生物医用材料系列6--生物医用材料表面改性
生物医用材料
生物医用高分子材料课程总结一、生物医用材料定义生物医用材料:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。
生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗;生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。
研究内容包括:各种器官的作用;生物医用材料的性能;组织器官与材料之间的相互作用分类方法:按材料的传统分类法分为:(1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、)(2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖)(3)金属与合金材料(4)无机材料(5)复合材料按材料的医用功能分为:(1)血液相容性材料(2)软组织相容性材料(3)硬组织相容性材料(4)生物降解材料(5)高分子药物二、生物相容性与安全性生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。
生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。
主要包括:1.组织相容性:指材料用与心血管系统外的组织和器官接触。
要求医用材料植入体内后与组织、细胞接触无任何不良反应。
典型的例子表现在材料与炎症,材料与肿瘤方面。
影响组织相容性的因素:1)材料的化学成分;2)表面的化学成分;3)形状和表面的粗糙度:2.血液相容性:材料用于心血管系统与血液直接接触,主要考察与血液的相互作用材料,影响因素:材料的表面光洁度;表面亲水性;表面带电性,具体作用机理表现在:血小板激活、聚集、血栓形成;凝血系统和纤溶系统激活、凝血机能增强、凝血系统加快、凝血时间缩短;红细胞膜破坏、产生溶血;白细胞减少及功能变化;补体系统的激活或抑制;对血浆蛋白和细胞因子的影响。
主要发生在凝血过程,生物材料与血小板,生物材料与补体系统的作用过程。
纳米生物医用材料的进展研究
生物医用材料的研究进展生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料,它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。
研究动态迄今为止,被详细研究过的生物材料已有一千多种,医学临床上广泛使用的也有几十种,涉及到材料学的各个领域。
目前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料,具体体现在以下几个方面:1. 提高生物医用材料的组织相容性途径不外乎有两种,一是使用天然高分子材料,例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表达;二是在材料表面固定有生理功能的物质,如多肽、酶和细胞生长因子等,这些物质充当邻近细胞、基质的配基或受体,使材料表面形成一个能与生物活体相适应的过渡层。
2. 生物医用材料的可降解化组织工程领域研究中,通常应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。
其中组织工程材料除了具备一定的机械性能外,还需具有生物相容性和可降解性。
英国科学家发明了一种可降解淀粉基聚合物支架。
以玉米淀粉为基本材料,分别加入乙烯基乙烯醇和醋酸纤维素,再分别对应加入不同比例的发泡剂(主要为羧酸),注塑成型后就可以获得支撑组织再生的可降解支架。
3. 生物医用材料的生物功能化和生物智能化利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面,通过表面修饰构建新一代的分子生物材料,来引发我们所需的特异生物反应,抑制非特异性反应。
例如将一种名叫玻璃粘连蛋白(VN)的物质固定到钛表面,发现固定VN的骨结合界面上有相对多的蛋白存在。
4.开发新型医用合金材料生物适应性优良的Zr、Nb、Ta、Pd、Sn合金化元素被用于取代钛合金中有毒性的Al、V等,如Ti -15Zr - 4Nb - 2Ta和Ti - 12Mo - 6Zr - 2Fe等合金的生物亲和性显著提高,,耐蚀及机械性能也有较大改善,Ti-Ni 和Cu、Zn、Al等形状记忆合金由于具有形状记忆和超弹性双重功能,在脊椎校正、断骨固定等方面有特殊的应用。
生物材料表面改性以提高生物相容性
人工椎间盘项目
方案设计:
PEEK预处理
选用PEEK (Evonik, Vestakeep i4 R, 400×8mm,h9)
直径8mm柱状PEEK材料,切割为厚度约1mm的圆片状,150片。 砂纸打磨,测接触角。 一部分108片打磨到5mm直径放进96孔板(细胞毒性-增殖)。 另一部分50片8mm直径放进48孔板(预覆盖胶原、测ALP活性、钙结节染色) 丙酮浸泡,清洗,干燥,测接触角数据。
Steven R. Meyers. Mark W. Chemical Reviews. 2012, 112: 1615-1632.
抗污生物材料表面
• 抗污(antifouling)表面是指抗蛋白质吸附或细胞粘附的表面,其更为广泛的定义 是抗蛋白质表面和“隐蔽”表面。 提高生物材料表面的亲水性 是减少其与蛋白质和细胞相 互结合的最常用方法。 亲水性聚合物
抗污
生物 活性
材料生 物相容 性表面
Steven R. Meyers. Mark W. Chemical Reviews. 2012, 112: 1615-1632.
生物医用高分子材料的表面改性
择和 改性来解 决组 织相 容性 问题 。
生物体器 官 、 细胞 器 、 组 织 细胞 及 生 物 大 分子 相 容 , 无
毒性 、 无 热原反应 、 无致 癌 性 等 , 对 生 物 体组 织 、 血液、
不引起凝 血 及 血 小 板 粘 着 凝 聚 , 不 出现 溶 血 现象 。
当异体 与血 液相 接 触 , 其表 面 很快 会 吸 附一层 蛋
白质L 8 ] , 一些 能促进 血小 板 粘 附 的蛋 白质 及 吸附 在异 体表 面的血 纤维蛋 白原 通过 作用将会 粘附和 活化 血小
由于高分 子 材料 和血 液 接 触 主 要 发 生 在 材 料 的 表 面
应, 以及 人体对 这 些 反应 的耐 受 程 度 。生 物相 容性 可
简单地 概括 为 : 活 体与材 料之 间 的相 互关 系 , 主要 涉及
血 液相容性 ( 抗凝 血性 ) 和组 织相容 性 ] 。
1 . 1 血 液相容性
2 . 】 . 1 表 面涂层
血 液相 容性 指生物 医用 高分 子材 料与血 液接触 时
摘 要 : 生 物相 容 性 是 医 用 高 分 子材 料 应 用 中必 须 解 决 的 关键 问题 , 通 过 表 面 改 性 以改善 生 物 医 用 高分 子 材 料 的 生
物 相 容性 的研 究备 受 关 注 。分 别 从 物 理 、 化 学、 仿 生 三 方 面对 生物 医用 高分 子 材 料 的 表 面 改 性 方 法及 进 展 进 行 了综述 。
用 高分子 材料具 备一 定 的 功 能特 性 显 得 至关 重 要 , 与
生物医用药用材料
(C)一般报道的整体HAP的断裂韧性在 0.7MPa · 1/2左右,人体骨的断裂韧性在2-10 m (2)羟基磷灰石的成型与 1/2之间。 MPa · m
(1)HAP的粉体制备工艺 烧结工艺
(3)HAP系复合材料目前 已达到的性能 (4)HAP系复合材料的应 用
HAP基复合材料主要应用在颌面骨、牙槽脊、 听小骨等非承重材料以及一些骨缺损的修复等方 面,而在承重材料方面尚没有应用。
发展
公元前2500年在中国及埃及人的墓穴中已
发现有假手、假耳等人工假体,我国隋唐 时代就有了补牙用的银膏。 金银铂 不锈钢 纯钛的骨钉、骨板 Ti-Ni形状记忆合金
目前国外有数以百万计的人靠人工器官维持着生 命。仅在美国,每年约有100万人接受人工器官的 植入手术。其中,人工心脏瓣膜3.5万人,人工血 管18万人;人工髋骨12.5万人;人工膝盖605万人; 人工肾5万人。 每年以20%—30%的速度递增。1980年世界销售 额达200亿美元,1990年增加到500亿美元。
金属纤维+生物活性玻璃 HA+PE
注:G—生物活性玻璃 HA—羟基磷灰石 P—金云母 W—硅灰石 PE—聚乙烯 A—磷灰石
生物材料的国内外研究现状
主要是指利用骨的压电效应能刺激骨 惰性生物陶瓷是指一类在生物环 随着生物陶瓷材料研究的深入 活性生物陶瓷是一类在生理环境中可 折愈合的特点,人们试图利用压电陶瓷与 境中能保持稳定,不发生或仅发生微 和越来越多医学问题的出现,对生 通过其表面发生的生物化学反应与生 生物活性陶瓷复合,在进行骨置换的同时, 弱化学反应的生物医学材料。主要包 物陶瓷材料提出了更高的要求。原 体组织形成化学键性结合的材料。其 利用生物体自身运动对置换体产生的压电 括氧化铝、氧化锆等陶瓷以及医用碳 先的生物陶瓷材料无论是生物惰性 发展始于1969年Hench等人首次发现 该类材料是将天然有机物 效应来刺激骨损伤部位的早期硬组织生长。 素材料。这类材料的发展期在上世纪 的还是生物活性的,强调的是材料 Na2 (如骨胶原、纤维蛋白以及骨 70年代以前。它们结构都比较稳定, 另外,将铁氧体与生物活性陶瓷复合,填 -CaO-SiO2-P2O5系统中的玻璃45S5 在生物体内的组织力学环境和生化 具有生物活性。目前主要包括羟基磷 形成因子等)和无机生物材料 充在因骨肿瘤而产生的骨缺损部位,利用 分子中的键力较强,而且都具有较高 环境的适应性,而现在组织电学适 灰石、磷酸三钙、石膏等可降解吸收 复合,以改善材料的力学性能 外加交变磁场,充填物因磁滞损耗而产生 的强度、耐磨性及化学稳定性。现在 应性和能参与生物体物质、能量交 陶瓷。它们在生理环境中可被逐渐的 和手术的可操作性,并能发挥 局部发热,杀死癌细胞,又不影响周围正 换的功能已成为生物材料应具备的 它们在临床上得到了广泛的应用[5-7]。 降解吸收,并随之为新生组织替代, 天然有机物的促进人体硬组织 常组织,也是研究方向之一。现在,功能 条件。因此,又提出了功能活性生 活性生物陶瓷的研究还处于探索阶段,临 物材料的概念[2]。 1.2.1生长的特性。 从而达到修复或替换被损坏组织的目 惰性生物陶瓷 的。 (1)模拟人体 床应用鲜有报道,但其发展应用前景是很 硬组织成分和 光明的。 结构的生物陶 生物陶瓷 1.2.2 活性生物陶瓷 瓷材料
生物医用材料
2021/4/24
3
• 生物材料发展简史
(历史上、近代、现代)
• 生物材料分类
(属性、功能、来源、使用)
• 生物材料的特征与评价
(宿主反应、材料反应、生物相容性)
2021/4/24
4
10.1.1 生物医学材料发展简史
植 c.异种器官及组织 如动物骨、肾替换人体器官 d.天然生物材料 如动物骨胶原、甲壳素、珊瑚等 e.人工合成材料 如各种人工合成的新型材料
2021/4/24
14
4.按使用部位分类:
a.硬组织材料 骨、牙齿用材料 b.软组织材料 软骨、脏器用材料 c.心血管材料 心血管以及导管材料 d.血液代用材料 人工红血球、血浆等 e.分离、过滤、透析膜材料 血液净化、肾透析以
不锈钢: 1926年,含18%铬和8%镍首先应与于骨科治疗,随后应与于口腔科; 1934年,研制出高铬低镍单相组织的AISI302和304,在体内生理环 境下的耐腐蚀性显著提高; 1952年,开发出耐蚀性更好的AISI316不锈钢,并逐渐取代AISI302; 60年代,为了解决不锈钢的晶间腐蚀问题,又研制出超低碳不锈钢 AISI316L和317L。
生物材料是材料科学领域中正在发展的多种学科相互交叉
渗透的领域,其研究内容涉及材料科学、生命科学、化学、生
物学、解剖学、病理学、临床医学、药物学等学科,同时还涉
及2工021程/4/2技4 术和管理学科的范畴。
2
生物材料正在挽救和 维持世界上成千上万血 管患者的生命;正广泛 用于伤残人肢体形态和 功能的恢复 ;正在计划 生育、控制人口、提高 人们健康水平方面发挥 巨大作用。如图8-பைடு நூலகம்。
生物医用材料
生物医用材料 The manuscript was revised on the evening of 2021生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。
现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。
生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料,它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。
二关键词:生物,医学,材料,医疗器械,创伤,组织,植入biomedical material, new materials三文献综述1生物医用材料定义生物医用材料(biomedical material)是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。
它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,己成为各国科学家竞相进行研究和开发的热点。
当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业.由生物分子构成生物材料,再由生物材料构成生物部件。
生物体内各种材料和部件有各自的生物功能。
它们是“活”的,也是被整体生物控制的。
生物材料中有的是结构材料,包括骨、牙等硬组织材料和肌肉、腱、皮肤等软组织;还有许多功能材料所构成的功能部件,如眼球晶状体是由晶状体蛋白包在上皮细胞组成的薄膜内而形成的无散射、无吸收、可连续变焦的广角透镜。
在生物体内生长有不同功能的材料和部件,材料科学的发展方向之一是模拟这些生物材料制造人工材料。
生物医用材料系列6--生物医用材料表面改性
24
共价接枝方法能使材料表面形成的白蛋白层与基
体之间有很高的结合能力。可以使材料表面血小板 的粘附量下降3个数量级,甚至可以达到无血小板 粘附,且白质白层的稳定性远大于物理吸附。 伽马辐射可以促进白蛋白在材料表面的共价接 枝。
25
(III)聚氧化乙烯表面接枝 理论依据:
有报道指出,材料表面具有一端悬挂的长链结 构是其具有良好血液相容性的一个条件。这种结构 可以维持血液中血浆蛋白的正常构象。
30
3.等离子体表面改性
等离子是一种全部或部分电离的气态物质,含
有亚稳态和激发态的原子、分子、离子。 等离子体中的电子、原子、分子、离子都具有 一定能量,可与材料表面相互作用,产生表面反 应,使表面发生物理化学变化而实现表面改性。
31
等离子体表面改性有三种类型:
•等离子体表面聚合
•等离子体表面处理 •等离子体表面接枝
47
金属材料(如不锈钢、钴铬钼合金、钛合金等) 主要是作为承受载荷的硬组织替代材料。它们长期与
肌体的体液接触,并承受周期性机械载荷作用,容易
出现金属腐蚀、磨损、疲劳等问题。
48
•不锈钢矫形器件埋入体内曾发生腐蚀失效问题; •钛合金人工关节与超高分子聚乙烯髌配付,经
100万次人步行载荷后将产生3.8mg的磨屑,这些 磨屑与组织接触将产生感染、组织坏死,而使植
有很高化学活性
氢原子、自由 基衍生单体等
在主链随机位 置产生自由基
支化、交联
高度交联的网 状结构聚合膜
34
表面修饰方法(肖)
1、基底金属
不锈钢317L、
NiTi记忆合金 2、单体乙烯 硫酸二甲酯、 亚磷酸二甲酯 通过放电形成有机聚合膜(含C、H、O) 。
生物医用材料钛合金表面改性
HA+ Ti +A
HA+ Ti +v
生物医用合金Ti–13Nb–13Zr 喷涂陶瓷涂层
①基体材料 Ti–13Nb–13Zr(它具有优异的生物相容性,低的弹性模量和良好的耐蚀 与耐磨性能,且强度变化范围很大) ②涂层材料 Al2O3–13 wt%TiO2 (AT) 7 wt% 氧化钇稳定氧化锆(YSZ)
钛片加入
电阻炉中在 430°C 下煅烧 30分钟,除 去其内部的 PS 球
常温下放入四氢呋喃(THF)溶液中浸泡 2h, 使其PS 完全溶于四氢呋喃,然后 65°C 通风 环境下挥发溶液,使其基体表面完全干燥
溶解了 PS 的四氢呋喃挥发不完全,球壳内部会产生残留;挥 发温度过高时,中空球内外渗透压增大,达到一定的程度后可 能会对球壳造成冲击,甚至产生裂纹。
应用实例
人工犬股骨杆上制备与HA-Ti梯形涂层
人工犬股骨杆
①基体材料 钛合金 ②涂层材料 HA和Ti-HA
羟基磷灰石(Hydroxyapatite, HA), 又称羟基磷酸钙,是 骨和牙无机质的重要组成部分。骨的无机质由非晶相和晶 Ti + Ti +A group Ti + Ti +V 体相组成,后者即为 HA, 它在成人骨中约占 40wt.%,而 在牙釉质、牙本质和水泥质中分别占 95wt.%, 75%和 35%。 HA 的 Ca/P 比为 1.67, 但人体所含的 HA 并非是严格化 学计量比的。
2水热法 优点:水热合成纳米材料的纯度高、晶粒发育好,避免了因高温 煅烧或者球磨等后处理引起的杂质和结构缺陷。晶形好且可控制, 生产成本低。 缺点:反应周期长
柳星竹
——等离子喷涂和水热法
一,生物医用材料的介绍 二,等离子喷涂介绍及例子 三,水热法介绍及例子 四,等离子喷涂及水热法优缺点
生物医用AZ31B镁合金表面改性及性能研究
生物医用AZ31B镁合金表面改性及性能研究不锈钢,钛和铬基合金,作为生物硬组织植入材料,已经被应用于临床。
但是,这些金属生物材料因在植入人体内发生体液腐蚀而释放出有毒的离子,而导致炎症发生,降低了生物相容性并且导致组织损坏。
另外,金属基生物材料的弹性模量与人骨组织相差过大,会产生应力遮挡效应。
不利于新骨的生长和重塑,易导致二次骨折。
随着对生物医用植入材料不断深入研究,开发具有良好力学性能和生物相容性,又可在体内安全降解的新型植入材料具有重要意义。
与已应用于临床的金属基植入材料相比,镁合金具有多方面的优点:(1)镁是人体中的必需元素;(2)良好的生物相容性、优异的生物活性;(3)更接近骨组织的力学性能;(4)与骨组织更为接近的密度;(6)原材料成本低。
因此镁合金作为一种新型可降解植入材料而受到了广泛关注。
然而,作为生物医用材料,镁合金降解速度过快,这将造成植入部位局部碱化,氢气释放过快,形成皮下气肿,影响其在临床上的应用。
本文选择AZ31B镁合金作为基体材料,在其表面制备一层含Mg2SiO4和SiO2的陶瓷涂层,以控制镁合金基体的降解速度,并对涂层的制备工艺、微观形貌、相组成、涂层形成机理、降解性能等进行了系统研究。
在此基础上,本文选择硅涂层作为重点研究对象,对其在体外的降解性能和降解过程中的生物相容性进行了深入研究。
本文主要的研究结论如下:(1)采用正交实验方法确定了涂层的最佳工艺:NaOH的质量-体积浓度40g/L时,Na2SiO3·9H2O的质量-体积浓度为40g/L、以及处理时间为7h,处理温度100℃。
(2)所制备的涂层表面致密均匀光滑,肉眼观察呈金黄色,扫描电镜下可见由球状晶体组成,厚约为1.9μm。
XPS结果表明,涂层主要由Mg2SiO4、MgO和少量SiO2组成。
(3)浸泡实验表明,涂层有效降低了镁合金基体的降解速度,尤其在在浸泡初期效果更明显,表面改性前后的AZ31B镁合金在不同的模拟体液中显示了不同的降解规律。
生物医用材料系列6-生物医用材料表面改性
目录
• 生物医用材料表面改性的重要性 • 生物医用材料表面改性的方法 • 生物医用材料表面改性的应用 • 生物医用材料表面改性的未来发展
01
生物医用材料表面改性的重要性
改善生物相容性
生物相容性是指材料与生物体之间相互作用后产生的适应性 反应。通过表面改性,可以改善生物医用材料与人体组织和 细胞的相容性,降低排异反应和炎症反应,提高材料的生物 安全性。
经过表面改性的牙科种植体可以缩短骨结合时间,提高种植体的稳定性和长期成功 率。
药物载体
药物载体是一种用于输送药物到病变部位的医疗器械。表面改性技术可 以提高药物载体的靶向性和释药性能。
常用的表面改性方法包括化学偶联、物理吸附、涂层技术等,这些技术 可以改变药物载体表面的性质,使其更易于与药物结合并输送到病变部
03
生物医用材料表面改性的应用
人工关节
人工关节置换是一种常见的手术,用于治疗严重的关节疾 病。表面改性技术可以提高人工关节的耐磨性和生物相容 性,减少植入后并发症的发生。
常用的表面改性方法包括涂层技术、离子注入、等离子喷 涂等,这些技术可以改变人工关节表面的物理和化学性质, 提高其与人体组织的相容性。
表面氧化还原反应
通过氧化或还原反应改变 材料表面的化学状态和性 质。
生物化学方法
生物固定化
利用生物分子的特异性结合,将 生物分子或细胞固定在材料表面,
提高材料的生物相容性和功能。
酶固定化
将酶固定在材料表面,利用酶的生 物催化作用改善材料的性能。
生长因子固定化
将生长因子固定在材料表面,促进 细胞生长和组织再生。
新型涂层材料
采用新型涂层材料可以提高表面改性的持久性和稳定性,如采用具有优异耐久性和稳定性的生物活性 涂层材料,这些涂层能够与生物医用材料紧密结合,提高材料的耐久性和稳定性。
《生物医用材料学》题集
《生物医用材料学》题集一、选择题(每题2分,共20分)1.生物医用材料的主要分类不包括以下哪一项?A. 金属材料B. 无机非金属材料C. 高分子材料D. 复合材料E. 天然有机材料2.下列哪种材料属于生物活性陶瓷?A. 氧化铝B. 氧化锆C. 羟基磷灰石D. 氮化硅E. 碳化硅3.以下哪种高分子材料常用于制备人工皮肤?A. 聚乳酸B. 聚乙烯C. 聚氨酯D. 聚丙烯E. 聚四氟乙烯4.下列哪种材料具有良好的生物相容性和血液相容性,被广泛应用于血液透析?A. 硅胶B. 聚氯乙烯C. 尼龙D. 聚酯E. 聚甲基丙烯酸甲酯5.生物医用材料表面改性的主要目的不包括以下哪一项?A. 提高材料的生物相容性B. 增强材料的耐腐蚀性C. 改善材料的血液相容性D. 提高材料的抗菌性能E. 提高材料的耐磨性6.下列哪种金属常用于制备骨科植入物?A. 铁B. 铝C. 钛D. 铜E. 锌7.生物医用复合材料的主要优势不包括以下哪一项?A. 优异的力学性能B. 良好的生物相容性C. 单一材料的综合性能D. 可设计性和可调节性E. 广泛的应用范围8.下列哪种高分子材料属于天然高分子材料?A. 聚酰胺B. 聚乙烯醇C. 胶原蛋白D. 聚苯乙烯E. 聚碳酸酯9.下列哪种材料常用于制备人工心脏瓣膜?A. 钛合金B. 氧化铝陶瓷C. 聚氯乙烯D. 碳纤维复合材料E. 聚乳酸10.生物医用材料的生物相容性评价主要包括以下哪两个方面?A. 血液相容性和组织相容性B. 力学相容性和化学相容性C. 热相容性和电相容性D. 光学相容性和磁学相容性E. 辐射相容性和声学相容性二、填空题(每空2分,共20分)1.生物医用材料按材料组成和性质分为_________、_________、_________和_________四大类。
2.生物医用金属材料的主要缺点是_________和_________。
3.高分子材料按其来源分为_________和_________两大类。
生物医学材料表面改性技术
生物医学材料表面改性技术生物材料在医学领域中具有广泛的应用。
生物医学材料的表面特性是影响其与人体组织相互作用的重要因素之一。
因此,生物医学材料表面改性技术的发展是近年来生物材料科学与技术中的一个重要研究领域。
本文将重点介绍生物医学材料表面改性技术的应用及发展现状。
一、生物医学材料表面改性技术的分类生物医学材料表面改性有许多种方法,主要包括化学处理、物理处理和生物处理三种方法。
化学处理方法,包括表面清洗、化学修饰和化学氧化等方法。
表面清洗主要是用溶剂洗净表面杂质,去除表面异物污染。
化学修饰可以在表面引入新的官能团,改变其表面化学性质。
化学氧化可以增加表面粘附能力,改善材料在人体组织中的耐受性,如使用硝酸等强氧化剂增加聚乙烯管的氧化度。
物理处理方法,包括热处理、离子注入、真空蒸镀和激光刻蚀等方法。
其中,离子注入技术是目前应用最广泛的表面改性技术之一,可通过离子注入提高表面硬度,改变表面电学性质和耐高温性能。
生物处理方法包括抗生素涂层和蛋白质功能化等方法。
利用生物体系,将抗生素或蛋白质等分子结构修饰在材料表面上,从而影响其与生物体的相互作用,增加生物适应性。
二、生物医学材料表面改性技术的应用1、人工骨人工骨材料表面对人体有效稳定的生物相容性是其应用的重要指标之一。
通过改善人工骨的表面性质,可以更好地促进其与人体组织的结合,并有效提高人工骨材料的生物相容性。
2、人工关节人工关节植入后的术后反应是人工关节长期成败的决定因素之一。
采用生物医学材料表面改性技术可以提高人工关节的生物相容性和抑制周围组织的炎症反应,从而达到提高人工关节术后成活率的效果。
3、人工眼角膜人工眼角膜是使用最为广泛的生物医学材料之一。
目前,人工眼角膜的生物相容性问题已经成为限制其应用的关键。
通过表面改性技术对人工眼角膜进行表面处理,可以提高其生物相容性,增加人工眼角膜的应用范围。
三、生物医学材料表面改性技术的发展现状目前,随着生物医学材料应用领域的不断扩大和新技术的不断涌现,生物医学材料表面改性技术已经成为生物医学研究的热点领域之一。
生物医用材料的力学特性与性能优化
生物医用材料的力学特性与性能优化随着科学技术的不断进步,生物医用材料在医疗领域的应用越来越广泛。
生物医用材料的力学特性与性能对其应用效果有着重要影响,因此优化生物医用材料的力学特性和性能是一个不可忽视的课题。
一、生物医用材料的力学特性生物医用材料的力学特性一般是指其在外力作用下的变形和破坏行为。
对于生物医用材料来说,力学特性的合理性直接决定了其在人体内的稳定性和可靠性。
1. 弹性模量:弹性模量是衡量材料恢复形变能力的重要指标。
对于生物医用材料来说,弹性模量越高,代表其越能维持原状,有利于与组织和器官的适配。
2. 延展性:延展性是衡量材料抗拉伸性能的指标,对于植入体来说尤为重要。
如果材料无法延展,容易在植入后发生破裂等问题。
3. 生物相容性:生物医用材料在人体中的应用需要具备较好的生物相容性,即其与人体组织相互作用时不引起排斥或过敏反应。
力学特性在一定程度上决定了材料的生物相容性。
二、生物医用材料性能的优化策略为了优化生物医用材料的力学特性和性能,可以采取以下策略:1. 材料选择与设计:在考虑生物医用材料的力学特性和性能时,需要从材料的组成、结构和制备工艺等方面进行综合考虑。
选择合适的基材和添加剂,优化材料的成分比例和结构,可以提高材料的力学性能。
2. 表面改性:生物医用材料的表面性能直接影响其与人体组织之间的相互作用。
通过表面改性可以增加生物医用材料的附着力、润湿性和抗菌性等,提高材料的适应性和稳定性。
3. 结构优化:通过结构的优化可以改变生物医用材料的力学特性。
例如,采用纳米结构可以提高材料的强度和韧性,同时降低材料的密实度,有利于人体的体液流动。
4. 组织工程:组织工程是一种新型的生物医用材料设计和制备技术,可以通过改变细胞和支架材料的相互作用,实现生物材料的定制化。
通过组织工程的方法,可以实现生物医用材料的力学特性和性能的精确调控。
三、生物医用材料的应用领域与展望生物医用材料在医疗领域有着广泛的应用。
生物医用材料复习资料
第一章生物材料1、什么是生物医用材料?系统研究材料的结构和性能与生物功能之间的关系,尤其关注材料的种类和表面结构与细胞、蛋白以及一些生物大分子之间的相互作用机制。
第一代:生物惰性(1950-1980)第二代:生物活性或生物可吸收性(1980-1990)第三代:生物活性和生物可吸收性(1990-2000)第四代:组织工程材料、纳米生物材料(2000-至今)2、生物材料和其他材料相比的特点是什么?3、你认为研发一种具有临床应用前景和市场竞争力的生物材料制品关键要考虑哪些方面?答:研发一种具有临床应用前景和市场竞争力的生物材料制品是一个复杂而具有挑战性的任务。
以下是一些关键方面,需要在研发过程中仔细考虑:1.生物相容性和安全性:与生物体的相容性:材料应当对人体组织具有良好的相容性,避免引发免疫反应或排斥反应。
安全性评估:进行全面的安全性评估,包括细胞毒性、炎症反应等,确保材料对人体没有不良影响。
2. 功能性与性能:设计具体功能:根据应用需求,确定生物材料应具备的具体功能,如支持细胞生长、促进组织再生等。
稳定性与可控性:考虑材料的稳定性和可控性,以确保在不同环境和条件下都能维持预期的性能。
3. 可降解性与生物降解产物:可降解性设计:如果适用,考虑设计可降解的材料,以避免二次手术和潜在的并发症。
生物降解产物:研究生物降解产物的性质,确保它们不会对周围组织造成不良影响。
4. 制备工艺和成本:可扩展的生产工艺:考虑材料的制备工艺,确保可扩展到大规模生产,降低成本。
成本效益:在研发的早期阶段就要考虑成本效益,以确保最终产品在市场上具有竞争力。
5. 合规与标准:符合法规:确保研发过程符合相关的法规和伦理规范,保障临床试验和市场上的合规性。
标准遵循:遵循行业和国际标准,以提高产品的可比性和可信度。
6.临床可行性与效果验证:临床可行性研究:进行合适的临床前研究,验证生物材料的可行性和预期效果。
临床试验:在临床试验中验证生物材料的安全性和有效性,获取可靠的临床数据。