部购买2元饭票,共有22种不同方法;……如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全部购买2元饭票,共有2种方法.总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列.利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+…+2=(26+2)×13÷2=182(种).答:共有182种不同的买法.【解析】【分析】100元里面最多有12个8元,饭票中8元的面值最大,所以第一次买8元,从买0张8元开始,依次买到12张8元,然后分别计算出购买4元和2元的饭票的张数,最后把每一次中的买法加起来即可.26.【答案】解:共10,如图【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】每种颜色与其他4种颜色组合时,都有4种不同的组合方法,所以用5乘4再去掉重复的组合方法即可.。

人教版数学二年级上册《第八单元检测》含答案

人教版数学二年级上册《第八单元检测》含答案

人教版数学二年级上学期第八单元测试一、单选题1.5、0、3这三个数字组成的不同的三位数共有( )个.A. 4B. 6C. 32.甲、乙、丙、丁四个篮球队打球,每两个队要打一场比赛,一共要进行( )场比赛.A. 4B. 6C. 8D. 103.用4、5、8三个数字中任意两个可以组成( )个不同的两位数.A. 2B. 4C. 64.六(1)班37名同学解答两道题,规定答对一题得3分,不答得1分,答错得0分.至少有( )名同学的得分相同.A. 19B. 13C. 7D. 6二、判断题5.我有2件上衣和3条裤子,配成一套衣服,一共有6种搭配方法.( )6.从四个人选2人参加比赛有6种不同选法.( )7.一个有四位数的密码锁,忘记了首尾两个数字,则需要试验的密码有10种.三、填空题8.老师要从班内4名男生和5名女生中选派二人参加男女生二重唱比赛,有________种不同的组合方案.9.用“2”“5”“8”三个数字组成的三位数一共有________个,其中十位上是5的有________个(同一个数中每个数字只用一次)10.用0、1、3、5、7、9最多可组成________个不同的六位数,最大的是________,最小的是________.11.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.12.现有3名男生和3名女生,欲从中各选派一个人参加羽毛球混合双打比赛,共有________种不同的组队方案.四、解答题13.从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?14.学校教学楼共16级台阶,规定每次只能跨上1级或2级,要登上第16级,共有多少种不同的走法?五、应用题15.在1~20共20个整数中,取两个数相加,使其和为偶数不同取法共有多少种?答案与解析一、单选题1.【答案】A【解析】【解答】组成的不同的三位数有503、530、305、350,共4个.故答案为:A.【分析】百位上的数字不能是0,所以只能是5和3,是5的三位数有2个,是3的三位数有2个,共4个三位数.2.【答案】B【解析】【解答】解:3+2+1=6(场)故答案为:B.【分析】甲先比赛3场,那么乙只需要再与丙、丁比赛2场,丙只需要与剩下的丁比赛1场,由此计算总场次即可.3.【答案】C【解析】【解答】用4、5、8三个数字可组成45,48,54,58,84,85,共6个数.故答案为:C.【分析】此题主要考查了排列和组合的知识,先确定十位上的数,再确定个位上的数,当十位是4,个位可能是5或8,可以组成两个不同的两位数,同样的方法,当十位是5,个位可能是4或8,当十位是8,个位可能是4或5,据此解答.4.【答案】C【解析】【解答】解:答题情况有:一道也没有答对、答对第一道和答错第二道、答对第二道和答错第一道、一道也没答;答对第一道和不答第二道、答对第二道和不答第一道、答错第一道和不答第二道、答错第二道和不答第一道、答对两道,一共有5种不同的得分情况,37÷5=7(组)……2(名),所以至少有7名同学的得分相同.故答案为:C.【分析】计算此类型的题目时,可以先算出一共有多少种情况,然后再用总人数除以情况的种数,所得的商就是至少相同的人数.二、判断题5.【答案】正确【解析】【解答】解:2×3=6,所以2件上衣和3条裤子一共有6种搭配方法.原题说法正确.故答案为:正确.【分析】一件上衣有3条裤子与之搭配,那么2件上衣就是2个3种搭配方法.6.【答案】正确【解析】【解答】解:从四个人选2人参加比赛有6种不同选法.故答案为:正确.【分析】从四个人选2人参加比赛,可以先从这四个人中选1个人参加比赛,一共有4种可能,然后再从剩下的3个人中选出1个人,一共有3种可能,所以一共有4×3÷2=6种不同的选法.7.【答案】错误【解析】【解答】解:10×10=100种,因此需要试验的密码有100种,原题说法错误.故答案为:错误【分析】因为每一位上的数字都有10种可以选择,一共有两位数字不知道,因此根据乘法原理用10×10可以求出需要实验的密码的种类.三、填空题8.【答案】20【解析】【解答】4×5=20(种)故答案为:20.【分析】根据排列组合的规律列出乘法算式进行分析.9.【答案】6;2【解析】【解答】解:组成的三位数有258、285、582、528、825、852,共6个,其中十位上是5的有2个. 故答案为:6;2.【分析】每个数字都可以做百位数字,然后确定十位和个位数字,这样列举出所有的三位数即可填空.10.【答案】600;975310;103579【解析】【解答】解:六位数的个数:5×5×4×3×2=600(个);最大的是975310,最小的是103579.故答案为:600;975310;103579.【分析】这样的六位数中,十万位有5个数可以选择(0除外),万位也有5个数可以选择,千位剩下4个数可以选择,百位剩下3个数可以选择,十位剩下2个数可以选择,个位只有剩下1个数,把这些可以选择的个数相乘即可求出组成六位数的个数.其中最大的六位数的最高位是最大的数字9,其它数字从大到小依次列在后面的数位上;最小的六位数的最高位数字是1.11.【答案】10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.12.【答案】9【解析】【解答】解:3×3=9(种)故答案为:9.【分析】用3名男生的人数乘3名女生的人数即可求出组队方案的方法.四、解答题13.【答案】解:两个数和为11的一共有3种取法;两个数和为12的一共有2种取法;两个数和为13的一共有2种取法;两个数和为14的一共有1种取法;两个数和为15的一共有1种取法;一共有3+2+2+1+1=9种取法.【解析】【分析】1~8中最大的两个数的和是7+8=15,所以从两个数和为11开始,依次到和为15的每一个和的取法,最后把每一个和的取法加起来即可.14.【答案】解:第一台阶有1种走法,第二台阶有2种走法,第三台阶有1+2=3种走法,第四台阶有2+3=5种方法,…即斐波那契数列依次有:1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、1597;共有1597种不再的走法答:共有1597种不同的走法.【解析】【分析】上第1级有1种方法,上第2级有1、1,和2这2种方法,上第3级,可以从第1级上1、1或2,或第2级上1这3种方法,3=1+2,同理,上第4级2+3=5种方法,上第5级3+5=8种方法,上第6级5+8=13种方法,上第7级8+13=21种方法,上第8级13+21=34种方法,上第9级21+34=55种方法上第10级34+55=89种方法.这个走法随着台阶的增多,依次为:1、2、3、5、8、13、21、34、55、89由此得出:从第三项开始,每项=他之前的两项的和.五、应用题15.【答案】90种【解析】【解答】9×10÷2×2=90(种)答:和为偶数不同取法共有90种.【分析】从1~20种共有10个偶数,10个奇数,如果偶数与偶数相加,则有9×10÷2=45种,同样奇数与奇数相加也有45种不同的取法,所以再用45乘2即可求出一共的取法.。

人教版数学二年级上册《第八单元综合测试》(含答案)

人教版数学二年级上册《第八单元综合测试》(含答案)

人教版二年级上册第八单元测试卷一、填空。

(24分)1、4个小朋友,每两个人通一次电话,一共要通( )次电话。

2、用0、3、7这三个数字组成两位数,一共可以组成( )个两位数,分别是( )。

3、用3个数6、8、9任意选取2个求积,得数有( )种可能。

4、甲、乙、丙三人每两个人握一次手,三人一共握( )次手。

5、用1、6、8这三张数字卡片摆出最大的两位数是( ),最小的两位数是( )。

6、明明选一套衣服,共有( )种选法。

7、三只小兔拔萝卜,分别拔了60个、73个、85个。

那么,第一只小兔拔了( )个,第二只小兔拔了( )个,第三只小兔拔了( )个。

8、小明的口袋里有1元、5角、1角的硬币各一枚,如果他从口袋里任意摸出两枚硬币,摸出的钱数一共有( )种可能。

二、选择。

(10分)1、小猴买一瓶饮料5角钱。

小猴身上带的钱分别是5角的一张、2角的两我拔得最少我拔的不是85个张、5张一角的。

小猴付钱方法会有( )中种。

① 1种② 3种③ 4种2、学校餐厅中午为学生提供2种不同的荤菜,2种不同的素菜,小明打算买一荤一素两种菜,一共有( )种不同的买法。

① 2种② 3种③ 4种3、有三种花,任意选两种送给朋友,有( )种送法。

① 2种② 3种③ 4种4、我和爸爸、妈妈坐成一排合影,有( )种坐法。

① 2 ②4 ③65、用5、0、2可以组成( )个不同的两位数。

①4 ②5 ③6三、按要求做题。

(39分)1、连一连,再填空。

(1)任选下面的两朵花插在花瓶里,有几种不同的插法?(6分)共( )种插法。

(2)4只小鸟进行羽毛球比赛,每两只小鸟都要赛一场,一共要赛几场?(6分)一共要赛( )场。

2、小兔子从家经过树林去找小公鸡,有多少种不同的走法?写出来。

(9分)3、猜猜电话号码:最后三个数字是由1、6、9组成的,猜一猜,丽丽家的电话号码可能是多少?(6分)4、连一连。

一共有( )种搭配方法。

(6分)5、下面有3本书,送给小方、小丽、小军各一本,一共有多少种送法?(6分)四、解决问题。

人教版数学二年级上册《第八单元测试》含答案

人教版数学二年级上册《第八单元测试》含答案

人教版数学二年级上学期第八单元测试一、单选题(共8题;共16分)1.5、0、3这三个数字组成的不同的三位数共有( )个.A. 4B. 6C. 32.有4个同学排成一排照合照,小丽只能站在左边的第一个位置上.有( )种不同的排法.A. 8B. 7C. 63.用能摆成( )个两位数.A. 6B. 8C. 124.用下面的3枚硬币可以组成( )种不同的币值.A. 3B. 4C. 55.小丽和父母到影楼照全家福,站成一排,他们有( )种排列方法.A. 3B. 1C. 66.有三个队参加足球比赛,每两个队进行一场比赛,一共要比赛( )场.A. 4B. 6C. 8D. 37.3个人比赛打乒乓球,每两个人打一场,3个人共打了( )场.A. 2B. 3C. 68.四年级8个班级举行拔河比赛,每2个班级之间进行1场比赛,一共要进行几场比赛,以下那种算法是正确的( ).A. 8×7÷2B. 8×7C. 8+7+6+5+4+3+2D. (7+6+5+4+3+2+1)÷2二、判断题(共5题;共10分)9.有三个同学,每两人握一次手,一共要握6次手.( )10.某学校要从4名女同学和3名男同学中各选出1人代表学校参加演讲比赛.一共有7种不同的组队方案.( )11.从四个人选2人参加比赛有6种不同选法.( )12.2件上衣和3条裤子搭配成一件衣服,一共有5种搭配方法( )13.从5、2、7、0这4个数中选出两个组成两位数,可以组成9个两位数. ( )三、填空题(共8题;共16分)14.丽丽有3件上衣,4条裙子,一件上衣和一条裙子任意搭配,有________种不同穿法.15.从2、0、8、5中选三个数组成不同的三位数,最大的是________,最小的是________,它们相差________.16.用6、7、8组成的最大的三位数与最小的三位数的差是________,和是________.17.小亮有两件不同的上衣,两条不同的裤子,已知一件上衣和一条裤子搭成一身,他有________种搭法.18.5个人见面,如果每两个人握一次手,一共要握________次手.19.用3、4、1组成的两位数分别是________,________,________,________,________,________.20.爷爷、爸爸、儿子三人下棋,如果每两人都要下一盘,一共要下________盘.21.下面有3种果汁、2种纯净水,王青想从中选1瓶果汁和1瓶纯净水,有________种选法.四、解答题(共5题;共25分)22.明明为自己搭配早餐.饮料有2种:牛奶、果汁;点心有3种:蛋糕、油条、面包.饮料和点心各选一种.一共有多少种不同的搭配方法?23.食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59.问:这五只羊各重多少千克?24.有几个同学想称一下体重,可是秤的秤砣不齐,只能称50千克以上的重量,他们只好每人都和其他人合称一次,共得到以下10个数据(单位:千克):75、78、79、80、81、82、83、84、86、88.问:⑴有几名同学?⑵他们的重量各是多少千克?25.有红、黄、蓝、绿四种颜色的卡片,每种颜色的卡片各有3张.相同颜色的卡片上写相同的自然数,不同颜色的卡片上写不同的自然数.老师把这l2张卡片发给6名同学,每人得到两张颜色不同的卡片.然后老师让学生分别求出各自两张卡片上两个自然数的和.六名同学交上来的答案分别为:92,125,133,147,158,191.老师看完6名同学的答案后说,只有一名同学的答案错了.问:四种颜色卡片上所写各数中最小数是多少? 26.聪聪从家到学校有3条路可走,从学校到少年宫有2条路可走.他从家经过学校到少年宫有几种不同的走法?答案与解析一、单选题1.【答案】A【解析】【解答】组成的不同的三位数有503、530、305、350,共4个.故答案为:A.【分析】百位上的数字不能是0,所以只能是5和3,是5的三位数有2个,是3的三位数有2个,共4个三位数.2.【答案】C【解析】【解答】解:3×2×1=6,所以有6种不同的排法.故答案为:C.【分析】小丽站在左边的第一个位置,所以这个位置已经固定了,剩下的3个位置中第一个位置有3种排法,第二个位置有2种排法,第三个位置有1种排法,一共3×2×1=6种排法.3.【答案】C【解析】【解答】3×4=12(种)故答案为:C.【分析】把其中一个数放到十位上,与其它3个数可以摆成3个不同的两位数,这4个数都可以放到十位上,因此用乘法解答.4.【答案】B【解析】【解答】用下面的3枚硬币可以组成4种不同的币值.故答案为:B.【分析】可以看看两枚、三枚组合各组成多少种币值,然后相加即可.5.【答案】C【解析】【解答】3×2=6(种)故答案为:C.【分析】可以这样想:小丽在最左边,其他两人交换后,有2种排列方法,同样其他两人在最左边时,又分别有2种排列方法,照相是排列有顺序的,因此用乘法即可解答.6.【答案】D【解析】【解答】3×2÷2=3(场)故答案为:D.【分析】每一个队与其他两队要比2场,共有3个队,比赛场数的计算是组合,所以求出它们的积再除以2即可.7.【答案】B【解析】【解答】解:2+1=3(场)故答案为:B.【分析】第一个人与第二个、第三个各打一场,共2场;第二个人与第三个人打一场,因此共打3场.8.【答案】A【解析】【解答】解:根据排列组合的知识可知,正确的算法是8×7÷2.故答案为:A.【分析】如果用乘法计算:比赛场数=班级数×(班级数-1)÷2,如果用加法计算:7+6+5+4+3+2+1.二、判断题9.【答案】错误【解析】【解答】3×2÷2=3(次)故答案为:错误.【分析】握手的次数=人数×(人数-1)÷2.10.【答案】错误【解析】【解答】解:1名女同学可以与3名男同学搭配,即对应3种不同的方案,因为有4名女同学,所以一共有4×3=12种组队方案.故答案为:错误.【分析】不同方案的数量=女同学的数量×男同学的数量,据此代入数据解答即可.11.【答案】正确【解析】【解答】解:从四个人选2人参加比赛有6种不同选法.故答案为:正确.【分析】从四个人选2人参加比赛,可以先从这四个人中选1个人参加比赛,一共有4种可能,然后再从剩下的3个人中选出1个人,一共有3种可能,所以一共有4×3÷2=6种不同的选法.12.【答案】正确【解析】【解答】解:一共有2×3=6种搭配方法.故答案为:正确.【分析】一件上衣有3种搭配裤子的方法,那么2件上衣就有2×3=6种搭配方法.13.【答案】正确【解析】【解答】从5、2、7、0这4个数中选出两个组成两位数,可以组成9个两位数:50、52、57、20、25、27、70、72、75,原题说法正确.故答案为:正确.【分析】根据题意可知,4个数中除0之外,其他三个数都可以先放在十位上,十位上有3种不同情况;当十位数字确定后,个位数字也有3种不同的情况,一共可以组成3×3=9个两位数,据此判断.三、填空题14.【答案】12【解析】【解答】3×4=12(种)故答案为:12.【分析】根据每件上衣分别与4条裙子搭配有4种穿法,共有3种不同的上衣,用乘法即可解答.15.【答案】852;205;647【解析】【解答】从2、0、8、5中选三个数组成不同的三位数,最大的是852,最小的是205,它们相差852-205=647.故答案为:852;205;647.【分析】要求从四个不同的数字中选三个数组成不同的三位数,最大的是选三个较大数,按从大到小排列这三个数,组成最大的三位数;要求组成最小的三位数,选三个较小数,按从小到大的顺序排列这三个数,注意:0不能放在最高位,据此写数,要求两个数的差,用减法计算.16.【答案】198;1554【解析】【解答】876-678=198;876+678=1554.故答案为:198;1554.【分析】要求由3个不同的数字组成最大的三位数,将数字按从大到小排列,要求由3个不同的数字组成最小的三位数,将数字按从小到大排列,然后用减法求出它们的差,用加法求出它们的和,据此列式解答.17.【答案】4【解析】【解答】2×2=4(种)故答案为:4.【分析】用其中一件上衣分别与两条不同的裤子搭配有2种方法,两件不同的上衣与两条不同的裤子搭配有多少种方法,用乘法即可解答.18.【答案】10【解析】【解答】5×4÷2=10(次)故答案为:10.【分析】握手问题属于组合问题,可以用公式法来计算,每个人可以和其他4人分别握一次手,共有5人.因为是两人握一次没有顺序,所以用它们的积除以2即可.19.【答案】34;31;43;41;13;14【解析】【解答】用3、4、1组成的两位数分别是34、31、43、41、14、13.故答案为:34、31、43、41、14、13.【分析】选择一个数放到十位上,分别与剩下的两个数组成2个两位数,这三个数都可以放到十位数,又与剩下的两个数组成2个两位数,即可解答.20.【答案】3【解析】【解答】爷爷、爸爸、儿子三人下棋,如果每两人都要下一盘,一共要下3盘.故答案为:3.【分析】可以用列举法解答,本题中爷爷和爸爸、爷爷和儿子、爸爸和儿子三种方法.21.【答案】6【解析】【解答】3×2=6(种)【分析】选1瓶果汁和1瓶纯净水的选法=果汁的种数×纯净水的种数.四、解答题22.【答案】解:2×3=6(种)答:一共有6种不同的搭配方法.【解析】【分析】饮料的种类数×点心的种类数=总的搭配方法,据此解答.23.【答案】解:可以设定羊的重量从轻到重分别为, , , ,.则, .同时不难整体分析得到千克.则千克.不难有, .则千克, 千克, 千克, 千克.【解析】【分析】假设这5只羊的重量从小到大依次是A、B、C、D、E,每个体重都加了4次,所以A+B+C+D+E=这些重量之和÷4,而A+B=47,A+C=50,E+C=58,D+E=59,由此可以得出每只羊的重量.24.【答案】解:首先,也就是说5个同学两两合称才恰好需要称10次,所以有5个同学.设这5个同学的体重从小到大依次为、、、、.则有, , , ;.则千克;千克;千克;千克;千克.即他们的体重分别为37千克、38千克、41千克、43千克、45千克.【解析】【分析】根据排列组合定义,, 5个同学两两合称才恰好需要称10次,所以有5个同学,假设这5个同学的体重从大到小依次是A、B、C、D、E,每个体重都加了4次,所以A+B+C+D+E=这些体重之和÷4,而A+B=75,A+C=78,D+E=88,C+E=86,由此可以结合每个人的体重.25.【答案】解:根据题意可知,6名同学每人都得到给定的4个数中的某2个,而从4个数中选取2个不同的数共有种不同的方法.而6名同学所给的6个答案中只有1个错误,有5个是正确的,而且这5个正确的答案互不相同,所以这5名同学所拿到的两个数也互不相同.而总共只有6种不同情况,所以给出错误答案的那名同学所拿到的两个数与其他5名同学所拿到的两个数的情况也都不相同.那么本题相当于:有四个数、、、( ),每次从中取出两个数,计算它们的和,得到六个和:92,125,133,147,l58,l91,其中只有一个是错误的,求的值.由取法可知,得到的六个和可以两两匹配,即与, 与, 与,互相匹配的两个和的和是相等的,都等于.而题中的6个数中, ,可见,那么六个和数中133和147都可能是错误的.如果147是错误的,那么133是正确的,另一个正确的和数为,根据、、、的大小顺序,可得, , , ,而与分别为133和150.再由得,所以是偶数,那么,得,进而得.即四种颜色卡片上所写各数中最小数是42.如果133是错误的,那么147是正确的,同样分析可知,此时四种颜色卡片上所写各数中最小数是35.【解析】【分析】题中有四种颜色的卡片,每人得到的是两张不同颜色的卡片,由排列组合定义可知,每人得到两张颜色不同的卡片,所以一共有种不同的方法,6名同学所给的6个答案中只有1个错误,有5个是正确的,而且这5个正确的答案互不相同,所以这5名同学所拿到的两个数也互不相同.所以本题可以理解为:有四个数,每次从中取出两个数,计算它们的和,得到六个和:92,125,133,147,l58,191,其中只有一个是错误的,求a 的值.然后根据它们之间和的关系作答即可.26.【答案】解:3×2=6(种)答:聪聪从家经过学校到少年宫有6种不同的走法.【解析】【分析】聪聪从家到学校有3条路可走,从学校到少年宫有2条路可走,说明选择聪聪从家到学校的1条路,就有2种方法去少年宫,所以聪聪从家经过学校到少年宫有3×2=6种不同的走法.。

人教版二年级上册数学《第八单元测试题》含答案

人教版二年级上册数学《第八单元测试题》含答案

人教版数学二年级上册第八单元综合能力测试一、单选题1.“0,1,2,3”四个数字组成三位数,可以组成( )个不同的三位数.A. 16B. 18C. 62.用4,2,6,9四个数可以组成()个数字不重复的四位数。

A. 12B. 18C. 243.在下图中,根据变化规律空白处应填( )。

A. B. C.4.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法()A. 20种B. 10种C. 6种D. 5种5.要从10名候选人中选出一人当班长,一人当团支书,则共有多少种不同的方案?()A. 90种B. 45种C. 110种D. 55种二、判断题6.从四个人选2人参加比赛有6种不同选法。

7.4件上衣和3条裤子搭配成一套衣服,共有12种搭配方法。

8.…第25个应该是。

9.如果A是奇数,那么1093+89+A+25的结果还是奇数.10.4支足球队进行踢足球比赛,每两个队都要赛一场,一共要赛3场.三、填空题11.用0、2、5、9能组成________个没有重复数字的两位数,其中最大的是________。

12.5个足球队进行比赛,每两个队都要进行一场,一共要比赛________场。

13.有12支球队要进行单循环比赛:共需比赛________场.14.将4张不同的新年贺卡投入3个不同的信箱,则3个信箱都不空的投法有________ 种.15.用2、5、9三张卡片中任选两张组成的数中,最大的是多少?最小的是多少?(1)最大的数是________。

(2)最小的数是________。

四、解答题16.一列往返于北京和上海方向的列车全程停靠个车站(包括北京和上海),这条铁路线共需要多少种不同的车票.17.国庆节,星星要去芳芳家,街道路线如图,共有多少种走法?五、应用题18.40把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试多少次?答案与解析一、单选题1.【答案】B【解析】【解答】组成的三位数有:120、102、210、201、310、130、301、103、230、203、320、302、123、132、213、231、321、312,一共有18个.故答案为:B.【分析】第一位上有:1、2、3三种,第二位上有剩下的包括0的三种,第三位上有剩下的二个数取其中一个,据此列举即可解答.2.【答案】C【解析】【解答】解:4×3×2×1=24(个)故答案为:C。

人教版二年级上册数学《第八单元测试卷》(附答案)

人教版二年级上册数学《第八单元测试卷》(附答案)

第8单元综合测试
一、简单的排列
1.用3、0和8组成两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?
2.用红、黄和绿3种颜色给两片树叶涂上不同的颜色,一共有多少种不同的涂色方法?
3.3个同学排成一队表演,有几种站法?
二、简单的组合
1.从下面的3张扑克牌中任选两张,把牌面上的数相加,能得到几种不同的和?
2.有4张纸币,任意选取其中的两张,可以组成多少种不同的币值?
3.刘东要选一种食物和一种饮料,有几种不同的选法?
参考答案
一、1.4个:30 38 80 83
2.6种(填表略)
3.6种
二、1.2+6=8 2+8=10 6+8=14 3种
2.3+2+1=6(种)
3.3×3=9(种)。

人教版数学二年级上册《第八单元综合测试卷》含答案

人教版数学二年级上册《第八单元综合测试卷》含答案

人教版数学二年级上学期第八单元测试一、单选题1.用5,0,6三个数字摆三位数,能摆成()个不同的三位数。

A. 2B. 4C. 62.(2020二上·石碣镇期末)把下边的3本书送给3位小朋友,每人1本,一共有()种送法。

A. 6B. 4C. 33.(2020二上·即墨期末)同学们用红色、黄色、蓝色三种不同的气球扎在一起装扮教室,至少用一种,最多用三种,一共有多少种不同的搭配方法?()A. 3种B. 6种C. 7种4.(2020二上·嘉陵期末)有3件上衣和4条裤子,一共有()中不同的穿法。

A. 7B. 10C. 125.我和爸爸、妈妈坐成两排合影,第一排1人,第二排2人,有()种坐法。

A. 2B. 4C. 66.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法。

A. 5B. 6C. 37.三个同学坐在一起拍照,一共有多少种不同的坐法?()A. 4B. 6C. 88.用三张数字卡片、、摆数,能摆出()个不同的三位数。

A. 6B. 5C. 49.从中任意选两个数相加,有()种不同的和。

A. 3B. 4C. 5二、判断题10.3件不同的上衣,3条不同的裤子,有9种不同的穿法。

()三、填空题11.(2020二上·嘉陵期末)4个小朋友比赛打羽毛球,每2个人要打一场比赛,4个人一共要打________场比赛。

12.(2020二上·通榆期末)有三个班进行乒乓球比赛,每两个班进行一场,一共要比赛________场。

13.有六个数字“1、1、2、2、3、3”,要组成一个六位数且两个1之间有一个数字,两个2之间有两个数字,两个3之间有三个数字。

这样的六位数最大是________。

14.有3个人,每2人要跳一次舞,一共需要跳________次。

15.用7、2、9能组成________个不同的两位数。

其中最大的是________,最小的是________,它们的和________。

人教版数学二年级上册第八单元综合测试题附答案

人教版数学二年级上册第八单元综合测试题附答案

第⑧单元测试卷一、单选题1.图中共有()条不同的线段。

A. 4B. 16C. 8D. 102.一个密码锁由五个数字组成,每一位数字都是0~9之中的一个,小春只记得其中的三个,则他最多试()次就能打开锁。

A. 5B. 2C. 20D. 1003.12个点,一共可以连成()条线段.A. 12B. 32C. 664.国庆期间,甲商场以“打九折”的措施优惠,乙商场以“每满100元送10元购物券”的形式促销.李阿姨准备购物200元,去哪个商场合算一些?()A. 甲B. 乙C. 甲、乙都一样5.三个人并排站成一个横排照相,他们有几种站法?()A. 6B. 8C. 3D. 16.一列火车从A站行驶到B站的途中经过五个车站,则A、B这条线路上需准备()种火车票.A. 15B. 21C. 30D. 427.小明要烧壶水给妈妈沏杯茶,已知烧水需要8分钟,洗水壶需要1分钟,洗茶杯需要2分钟,接水需要1分钟,找茶叶需要1分钟,沏茶需要1分钟,那么妈妈至少()分钟才能喝上茶。

A. 10B. 11C. 128.一种洗衣粉在甲、乙、丙三个商店售价都是每袋12元,现在三个商店分别以不同方式促销,甲商店优惠15%;乙商店满100元优惠25%;丙商店买4送1.学校要买10袋这种洗衣粉,想花钱最少.应该到()购买.A. 甲商店B. 乙商店C. 丙商店D. 无法确定9.芳芳的爸爸、妈妈陪她去看电影.电影院一排有20个座位,他们要一起坐在同一排,共有()种不同的坐法.A. 18B. 54C. 10810.六年级6个班级进行篮球比赛,如果每两个班之间进行一场比赛,一共要比赛()A. 9场B. 10场C. 15场D. 21场二、填空题11.一次排球淘汰比赛,共有13个队参加,有________个队轮空。

12.0,5,10,15,20,________,________。

13.从4个不同的故事书中任意选2个借给一位同学,一共有________种不同的借法.14.小明给客人沏茶,接水1分钟,烧水6分钟,洗茶杯2分钟,拿茶叶1分钟,沏茶1分钟.小明合理安排以上事情,最少要________ 分钟使客人尽快喝茶.15.用0、1、2、3、4可以组成________个没有重复数字的三位数。

人教版数学二年级上册《第八单元综合检测卷》含答案

人教版数学二年级上册《第八单元综合检测卷》含答案

人教版数学二年级上学期第八单元测试一、单选题1.一片钥匙只能开一把锁,现有8片钥匙和8把锁,最多要试验()次能使全部的锁匹配.A. 36B. 18C. 28D. 72.小丽、小梅、小雪三人排成一排照相,有()种不同的排法.A. 3B. 6C. 93.小明、小英、小华一起照相,他们的位置有()种不同的排列方法.A. 6B. 10C. 34.有14个篮球队进行比赛,若采用淘汰制,最后产生一名冠军,则至少要进行( )场比赛.A. 15B. 14C. 13D. 12二、判断题5.有三个同学,每两人握一次手,一共要握6次手.( )6.一个有四位数的密码锁,忘记了首尾两个数字,则需要试验的密码有10种.三、填空题7.老师要从班内4名男生和5名女生中选派二人参加男女生二重唱比赛,有________种不同的组合方案.8.28,24,20,16,12,________,________.9.在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有________种.10.有16支球队采用淘汰赛,若要赛出亚军,共要赛________场.11.小明在阅读时发现这样一个问题,在某次聚会中,共有6人参加,如果每两人都握一次手,共握几次手?小明设计下表进行探究.参加人数握手次数2 13 2+1=34 3+2+7=65 4+3+2+1=101N ?请你归纳几个人,每两人都握一次手,共握________次手.四、解答题12.根据规律画出被挡住部分的珠子.(1)(2)13.沿格线从A走到B,行走的方向只能是向右(→)、向右上(↗)或向右下(↘).那么,从A走到B共有多少种不同的路线?五、应用题14.下面是一个田字格,在这个田字格中任意选取两个小格分别涂上红色和蓝色,共有多少种涂法?答案与解析一、单选题1.【答案】C【解析】【解答】解:7+6+5+4+3+2+1=28(次),答:最多试验28次才能配好全部的钥匙和锁;故选:C.【分析】把8把锁看成8类,分类完成,第一把锁最多试验7次,最后的一把钥匙不用再试验了,前7个都不是,它一定可以开这把锁了;以此类推,第二把锁试验6次;第三把锁试验5次;第四把锁试验4次;第五把锁试验3次,第六把锁试验2次,第七把锁试验1次,最后的一把锁和一把钥匙,就不用试验了;用加法原理,即可得解.2.【答案】B【解析】【解答】解:令小丽、小梅、小雪3个人分别是甲乙丙,可能的排列有:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙,丙,甲;丙、甲、乙;丙、乙、甲;答:一共有6种不同的排法.故选:B.【分析】给这三个人编号:甲乙丙,写出所有可能的排列,进而求解.3.【答案】A【解析】【解答】解:3×2×1=6(种)答:他们的位置有6种不同的排列方法.故选:A.【分析】首先根据题意,判断出排在第一的有3种排法,排在第二的有2种排法,排在第三的有1种排法;然后根据乘法原理,求出他们的位置有多少种不同的排列方法即可.4.【答案】C【解析】【解答】解:14-1=13(场)故答案为:C.【分析】此题可以直接用14-1算出,因为每场都要淘汰一个队,到最后一场一定有一个胜出,没有淘汰的队,所以可以直接算出.二、判断题5.【答案】错误【解析】【解答】3×2÷2=3(次)故答案为:错误.【分析】握手的次数=人数×(人数-1)÷2.6.【答案】错误【解析】【解答】解:10×10=100种,因此需要试验的密码有100种,原题说法错误.故答案为:错误【分析】因为每一位上的数字都有10种可以选择,一共有两位数字不知道,因此根据乘法原理用10×10可以求出需要实验的密码的种类.三、填空题7.【答案】20【解析】【解答】4×5=20(种)故答案为:20.【分析】根据排列组合的规律列出乘法算式进行分析.8.【答案】8;4【解析】9.【答案】1728【解析】【解答】解:这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有:4!=24(种),对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24(种),综上所述,一共有:24×3×24=1728(种).答:使得相邻两数互质的排列方式共有1728种.故答案为:1728.【分析】这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!=24种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24种,一共有24×3×24=1728种.10.【答案】15【解析】【解答】解:16÷2=8(场)8÷2=4(场)4÷2=2(场)2÷2=1(场)8+4+2+1=15(场)故答案为:15.【分析】用球队的总支数依次除以2求出淘汰赛每次比赛的场次,然后再相加即可.11.【答案】【解析】【解答】解:故答案为:.【分析】通过前几次的计算可知,用人数乘人数与1的差除以2即可求出握手的总次数.四、解答题12.【答案】(1)解:●(2)解:○【解析】【分析】根据珠子的排列顺序,找出所缺的部分求解13.【答案】解:因为不能走回头路,不需要每个点都经过,标数如下:答:从A走到B共有多少种不同的路线.【解析】【分析】利用标数法完成这个问题即可.五、应用题14.【答案】解:4×3=12(种)答:共有12种.【解析】【分析】每个小方格可以选择红色、蓝色、不涂色,所以每个小方格有3种选择,共有4个小方格,根据乘法原理用3×4即可求出涂色的方法.。

人教版二年级数学上册第八单元测试卷附答案

人教版二年级数学上册第八单元测试卷附答案

第八单元测试卷(二)1.想一想,填一填。

(1)用2、3、4三张卡片能摆成( )个两位数,它们分别是( )。

(2)三个人排成一排照相,有( )种不同的排法。

(3)用3个数6、8、9任意选取2个求积,得数有( )种可能。

(4)用红、黄、蓝三种颜色给地图上的两个城市涂上不同的颜色,一共有( )种不同的涂法。

(5)二年级三个班进行跳绳比赛,每两个班进行一场比赛,一共要赛( )场。

(6)李老师有《趣味童话故事》、《趣味谜语故事》和《趣味数学故事》三本书,她把书送给小明、小刚和小亮各一本,一共有( )种不同的送法。

(7)有2顶帽子和2条围巾,一顶帽子配一条围巾,有( )种不同的搭配方法。

主食:馒头米饭菜:炒茄子鱼香肉丝西红柿炒鸡蛋(9)4个好朋友见面了,每两个人之间握一次手,一共要握( )次手。

5个小朋友,每两个人之间握一次手,一共要握( )次手2.连一连。

有4件上衣,2件裙子,有几种不同的搭配方法?请连一连。

一共有( )种不同的搭配方法。

3.小兔子从家经过树林去找小公鸡,有多少种不同的走法?写出来。

4.4名学生和2位老师进行乒乓球比赛,如果每名学生和每位老师各打一局,一共要打几局?5.明明、小小、皮皮三人一起到理发店理发,理发师只有一位,三个小朋友的理发顺序有几种?请用序号表示出来。

6。

妈妈带了100元钱到商店买上衣和裤子,下面是三件上衣和三条裤子的标价。

(导学号44712089)(1)在钱够的情况下,妈妈选了一件上衣和一条裤子,她有几种不同的选法? (分别用序号表示出来)(2)她可能付了多少元?找回多少元?上衣和裤子搭应付的钱找回的钱配参考答案1.(1)6 23、24、32、34、42、43(2)6(3)3(4)6 (5)3(6)6(7)4(8)6(9)6 102.83.9种①—④①—⑤①—⑥②—④②—⑤②—⑥③—④③—⑤③—⑥4.一共要打8局。

5.6种①②③①③②②①③②③①③①②③②①6.(1)有6种不同的选法:①⑥、②④、②⑥、③④、③⑤、③⑥。

人教版数学二年级上册《第八单元综合测试题》附答案

人教版数学二年级上册《第八单元综合测试题》附答案

人教版数学二年级上册第八单元测试及答案一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法.A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢.这个游戏规则().A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛()A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法()A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.()A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字.如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性().A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于()A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案.11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛.13.30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试________次.14.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.15.从北京经南京到上海,其中北京到南京有三种不同的线路火车,从南京到上海有四种不同的线路火车.那么我们可以有________条线路从北京到上海.16.区教育局要举行第十届教职工排球赛,这届比赛共有32支球队参加,平均分成4个小组,在小组内采用单循环制,小组前2名共8支球队再进行淘汰赛,一共要进行________场比赛.三、解答题(共10题;共51分)17.小丽有2件上衣,3条裤子,又买了2顶帽子.现在有多少种搭配方法?18.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?19.画一画,填一填.20.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?21.甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?22.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开保险柜至少要试几次?23.,,三种图形有多少不同的排法?把这几种排法写出来.24.四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?25.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?26.用红、橙、黄、绿、蓝5种颜色给下面长方格子涂颜色,一个格子里涂一种颜色,一种颜色只可以使用一次,有几种不同的涂法?请把你设计的方案用图示法表示出来.答案与解析一、单选题1.【答案】 B【解析】【解答】解:衬衣①、裙子①,衬衣①、裙子②;衬衣②、裙子①;衬衣②、裙子②;衬衣③、裙子①;衬衣③、裙子②.共6种穿法.故答案为:B.【分析】每件衬衣都会有2条裙子与之搭配,共有3件衬衣,这样列举出所有穿法即可.2.【答案】 B【解析】【解答】解:积有:2×3=6,2×7=12,3×7=21,3×2=6,7×2=14,7×3=21,奇数有2个,偶数有4个,这个游戏规则不公平.故答案为:B.【分析】如果积是奇数、偶数的个数相同,这个游戏规则就公平.由此判断出所有的积即可判断是否公平.3.【答案】 A【解析】【解答】A先向右走有10种,A先向上有10种,共10+10=20(种)故答案为:A【分析】弄清楚行走的规则,先判断出向右走的路线有10种,向上走的路线也有10种,这样计算出总的种数即可.4.【答案】 C【解析】【解答】解:16×(16-1)÷2=16×15÷2=120(场)故答案为:120.【分析】每支球队在进行单循环比赛时,都要与其他球队进行一次比赛,所以用16乘15求出比赛的场次,因为有一半重复的场次,所以再除以2即可.5.【答案】 B【解析】【解答】解:(1)从A开始摘,A﹣B﹣C﹣D﹣E,A﹣B﹣D﹣C﹣E,A﹣B﹣D﹣E﹣C,A﹣D﹣B﹣C ﹣E,A﹣D﹣B﹣E﹣C,A﹣D﹣E﹣B﹣C,共6种方法,(2)从D开始摘,D﹣E﹣A﹣B﹣C,D﹣A﹣E﹣B﹣C,D﹣A﹣B﹣E﹣C,D﹣A﹣B﹣C﹣E,共4种方法,共有:6+4=10(个),故选:B.【分析】根据题意,每次从某一串的最下端摘下一个礼物,摘了五次可将五件礼物全部摘下,那就从A开始摘,看看有几种方法,再从D开始摘,看看有几种方法,那问题即可解决.6.【答案】A【解析】【解答】4×3×2×1=24(个)故答案为:A【分析】0可以作为第一个数,所以左起第一位有4种选择,第二位有3种选择,第三位有2种选择,第四位只有一种选择,运用乘法原理计算数字总数.7.【答案】 A【解析】【解答】解:1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,3+1=4,3+2=5,3+3=6,3+4=7,3+5=8,4+1=5,4+2=6,4+3=7,4+4=8,4+5=9,4+6=10,5+1=6,5+2=7,5+3=8,5+4=9,5+5=10;和是奇数的12个,和是偶数的13个,所以小玲赢的可能性比小巧小.故答案为:A.【分析】运用排列组合的方法把所有的和都列举出来,然后数出和的奇数和偶数各有几个,哪种数多,相对应的谁赢的可能性就大.8.【答案】 C【解析】【解答】解:方法一:因为在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数的和有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,所以A、B、D是不可能的,方法二:2、5、8被3除,余数都是2,同余.所以取出7张卡片求和,余数变成了14.因为减去14,剩下的数可以被3整除(7张2的情况,和为14,减去14为0).或者14被3除,余数是2,即7张卡片求和,被3除,余数为2,只有29复合题意.故答案为:C.【分析】根据题意知道在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,由此即可做出选择.二、填空题9.【答案】 10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.10.【答案】6【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每种颜色的彩纸排头时,剩下的两种颜色的彩纸都有两种不同的排列方法,所以直接用2乘3即可求出不同的购买方案.11.【答案】 12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.12.【答案】120;15;18【解析】【解答】单循环赛:16×(16-1)÷2=16×15=120(场)淘汰塞:8+4+2+1=15(场)决出四强赛:8+4+6=18(场)故答案为:120,15,18.【分析】在进行单循环赛时,则每个球队都要与其他球队进行比赛,所以每个球队要进行15场比赛,这样就会有一半重复的,所以再除以2即可,在进行淘汰赛时,分别求出两队两队比赛的场次,然后再相加,在决出四强后再采用淘汰赛时,先求出16支球队决出四强前的比赛的场次,再求出四强后淘汰赛的场次,然后相加即可.13.【答案】435【解析】【解答】29+28+27+26+25+…+1=(29+1)×29÷2=30×29÷2=435(次)故答案为:435【分析】从最坏的情况考虑,第一把钥匙一直试到第29把还没有配上,那么最后一把锁就不用试了,一定是第30把的钥匙;按照这样的规律,第二把需要试28次……,直到最后一把试1次就可以了,把这些次数相加,根据数列求和的知识计算即可.14.【答案】(1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.15.【答案】 12【解析】【解答】3×4=12(种)故答案为:12.【分析】从北京到南京的每条线路去上海时都有4种不同走法,所以用3乘4即可求出从北京到上海的路线走法.16.【答案】119【解析】【解答】解:32÷4=8(支)8×(8-1)÷2=28(场)28×4=112(场)8-1=7(场)112+7=119(场)故答案为:119.【分析】用32除以4求出每个小组球队的支数,根据排列组合的方法求出单循环赛的场次;每个小组取前2名时,4个小组则取了8个小队,所以用8乘8减1的差除以2即可求出淘汰赛的场次,然后再相加即可.三、解答题17.【答案】解:2×3×2=12(种)答:现在有12种搭配你方法.【解析】【分析】每件上衣都会有3条裤子与之搭配,每条裤子会有2顶帽子与之搭配,运用乘法原理计算搭配的总种类即可.18.【答案】解:(种)答:共可以表示60种不同的信号.【解析】【分析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置,现在是要从五个不同的元素中取三个,排在三个位置的问题.19.【答案】【解析】20.【答案】解:十项比赛,每位同学可以任报两项,那么有45种不同的报名方法.由鸽巢原理知有45+1=46(人)报名时满足题意.【解析】【分析】9+8+7+6+5+4+3+2+1=45(种),10项比赛共有45种不同的组合,假如每个组合都有1人报名,共有45人报名,那么再有1人报名,不管是报哪个组合,都会保证有两名或两名以上的同学报名参加的比赛项目相同.21.【答案】解:按甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置分四种情况讨论:如果甲在队伍最靠右的位置、乙在队伍最靠左的位置,那么丙还有6种站法,剩下的五个人进行全排列,站法总数有:(种)如果甲在队伍最靠右的位置,而乙不在队伍最靠左的位置,那么乙还有4种站法,丙还有5种站法,剩下的五个人进行全排列,站法总数有:(种)如果甲不在队伍最靠右的位置,而乙在队伍最靠左的位置,分析完全类似于上一种,因此同样有2400种站法如果甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置,那么先对甲、乙整体定位,甲、乙的位置选取一共有(种)方法.丙还有4种站法,剩下的五个人进行全排列,站法总数有:(种)所以总站法种数为(种)【解析】【分析】甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置有四种情况:第一种:甲在队伍最靠右的位置、乙在队伍最靠左的位置;第二种:甲在队伍最靠右的位置,而乙不在队伍最靠左的位置;第三种:甲不在队伍最靠右的位置,而乙在队伍最靠左的位置;第四种:甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置.最后把每一种站法加起来即可.22.【答案】解:四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑的位置就可以了,可以任意选择个位置中的一个,其余位置放,共有种选择;第二种中,先考虑放,有种选择,再考虑的位置,可以有种选择,剩下的位置放,共有(种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似,的位置有种选择,其余位置放,共有种选择.综上所述,由加法原理,一共可以组成(个)不同的四位数,即确保能打开保险柜至少要试次.【解析】【分析】先把和是9的4个非0的数字组合写出来,然后把每种组合的排列方法加起来即可. 23.【答案】解:有六种不同的排法:,,,,,,,,,,,,【解析】24.【答案】解:四人共赛局,总分为(分),因为总分各不相同,分配得:或.平局最多的应该是、、、的情况.总分是奇数的必有一局平局,当得分是分、分的同学分别与得分是分、分的同学打平后,得分是分、分的同学就还剩下分、分,互相打平就正好.所以平局最多是局.答:最多有3局平局.【解析】【分析】单循环比赛四队比赛总局数:3+2+1=6(局),每局比赛无论胜平负,得分总和都是2分,这样计算出总分是12分.然后把12分进行分配,根据每个人最后得分都不相同推理出最多有几局平局即可.25.【答案】解:如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部购买2元饭票,共有22种不同方法;……如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全部购买2元饭票,共有2种方法.总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列.利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+…+2=(26+2)×13÷2=182(种).答:共有182种不同的买法.【解析】【分析】100元里面最多有12个8元,饭票中8元的面值最大,所以第一次买8元,从买0张8元开始,依次买到12张8元,然后分别计算出购买4元和2元的饭票的张数,最后把每一次中的买法加起来即可.26.【答案】解:共10,如图【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】每种颜色与其他4种颜色组合时,都有4种不同的组合方法,所以用5乘4再去掉重复的组合方法即可.。

人教版数学二年级上册第八单元测试题附答案

人教版数学二年级上册第八单元测试题附答案

第⑧单元测试卷一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法。

A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢。

这个游戏规则()。

A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛()A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法()A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.()A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字。

如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性()。

A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于()A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案。

10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案。

11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案。

12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛。

人教版二年级数学上册第8单元测试卷及答案

人教版二年级数学上册第8单元测试卷及答案

第八单元测试卷一、填一填。

1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。

如果用0代替9,能摆成()个不同的两位数。

2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。

3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。

二、算一算。

8×9=6×7=5×4=9×7=5×7+20= 5×6=4×9=7×8=6×9=7×9-9=三、在里填上“>”“<”或“=”。

4×624 25+835 2×612 19+83×830+62434-2015 5×732 42+106×9四、按要求做题。

有3个数6、7、8,任意选取其中2个求和。

1.用列表法求得数有几种可能。

2.用连线法求得数有几种可能。

五、解决问题。

1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。

5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?第八单元测试卷参考答案一、1.6 57、59、75、79、97、95 42.12 34、35、36、43、45、46、53、54、56、63、64、653.3 6二、72 42 20 63 55 30 36 56 54 54三、= < = > > < > <四、略五、1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35。

人教版二年级数学上册第8单元测试卷及答案

人教版二年级数学上册第8单元测试卷及答案

第八单元测试卷一、填一填。

1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。

如果用0代替9,能摆成()个不同的两位数。

2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。

3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。

二、算一算。

8×9=6×7=5×4=9×7=5×7+20=5×6=4×9=7×8=6×9=7×9-9=三、在里填上“>”“<”或“=”。

4×624 25+835 2×612 19+83×830+62434-2015 5×732 42+106×9四、按要求做题。

有3个数6、7、8,任意选取其中2个求和。

1.用列表法求得数有几种可能。

2.用连线法求得数有几种可能。

五、解决问题。

1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。

5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?第八单元测试卷参考答案一、1.6 57、59、75、79、97、95 42.12 34、35、36、43、45、46、53、54、56、63、64、653.3 6二、72 42 20 63 55 30 36 56 54 54三、= < = > > < > <四、略五、1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35。

人教版二年级数学上册第8单元测试卷及答案

人教版二年级数学上册第8单元测试卷及答案

第八单元测试卷一、填一填。

1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。

如果用0代替9,能摆成()个不同的两位数。

2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。

3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。

二、算一算。

8×9=6×7=5×4=9×7=5×7+20= 5×6=4×9=7×8=6×9=7×9-9=三、在里填上“>”“<”或“=”。

4×624 25+835 2×612 19+83×830+62434-2015 5×732 42+106×9四、按要求做题。

有3个数6、7、8,任意选取其中2个求和。

1.用列表法求得数有几种可能。

2.用连线法求得数有几种可能。

五、解决问题。

1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。

5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?第八单元测试卷参考答案一、1.6 57、59、75、79、97、95 42.12 34、35、36、43、45、46、53、54、56、63、64、653.3 6二、72 42 20 63 55 30 36 56 54 54三、= < = > > < > <四、略五、1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35。

人教版二年级数学上册第八单元测试题及答案一

人教版二年级数学上册第八单元测试题及答案一

第八单元测试卷(一)一、填一填。

1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。

如果用0代替9,能摆成()个不同的两位数。

2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。

3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。

二、算一算。

8×9=6×7=5×4=9×7=5×7+20=5×6=4×9=7×8=6×9=7×9-9=三、在里填上“>”“<”或“=”。

4×62425+8352×61219+83×830+62434-2015 5×732 42+106×9四、按要求做题。

有3个数6、7、8,任意选取其中2个求和。

1.用列表法求得数有几种可能。

2.用连线法求得数有几种可能。

五、解决问题。

1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。

5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?参考答案一、1.657、59、75、79、97、9542.1234、35、36、43、45、46、53、54、56、63、64、653.36二、72422063553036565454三、=<=>><><四、略五、1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35【拓展资料】一年级上学期主要知识点有:1. 20以内数的认识包括:数位的含义、计数单位、十进关系、数的组成、数的顺序、大小比较、基数和序数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版二年级数学上册
教材过关卷(第8单元)
一、我会填。

(每题4分,共24分)
1.用下面三张卡片能摆成()个不同的两位数。

2.用下面三张卡片能摆成()个不同的两位数。

3.用下面四张卡片能摆成()个不同的两位数。

4.用下面的三个数字任选2个求积,有()种可能。

5.明明选一套衣服,共有()种选法。

6.每两人通一次电话,一共要通()次电话。

二、用红、黄、蓝、绿四种颜色给每组中的两个涂上不同的颜色,
一共有()种涂色方法。

(9分)
三、有3个数2、5、7,任意选取其中2个数求差,得数有几种可能?
(8分)
四、3名同学站成一排照相,有多少种站法?(8分)
五、下面有3本书,送给小方、小丽、小军各一本,一共有多少种送
法?(12分)
六、有三个图形,共有多少种不同的排列方法?排一排。

(10分)
________________________________________________________ ________________________________________________________ ________________________________________________________ 七、有5个不同的玩具放在两个箱子里。

(每题10分,共20分)
1.笑笑想取出其中的一个,有多少种不同的取法?
2.文文想从每个箱子里各取一个,有多少种不同的取法?
八、用下面的人民币可以表示出多少种不同的币值?(9分)
答案
一、1.6 2.4 3.12 4.3 5.6 6.3
二、12涂色略。

三、3种。

[点拨]7-2=5,7-5=2,5-2=3。

四、6种。

五、6种。

六、6种。

排法略。

七、1.5种。

2.6种。

八、7种。

[点拨]分别是1角,2角,5角,3角,6角,7角,8角。

相关文档
最新文档