人教最新2014-2015学年人教版八年级上册数学期末试卷[1]

合集下载

安徽省阜阳市太和县八年级数学上学期期末试卷(b卷,含解析)-人教版初中八年级全册数学试题

安徽省阜阳市太和县八年级数学上学期期末试卷(b卷,含解析)-人教版初中八年级全册数学试题

2014-2015学年某某省某某市太和县八年级(上)期末数学试卷(B卷)一、选择题(下列各题所给答案中只有一个答案是正确的,每小题3分,共30分)1.若分式有意义,则x的取值X围是()A. x≠3 B. x=3 C. x<3 D. x>32.化简(﹣a3)2的结果为()A. a9 B.﹣a6 C.﹣a9 D. a63.下列四副图案中,不是轴对称图形的是()A. B. C. D.4.化简的结果是()A. x+1 B. x﹣1 C.﹣x D. x5.已知等腰三角形的两边长是5cm和11cm,则它的周长是()A. 21cm B. 27cm C. 21cm或27cm D. 16cm6.已知点P关于x轴的对称点为(a,﹣2),关于y轴对称点为(1,b),那么点P的坐标为()A.(a,﹣b) B.(b,﹣a) C.(﹣2,1) D.(﹣1,2)7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1) B. x2﹣1=(x+1)(x﹣1)C. x2﹣x+2=x(x﹣1)+2 D. x2+2x﹣1=(x﹣1)28.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA9.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B. 9 C. 8 D. 710.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A. 100° B. 110° C. 115° D. 120°二、填空题(每题4分,共16分)11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.12.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.13.当m=时,分式的值为零.14.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD=°.三、计算题(每题5分,共10分)15.计算:(8a3b﹣5a2b2)÷4ab.16.化简:.四、解答题(17,18每题6分;19题7分;20,21每题8分;22题9分)17.解方程:.18.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.19.如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.20.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.21.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?22.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是cm(用含a的代数式表示);(2)求图中两块阴影A、B的周长和(可以用x的代数式表示);(3)分别用含x,a的代数式表示阴影A、B的面积,并求a为何值时两块阴影部分的面积相等.2014-2015学年某某省某某市太和县八年级(上)期末数学试卷(B卷)参考答案与试题解析一、选择题(下列各题所给答案中只有一个答案是正确的,每小题3分,共30分)1.若分式有意义,则x的取值X围是()A. x≠3 B. x=3 C. x<3 D. x>3考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0;分析原分式可得关系式3﹣x≠0,解可得答案.解答:解:根据题意可得3﹣x≠0;解得x≠3;故选A.点评:判断一个分式是否有意义,应考虑分母上字母的取值,字母的取值不能使分母为零.2.化简(﹣a3)2的结果为()A. a9 B.﹣a6 C.﹣a9 D. a6考点:幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方法则进行解答即可.解答:解:由幂的乘方与积的乘方法则可知,(﹣a3)2=(﹣1)2a2×3=﹣a6.故选:D.点评:本题考查的是幂的乘方与积的乘方法则,即先把每一个因式分别乘方,再把所得的幂相乘.3.下列四副图案中,不是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形.解答:解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A 符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.点评:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.4.化简的结果是()A. x+1 B. x﹣1 C.﹣x D. x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选:D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.5.已知等腰三角形的两边长是5cm和11cm,则它的周长是()A. 21cm B. 27cm C. 21cm或27cm D. 16cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为5cm和11cm,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:当三边是5,5,11时,5+5<11,不符合三角形的三边关系,应舍去;当三边是5,11,11时,符合三角形的三边关系,此时周长是27.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.已知点P关于x轴的对称点为(a,﹣2),关于y轴对称点为(1,b),那么点P的坐标为()A.(a,﹣b) B.(b,﹣a) C.(﹣2,1) D.(﹣1,2)考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.解答:解:∵点P关于x轴的对称点为(a,﹣2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(﹣1,b),则a=﹣1,b=2.∴点P的坐标为(﹣1,2).故选D.点评:解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1) B. x2﹣1=(x+1)(x﹣1)C. x2﹣x+2=x(x﹣1)+2 D. x2+2x﹣1=(x﹣1)2考点:提公因式法与公式法的综合运用.分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.点评:本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.9.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B. 9 C. 8 D. 7考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.10.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A. 100°B. 110° C. 115° D. 120°考点:三角形内角和定理;角平分线的定义.分析:根据三角形内角和定理计算.解答:解:∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.二、填空题(每题4分,共16分)11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= 5 .考点:全等三角形的性质.分析:全等三角形,对应边相等,周长也相等.解答:解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5点评:本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,本题比较简单.12.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70 .考点:因式分解的应用.专题:整体思想.分析:应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.解答:解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.点评:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.当m=﹣2 时,分式的值为零.考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:依题意,得|m|﹣2=0,且m﹣2≠0,解得,m=﹣2.故答案是:﹣2.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD= 20 °.考点:三角形内角和定理;三角形的外角性质.分析:由∠B=30°,∠C=70°,根据内角和定理得∠BAC=180°﹣∠B﹣∠C=80°,由角平分线的定义得∠BAE=∠BAC=40°,根据AD⊥BC得∠BAD=90°﹣∠B=60°,利用∠EAD=∠BAD﹣∠BAE求解.解答:解:∵∠B=30°,∠C=70°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=80°,∵AE是△ABC的角平分线,∴∠BAE=∠BAC=40°,又∵AD⊥BC,∴∠BAD=90°﹣∠B=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣40°=20°.故答案为:20.点评:本题考查了三角形内角和定理,角平分线的定义.关键是利用内角和定理求∠BAC,根据角平分线的定义求∠BAE,利用高得出互余关系求∠BAD,利用角的和差关系求解.三、计算题(每题5分,共10分)15.计算:(8a3b﹣5a2b2)÷4ab.考点:整式的除法.分析:利用多项式除以单项式的运算法则进行运算即可.解答:解:原式=8a3b÷4ab﹣5a2b2÷4ab=.点评:本题考查了整式的除法,牢记运算法则及运算律是解答此类题目的关键.16.化简:.考点:分式的加减法.分析:分母不变,直接把分子相加减即可.解答:解:原式===2.点评:本题考查的是分式的加减法,熟知同分母的分数相加减,分母不变,分子相加减是解答此题的关键.四、解答题(17,18每题6分;19题7分;20,21每题8分;22题9分)17.解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程可化为:+3=﹣,方程的两边同乘(x﹣3),得2﹣x+3(x﹣3)=﹣2,解得x=2.5.检验:把x=2.5代入(x﹣3)≠0.∴原方程的解为:x=.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.考点:作图-轴对称变换.分析:分别作A、B、C关于x轴的对应点A1、B1、C1,再顺次连接.顶点坐标根据所在坐标中的位置写出即可.解答:解:如图A1(3,﹣4);B1(1,﹣2);C1(5,﹣1).点评:考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.19.如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.解答:解:∵C是AB的中点(已知),∴AC=CB(线段中点的定义),∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等)在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).∴AD=CE.点评:本题主要考查了全等三角形的判定与性质的综合应用,确定用SAS定理进行证明是解题的关键.20.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.考点:三角形内角和定理.分析:先根据垂直的定义得出∠ADB=90°,再根据直角三角形的性质求出∠DBE的度数,由角平分线的性质求出∠ABC的度数,根据三角形内角和定理求出∠BAC的度数即可.解答:解:∵AD是BC的高,∴∠ADB=90°,∴∠DBE+∠BED=90°.∵∠BED=70°,∴∠DBE=20°.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.∵∠BAC+∠ABC+∠C=180°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣60°=80°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?考点:分式方程的应用.分析:(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.解答:解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.点评:本题考查理解题意的能力,关键是设出数量,以价格做为等量关系列方程求解,然后根据利润=售价﹣进价,求出利润即可.22.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是(50﹣3a)cm(用含a的代数式表示);(2)求图中两块阴影A、B的周长和(可以用x的代数式表示);(3)分别用含x,a的代数式表示阴影A、B的面积,并求a为何值时两块阴影部分的面积相等.考点:一元一次方程的应用.专题:几何图形问题.分析:(1)从图可知,每个小长方形较长一边长是大长方形的长﹣小长方形宽的3倍;(2)从图可知,A的长+B的宽=x,A的宽+B的长=x,依此求出两块阴影A、B的周长和;(3)根据长方形的面积=长×宽即可表示阴影A、B的面积,再令S A=S B,即可求出a的值.解答:解:(1)每个小长方形较长一边长是(50﹣3a)cm.故答案为(50﹣3a);(2)∵A的长+B的宽=x,A的宽+B的长=x,∴A、B的周长和=2(A的长+A的宽)+2(B的长+B的宽)=2(A的长+B的宽)+2(B的长+A的宽)=2x+2x=4x;(3)∵S A=(50﹣3a)×(x﹣3a),S B=3a(x﹣50+3a),∴(50﹣3a)×(x﹣3a)=3a(x﹣50+3a)解得:.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

成都龙泉一中八年级级2014-2015学年度上期数学期末考试模拟试题

成都龙泉一中八年级级2014-2015学年度上期数学期末考试模拟试题

成都龙泉一中初二摸底考试试卷八年级(上)数学(时间120分钟,满分150分)全卷分为第A 卷(100分)和第B 卷(50分)两部分.答题前,请考生务必在答题卷上密封线外正确填写自己的姓名、考号和考试科目。

考试结束,只将答题卷交回.A 卷(100分)一、选择题(本题共10小题,每题3分共30分,在每题四个选项中,只有一项是符合题目要求的) 1.下列变形正确的是 ( )4=±3=±3=-3=-2. 有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根。

其中正确的有 ( ) A .0个 B .1个 C .2个 D .3个3、点),(y x A 在第二象限内,且||2||3x y ==,,则点A 关于原点对称点的坐标为( ) A .(-2,3) B .(2,-3) C .(-3,2) D .(3,-2) 4、下列命题中的真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边和一组对角分别相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5、如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△APB的面积S 与点P 运动的路程之间的函数图象大致是( )6、如果方程组⎩⎨⎧=-+=525y x y x 的解是方程532=+-a y x 的解, 那么a 的值是( )A .20B .-15C .-10D .57、一次函数y =kx +b 的图像不经过第三象限,也不经过原点,那么k 、b 的取值范围是( ) A 、k >0且b >0 B 、k >0且b <0 C 、 k <0且b >0 D 、 k <0且b <0 8、若点M (a ,b )在第四象限,则点N (– a ,–b + 2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限.9、已知一个两位数,十位上的数字x 比个位上的数字y 大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是( )A .⎩⎨⎧=+++=-9)()(1x y y x y xB .⎩⎨⎧++=++=9101x y y x y xC .⎩⎨⎧++=+=+910101x y y x y x D .⎩⎨⎧++=++=910101x y y x y x10. 如图,P 是矩形ABCD 内一点,PA =3,PD =4,PC =5,则PB 为( ) A .4.5 B...4 二、填空题. (本大题共4小题,每小题4分,共16分)11. 有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .12.一组数据1,2,a ,4,5的平均数是3,则这组数据的的方差为 .13. 已知一次函数142y x =-,将此直线向上平移6个单位,则平移后的直线的解析式为__________________.14. 长为10m 的梯子AB 斜靠墙上(墙与地面垂直)。

河北省2014-2015学年八年级数学上学期期末考试试题新人教版

河北省2014-2015学年八年级数学上学期期末考试试题新人教版

河北省2014-2015学年八年级数学上学期期末考试试题选择题(1-6小题,每题2分,7-16小题,每题3分,共42分) 1.如果代数式1-x x有意义,那么x 的取值范围是( ) A.x ≥0 B.x ≠1 C.x >0 D.x ≥0且x ≠1 2.下列说法中正确的是( )A.36的平方根是6B.4的平方根是±2C.8的立方根是-2D.4的算术平方根是-23.等腰三角形的一个内角是50°,则另外两个角的度数分别是( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50° 4.如果把分式yx x+2中的x 和y 都扩大2倍,那么分式的值( ) A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍5.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是( )6.把直线y =-x-1向右平移2个单位后得到的直线的解析式是( )A.y =-x+3B.y =-x+2C.y =-x+1D.y =-x-37.如图所示,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,则∠A'DB =( )A.40°B.30°C.20°D.10°8.如图,在四边形ABCD 中,AD ∥BC ,AD=BC ,连接AC ,E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,交AC 于点F ,则图中的全等三角形共有( )A.1对B.1对C.3对D.4对9.如右图,在平面直角坐标系中,点A (-2,4),点B (4, 2),在x 轴上去一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是( )A.(-2,0)B.(4,0)C.(2,0)D.(0,0)10.如图,已知AE=CF ,∠AFD=∠CFB ,那么添加下列哪个条件后,仍无法判定△ADF ≌△CBE ( )A.∠A=∠CB.AD=CBC.BE=DFD.AD ∥BC11.已知直线y =653+-x 和y =x -2,则它们与y 轴所围成的三角形的面积为( ) A.6 B.10 C.20 D.1212.在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是( ) A.113 B.118 C.1411 D.14313.估计2+15的运算结果应在( ) A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间14.如图,在△ABC 中,∠BAC=60°,在△ABC 的内部取一点O ,连接OA ,OB ,OC ,恰有OA=OC ,∠OBA=20°,∠OCA=40°。

人教版2014-2015八年级数学上期末试卷【精选3套】

人教版2014-2015八年级数学上期末试卷【精选3套】

人教版2014-2015八年级数学上册期末考试试卷后附答案一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。

)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=错误!未找到引用源。

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014—2015年八年级上学期期末考试数学试题考试范围:八年级上册;考试时间:120分钟;满 分:100分 2015、1、24一、选择题(每题3分,共24分)1.在x 1、31、212+x 、πy +5、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知等腰三角形的一个角为75°,则其顶角为( )A .30°B .75°C .105°D .30°或75° 3.若a m =2,a n =3,,则a m+n 等于( ) A.5 B.6 C.8 D.9 4.下列运算正确的是( )A .232a a 3a +=B .()2a a a -÷= C .()326a a a -⋅=- D .()3262a 6a =5 ).(A )0 (B )1 (C )-1 (D )x6.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .1 7.把方程103.02.017.07.0=--xx 中的分母化为整数,正确的是( ) A 、132177=--x x B 、13217710=--xx C 、1032017710=--x x D 、132017710=--xx 8.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).二、填空题(每题3分,共24分)9.等腰三角形的两边长分别为4和8,则第三边的长度是 .10.2211aa a a -∙+= ; 11. 计算(π﹣3)0=_________12.已知一个长方形的面积是x x22-,长为x ,那么它的宽为 .13.如下图,在△ABC 中,DE∥AB,CD :DA=2:3,DE=4,则AB 的长为 •14.已知4x 2+mx +9是完全平方式,则m =_________. 15. 因式分解:x a a x 2222---=.16.如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度.A . C .D .B .FD B A三、解答题(共题,计52分)17.计 算:(本题8分,每小题4分)(1)203(4)(π3)2|5|-+----; (2)2011×2013-2012218.解方程:(本题8分,每小题4分)(1)132+=x x ; (2)114112=---+x x x19.(7分)先化简 (1+ 11x -)÷221xx x -+,然后在0,1,-1中挑选一个合适的数代入求值.20. (7分)画出△ABC 关于原点对称的图形△DEF,并写出D 、E 、F 的坐标。

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案一、选择题1.下列四个图形中,轴对称图形有( )个.A .1B .2C .3D .42.6月15日,莉莉在网络上查到了小区PM 2.5的平均浓度为0.000038克/立方米,0.000038用科学记数法表示为( ) A .43.810-⨯B .43.810⨯C .53.810-⨯D .53.810⨯3.已知4=m x ,6n x =,则2-m n x 的值为( ) A .10 B .83C .32D .234.若分式12x x +-有意义,则x 的取值范围是( ) A .x ≥2B .x ≠2且x ≠-1C .x ≠2D .x ≠-15.下列因式分解正确的是( ) A .22(1)2x x x x -+=-+ B .329(9)x x x x -=- C .22324(1)a a a -=-++D .2222(1)(1)-=+-x x x6.下列变形中,正确的是( ) A .1-=--a bb aB .0.330.5252a b a ba b a b++=--C .21111a a a -=-+ D .22b bc a ac= 7.如图,AC BC =,下列条件不能判定....△ACD 与△BCD 全等的是( )A .AD BD =B .ACD BCD ∠=∠C .ADC BDC ∠=∠D .点O 是AB 的中点8.若关于x 的方程4233x mx x--=--有增根,则m 的值为( ) A .3B .0C .1D .任意实数9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .10.如图,在等边△ABC 中,AC =3,点O 在AC 上,且AO =1.点P 是AB 上一点(可移动),连接OP ,以线段OP 为一边作等边△OPD ,且O 、P 、D 三点依次呈逆时针方向,当点D 恰好落在边BC 上时,则AP 的长是( )A .1B .2C .3D .4二、填空题11.若242x x -+的值为零,则x 的值为______.12.点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称,则mn =______. 13.已知114ab-=,则aba b-的值是______. 14.已知3m a =,2n a =,则2m n a -的值为______.15.如图,在ABC ∆中,7AB cm =,5BC cm =,AC 的垂直平分线分别交AB ,AC 于点D ,E ,点F 是DE 上的任意一点,则BCF ∆周长的最小值是________cm .16.已知关于x 的二次三项式29x kx ++ 是完全平方式,则常数k 的值为_____. 17.若14x x+=,则221x x ⎛⎫+ ⎪⎝⎭的值是_________.18.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________ s 时,以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.三、解答题19.分解因式 (1)224x y ;(2)a 2(x -y )+16(y -x ).20.先化简,再求值:2223111x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x =2021. 21.如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°. (1)求AE 的长度; (2)求∠AED 的度数.22.如图,在ABC 中,C B ∠>∠,AD BC ⊥,AE 平分∠BAC .(1)计算:若30B ∠=︒,60C ∠=°,求∠DAE 的度数; (2)猜想:若50C B ∠-∠=︒,则DAE =∠______; (3)探究:请直接写出∠DAE ,∠C ,∠B 之间的数量关系.23.某服装店老板到厂家选购A 、B 两种品牌的夏季服装,每袋A 品牌服装进价比B 品牌服装每袋进价多25元,若用4000元购进A 种服装的数量是用1500元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别是多少元?(2)若A 品牌服装每套售价为150元,B 品牌服装每套售价为100元,服装店老板决定一次性购进两种服装共100套,两种服装全部售出后,要使总的获利不少于3500元,则最少购进A品牌服装多少套?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释2()++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式a ab b a b分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223++a ab b23a ab b++,并利用你所画的图形面积对22进行因式分解.25.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.(1)填空:∠BOC=度;(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.26.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.【参考答案】一、选择题 2.C 解析:C【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3.C解析:C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000038=53.810-⨯. 故选:C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】4=m x 根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:xm =4, 两边平方可得, x 2m =16,∴2-m n x =x 2m ÷xn =16÷683=,故选:B .【点睛】题考查了同底数幂的除法,先利用了幂的乘方得出要求的形式,再利用同底数幂的除法得出答案.5.C解析:C【分析】根据分式有意义的条件:分母不等于0即可得出答案. 【详解】解:∴20x -≠, ∴2x ≠. 故选:C .【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.6.D解析:D【分析】根据因式分解的概念以及方法逐项判断即可.【详解】A 、22(1)2x x x x -+-+=没有变为整式的积的形式,故A 选项错误; B 、32()()(9933)x x x x x x x -=-=+-,故B 选项错误;C 、()222413a a a -+=-+没有变为整式的积的形式,故C 选项错误; D 、22222(1)2(1)(1)x x x x -=-=+-,故D 选项正确, 故选:D .【点睛】本题考查了因式分解的概念,把一个多项式在实数范围内化为几个整式的积,这种式子变形叫做多项式的因式分解,掌握因式分解的概念是解答本题的关键.7.A0c 时,等号右边的式子没有意义,选项错误,不符合题意;A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质.8.C解析:C【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵AC BC =,CD =CD ,∴A 、可以利用边边边判定△ACD 与△BCD 全等,故本选项不符合题意;B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意;C、不能判定△ACD与△BCD全等,故本选项符合题意;∠=∠,可以利用边角边判定△ACD与△BCD全D、因为点O是AB的中点,所以ACD BCD等,故本选项不符合题意;故选:C【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键.9.C解题的关键.10.D边正方形面积,∴4×12ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、∵四个小图形面积和=大正方形面积,∴ab+ b2+ a2+ ab=(a+b)2,∴a2+ 2ab +b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键.11.B解析:B【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解即可.【详解】解:∵△ABC和△ODP都是等边三角形,∴∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP,∴△ODC≌△POA(AAS),∴AP=OC,∴AP=OC=AC﹣AO=2.故选:B.【点睛】此题考查了等边三角形的性质和全等三角形的性质与判定,解决本题的关键是利用全等把所求的线段转移到已知的线段上.二、填空题12.2【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式242xx-+的值为零,∴24x-=0且x+2≠0,即24x-=0且x≠-2,解得:x=2.故答案为:2.【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键. 13.-2【分析】根据关于y 轴对称的点的特点解答即可.【详解】∵点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称, ∴n =-2,m -4=-3m 解得:n =-2,m =1 则mn =-2 故答案为:-2【点睛】此题主要考查了关于y 轴对称的点的特点;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变. 14.14-##-0.25【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出4ab=,是解题关键. 【详解】a 法法则是解题的关键.16.12【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称, ∴当点于重合时,即A 、D 、B 三点在一条直线上时,BF+CF解析:12【分析】当F 点于D 重合时,BCF ∆的周长最小,根据垂直平分线的性质,即可求出BCF ∆的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称,∴当F 点于D 重合时,即A 、D 、B 三点在一条直线上时,BF +CF=AB 最小,(如图), ∴BCF ∆的周长为:BCF C BD CD BC ∆,∵DE 是垂直平分线, ∴AD CD =, 又∵7AB cm =,∴7cm BD AD BD CD , ∴7512cm BCFC ∆,故答案为:12.【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.17.±6【分析】利用完全平方公式的结构特征判断即可. 【详解】解:∵关于x 的二次三项式是完全平方式, ∴;,则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握解析:±6【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵关于x 的二次三项式29x kx ++是完全平方式, ∴()22693x x x ++=+;()22693x x x -+=-, 则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.14【分析】根据即可求得其值.【详解】解:,故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据222211x x x x ⎛⎫=+- ⎪⎝⎫ ⎝⎭⎛+⎪⎭即可求得其值. 【详解】解:14x x+=, 221x x ⎛⎫∴+ ⎪⎝⎭ 212x x ⎛⎫=+- ⎪⎝⎭ 242=-=14 故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.19.1或或12【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE=CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在解析:1或72或12 【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE =CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在AC 上,D 在AC 上时,或当E 到达A ,D 在BC 上时,分别讨论.【详解】解:当E 在BC 上,D 在AC 上,即0<t ≤83时,CE =(8-3t )cm ,CD =(6-t )cm ,∵以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.∴CD =CE ,∴8-3t =6-t ,∴t =1s ,当E 在AC 上,D 在AC 上,即83<t <143时,CE =(3t -8)cm ,CD =(6-t )cm ,∴3t -8=6-t ,∴t =72s , 当E 到达A ,D 在BC 上,即143≤t ≤14时,CE =6cm ,CD =(t -6)cm ,∴6=t -6,∴t =12s ,故答案为:1或72或12. 类,分别表示出每种情况下CD 和CE 的长.三、解答题20.(1)(2)(x ﹣y )(a+4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解: =;(2)a2(x ﹣y )+16(解析:(1)(2)(2)x y x y +-(2)(x ﹣y )(a +4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解:224x y =(2)(2)x y x y +-;(2)a 2(x ﹣y )+16(y ﹣x )=a 2(x ﹣y )-16(x ﹣y )=(x ﹣y )(a 2﹣16)=(x ﹣y )(a +4)(a ﹣4).【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.21.,【分析】先把括号里的通分,再相减,把除法转化为乘法、分解因式,然后约分,最后把x 的值代入化简后的代数式计算即可.【详解】解:当x =2021时,原式.【点睛】本题主要考查了22.(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得; (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,解析:(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得; (2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.23.(1)(2)25°(3)【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD ⊥BC 得∠ADC=9殊到一般,(3)中的结论为一般性结论. 24.(1)A 品牌服装每套进价是100元,B 品牌服装每套进价是75元(2)最少购进A 品牌服装40套【分析】(1)设A 品牌服装每套x 元,则B 品牌服装每袋进价为(x ﹣25)元,由题意:用4000元购进准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式解析:(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+(2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++26.(1)120;(2)相等,理由见解析;(3)AO=2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF=BO ,证明△FCA ≌△OCB (SAS ),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO =2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF =BO ,证明△FCA ≌△OCB (SAS ),可得结论.(3)证明△AFO ≌△OBR (SAS ),推出OA =OR ,可得结论.【详解】解:(1)如图①中,∵△ABC 是等边三角形,∴AB =BC ,∠A =∠CBD =60°,在△EAB 和△DBC 中,AE BD A CBD AB BC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAB ≌△DBC (SAS ),∴∠ABE =∠BCD ,∴∠BOD =∠BCD +∠CBE =∠ABE +∠CBE =∠CBA =60°,∴∠BOC =180°-60°=120°.故答案为:120.(2)相等.理由:如图②中,∵△FCO ,△ACB 都是等边三角形,∴CF =CO ,CA =CB ,∠FCO =∠ACB =60°,∴∠FCA =∠OCB ,在△FCA 和△OCB 中,CF CO FCA OCB CA CB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCA ≌△OCB (SAS ),∴AF =BO .(3)如图③中,结论:AO =2OG .理由:延长OG 到R ,使得GR =GO ,连接CR ,BR .在△CGO 和△BGR 中,GC GB CGO BGR GO GR =⎧⎪∠=∠⎨⎪=⎩, ∴△CGO ≌△BGR (SAS ),∴CO =BR =OF ,∠GCO =∠GBR ,AF =BO ,∴CO ∥BR ,∵△FCA ≌△OCB ,∴∠AFC =∠BOC =120°,∵∠CFO =∠COF =60°,∴∠AFO =∠COF =60°,∴AF ∥CO ,∴AF ∥BR ,∴∠AFO =∠RBO ,在△AFO 和△OBR 中,AF OB AFO RBO FO BR =⎧⎪∠=∠⎨⎪=⎩, ∴△AFO ≌△OBR (SAS ),∴OA =OR ,∵OR =2OG ,∴OA =2OG .【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H ,证△DEF ≌△BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6∴1126362ABC S =⨯⨯= (2)过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H,∵△BDE 是等腰直角三角形,∴DE=DB, ∠BDE=90°,∴EDF BDO 90∠∠+=︒∵BOD 90∠=︒∴BDO DBO 90∠∠+=︒∴EDF DBO ∠∠=∵EF x ⊥轴,∴DEF BDO ≅∴DF=BO=AO,EF=OD∴AF=EF∴EAF OAH OAB 45∠∠∠===︒∴∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∵OAE 30∠=︒,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.。

广东省东莞市2014-2015学年八年级上学期期末考试数学试题人教版

广东省东莞市2014-2015学年八年级上学期期末考试数学试题人教版

广东省东莞市2014-2015学年八年级上学期期末考试数学试题人教版东莞市2014-2015学年度第一学期期末八年级数学教学质量自查一、选择题(本大题共10小题,每小题2分,共20分)1.计算-2a×3a的结果是()。

A。

-6a B。

6a C。

5a D。

-5a2.下列“数字”图形中,不是轴对称图形的是()。

A。

B。

C。

D。

3.若分式的值为。

则x的值是()。

A。

x=-2 B。

x C。

x=1或x=-2 D。

x=14.下列长度的三条线段中,能组成三角形的是()。

A。

3,4,8 B。

5,6,11 C。

4,6,7 D。

4,4,105.已知a-b=1,则代数式2b-2a的值是()。

A。

-1 B。

1 C。

-2 D。

26.如果等腰三角形两边长是6cm和3cm,那么它的周长是()。

A。

9cm B。

12cm C。

12cm或15cm D。

15cm7.化简的结果是()。

A。

x+1 B。

x-1 C。

x D。

-x8.如图1,已知△ABM≌△CDN,∠A=50°,则∠NCB等于()。

A。

30° B。

40° C。

50° D。

60°9.如图2,在△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,BD=5cm,则△ABD的周长是()。

A。

8cm B。

11cm C。

13cm D。

16cm10.如图3,在△ABC中,AB=AC,D、E在BC上,BD=CE,AF⊥BC于F,则图中全等三角形对数共有()。

A。

1对 B。

2对 C。

3对 D。

4对二、填空题(本大题共5小题,每小题3分,共15分)11.有一种病毒的直径为0.米,用科学记数法可表示为_______米。

12.分解因式:3y²-3=________。

13.已知点A和点B(2,3)关于x轴对称,则点A的坐标为_______。

14.一个多边形的每个内角都等于120°,则它是________。

新人教版八年级数学上期末试题

新人教版八年级数学上期末试题

BF DEA第3题C A BC D EF N M第5 题第6题ABCD EABCD EO第7题2013-2014学年度上期期末教学调研测试八年级数学试卷考试形式;闭卷 考试时间100分 分值120分一、选择题(每题3分,共24分)1. 下四个标志图案是轴对称图形的是……………………( )(A ) (B ) (C ) (D )2.一粒芝麻约有0.00000201千克,用科学记数学法表示为 ……………………………( ) A .52.0110-⨯千克 B .50.20110-⨯千克 C .72.0110-⨯千克 D .62.0110-⨯千克 3.已知点M (2,2a b a b +-)与点N (12,21b a b ----)关于x 轴对称,则a 的值是( ) A .2 B .1 C .-1 D .0 3.在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交于BC 的延长线于F ,若∠F=30°,DE=1,则EF 的长是……………………………………………………………………………………()4.A 、B 两相距80km ,甲由A 去B ,甲出发1h 后,乙用甲速度的1.5倍的速度从A 地出发追赶甲,乙追到B 地时,甲已早到20min,则甲的速度是……………………………………………( ) A. 50km/h B. 45km/h C. 40km/h D. 30km/h5.如图,EB 交AC 于M,交FC 于D ,AB 交FC 于D ,∠E =∠F =90°,∠B =∠C ,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM ;④CD=DN.其中正确的结论有………………………………………………………………………………………………( ) A .4个 B .3个 C .2个 D .1个6.如图,在△ABC 中,∠C =90°,AD 平∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE;③DE 分∠ADB ;④BE+AC=AB 其中正确的有……………( ) A .4个 B .3个 C .2个 D .1个学校___________ 班级_____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………第17题 A B C D E 第18题7.如图,△ABC 的两条角平分线BD ,CE 交于O ,且∠A=60°,则下列结论中不正确的是( )A. ∠BOC=120°,B.BC=BE+CDC.OD=OED. OB=OC 8.如图,直角坐标系中,点A (-2,2),B (0,1),点P 在x轴上,且△PAB 是等腰三角形,则满足条件的点P 共有…………………………………………………………………………( )A.1B.2个C.3个D. 4个二.填空题(每小题3分,共30分)9.计算:2383(2)2----÷=a b a b 10.已知2a b -=,则ab a b-的值为__________ 11.满足式子x x 01(21)36++-有意义,x 的取值范围是__________ 12.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形是__________边形。

人教版初中数学八年级上册期末试卷及答案

人教版初中数学八年级上册期末试卷及答案

人教版初中数学八年级上册期末试卷及答案2013-2014学年度第一学期期末质量检查八年级数学科试卷说明】本卷满分120分,考试时间100分钟。

一、选择题(本大题共10小题,每小题3分,共30分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A。

1,2,6B。

2,2,4C。

1,2,3D。

2,3,42.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A。

直角三角形B。

锐角三角形C。

钝角三角形D。

等边三角形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A。

60°B。

70°C。

80°D。

90°4.观察下列图标,从图案看是轴对称图形的有()A。

1个B。

2个C。

3个D。

4个5.若分式的值为x=-2,则()x+2A。

x=-2B。

x=±2C。

x=2D。

x=06.计算2x/(x-2)的结果是()A。

B。

1C。

-1D。

x7.下列各运算中,正确的是()A。

3a+2a=5aB。

(-3a)²=9a²C。

a÷a=1D。

(a+2)²=a²+4a+48.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数是()A。

70°B。

55°C。

50°D。

40°9.如图,在四边形ABCD中,AB=AD,CB=CD,若连结AC、BD相交于点O,则图中全等三角形共有()A。

1对B。

2对C。

3对D。

4对10.已知(m-n)=8,(m+n)=2,则m+n的值为()A。

10B。

6C。

5D。

3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a-4b=(a+2b)()。

12.正十边形的每个内角的度数为()。

13.若m+n=1,mn=2,则(2/m+1/n)的值为()。

14.已知实数x,y满足|x-4|+(y-8)²=(),则以x,y的值为两边长的等腰三角形的周长是()。

2023—2024学年最新人教版八年级上学期数学期末考试试卷 (最新)

2023—2024学年最新人教版八年级上学期数学期末考试试卷 (最新)

2023—2024学年最新人教版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图标中,是轴对称图形的是()A.B.C.D.2、光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米3、下列长度的三条线段能组成三角形的是()A.2,3,5B.5,6,10C.1,1,3D.3,4,94、下列计算正确的是()A.(a+b)2=a2+b2B.(﹣a+b)(﹣b+a)=a2﹣b2C.(﹣a+b)2=a2+2ab+b2D.(﹣a﹣1)2=a2+2a+15、如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A=()A.40°B.60°C.80°D.120°6、如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN∥OB交OA于点N,若PM=1,则PN的长为()A.1B.1.5C.3D.27、如图,△ABC的面积为6cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.2cm2B.2.5cm2C.3cm2D.3.5cm2第5题第6题第7题8、如果把的x与y(x,y均为正)都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的9、已知,则分式的值为()A.8B.C.D.410、中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13、若10x=a,10x+y+2=100ab,则10y=.14、已知x2﹣4x+1=0,则x2+的值是.15、若关于x的分式方程=3的解是非负数,则m的取值范围是.16、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.最新人教版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知m2+m﹣2=0,求代数式(m+)÷的值.19、先化简,再求值:(a+3b)(2a﹣b)﹣2(a﹣b)2,其中|a+2|+(b﹣1)2=0.20、如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)若点A、B、C关于x轴的对称点分别为A1、B1、C1,则A1(,),B1(,),C1(,),并在图中画出△A1B1C1.(2)求△ABC的面积;(3)在x轴上求一点P,使△P AB周长最小,请画出△P AB,并通过画图求出P点的坐标.21、某中学开学初在商场购进A,B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍.已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)该中学响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的九折出售.如果该中学此次购买A、B两种品牌足球的总费用不超过3260元,那么该中学此次最多可购买多少个B品牌足球?22、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.23、完全平方公式:(a±b)2=a2±2ab+b2,适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4﹣x)(x﹣5)=﹣8,求(4﹣x)2+(x﹣5)2的值;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.24、若整式A只含有字母x,且A的次数不超过3次,令A=ax3+bx2+cx+d,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M(b+d,a+b+c+d)为整式A的中雅点,我们规定次数超过3次的整式没有中雅点.例如,若整式A=2x2﹣5x+4,则a=0,b=2,c=﹣5,d=4,故A的中雅点为(6,1).(1)若A=x3+x2﹣2x+4,则A的中雅点坐标为.(2)若整式B=﹣9x+8,整式C是整式B与(x+3)2的乘积,求整式C的中雅点坐标.(3)若整式D=x﹣3,整式E是只含有字母x的一次一项式,整式F是整式E的平方与整式D的乘积,若整式F的中雅点为(﹣3,﹣2),求整式E的表达式.25、如图,在平面直角坐标系中,A(a,0),B(0,b),且a,b满足:2a2+2ab+b2﹣8a+16=0,点C,B关于x轴对称.(1)求A,C两点坐标;(2)如图1,点M为射线OA上A点右侧一动点,过点M作MN⊥CM交直线AB于N,连BM,是否存在点M,使S△AMN =S△AMB?.若存在,求M点坐标;若不存在,说明理由.(3)如图2,点M为x轴正半轴上一动点,点D为第一象限内一动点,且∠DBM=∠DCM,过点M作MN⊥BD于N点.①若点E在CD的延长线上,求证:DM平分∠EDB;②的值是否发生变化?若不变,求其值,若变化,请说明理由.。

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014—2015年八年级上学期期末考试数学试卷时间120分钟 满分120分 2015、1、16一.选择题(每小题3分,共30分)1.下列运算正确的是( )A .()333a b a b +=+ B .326236a a a ⋅=C .()4312xx -= D .()()32n nn x x x -÷-=-2. 下列分解因式正确的是( )A .()()422xy x y -=-+B .()36332x y x y -+=-C .()()2221x x x x --=+-D .()22211x x x -+-=--3. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ) A 、–3 B 、3 C 、0D 、14.要使分式)2)(1(2-+-x x x 有意义,x 的取值应该满足( )A .1-≠xB . 2≠xC . 1-≠x 或 2≠xD .1-≠x 且 2≠x5.若x,y 均为整数,且124128x y +⋅=,则x y +的值为( )A .4B .5C .4或5D .无法确定 6.(-2)2015 +(-2)2016所得的结果等于( )A .22015B . -22015C . -2 2016D .27.如图,AD AE 、分别是ABC ∆的高和角平分线,且o B 36=∠,oC 76=∠,则DA E ∠ 的度数为( )A.o40 B.o20 C.o18 D.o388.如图,下列各组条件中,不能得到△ABC ≌△BAD 的是( )A.AD BC =,BAD ABC ∠=∠ B.AD BC =,BD AC = C.BD AC =,DBA CAB ∠=∠ D.AD BC =,DBA CAB ∠=∠9.如图,在ABC ∆中,oC 90=∠,BC AC =,AD 平分CAB ∠,交BC 于点D ,第8题A C D 第7题E D C BA 第9题AB DE ⊥于点E ,且cm AB 6=,则DEB ∆的周长为( )A.cm 4 B.cm 6 C.cm 10 D.不能确定10. 如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .8B .4C .2D .1二.填空题(每小题3分,共24分.)11.分解因式:2161a -= .12.某种感冒病毒的直径是0. 00000012米,用科学记数法表示为 米.13.若m 为正实数,且13m m -=,221mm +=__________________________ . 14.已知点A ,B 在数轴上,它们所对应的数分别是-2,731x x --,且点A 、B 到原点的距离相等,则x 的值为________________________ . 15. 若关于x 的分式方程01212=----+xx x a x a 无解, 则a=__________ . 16.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和14,则正方形A ,B 的面积之和为 .17. 求1+2+22+23+…+22012的值,可令S =1+2+22+23+…+22012,则2S =2+22+23+24+…+22013,因此2S -S =22013-1.仿照以上推理,计算出1+5+52+53+…+52014的值为 .18.若方程组111222a x b yc a x b y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组1112222323ax b y c a x b yc +=⎧⎨+=⎩的解是 .三.解答题(66分)19.计算题(本小题满分8分)(1)101231)2-⎛⎫⨯+-+ ⎪⎝⎭(2)2(31)(3)(3)2(1)m m m m m -++---20.解方程或方程组:(本小题满分4+4+5=13分) (1)3211x y x y -=-⎧⎨-=⎩; (2)21233x x x -=--- ;21(6分)(1)化简:x x xx x 12122-÷+-;(2)如果x 是整数,且满足不等式组⎩⎨⎧-≥-≤+6)1(2,32x x ,求(1)中式子的值.22.(6分)若15))(3(2-+=+-nx x m x x ,求5822+-n m n 的值.23.(本小题满分9分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费) 已知小王家2013年4月用水15吨,交水费45元,5月份用水25吨,交水费91元. (1)求a ,b 的值;(2)如果小王家6月份上交水费150元 ,则小王家这个月用水多少吨?24.(本题共12分,其中(1),(2)题每小题2分,(3),(4)题每小题4分) 先阅读下面的材料,然后回答问题:方程x +x 1=2+21的解为x 1=2,x 2=21; 方程x +x 1=3+31 的解为x 1=3,x 2=31;方程x +x 1=4+41 的解为x 1=4,x 2=41; …(1)观察上述方程的解,猜想关于x 的方程x +x 1=5+51的解是 ; (2)根据上面的规律,猜想关于x 的方程x +x 1=a +a1的解是 ;(3)猜想关于x 的方程x -x 1=211的解,并验证你的结论(4)在解方程:y +12++y y =310时,可将方程变形转化为(2)的形式求解,按上面的规律写出你的变形求解过程.EC FBA第25题25. 8分) 在ABC ∆中,CB AB =,o ABC 90=∠,F 为AB 延长线上一点,点E 在BC 上,且CF AE =. (1)求证:ABE Rt ∆≌CBF Rt ∆; (2)若oCAE 30=∠,求ACF ∠的度数.八年级数学答案一、选择题(每小题3分,共30分): DCBDA DD CA B 二、填空题:(每小题3分,共24分)11.(41)(41)a a +- 12.1.2×10-7 13. 11 14.-1或79 15.1、0、2116.15 17. 18.⎩⎨⎧==33y x 三、解答题:(66分)19.(8分) (1)原式=-2 (2)原式=2m 2+3m-1120.(4+4+5=13分) (1)34x y =-⎧⎨=-⎩; (2)x=3 经检验,无解(3)原式=........ ..代入得81.............. 21.(6分)65 21.(6分)-123.(9分) (1)a=2.2, b=4.2 (2)3524. (12分)(1)(2分)51,521==x x (2)(2分)ax a x 1,21== (3)(2+2=4分)21,221-==x x 验证:分别把21,221-==x x 代入方程,左边=右边。

2014~2015学年度第一学期八年级数学期末检测试卷分析

2014~2015学年度第一学期八年级数学期末检测试卷分析

2014~2015学年度第一学期八年级数学期末检测试卷分析考试内容涉及的是八年级上册五个单元及八年级下册一个单元的内容,其中《三角形》、《全等三角形》和《轴对称》、三个单元属于“图形与几何”领域,《整式的乘除与因式分解》、《分式》两个单元属于“数与代数”领域,《数据的分析》属于“统计与概率”领域。

一、命题思路•体现基础: 立足基础, 恰当评价学生对所学数学基础知识和基本技能的理解和掌握情况,不出偏题、怪题,能够利用考生熟悉的、常见的问题作背景,设计考查数学思想方法、数学思维品质的试题,•注重能力:在考查数学基本能力与素质的层面上设计试题,重点考查学生的运算能力、观察推理能力、空间想象能力、实践能力和创新意识在考查应用意识、实践能力的层面上设计试题。

数学学习同样需要关注生活、关注社会。

发展思维:命题力图通过简洁通俗的语言叙述,以数学最基本问题为载体,测量出学生生将知识迁移到不同情境的能力,测量出学生对基本的数学思想方法掌握、数学素养的提升、数学理性思维的发展。

试题题型、试卷结构尽量贴近中考,突出试题的诊断功能。

二、成绩统计1. 全区成绩全区考生4474人,实际考试人数4378人,平均分65.4分,及格率65.8%,优秀率34.6%,最高分100分,最低分1分校号实考平均分均值位次及格率及格位次优秀率优秀位次最高分最低分46 166 89.27 1 100 1 83.73 1 100 6347 93 87.39 2 95.69 4 80.645 2 100 4648 90 86.7 3 100 1 76.67 3 100 63 50 337 83.93 4 96.73 3 75.96 4 100 46 25 539 78.91 5 88.68 6 59.93 5 100 13 51 364 78.19 6 89.56 5 53.57 6 100 2542 160 74.44 7 85.625 7 43.75 7 100 2949 303 72.34 8 83.49 8 34.98 8 99 2001 250 71.4 9 83.2 9 32 9 95 1102 266 67.55 10 73.30 10 25.94 10 95 2041 214 62.31 11 65.42 11 16.82 12 99 1331 270 60.83 12 56.29 12 12.59 13 100 1445 22 59.27 13 54.54 13 18.18 11 94 1821 236 53.67 14 41.52 14 8.898 14 94 907 95 52.29 15 29.47 15 2.105 20 82 1554 78 43.01 16 16.67 18 2.56 18 82 1339 174 42.08 17 22.41 17 4.598 16 90 143 235 40.97 18 26.38 16 6.38 15 100 306 202 38.52 19 13.36 20 1.485 21 89 308 142 34.74 20 16.19 19 2.11 19 87 620 142 33.45 21 12.67 21 2.82 17 97 42. A类校成绩A类校考生1504人,实考1445人,平均分45分,及格率29.9%,优秀率6.64%,最高分100分,最低分1分.校号实考平均分均值位次及格率及格位次优秀率优秀位次最高分最低分41 214 62.31 1 65.42 1 16.82 2 99 13 45 22 59.27 2 54.545 2 18.18 1 94 18 21 236 53.67 3 41.52 3 8.898 3 94 9 54 78 43.01 4 16.67 6 2.56 7 82 13 39 174 42.08 5 22.41 5 4.598 5 90 143 235 40.97 6 26.38 4 6.38 4 100 306 202 38.52 7 13.366 8 1.485 9 89 308 142 34.74 8 16.197 7 2.11 8 87 620 142 33.45 9 12.676 9 2.82 6 97 43. B类校成绩B考生2970人,实考2933人,平均分75.4分,及格率83.5%,优秀率48.3%,最高分100分,最低分11分.校号实考平均分均值位次及格率及格位次优秀率优秀位次最高分最低分校号46 166 89.27 1 100 1 83.73 1 100 63 4647 93 87.39 2 95.699 4 80.645 2 100 46 4748 90 86.7 3 100 1 76.67 3 100 63 4850 337 83.93 4 96.73 3 75.96 4 100 46 5025 539 78.91 5 88.68 6 59.93 5 100 13 2551 364 78.19 6 89.56 5 53.57 6 100 25 5142 160 74.44 7 85.625 7 43.75 7 100 29 4249 303 72.34 8 83.498 8 34.98 8 99 20 4901 250 71.4 9 83.2 9 32 9 95 11 0102 266 67.55 10 73.308 10 25.94 10 95 20 0231 270 60.83 11 56.296 11 12.59 11 100 14 3107 95 52.29 12 29.47 12 2.105 12 82 15 07 4、分数档情况:满分(100分)全区61人,占全区考生的1.39%:其中翔宇14人;育贤中学1人;43中1人,66中1人;天津中学18人;南开中学7人;天大附中2人;南大附中7人;25中10人。

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014-2015年八年级上学期期末考试数学试卷时间90分钟 满分100分 2015、2、15一、填空题(每小题2分,共20分)1.空气的平均密度为00124.03/cm g ,用科学记数法表示为__________3/cm g . 2.计算:201510072514()[()]145-⨯= .3.分解因式:2244x xy y -+-= .4.若等腰三角形两边长分别为8,10,则这个三角形的周长为 . 5.若三角形三内角度数之比为1∶2∶3,最大边长是8,则最小边的长是 .6. 一个多边形内角和是一个四边形内角和的4倍,则这个 多边形的边数是 .7.如图,在△ABC 中,∠C =o90,∠A =o30, AB 的垂直平分线MN 交AC 于D ,CD =1cm ,连接BD ,则AC 的长为cm . 8.若ab +=7,ab =12,则22b a +=_________. 9. 如图,△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD=DC ,则∠C=______.10.若15a a+=,则4221a a a++= . 二、选择题:(每小题2分,共20分)11.下列计算正确的是( )A . 532x x x =+B .632x x x =⋅C .532)(x x =D .235x x x =÷12.下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④A .②③④B .①②④C .①②③D .①③④13.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,则b a -的值为( ) A .-1 B .1 C .-3 D . 314.如图,△ABC ≌ΔADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25° 15.下列各式变形中,是因式分解的是( )A .1)(12222--=-+-b a b ab a B.)11(22222xx x x +=+C .4)2)(2(2-=-+x x xD .)1)(1)(1(124-++=-x x x x16.如果分式2312+--x x x 的值为零,那么x 等于( )A .-1B .1C .-1或1D .1或2 17.等腰三角形的一个角是48°,它的一个底角的度数是( )A .48°B .48°或42°C .42°或66°D .48°或66°18.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一条中线将三角形分成两个面积相等的三角形C .两边和其中一边的对角分别相等的两个三角形全等D .三角形的三条高都在三角形内部19.不能用尺规作出唯一三角形的是 ( )A .已知两角和夹边B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角20.如图,ΔABC 中,AB =AC ,AB 的垂直平分线交AC 于P 点, 若AB =5 cm ,BC =3 cm ,则ΔPBC 的周长等于( ) A .4 cm B .6 cm C .8 cm D .10 cm三.解答题(本题7小题,共60分)21.计算:(每小题5分,共10分)(1)()2212()3xy xy -÷(2)2(2)(2)(2)4a b a b b a b a b b +-++-÷22.因式分解:(每小题5分,共10分)(1)22(2)(2)x y x y +-+(2)2()4a b ab -+23..(本题7分)先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个适当的数作为a 的值代入求值.24.(本题5分).解方程11121x x x ++=-+ 25..(本题8分)如图,在平面直角坐标系xOy A ()5,1-,B ()0,1-,C ()3,4-.(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,点,不写画法);(2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,;△ABC 的面积= .26.(本题10分)如图(1),Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF平分∠CAB ,交CD 于点E ,交CB 于点F (1)求证:CE=CF .(2)将图(1)中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,如图(2)所示.试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.图(1) 图(2)27. (本题10分))水果店第一次用600元购进苹果若干斤,第二次又用600元购进苹果,但这次每斤苹果的进价是第一次进价的54倍,购进数量比第一次少了30斤.(1)求第一次苹果的进价是每斤多少元? (2)若要求这两次购进的苹果按同一价格全部销售完毕后获利不低于420元,问每斤苹果售价至少是多少元?A D CB E F A D BF C E A ′ D ′ E ′2014—2015学年上期期末考试八年级数学参考答案一、1、31.2410-⨯;2、514-;3、2(2)x y --;4、26或28;5、4;6、10;7、3;8、25; 9、020;10、24二、DCCBD ADBDC三、21、(1)解:()2212()3xy xy -÷2414()3x y xy =÷..................2分21411(4)3x y --=÷.................4分312xy =.................5分 (2)解:2(2)(2)(2)4a b a b b a b a b b +-++-÷2222424a b ab b a =-++-.................3分 2ab =.................5分 22、(1)解:22(2)(2)x y x y +-+[(2)(2)][(2)(2)]x y x y x y x y =++++-+.................2分 (33)()x y x y =+-.................4分3()()x y x y =+-.................5分(2)解:2()4a b ab -+2224a ab b ab =-++.................2分 222a ab b =++.................3分 2()a b =+.................5分23、解:22321(1)24a a a a -+-÷+- 22234()221a a a a a +--=+-+g .................2分21(2)(2)2(1)a a a a a -+-=+-g .................4分 21a a -=-.................5分 把0a =代入 原式02201-==-.................7分24、解:方程两边同乘以(2)(1)x x -+得:2(1)2(2)(1)x x x x ++-=-+.................2分解得: 14x =-.................4分检验:当14x =-时,(2)(1)0x x -+≠,所以,原方程的解为14x =-..................5分25、(1)图略,正确3分(2)(1,5)(1,0)(4,3)A B C ''',,......6分 △ABC 的面积=1537.52⨯⨯=.....8分 26、解:(1)∵∠ACB=90°,∴∠CFA=90°-∠CAF ∵CD ⊥AB ,∴∠CEF=∠AED=90°-∠EAD 又∵AF 平分∠CAB ,∴∠CAF=∠EAD∴∠CFA=∠CEF 。

天津市宝坻区王卜庄镇初级中学2014-2015学年八年级数学上学期期末考试试题新人教版

天津市宝坻区王卜庄镇初级中学2014-2015学年八年级数学上学期期末考试试题新人教版

天津市宝坻区王卜庄镇初级中学2014-2015学年八年级数学上学期期末考试试题一、选择题:(每小题3分,共30分)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A B C D2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根B. 1根 C. 2根 D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是() A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220° C.240° D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6 D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2axC.(x﹣a)(x﹣a) D.(x+a)a+(x+a)x7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤ C.②③④ D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A .B .C .D .12.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是( )A .AB=ACB .DB=DC C .∠ADB=∠ADCD .∠B=∠C 二、填空题:(每空3分,共18分)13.分解因式:x 3﹣4x 2﹣12x= _________ . 14.若分式方程:有增根,则k=_________ .15.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是 _________ .(只需填一个即可)16.如图,在△ABC 中,AC=BC ,△ABC 的外角∠ACE=100°,则∠A= _________ 度.17.如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 _________ .18.已知:3223222⨯=+,8338332⨯=+,154415442⨯=+,…若bab a ⨯=+21010(a 、b 为正整数),则______=+b a ;三.解答下列各题: (本题共7题,共66分)19.先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a=,b=﹣.20.给出三个多项式:x 2+2x ﹣1,x 2+4x+1,x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.21.解方程:.22.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.23.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.24.某地区为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G,求证:BE=CG三.解答题(共7小题,满分66分)19.解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣22. 解:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.24.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)先计算甲、乙合作需要的时间,然后计算费用即可.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).25. 证明:过点A作AP⊥BC于点P, ∠APB=90°∵AB=AC, ∴∠BAP=∠PAC ∵CD⊥AB, ∴∠B+∠BCD=180°-∠CDB=90°∵∠B+∠BAP=180°-∠APB=90° ∴∠BAP=∠PAC=∠BCD∵CE平分∠DCA ∴∠ACE=∠ECD∵∠APC+PCA+∠PAC=180° ∴∠ACE+∠DCE+∠PCD+∠PAC=180°∴2(∠BCD+∠ECD) =90°∴∠BCE=45°∵EF⊥BC, ∴∠EFC=90°∴∠FEC=180°-∠EFC-∠ECF=45°∴∠FEC=∠ECF ∴ EF=FC∵EF⊥BC, ∠EFC=∠APC=90°∴EF∥AP ∴∠BEF=∠BAP=∠BCD∵EF⊥BC ∴∠BFE=∠EFC=90° ∴△BFE≌△GFC ∴BE=CG。

2014-2015年新人教版八年级上学期期末考试数学试题及答案

2014-2015年新人教版八年级上学期期末考试数学试题及答案

2014-2015年新人教版八年级上学期期末考试数学试题时间90分钟 满分100分 一.选择题。

(每题中均只有一个最佳选项,选出最佳选项。

本大题共10小题、每小题3分,共30分。

)1.在任意△ABC 与△DEF 中AB=DE,若需添加两个条件使这两三角形全等。

则有多少种不同的添法········································································( ) A.6 B.9 C.18 D.282.下列图形中为轴对称图形的是················································( )3.点A (x ,y)关于x 轴对称的点为(z ,x+3),关于Y 轴对称的点为(z-2,y)。

2014-2015学年度上期八年级数学10月考试卷

2014-2015学年度上期八年级数学10月考试卷

初2013级初二上期10月考试数学试题(全卷150分,时间:120分钟)A 卷(100分)一、选择题(每题3分,共30分,请将答案写在答题卷相应的表格中)1、16的算术平方根是 ( )A .±4B .4C .±2D .22、在2,3π,327,722,21-,0.151515…,0.101001001…(相邻两个1之间0的个数依次加1)中无理数有 ( )A .1个B .2个C .3个D .4个3、若b a y x 2121-+与2231y x b --是同类项,则a ,b 的值分别是( ) A.1,2-==b a B.1,2==b a C.1,2=-=b a D.1,2-=-=b a4、实数7-,-2,-3的大小关系是 ( )A .-3<-2<7-B .7-<-3<-2C .-2<7-<-3D .-3<7-<-25、若二元一次方程组⎩⎨⎧=+=-173y x y x 的解是方程9-=kx y 的一个解,那么k 的值是( )A.4-B.4C.3-D.36、给出两个问题:(1)两数之和为6,求这两个数?(2)两个房间共住6人,每个房间各住几人?这两个问题的解的情况是( )A.都有无数解B.都只有唯一解C.都有有限解D.(1)无数解;(2)有限解7、若⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+17by ax by ax 的解,则b a -的值为( ) A.1- B.1 C.2 D.38、刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的1元贺卡有x 张,2元贺卡有y 张,则下面的方程组正确的是( ) A.⎪⎩⎪⎨⎧=+=+8102y x y x B.⎪⎩⎪⎨⎧=+=+102821y x y x C.⎩⎨⎧=+=+8290y x y x D.⎩⎨⎧=+=+1028y x y x9、有一个两位正整数,它的十位数字比个位数字大4,则符合条件的两位数的个数是( )A.2B.4C.6D.810、若数轴上表示数x 的点在原点的左边,则化简|3x +2x |的结是 ( )A .-4xB .4xC .-2xD .2x二、填空题(每题4分,共16分,请将答案写在答题卷相应的横线上)11、若方程2x m-n +1+y 2m +n -2=5是二元一次方程,则m= ,n=12、已知322+-+-=x x y ,则x y 的平方根是____________13、若0)3(12=++-+y y x ,则y x -的值为_______________14、甲、乙两个水池共存水40吨,甲池注进水4吨,乙池放出水8吨后,两池的水正好相等,两池原来各有水________、________吨.初2013级初二上期10月考试数学答题卷(全卷150分,时间:120分钟)11. , ,12.,13. ,14. __ __ , _ __。

2014-2015八年级数学上学期期末综合测试题(新人教版含答案)

2014-2015八年级数学上学期期末综合测试题(新人教版含答案)

2014-2015八年级数学上学期期末综合测试题(新人教版含答案)姓名_____________总分__________________一.选择题(共12小题)1.(2014•吴中区一模)计算:a2•(﹣a)4=()A.a5B.a6C.a8D.a92.如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6D.±63.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5 B.±5 C.D.±4.下列各式可以分解因式的是()A.x2﹣(﹣y2)B.4x2+2xy+y2C.﹣x2+4y2D.x2﹣2xy﹣y25.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1 B.3C.5D.不能确定6.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2 B.1C.﹣2 D.﹣17.(2014•南通通州区一模)若正多边形的一个内角等于144°,则这个正多边形的边数是()A.9 B.10 C.11 D.128.(2012•玉林)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对9.(2011•江苏模拟)如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线段NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是()10.(2010•广安)等腰三角形的两边长为4、9,则它的周长是()A.17 B.17或22 C.20 D.2211.(2010•荆门)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2 B.3C.4D.512.(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题)13.(2014•漳州模拟)已知a+b=2,则a2﹣b2+4b的值为_________.14.(2006•杭州)计算:(a3)2+a5的结果是_________.15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为_________.16.(2014•思明区质检)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.17.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件_________,使△ABC≌△DBE.(只需添加一个即可)18.(2014•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是_________.三.解答题(共8小题)19.运用乘法公式计算:(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).20.分解因式:(1);(2)a3﹣3a2﹣10a.21.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.22.(2008•西城区一模)已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.23.已知AB∥CD,BC平分∠ACD.求证:AC=AB.24.已知:a=2002x+2003,b=2002x+2004,c=2002x+2005,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.25.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)26.(2014•海淀区一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(1)如图1,当∠BAC=100°,α=60°时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.参考答案一.选择题(共12小题)1.解:原式=a2•a4=a2+4=a6,故选:B.2.解:∵x2+2mx+9是一个完全平方式,∴m=±3,故选:B.3. 解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选D.4.解:A、原式=x2+y2,不符合平方差公式的特点;B、第一个数是2x,第二个数是y,积的项应是4xy,不符合完全平方公式的特点;C、正确;D、两个平方项应同号.故选C.5. 解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选B.6.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选A.7.解:设这个正多边形是正n边形,根据题意得:(n﹣2)×180°÷n=144°,解得:n=10.故选:B.8. 解:图中全等三角形有:△ABO≌△ADO、△ABO≌△CDO,△ABO≌△CBO;△AOD≌△COD,△AOD≌△COB;△DOC≌△BOC;△ABD≌△CBD,△ABC≌△ADC,共8对.故选C.9.解:根据角平分线的性质,(3)的依据是到角的两边的距离相等的点在角平分线上,故选B.10.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9∵4+4<9,故4,4,9不能构成三角形,应舍去4+9>9,故4,9,9能构成三角形∴它的周长是4+9+9=22故选D.11.解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.12.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16 故S=(6+4)×16﹣3×4﹣6×3=50.故选A.二.填空题(共6小题)13.(2014•漳州模拟)已知a+b=2,则a2﹣b2+4b的值为4.解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.14.(2006•杭州)计算:(a3)2+a5的结果是a6+a5.解:(a3)2+a5=a3×2+a5=a6+a5.15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为﹣6.解:2x3+x2﹣12x+k=(2x+1)(x2﹣6),∴k=﹣6,16.(2014•思明区质检)一个多边形的每个外角都等于72°,则这个多边形的边数为5.解:多边形的边数是:360÷72=5.17.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC,使△ABC≌△DBE.(只需添加一个即可)解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用“角边角”,需添加∠BDE=∠BAC,②用“边角边”,需添加BE=BC,③用“角角边”,需添加∠ACB=∠DEB.故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)18.(2014•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是400.解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.三.解答题(共8小题)19.运用乘法公式计算:(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).解:(1)原式=(2000﹣3)×(2000+3)=20002﹣32=4000000﹣9=3999991;(2)原式=(2b)2﹣(3a)2 =4b2﹣9a2;(3)原式=(﹣3a)2﹣(2b)2 =9a2﹣4b2.20.分解因式:(1);(2)a3﹣3a2﹣10a.解:(1)x2y﹣8y,=y(x2﹣16),=y(x+4)(x﹣4);(2)a3﹣3a2﹣10a,=a(a2﹣3a﹣10),=a(a+2)(a﹣5).21.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.解:(1)∵O(0,0),A(5,0),B(2,4),∴S△OAB =×5×4=10;(2)若△OAP的面积是△OAB面积的2倍,O,A两点的位置不变,则△OAP的高应是△OAB高的2倍,即△OAP的面积=△OAB面积×2=×5×(4×2),∴P点的纵坐标为8或﹣8,横坐标为任意实数;(3)若△OBM的面积是△OAB面积的2倍,且B(2,4),O(0,0)不变,则△OBM的底长是△OAB底长的2倍,即△OBM的面积=△OAB的面积×2=×(5×2)×4,∴M点的坐标是(10,0)或(﹣10,0).22.(2008•西城区一模)已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等)23.已知AB∥CD,BC平分∠ACD.求证:AC=AB.证明:∵AB∥CD,∴∠ABC=∠DCB,∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠ABC=∠ACB,∴AC=AB.24.已知:a=2002x+2003,b=2002x+2004,c=2002x+2005,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.提示:(先求出b﹣a,c﹣a,c﹣b的值,再把所给式子整理为含(a﹣b)2,(b﹣c)2,(a﹣c)2的形式代入即可求出)解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca =(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)]=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=×(1+1+4),=3.25.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.26.(2014•海淀区一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(1)如图1,当∠BAC=100°,α=60°时,∠CBD 的大小为300;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.解:(1)30°(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)由(1)知道,若∠BAC=100°,α=60°时,则∠CBD=30°;①由(1)可知,设∠α=60°时可得∠BAD=m﹣60°,∠ABC=∠ACB=90°﹣,∠ABD=90°﹣∠BAD=120°﹣,∠CBD=∠ABD﹣∠ABC=30°.②由(2)可知,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=90°﹣﹣(﹣30°)=120°﹣m,③以C为圆心CD为半径画圆弧交BF延长线于D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=,∠DCD2=180°﹣2∠CDD2=180°﹣m∠α=60°+∠DCD2=240°﹣m.综上所述,α为60°或120°﹣m或240°﹣m时∠CBD=30°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年
八年级上学期期末数学测试卷
一、选择题(每题3分,共33分)
1、下列运算不正确
...的是 ( )
A、 x2·x3 = x5
B、 (x2)3= x6
C、 x3+x3=2x6
D、 (-2x)3=-8x3
2、下列式子中,从左到右的变形是因式分解的是 ( ).
A.(x-1)(x-2)=x2-3x+2 B.x2-3x+2=(x-1)(x-2)
C.x2+4x+4=x(x一4)+4 D.x2+y2=(x+y)(x—y)
3、下列各组的两项不是同类项的是()
A、2ax2与 3x2
B、-1 和 3
C、2x2y和-2y x
D、8xy和-8xy
4.一个容量为80的样本最大值是141,最小值是50,取组距为10,则可以分成()A.10组B.9组C.8组D.7组
5.1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有 ( )
A.1个 B.4个 C.3个 D.2个
6.已知点(-4,y1),(2,y2)都在直线y=-
1
2
x+2上,则y1、 y2大小关系是( )
(A)y1 >y2(B)y1 =y2(C)y1 <y2(D)不能比较
7.如图:如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本
与销售量的关系,当该公司赢利(收入大于成本)时,销售量()
A 小于3吨
B 大于3吨
C 小于4吨
D 大于4吨
(7题) (8题) (9题)
8.如图,C、E和B、D、F分别在∠GAH的两边上,且AB = BC = CD = DE = EF,若
∠A =18°,则∠GEF的度数是()
A.108°B.100°C.90°D.80°
9.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是()
A、30°
B、45°
C、60°
D、20°
10.某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所
示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运行,试机时至少
打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:给出以下3个判断:①0点到3点只
进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水. 则上述判断中一定正确
的是()
A、①
B、②
C、②③
D、①②③



11.如图,是在同一坐标系内作出的一次函数y1、y2的图象l1、l2,设y1=k1x+b1,y2=k2x+b2,
则方程组


⎧y1=k1x+b1
y2=k2x+b2
的解是_______.
A、


⎧x=-2
y=2
B、


⎧x=-2
y=3
C、


⎧x=-3
y=3
D、


⎧x=-3
y=4
二、填空:(每题3分,共21分)
12.若1
2
42+
-kx
x是完全平方式,则k=_____________。

13.已知函数1
)1
(2+
-
=m x
m
y是一次函数,则m=__________.
14.教育储蓄的月利率为0.22%,现存入1000元,则本息和y(元)
与所存月数x之间的函数关系式
是 .
15.如图,在Rt△ABC中,∠CBD=∠ABD ,DE⊥B C,BC=10,
则△DEC的周长=____.
16.△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,
垂足为E,BD=10厘米,则AC= .
17.空气是由多种气体混合而成的,教师为了简明扼要的向学生介绍空气的组成情况,使用
E
C
A H
F
G
E
C
A B
C
D
E M
N 图描述数据较好。

18.小明从镜子里看到镜子对面电子钟的像
如图所示 实际时间是_______
三、解答题(共78分)
19、(本小题8分)因式分解:
(1)x 2-4(x -1) (2)4(m+n )2-9(m -n )2 20、(本小题5分)解方程: 2(2x+1)2-8(x +1)(x -1)=34 21、(本小题5分)化简求值:(x 2+y 2)(x 2-y 2)-(x +y)2(x -y)2,其中x =4,y =1 22.(本小题6分)如图,A ,B ,C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校,现规划修建居民小区D ,其要求是: (1)到学校的距离与其它小区到学校的距离一样;
(2)控制人口密度,有利于生态环境建设,试确定居民小区D 的位置.
22、(本小题6分) 如图,一个正比例函数的图象和一个一次函数的图象交于点 A (-1,2),且△ABO 的面积为 5,求这两个函数的解析式。

23、(本小题8分)如图是初二某班全体同学身高情况 的频数分布直方图 ,根据图中信息 解答下
列问题 :
(1) 求该班的学生人数 .
(2) 6 个小组中 ,身高在哪个小组的人数最多 ? 有多少人 ?
(3) 若该校初二级共有学生 500 人 , 估计初二级身高在 165 厘米以上的学生有多少人 ?
24、(本小题8分)如图,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M,BD 交AC 于点N , 证明:(1)BD=CE. (2)BD ⊥CE.
x。

相关文档
最新文档