Three attitudes towards data mining
英文保护蝙蝠作文
英文保护蝙蝠作文英文:As a bat lover and conservationist, I strongly believe in the importance of protecting bats. Bats play a crucial role in our ecosystem, as they are important pollinators and pest controllers. However, many people still view bats as scary and dangerous creatures, and this has led to their persecution and decline in numbers.One of the biggest threats to bats is habitat loss. As humans continue to encroach on their habitats, bats are losing their homes and foraging grounds. This isparticularly true for cave-dwelling bats, which are often displaced by mining and development projects.Another threat to bats is disease. White-nose syndrome, a fungal disease that affects hibernating bats, has caused devastating population declines in many species of bats. It is important that we take steps to prevent the spread ofthis disease, such as avoiding entering caves during the winter months.Finally, education is key to protecting bats. By educating people about the importance of bats anddispelling myths about them, we can help to changeattitudes towards these fascinating creatures. For example, many people believe that bats are blind, but in reality, most species of bats have excellent eyesight.In conclusion, protecting bats is essential for the health of our ecosystem. By taking steps to protect their habitats, prevent the spread of disease, and educate the public about their importance, we can help to ensure that bats continue to thrive in the wild.中文:作为一个热爱蝙蝠并致力于保护蝙蝠的人士,我深信保护蝙蝠的重要性。
数据挖掘导论英文版
数据挖掘导论英文版Data Mining IntroductionData mining is the process of extracting valuable insights and patterns from large datasets. It involves the application of various techniques and algorithms to uncover hidden relationships, trends, and anomalies that can be used to inform decision-making and drive business success. In today's data-driven world, the ability to effectively harness the power of data has become a critical competitive advantage for organizations across a wide range of industries.One of the key strengths of data mining is its versatility. It can be applied to a wide range of domains, from marketing and finance to healthcare and scientific research. In the marketing realm, for example, data mining can be used to analyze customer behavior, identify target segments, and develop personalized marketing strategies. In the financial sector, data mining can be leveraged to detect fraud, assess credit risk, and optimize investment portfolios.At the heart of data mining lies a diverse set of techniques and algorithms. These include supervised learning methods, such asregression and classification, which can be used to predict outcomes based on known patterns in the data. Unsupervised learning techniques, such as clustering and association rule mining, can be employed to uncover hidden structures and relationships within datasets. Additionally, advanced algorithms like neural networks and decision trees have proven to be highly effective in tackling complex, non-linear problems.The process of data mining typically involves several key steps, each of which plays a crucial role in extracting meaningful insights from the data. The first step is data preparation, which involves cleaning, transforming, and integrating the raw data into a format that can be effectively analyzed. This step is particularly important, as the quality and accuracy of the input data can significantly impact the reliability of the final results.Once the data is prepared, the next step is to select the appropriate data mining techniques and algorithms to apply. This requires a deep understanding of the problem at hand, as well as the strengths and limitations of the available tools. Depending on the specific goals of the analysis, the data mining practitioner may choose to employ a combination of techniques, each of which can provide unique insights and perspectives.The next phase is the actual data mining process, where the selectedalgorithms are applied to the prepared data. This can involve complex mathematical and statistical calculations, as well as the use of specialized software and computing resources. The results of this process may include the identification of patterns, trends, and relationships within the data, as well as the development of predictive models and other data-driven insights.Once the data mining process is complete, the final step is to interpret and communicate the findings. This involves translating the technical results into actionable insights that can be easily understood by stakeholders, such as business leaders, policymakers, or scientific researchers. Effective communication of data mining results is crucial, as it enables decision-makers to make informed choices and take appropriate actions based on the insights gained.One of the most exciting aspects of data mining is its continuous evolution and the emergence of new techniques and technologies. As the volume and complexity of data continue to grow, the need for more sophisticated and powerful data mining tools and algorithms has become increasingly pressing. Advances in areas such as machine learning, deep learning, and big data processing have opened up new frontiers in data mining, enabling practitioners to tackle increasingly complex problems and extract even more valuable insights from the data.In conclusion, data mining is a powerful and versatile tool that has the potential to transform the way we approach a wide range of challenges and opportunities. By leveraging the power of data and the latest analytical techniques, organizations can gain a deeper understanding of their operations, customers, and markets, and make more informed, data-driven decisions that drive sustainable growth and success. As the field of data mining continues to evolve, it is clear that it will play an increasingly crucial role in shaping the future of business, science, and society as a whole.。
数据挖掘与数据分析,数据可视化试题
数据挖掘与数据分析,数据可视化试题1. Data Mining is also referred to as ……………………..data analysisdata discovery(正确答案)data recoveryData visualization2. Data Mining is a method and technique inclusive of …………………………. data analysis.(正确答案)data discoveryData visualizationdata recovery3. In which step of Data Science consume Almost 80% of the work period of the procedure.Accumulating the dataAnalyzing the dataWrangling the data(正确答案)Recapitulation of the Data4. Which Step of Data Science allows the model to consistently improve and provide punctual performance and deliverapproximate results.Wrangling the dataAccumulating the dataRecapitulation of the Data(正确答案)Analyzing the data5. Which tool of Data Science is robust machine learning library, which allows the implementation of deep learning ?algorithms. STableauD3.jsApache SparkTensorFlow(正确答案)6. What is the main aim of Data Mining ?to obtain data from a less number of sources and to transform it into a more useful version of itself.to obtain data from a less number of sources and to transform it into a less useful version of itself.to obtain data from a great number of sources and to transform it into a less useful version of itself.to obtain data from a great number of sources and to transform it into a more useful version of itself.(正确答案)7. In which step of data mining the irrelevant patterns are eliminated to avoid cluttering ? Cleaning the data(正确答案)Evaluating the dataConversion of the dataIntegration of data8. Data Science t is mainly used for ………………. purposes. Data mining is mainly used for ……………………. purposes.scientific,business(正确答案)business,scientificscientific,scientificNone9. Pandas ………………... is a one dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.).Series(正确答案)FramePanelNone10. How many principal components Pandas DataFrame consists of ?4213(正确答案)11. Important data structure of pandas is/are ___________SeriesData FrameBoth(正确答案)None of the above12. Which of the following command is used to install pandas?pip install pandas(正确答案)install pandaspip pandasNone of the above13. Which of the following function/method help to create Series? series()Series()(正确答案)createSeries()None of the above14. NumPY stands for?Numbering PythonNumber In PythonNumerical Python(正确答案)None Of the above15. Which of the following is not correct sub-packages of SciPy? scipy.integratescipy.source(正确答案)scipy.interpolatescipy.signal16. How to import Constants Package in SciPy?import scipy.constantsfrom scipy.constants(正确答案)import scipy.constants.packagefrom scipy.constants.package17. ………………….. involveslooking at and describing the data set from different angles and then summarizing it ?Data FrameData VisualizationEDA(正确答案)All of the above18. what involves the preparation of data sets for analysis by removing irregularities in the data so that these irregularities do not affect further steps in the process of data analysis and machine learning model building ?Data AnalysisEDA(正确答案)Data FrameNone of the above19. What is not Utility of EDA ?Maximize the insight in the data setDetect outliers and anomaliesVisualization of dataTest underlying assumptions(正确答案)20. what can hamper the further steps in the machine learning model building process If not performed properly ?Recapitulation of the DataAccumulating the dataEDA(正确答案)None of the above21. Which plot for EDA to check the dependency between two variables ? HistogramsScatter plots(正确答案)MapsTime series plots22. What function will tell you the top records in the data set?shapehead(正确答案)showall of the aboce23. what type of data is useful for internal policymaking and business strategy building for an organization ?public dataprivate data(正确答案)bothNone of the above24. The ………… function can “fill in” NA valueswith non-null data ?headfillna(正确答案)shapeall of the above25. If you want to simply exclude the missing values, then what function along with the axis argument will be use?fillnareplacedropna(正确答案)isnull26. Which of the following attribute of DataFrame is used to display data type of each column in DataFrame?DtypesDTypesdtypes(正确答案)datatypes27. Which of the following function is used to load the data from the CSV file into a DataFrame?read.csv()readcsv()read_csv()(正确答案)Read_csv()28. how to Display first row of dataframe ‘DF’ ?print(DF.head(1))print(DF[0 : 1])print(DF.iloc[0 : 1])All of the above(正确答案)29. Spread function is known as ................ in spreadsheets ?pivotunpivot(正确答案)castorder30. ................. extract a subset of rows from a data fram based on logical conditions ? renamefilter(正确答案)setsubset31. We can shift the DataFrame’s index by a certain number of periods usingthe …………. Method ?melt()merge()tail()shift()(正确答案)32. We can join melted DataFrames into one Analytical Base Table using the ……….. function.join()append()merge()(正确答案)truncate()33. What methos is used to concatenate datasets along an axis ?concatenate()concat()(正确答案)add()merge()34. Rows can be …………….. if the number of missing values is insignificant, as thiswould not impact the overall analysis results.deleted(正确答案)updatedaddedall35. There is a specific reason behind the missing value.What stands for Missing not at randomMCARMARMNAR(正确答案)None of the above36. While plotting data, some values of one variable may not lie beyond the expectedrange, but when you plot the data with some other variable, these values may lie far from the expected value.Identify the type of outliers?Univariate outliersMultivariate outliers(正确答案)ManyVariate outlinersNone of the above37. if numeric values are stored as strings, then it would not be possible to calculatemetrics such as mean, median, etc.Then what type of data cleaning exercises you will perform ?Convert incorrect data types:(正确答案)Correct the values that lie beyond the rangeCorrect the values not belonging in the listFix incorrect structure:38. Rows that are not required in the analysis. E.g ifobservations before or after a particular date only are required for analysis.What steps we will do when perform data filering ?Deduplicate Data/Remove duplicateddataFilter rows tokeep only therelevant data.(正确答案)Filter columns Pick columnsrelevant toanalysisBring the datatogether, Groupby required keys,aggregate therest39. you need to…………... the data in order to get what you need for your analysis. searchlengthorderfilter(正确答案)40. Write the output of the following ?>>> import pandas as pd >>> series1 =pd.Series([10,20,30])>>> print(series1)0 101 202 30dtype: int64(正确答案)102030dtype: int640 1 2 dtype: int64None of the above41. What will be output for the following code?import numpy as np a = np.array([1, 2, 3], dtype = complex) print a[[ 1.+0.j, 2.+0.j, 3.+0.j]][ 1.+0.j]Error[ 1.+0.j, 2.+0.j, 3.+0.j](正确答案)42. What will be output for the following code?import numpy as np a =np.array([1,2,3]) print a[[1, 2, 3]][1][1, 2, 3](正确答案)Error43. What will be output for the following code?import numpy as np dt = dt =np.dtype('i4') print dtint32(正确答案)int64int128int1644. What will be output for the following code?import numpy as np dt =np.dtype([('age',np.int8)]) a = np.array([(10,),(20,),(30,)], dtype = dt)print a['age'][[10 20 30]][10 20 30](正确答案)[10]Error45. We can add a new row to a DataFrame using the _____________ methodrloc[ ]iloc[ ]loc[ ](正确答案)None of the above46. Function _____ can be used to drop missing values.fillna()isnull()dropna()(正确答案)delna()47. The function to perform pivoting with dataframes having duplicate values is _____ ? pivot(unique = True)pivot()pivot_table(unique = True)pivot_table()(正确答案)48. A technique, which when performed on a dataframe, rearranges the data from rows and columns in a report form, is called _____ ?summarisingreportinggroupingpivoting(正确答案)49. Normal Distribution is symmetric is about ___________ ?VarianceMean(正确答案)Standard deviationCovariance50. Write a statement to display “Amount” as x-axis label. (consider plt as an alias name of matplotlib.pyplot)bel(“Amount”)plt.xlabel(“Amount”)(正确答案)plt.xlabel(Amount)None of the above51. Fill in the blank in the given code, if we want to plot a line chart for values of list ‘a’ vs values of list ‘b’.a = [1, 2, 3, 4, 5]b = [10, 20, 30, 40, 50]import matplotlib.pyplot as pltplt.plot __________(a, b)(正确答案)(b, a)[a, b]None of the above52. #Loading the datasetimport seaborn as snstips =sns.load_dataset("tips")tips.head()In this code what is tips ?plotdataset name(正确答案)paletteNone of the above53. Visualization can make sense of information by helping to find relationships in the data and support (or disproving) ideas about the dataAnalyzeRelationShip(正确答案)AccessiblePrecise54. In which option provides A detailed data analysis tool that has an easy-to-use tool interface and graphical designoptions for visuals.Jupyter NotebookSisenseTableau DesktopMATLAB(正确答案)55. Consider a bank having thousands of ATMs across China. In every transaction, Many variables are recorded.Which among the following are not fact variables.Transaction charge amountWithdrawal amountAccount balance after withdrawalATM ID(正确答案)56. Which module of matplotlib library is required for plotting of graph?plotmatplotpyplot(正确答案)None of the above57. Write a statement to display “Amount” as x-axis label. (consider plt as an alias name of matplotlib.pyplot)bel(“Amount”)plt.xlabel(“Amount”)(正确答案)plt.xlabel(Amount)None of the above58. What will happen when you pass ‘h’ as as a value to orient parameter of the barplot function?It will make the orientation vertical.It will make the orientation horizontal.(正确答案)It will make line graphNone of the above59. what is the name of the function to display Parameters available are viewed .set_style()axes_style()(正确答案)despine()show_style()60. In stacked barplot, subgroups are displayed as bars on top of each other. How many parameters barplot() functionhave to draw stacked bars?OneTwoNone(正确答案)three61. In Line Chart or Line Plot which parameter is an object determining how to draw the markers for differentlevels of the style variable.?x.yhuemarkers(正确答案)legend62. …………………..similar to Box Plot but with a rotated plot on each side, giving more information about the density estimate on the y axis.Pie ChartLine ChartViolin Chart(正确答案)None63. By default plot() function plots a ________________HistogramBar graphLine chart(正确答案)Pie chart64. ____________ are column-charts, where each column represents a range of values, and the height of a column corresponds to how many values are in that range.Bar graphHistograms(正确答案)Line chartpie chart65. The ________ project builds on top of pandas and matplotlib to provide easy plotting of data.yhatSeaborn(正确答案)VincentPychart66. A palette means a ________.. surface on which a painter arranges and mixed paints. circlerectangularflat(正确答案)all67. The default theme of the plotwill be ________?Darkgrid(正确答案)WhitegridDarkTicks68. Outliers should be treated after investigating data and drawing insights from a dataset.在调查数据并从数据集中得出见解后,应对异常值进行处理。
dtnl练习题(打印版)
dtnl练习题(打印版)# DTNL 练习题(打印版)## 一、选择题1. 下列哪个选项不是深度学习(Deep Learning, DL)的典型应用?- A. 图像识别- B. 自然语言处理- C. 线性回归- D. 神经网络2. 在深度学习中,以下哪个术语与反向传播算法(Backpropagation)无关?- A. 梯度下降- B. 损失函数- C. 卷积神经网络- D. 特征提取## 二、填空题1. 深度学习模型中的激活函数通常用于引入________,以帮助模型学习复杂的数据模式。
2. 卷积神经网络(CNN)中的卷积层主要用于提取图像的________特征。
3. 在训练深度学习模型时,________是用于评估模型在训练集上的性能的指标。
## 三、简答题1. 简要描述什么是深度学习,并说明它与传统机器学习方法的主要区别。
2. 解释什么是过拟合(Overfitting),并给出避免过拟合的几种策略。
## 四、计算题给定一个简单的神经网络,包含一个输入层,两个隐藏层和一个输出层。
假设输入层有4个神经元,第一个隐藏层有8个神经元,第二个隐藏层有6个神经元,输出层有3个神经元。
如果输入层的激活值为[0.2, 0.5, 0.8, 1.0],第一个隐藏层的权重矩阵为:\[W_1 =\begin{bmatrix}0.1 & 0.2 & 0.3 & 0.4 \\0.5 & 0.6 & 0.7 & 0.8 \\0.9 & 1.0 & 1.1 & 1.2 \\\end{bmatrix}\]第一个隐藏层的偏置向量为 \( b_1 = [0.1, 0.2, 0.3, 0.4] \),激活函数为 ReLU。
请计算第一个隐藏层的输出激活值。
## 五、编程题编写一个简单的 Python 函数,该函数接受一个列表作为输入,返回列表中所有元素的和。
```pythondef sum_elements(input_list):# 你的代码pass```## 六、案例分析题考虑一个实际问题,例如图像识别、语音识别或自然语言处理等,描述如何使用深度学习技术来解决这个问题,并简要说明所选择的模型架构和训练过程。
数据挖掘第三版第二章课后习题答案
1.1什么是数据挖掘?(a)它是一种广告宣传吗?(d)它是一种从数据库、统计学、机器学和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出一种观点,说数据挖掘是数据库进化的结果,你认为数据挖掘也是机器学习研究进化的结果吗?你能结合该学科的发展历史提出这一观点吗?针对统计学和模式知识领域做相同的事(d)当把数据挖掘看做知识点发现过程时,描述数据挖掘所涉及的步骤答:数据挖掘比较简单的定义是:数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。
数据挖掘不是一种广告宣传,而是由于大量数据的可用性以及把这些数据变为有用的信息的迫切需要,使得数据挖掘变得更加有必要。
因此,数据挖掘可以被看作是信息技术的自然演变的结果。
数据挖掘不是一种从数据库、统计学和机器学习发展的技术的简单转换,而是来自多学科,例如数据库技术、统计学,机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成。
数据库技术开始于数据收集和数据库创建机制的发展,导致了用于数据管理的有效机制,包括数据存储和检索,查询和事务处理的发展。
提供查询和事务处理的大量的数据库系统最终自然地导致了对数据分析和理解的需要。
因此,出于这种必要性,数据挖掘开始了其发展。
当把数据挖掘看作知识发现过程时,涉及步骤如下:数据清理,一个删除或消除噪声和不一致的数据的过程;数据集成,多种数据源可以组合在一起;数据选择,从数据库中提取与分析任务相关的数据;数据变换,数据变换或同意成适合挖掘的形式,如通过汇总或聚集操作;数据挖掘,基本步骤,使用智能方法提取数据模式;模式评估,根据某种兴趣度度量,识别表示知识的真正有趣的模式;知识表示,使用可视化和知识表示技术,向用户提供挖掘的知识1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。
数据挖掘考试题目——关联分析
策树产生的树。那么,关联分析中输出的知识的表示形式主要是(
晰结构)。
1.啤酒与尿布的故事是聚类分析的典型实例。 算法是一种典型的关联规则挖掘算法。
3.支持度是衡量关联规则重要性的一个指标。
1.以下属于关联分析的是(B)
A. CPU性能预测B.购物篮分析
C.自动判断鸢尾花类别D.股票趋势建模
2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强 调了一个观点:大数据时代的到来, 们更应该注重数据中的相关关系, 下哪个算法直接挖掘(D)
A. K-means
C.
C.缓冲D.并行
5.以下哪个会降低Apriori算法的挖掘效率(D)
A支持度阈值增大
C.事务数减少
算法使用到以下哪些东东(C)
A.格结构、有向无环图
C.格结构、哈希树
7.非频繁模式(D)
A其置信度小于阈值
C.包含负模式和负相关模式
B.项数减少
D.减小硬盘读写速率
B.二叉树、哈希树
D.多叉树、有向无环图
A. K-means
C.
3.置信度(confidence)是衡量兴趣度度量(
A.简洁性
C.实用性
算法的加速过程依赖于以下哪个策略(
A抽样
C.缓冲
使我们无法人为地去发现数据中的奥妙,与此同时,我
而不是因果关系。其中,数据之间的相关关系可以通过以
Bayes Network Ap riori
)的指标。
B.确定性
B)[注:分别以1、2、3代表之]B.2可以还原出无损的1
10大经典数据分析模型
10大经典数据分析模型模型分析法就是依据各种成熟的、经过实践论证的管理模型对问题进行分析的方法。
在长时间的企业管理理论研究和实践过程中,将企业经营管理中一些经典的相关关系以一个固定模型的方式描述出来,揭示企业系统内部很多本质性的关系,供企业用来分析自己的经营管理状况,针对企业管理出现的不同问题,能采用最行之有效的模型分析往往可以事半功倍。
1、波特五种竞争力分析模型XXX的五种竞争力分析模型被广泛应用于很多行业的战略制定。
XXX认为在任何行业中,无论是国内还是国际,无论是提供产品还是提供服务,竞争的规则都包括在五种竞争力量内。
这五种竞争力就是1.企业间的竞争2.潜在新竞争者的进入3.潜在替代品的开发4.供应商的议价能力5.购买者的议价能力这五种竞争力量决定了企业的盈利能力和水平。
竞争对手企业间的竞争是五种力量中最主要的一种。
只要那些比竞争对手的战略更具上风的战略才可能获得成功。
为此,公司必须在市场、价格、质量、产量、功用、服务、研发等方面建立自己的核心竞争上风。
影响行业内企业竞争的因素有:产业增加、固定(存储)成本/附加价值周期性生产过剩、产品差异、商标专有、转换成本、集中与平衡、信息复杂性、竞争者的多样性、公司的风险、退出壁垒等。
新进入者企业必须对新的市场进入者保持足够的警惕,他们的存在将使企业做出相应的反应,而这样又不可避免地需要公司投入相应的资源。
影响潜在新竞争者进入的因素有:经济规模、专卖产品的差别、商标专有、资本需求、分销渠道、绝对成本优势、政府政策、行业内企业的预期反击等。
购买者当用户分布集中、规模较大或大批量购货时,他们的议价能力将成为影响产业竞争强度的一个主要因素。
决定购买者力量的因素又:买方的集中程度相对于企业的集中程度、买方的数量、买方转换成底细对企业转换成本、买方信息、后向整合本领、替代品、克服危机的本领、价格/购买总量、产物差异、品牌专有、质量/机能影响、买方利润、决策者的激励。
数据挖掘 填空题
1.知识发现是一个完整的数据分析过程,主要包括以下几个步骤:确定知识发现的目标、数据采集、数据探索、数据预处理、__数据挖掘_、模式评估。
2._特征性描述_是指从某类对象关联的数据中提取这类对象的共同特征(属性)。
3.回归与分类的区别在于:___回归__可用于预测连续的目标变量,___分类__可用于预测离散的目标变量。
4.__数据仓库_是面向主题的、集成的、相对稳定的、随时间不断变化的数据集合,与传统数据库面向应用相对应。
5.Pandas的两种核心数据结构是:__Series__和__DataFrame__。
6.我们可以将机器学习处理的问题分为两大类:监督学习和_无监督学习__。
7.通常,在训练有监督的学习的机器学习模型的时候,会将数据划分为__训练集__和__测试集__,划分比例一般为0.75:0.25。
1.分类问题的基本流程可以分为__训练__和__预测_两个阶段。
2.构建一个机器学习框架的基本步骤:数据的加载、选择模型、模型的训练、__模型的预测_、模型的评测、模型的保存。
3.__回归分析_是确定两种或两种以上变量间相互依赖关系的一种统计分析方法是应用及其广泛的数据分析方法之一。
4.在机器学习的过程中,我们将原始数据划分为训练集、验证集、测试集之后,可用的数据将会大大地减少。
为了解决这个问题,我们提出了__交叉验证_这样的解决办法。
5.当机器学习把训练样本学得“太好”的时候,可能已经把训练样本自身的一些特点当作所有潜在样本都会具有的一般性质,这样会导致泛化性能下降。
这种现象在机器学习中称为__过拟合__。
6.常用的降维算法有__主成分分析__、___因子分析__和独立成分分析。
7.关联规则的挖掘过程主要包含两个阶段__发现频繁项集_和__产生关联规则__1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种7、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)8、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等9、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)10、OLAP的中文意思是指(在线分析处理)1、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种2、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)5、OLAP的中文意思是指(在线分析处理)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等2、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)3、OLAP的中文意思是指(在线分析处理4、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])5、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)6、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,l]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类3、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法4、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)5、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1如果dfl二pd.DataFrame([[l,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[&&NaN]]), 则dfl.fillna(100)=?([[l,2,3],[100,100,2],[100,100,100],[8,8,100]])2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10 ,15,20]})则df.groupby('key').sum()=?(A:15,B:30,C:45)3、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、OLAP的中文意思是指(在线分析处理)6、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类2、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法3、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,l]),ser*2=([8,6,4,2])6、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]})则df.groupby('key').sum()=?(A:15,B:30,C:45)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)5、OLAP的中文意思是指(在线分析处理)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)10、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤。
数据挖掘知识点总结
数据挖掘知识点总结English Answer.Data Mining Knowledge Points Summary.1. Introduction to Data Mining.Definition and purpose of data mining.Data mining process and techniques.Key concepts in data mining: classification, clustering, association rules, regression.2. Data Preprocessing.Data cleaning and transformation.Data integration and reduction.Feature selection and dimensionality reduction.3. Classification.Supervised learning technique.Types of classification algorithms: decision trees, neural networks, support vector machines, naive Bayes.Model evaluation metrics: accuracy, precision, recall, F1 score.4. Clustering.Unsupervised learning technique.Types of clustering algorithms: k-means, hierarchical clustering, density-based clustering.Cluster evaluation metrics: silhouette coefficient, Calinski-Harabasz index.5. Association Rules.Discovering frequent itemsets and association rules.Apriori algorithm and its extensions.Confidence and support measures.6. Regression.Predicting continuous target variables.Types of regression algorithms: linear regression, logistic regression, polynomial regression.Model evaluation metrics: mean squared error, root mean squared error.7. Big Data Analytics.Challenges and techniques for handling big data.Hadoop and MapReduce framework.NoSQL databases and data warehousing.8. Data Privacy and Ethics.Issues related to data privacy and security. Ethical considerations in data mining.Data anonymization and encryption.9. Applications of Data Mining.Fraud detection.Customer segmentation.Product recommendation.Healthcare analytics.Financial forecasting.Chinese Answer.数据挖掘知识点总结。
吴恩达提示词系列解读
吴恩达提示词系列解读在吴恩达的课程、演讲和访谈中,他经常使用一些提示词来帮助学习者更好地理解和应用机器学习和人工智能的概念。
以下是对几个常见提示词的解读,希望能为您带来启发。
1. 拟合曲线(Fitting the curve):这个概念通常在机器学习中使用,指的是用数学模型去逼近现实世界的数据。
当我们用一个模型拟合一组数据时,我们试图找到一条曲线或函数,以最佳方式描述数据点的分布。
拟合曲线的目标是尽量减小模型与实际数据之间的误差。
2. 正则化(Regularization):正则化是一种用于防止模型过拟合的技术。
当模型过拟合数据时,它会在训练集上表现得很好,但对新数据的泛化能力较差。
为了减少过拟合的风险,我们可以在模型的损失函数中增加正则化项,使得模型在训练过程中更倾向于学习简单的模式。
3. 梯度消失(Vanishing gradient):这是一个与深度神经网络相关的问题。
在训练深度神经网络时,反向传播算法计算梯度值,用于更新参数。
然而,当网络很深时,梯度可能逐渐变小,并且在通过每一层传播时几乎消失。
这会导致底层的权重几乎不更新,从而影响模型的学习效果。
解决梯度消失问题的方法之一是使用一些特殊的激活函数,例如ReLU。
4. 数据增强(Data augmentation):在机器学习中,数据增强是通过对原始数据进行一系列随机变换来扩充训练集的技术。
通过对样本进行旋转、平移、缩放、翻转等操作,可以增加训练数据的多样性,提高模型的泛化能力。
数据增强可以有效地减少过拟合问题。
5. 竞赛驱动(Competition-driven):竞赛驱动指的是通过参加机器学习竞赛来提高自己的技能和知识。
吴恩达经常鼓励学习者积极参与各种机器学习竞赛,因为这不仅可以锻炼实战能力,还提供了与其他优秀人才交流学习的机会。
竞赛驱动能够更好地推动个人的成长和进步。
以上是对吴恩达常用提示词的解读。
这些提示词涉及了机器学习和人工智能的一些核心概念和方法。
检测数据分析和处理考核试卷
B.特征选择
C.模型选择
D.以上都是
19.在深度学习中,以下哪个概念表示学习过程中的参数调整?()
A.反向传播
B.前向传播
C.梯度下降
D.随机梯度下降
20.以下哪个框架主要用于构建深度学习模型?()
A. TensorFlow
B. PyTorch
C. Keras
D.以上都是
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
答题括号:__________
3.在决策树中,号:__________
4.在神经网络中,隐藏层的数量和大小是固定的,不可以根据问题调整。【】
答题括号:__________
5. Hadoop和Spark都是用于大数据处理的开源框架,但它们解决的问题领域完全不同。【】
1.以下哪些方法可以用于处理数据集中的异常值?()
A.箱线图
B.均值替换
C.中位数替换
D. 3σ原则
2.下列哪些是常用的数据可视化工具?()
A. Tableau
B. Power BI
C. Matplotlib
D. Excel
3.在进行假设检验时,以下哪些因素需要考虑?()
A.零假设
B.备择假设
C.显著性水平
答题括号:__________、__________
3.在机器学习中,【】学习是指模型从带标签的训练数据中学习,而【】学习是指模型从无标签的数据中学习。
答题括号:__________、__________
4.深度学习中的【】层主要用于提取特征,而【】层主要用于输出最终结果。
答题括号:__________、__________
数据挖掘概念与技术习题答案-
数据挖掘概念与技术(原书第3版)第三章课后习题及解答3.7习题3.1数据质量可以从多方面评估,包括准确性、完整性和一致性问题。
对于以上每个问题,讨论数据质量的评估如何依赖于数据的应用目的,给出例子。
提出数据质量的两个其他尺度。
答:数据的质量依赖于数据的应用。
准确性和完整性:如对于顾客的地址信息数据,有部分缺失或错误,对于市场分析部门,这部分数据有80%是可以用的,就是质量比较好的数据,而对于需要一家家拜访的销售而言,有错误地址的数据,质量就很差了。
一致性:在不涉及多个数据库的数据时,商品的编码是否一致并不影响数据的质量,但涉及多个数据库时,就会影响。
数据质量的另外三个尺度是时效性,可解释性,可信性。
3.2在现实世界的数据中,某些属性上缺失值得到元组是比较常见的。
讨论处理这一问题的方法。
答:对于有缺失值的元组,当前有6种处理的方法:(1)忽略元组:当缺少类标号时通常这么做(假定挖掘任务涉及分类)。
除非元组有多个属性缺少值,否则该方法不是很有效。
当每个属性缺失值的百分比变化很大时,它的性能特别差。
采用忽略元组,你不能使用该元组的剩余属性值。
这些数据可能对手头的任务是有利的。
(2)人工填写缺失值:一般来说,该方法很费时,并且当数据集很大、缺失值很多时,该方法可能行不通。
(3)使用一个全局常量填充缺失值:将缺失的属性值用同一个常量(如“ unknown”或-)替换。
如果缺失值都用"unknown”替换,则挖掘程序可能误以为它们形成了一个有趣的概念,因为它们都具有相同的值——“unknown”。
因此,尽管该方法简单,但是并不十分可靠。
(4)使用属性的中心度量(如均值或中位数)填充缺失值:第2章讨论了中心趋势度量,它们指示数据分布的“中间”值。
对于正常的(对称的)数据分布,可以使用均值,而倾斜分布的数据则应使用中位数。
(5)使用与给定元组属同一类的所有样本的属性均值或中位数(6)使用最可能的值填充缺水值:可以用回归、使用贝叶斯形式化方法的基于推理的工具或决策树归纳确定。
Machine Learning and Data Mining
Machine Learning and Data Mining Machine learning and data mining are two of the most important fields in computer science today. With the increasing amount of data being generated every day, it has become essential to develop tools and techniques that can help us extract meaningful insights from this data. Both machine learning and data mining are concerned with using algorithms and statistical models to analyze data and make predictions based on patterns and trends. Machine learning is a subset of artificial intelligence that focuses on developing algorithms that can learn from data. These algorithms are designed to automatically improve their performance over time as they are exposed to more data. Machine learning is used in a wide range of applications, from image recognition and natural language processing to fraud detection and recommendation systems. Data mining, on the other hand, is the process of discovering patterns and relationships in large datasets. It involves using statistical techniques and machine learning algorithms to identify hidden patterns and trends in data that can be used to make predictions or inform decision-making. Data mining is used in a variety of fields, including marketing, finance, healthcare, and social sciences. One of the main challenges in both machine learning and data mining is dealing with the sheer volume of data that is generated every day. With the rise of big data, it has become increasinglydifficult to process and analyze data using traditional methods. This has led to the development of new techniques and algorithms that are designed to handle large datasets and extract insights from them. Another challenge in both fields is ensuring the accuracy and reliability of the results. Machine learning algorithms are only as good as the data they are trained on, so it is important to ensurethat the data is representative and unbiased. Similarly, data mining algorithms can produce misleading results if the data is not properly cleaned and preprocessed. Despite these challenges, machine learning and data mining have the potential to revolutionize many industries and fields. In healthcare, for example, machine learning algorithms can be used to analyze medical images and identify early signs of disease. In finance, data mining can be used to detect fraudulent transactions and identify patterns in financial data that can be used to make better investment decisions. Overall, machine learning and data mining are two ofthe most exciting and rapidly evolving fields in computer science today. While there are still many challenges to overcome, the potential benefits are enormous, and we can expect to see many new applications and breakthroughs in the coming years. As we continue to generate more data, the need for these tools and techniques will only continue to grow, making machine learning and data mining essential skills for anyone working in technology or data-driven fields.。
机器学习复习题及答案
一、单选题1、下列哪位是人工智能之父?( )A.Marniv Lee MinskyB.HerbertA.SimonC.Allen NewellD.John Clifford Shaw正确答案:A2、根据王珏的理解,下列不属于对问题空间W的统计描述是( )。
A.一致性假设B.划分C.泛化能力D.学习能力正确答案:D3、下列描述无监督学习错误的是( )。
A.无标签B.核心是聚类C.不需要降维D.具有很好的解释性正确答案:C4、下列描述有监督学习错误的是( )。
A.有标签B.核心是分类C.所有数据都相互独立分布D.分类原因不透明正确答案:C5、下列哪种归纳学习采用符号表示方式?( )A. 经验归纳学习B.遗传算法C.联接学习D.强化学习正确答案:A6、混淆矩阵的假正是指( )。
A.模型预测为正的正样本B.模型预测为正的负样本C.模型预测为负的正样本D.模型预测为负的负样本正确答案:B7、混淆矩阵的真负率公式是为( )。
A.TP/(TP+FN)B.FP/(FP+TN)C.FN/(TP+FN)D.TN/(TN+FP)正确答案:D8、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,准确率是( )。
A.1/4B.1/2C.4/7D.4/6正确答案:B9、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,精确率是( )。
A.1/4B.1/2C.4/7D.2/3正确答案:C10、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,召回率是( )。
A.1/4B.1/2C.4/7D.2/3正确答案:D11、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,F1-score是( )。
A.4/13B.8/13C.4/7D.2/30.00/2.00正确答案:B12、EM算法的E和M指什么?( )A.Expectation-MaximumB.Expect-MaximumC.Extra-MaximumD.Extra-Max正确答案:A13、EM算法的核心思想是?( )A.通过不断地求取目标函数的下界的最优值,从而实现最优化的目标。
谈二语习得中学习动机与表现的关系[1]
OntheRelationshipBetweenMotivationandPerformanceinSecondLanguageAcquisition谈二语习得中学习动机与表现的关系刘胡英湖南涉外经济学院湖南长沙410205LIUHuyingHunanIntemafionalEconomicsUniversityChangsha410205China摘要:自二十世纪六十年代以来,人们就开始研究学习动机与表现的关系。
之后,人们对中国二语习得中动机的重要性进行了大量研究。
通过分析二语*--3得中动机与表现的关系,我们可以找到方法,通过提高学习动机来提高表现。
Abstract:Therelationshipbetweenmotivationandperformancehasbeenstudiedsince1960s.SincethenabundantliteraturehashelpedtohighlighttheimportanceofmotivationinsecondlanguagelearninginChina.Byanalysizingtherelationshipbetweenmotivationandperformanceinsecondlanguageacquisition,wecanfindwaystoimproveperformancebyimprovingmotivation.关键词:动机表现二语习得Keywords:motivationperformancesecondlanguageacquisitionWhydolearnersperformdifferently?AccordingtoVollmeyerandRheinbergF.(2009),theremainlytwotea.sons:cognitiveandmofivationMreason.Theformershowsthatbetterlearnersknowpotentiallyhowtofindoutnecessarythingstoanswerquestionsandhavegoodlearningstrategies;thelattermeansthatlowlymotivat-edpeoplemaynottryhardenoughtolearn.Thisshowsthatmotiva-tionandperformancehasbeencloselyrelatedwitheachother.Therelationshipbetweenmotivationandperformancehavebeenstudiedsince1960swhenSimon(1967,p.29)definedmotivation“goalterminatingmechanism,permittinggoalstobeprocessedserial·ly”.Duringthelast40yearsso,abundantliteraturehashelpedtohig地shttheimportanceofmotivatioainsecondlanguagelearninginChina.(U,2006)Englishlanguagelea/ningmotivation,asvitalfactorindeter-mininglearningeffect,constitutesanimportanttopicforexplorationinthecontextofMainlandChina.AnunderstandingofEn班shlearn—ers’motivationmayshedsomelighttheimpactofthelinguisticehaHengestheyfaceandtheprocessoftheiradaptationtoboththeirdegreestudyandthenewsocietyandculture.1.MotivationSimon(1967,p.29)oncedefinedmotivationasa“goalterminat-ingmechanism.permittinggoalstobeprocessedserially”.Thefunc—tionofmotivationistodeterminewhichgoalisactivatedandhasat-tentionallocatedtoit.Learningitselfiscognitiveprocess.Bandura(1991)explainedfurtherthatmotivationnotonlyaffectswhatpeoplelearn,butalsotheintensityandthedurationofthelearningactivities。
三元组评分函数范文
三元组评分函数范文概述:三元组评分函数用于评估知识图谱中的三元组的质量和重要性。
三元组是知识图谱中最基本的元素,由主体(subject)、谓词(predicate)和客体(object)组成。
评分函数可以根据不同的指标对三元组进行评估,并为其分配一个得分。
这样可以帮助我们理解和使用知识图谱中的数据,以及从中发现有价值的信息。
1.目标及意义:知识图谱是存储结构化知识的一个重要手段。
然而,图谱中的数据量庞大,其中的三元组数量多达以亿计。
因此,如何从数据中筛选出具有质量和价值的三元组就成为了一个重要问题。
三元组评分函数的目标是根据一系列指标为三元组分配得分。
不同的指标可以捕捉三元组的不同特征,例如主体和客体的频率、谓词的权威性等等。
通过为三元组分配得分,我们可以识别和使用那些高质量、重要性高的三元组,从而提高知识图谱的质量和可用性。
2.指标选择:为了评估三元组的质量和重要性,我们需要选择一系列合适的指标。
以下是一些常用的指标:-主体和客体的频率:评估主体和客体在知识图谱中出现的频率。
通常来说,频率较高的主体和客体是更加重要和有用的信息。
-谓词的权威性:评估谓词在知识图谱中的权威性和可信度。
通常来说,来自权威数据源的谓词是更加可靠和有用的信息。
-谓词的类型:评估谓词的类型,例如是关系型谓词还是属性型谓词。
不同类型的谓词可能具有不同的重要性,需要针对性地进行评分。
-谓词的相似性:评估谓词与其他谓词之间的相似性。
如果两个谓词有相似的语义或功能,那么它们可能都具有相似的重要性。
-上下文信息:评估三元组在文本或其他上下文信息中的出现频率和关联性。
如果一个三元组在多个上下文中出现,那么它可能具有更高的重要性。
3.组合方式:选择合适的指标之后,我们需要将这些指标组合起来生成最终的三元组得分。
常用的组合方式包括加权求和和加权平均等。
可以根据指标之间的关系、重要性和权重进行适当的调整。
4.应用与评估:通过三元组评分函数,我们可以对知识图谱中的三元组进行评估和排序。
三元组损失函数改进
三元组损失函数改进随着深度学习技术的不断发展,损失函数作为评估模型性能的重要指标,一直受到研究人员的关注。
在自然语言处理领域,三元组损失函数作为评估句子相似度的一种方法,近年来也得到了广泛的应用。
然而,传统的三元组损失函数在一些复杂的场景下存在着一些不足,为了解决这些问题,研究人员提出了一些改进的方法。
首先,传统的三元组损失函数在处理大规模数据集时存在着计算量大的问题。
为了解决这一问题,研究人员提出了一种基于采样的改进方法。
该方法通过对数据集进行采样,减少了计算复杂度,同时保持了模型性能。
这种改进方法在处理大规模数据集时能够有效提高模型训练的效率。
其次,传统的三元组损失函数在一些噪声数据的情况下容易受到影响,导致模型性能下降。
为了解决这一问题,研究人员提出了一种基于权重的改进方法。
该方法通过对不同样本赋予不同的权重,减少了噪声数据对模型的影响,同时提高了模型对正样本的学习能力。
这种改进方法在处理存在噪声数据的情况下能够提高模型的鲁棒性。
最后,传统的三元组损失函数在处理多模态数据时存在着一些局限性。
为了解决这一问题,研究人员提出了一种融合多模态信息的改进方法。
该方法通过将文本信息和图像信息进行融合,提高了模型对多模态数据的建模能力,同时提高了模型在多模态场景下的性能。
这种改进方法在处理多模态数据时能够提高模型的泛化能力。
综上所述,传统的三元组损失函数在一些复杂场景下存在着一些不足,为了解决这些问题,研究人员提出了一些改进的方法。
这些改进方法能够有效提高模型的性能,在实际应用中具有一定的实用性和推广价值。
希望随着深度学习技术的不断发展,能够有更多的改进方法能够提出,为三元组损失函数的应用提供更多的可能性。
三元组损失函数特征分布
三元组损失函数特征分布三元组损失函数是一种常用于人脸识别、图像检索等领域的损失函数。
在使用三元组损失函数时,我们需要将数据集中的样本按照某种分类方式进行分组,然后针对每一组内部的数据对进行训练。
在三元组损失函数的训练过程中,我们会对同一组数据中的正样本对和负样本对进行对比,从而获取更好的模型效果。
但是,这种损失函数具有一定的特征分布问题,下面我们就来详细讲解。
一、三元组损失函数的基本原理三元组损失函数的基本原理是使用距离来衡量正样本对和负样本对之间的相似度。
我们通常将数据集中的样本按照分类方式进行分组,然后针对每一组内部的样本对进行比较。
在比较时,我们会选出一个锚定样本,并选择一组正样本和一组负样本,然后计算锚定样本和正样本之间的距离,同时计算锚定样本和负样本之间的距离。
我们希望正样本对的距离更小,负样本对的距离更大,因此会将二者的距离分别进行对比,从而获取更好的模型效果。
二、三元组损失函数的特征分布问题三元组损失函数存在特征分布问题,即在样本数量很大的情况下,由于负样本对的数量远远大于正样本对的数量,因此可能会导致正样本对和负样本对之间的距离无法很好地区分,导致模型效果不好。
三、解决三元组损失函数的特征分布问题的方法为了解决三元组损失函数的特征分布问题,我们可以采取以下措施:1. 排序选择我们可以通过对负样本对进行排序,从而选择一组最为接近的负样本对。
这种方法能够有效地解决负样本数量过多而导致的特征分布问题。
2. 动态筛选我们可以根据训练不同阶段的需要,动态筛选正样本对和负样本对,从而获取更好的模型效果。
3. 数据增强我们可以通过各种数据增强的方式,使得数据具有更加丰富的特征分布,从而有效地解决特征分布问题。
四、总结三元组损失函数具有特征分布问题,会导致模型训练效果不佳。
要解决这个问题,我们可以采取排序选择、动态筛选、或者数据增强等方法,从而获取更好的模型效果。
掌握深度学习中的迁移学习和增量学习方法
掌握深度学习中的迁移学习和增量学习方法迁移学习和增量学习是深度学习领域中的两个重要方法,它们都是为了充分利用已有的知识并在新任务上取得更好的性能。
本文将分别介绍迁移学习和增量学习的基本概念、核心思想,以及它们在实际应用中的一些方法和技术。
同时,我们还将探讨迁移学习和增量学习在深度学习领域的最新研究进展和应用场景。
一、迁移学习1.迁移学习的基本概念迁移学习(Transfer Learning)是指在源领域和目标领域之间存在一定差异的情况下,通过利用源领域的知识来帮助目标领域的学习。
在机器学习和深度学习中,由于数据的稀缺性和标注的成本高昂,通常难以直接将学习到的模型应用到新的任务上。
而迁移学习则是通过利用源领域的大量数据和已有模型的知识,来加速目标领域的学习和提高性能。
2.迁移学习的核心思想迁移学习的核心思想是通过将源领域的知识迁移到目标领域上,从而取得更好的性能。
在深度学习中,迁移学习通常包括两个阶段:首先是在源领域上预训练一个模型,然后将该模型迁移到目标领域上进行微调。
通过这样的方式,迁移学习可以在目标领域上利用更少的数据和计算资源来取得更好的性能。
3.迁移学习的方法和技术在实际应用中,迁移学习有多种方法和技术,包括基于表示学习的迁移学习、基于特征选择的迁移学习、基于核方法的迁移学习等。
其中,表示学习是深度学习领域中常用的一种迁移学习方法,它通过学习数据的表示来提取有用的特征,并将这些特征迁移到目标领域上进行学习。
此外,迁移学习还可以通过对模型参数进行调整来实现知识的迁移,例如在目标领域上微调卷积神经网络的部分层。
4.迁移学习的研究和应用迁移学习在深度学习领域有着广泛的研究和应用。
例如,在计算机视觉领域,迁移学习被广泛应用于目标检测、图像分类、人脸识别等任务上,通过在大规模数据集上训练的模型,在小规模数据集上取得更好的性能。
在自然语言处理领域,迁移学习也常用于文本分类、命名实体识别等任务上,通过在大规模语料库上训练的语言模型,来提高目标任务的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Economic Methodology ISSN 1350-178X print/ISSN 1469-9427 online © 2000 Taylor & Francis Ltd http://www//journalsJournal of Economic Methodology 7:2, 195–210 2000Three attitudes towards data miningKevin D. Hoover and Stephen J. PerezAbstract ‘Data mining’ refers to a broad class of activities that have in common,a search over different ways to process or package data statistically or econo-metrically with the purpose of making the final presentation meet certain design criteria. We characterize three attitudes toward data mining: first, that it is to be avoided and, if it is engaged in, that statistical inferences must be adjusted to account for it; second, that it is inevitable and that the only results of any interest are those that transcend the variety of alternative data mined specifications ( a view associated with Leamer’s extreme-bounds analysis); and third, that it is essential and that the only hope we have of using econometrics to uncover true economic relationships is to be found in the intelligent mining of data. The first approach confuses considerations of sampling distribution and considerations of epistemic warrant and, reaches an unnecessarily hostile attitude toward data mining. The second approach relies on a notion of robustness that has little relationship to truth:there is no good reason to expect a true specification to be robust alternative specifications. Robustness is not, in general, a carrier of epistemic warrant. The third approach is operationalized in the general-to-specific search methodology of the LSE school of econometrics. Its success demonstrates that intelligent data mining is an important element in empirical investigation in economics.Keywords:data mining, extreme-bounds analysis, specification search, general-to-specific, LSE econometrics1INTRODUCTIONTo practice data mining is to sin against the norms of econometrics, of that there can be little doubt. That few have attempted to justify professional abhorrence to data mining signifies nothing, few have felt any pressing need to justify our abhorrence of theft either. What is for practical purposes beyond doubt needs no special justification; and we learn that data mining is bad econometric practice, just as we learn that theft is bad social practice, at our mothers’ knees as it were. Econometric norms, like social norms, are internalized in an environment in which explicit prohibitions, implicit example and, many subtle pressures to conformity mold our morés . Models of ‘good’ econometric practice, stray remarks in textbooks or lectures, stern warnings from supervisors and referees, all teach us that data-mining is196Articlesabhorrent. All agree that theft is wrong, yet people steal and, they mine data. So, from time to time moralists, political philosophers and legal scholars find it necessary to raise the prohibition against theft out of its position as a back-ground presupposition of social life, to scrutinize its ethical basis, to dis-criminate among its varieties, to categorize various practices as falling inside or outside the strictures that proscribe it. Similarly, the practice of data mining has itself been scrutinized only infrequently (e.g., Leamer 1978; 1983, Mayer 1980, 1993; Lovell 1983; Hoover 1995). In this paper, we wish to characterize the practice of data mining and three attitudes towards it. The first attitude is the one that that we believe is the most common in the profession namely, data mining is to be avoided and, if it is engaged in, we must adjust our statistical inferences to account for it. The second attitude is that data mining is inevitable and that the only results of any interest are those that transcend the variety of alternative data mined specifications. The third attitude is that data mining is essential and that the only hope that we have of using econometrics to uncover true economic relationships is to be found in the intelligent mining of data.2WHAT IS DATA MINING?‘Data mining’ refers to a broad class of activities that have in common a search over different ways to process or package data statistically or econometrically with the purpose of making the final presentation meet certain design criteria. An econometrician might try different combinations of regressors, different sample periods, different functional forms, or different estimation methods in order to find a regression that suited a theoretical preconception, had ‘significant’ coefficients, maximized goodness-of-fit, or some other criterion or set of criteria. To clarify the issues, consider a particularly common sort of data mining exercise. The object of the search is the process that generatesy, where y = [yt ], an N 1 vector of observations, t = 1, 2, ... N. Let X = {X j},j = 1, 2, ... M, be the universe of variables over which a search might be conducted. Let X P = X X, the power set of X (i.e., the set of all subsets of X). If y were generated from a linear process, then the actual set of variables thatgenerated it is an element of X P. Call this set of true determinants XT X P,and let the true data-generating process be:y k = X kT T+ k ,(1) where k= [k t], the vector of error terms, and k indicates the different realizations of both errors and the variables in X. Now, let X i X P be any set of variables; these define a model:y k = X ki i+ k i ,(2) where k= [k t] includes k, as well as every factor by which equation (2) deviates from the true underlying process in equation (1). Typically, inThree attitudes towards data mining 197¯economics only one realization of these variables is observed, k is degenerate and takes only a single value. In other fields, for example in randomized experiments in agriculture and elsewhere, k truly ranges over multiple realiz-ations, each realization it is assumed, coming from the same underlying distribution. While in general, regressors might be random (the possibility indicated by the superscript k on X i ), many analytical conclusions require the assumption that X i remains fixed in repeated samples of the error term.1 This amounts to, X k i = X h i , k , h , while, k h , k h , except on a set of measure zero.We can estimate the model in equation (2) for a given i and any particular realization of the errors (a given k ). From such estimations we can obtain various sample statistics. For concreteness, consider the estimated standard errors that correspond to ˆi the estimated coefficients of equation (2) for specification i .2 What we would like to have are the population standard errors of the elements of ˆi about ˆi . Conceptually, they are the dispersion of the sampling distribution of the estimated coefficients while X i remains fixed in repeated samples of the error term. Ideally, sample distributions would be calculated over a range of k ’s, and as k approached infinity, the sample distributions would converge to the population distributions. In practice there is a single realization of k . While conceptually this requires a further assumption that the errors at different times are drawn from the same distri-bution (the ergodic property), the correct counterfactual question remains:what would the distribution be if it were possible to obtain multiple realiz-ations with fixed regressors? Conceptually, the distribution of sample statistics is derived from repeatedly resampling the residual within a constant specifi-cation. This is clear in the case of standard errors estimated in Monte Carlo settings or from bootstrap procedures.3 In each case, simulations are pro-grammed that exactly mimic the analysis just laid out.Data-mining in this context amounts to searching over the various X i X P in order to meet selection criteria: e.g., that all of the t -statistics on the ele-ments of X i be statistically significant or that R 2 be maximized.3ONLY OUR PREJUDICES SURVIVEData mining is considered reprehensible largely because the world is full of accidental correlations, so that what a search turns up is thought to be more a reflection of what we want to find than what is true about the world. A methodology that emphasizes choice among a wide array of variables based on their correlations is bound to select variables that just happen to be related in the particular data set to the dependent variables, even though there is no economic basis for the relationship. One response to this problem is to ban search altogether. Econometrics is regarded as hypothesis testing. Only a well specified model should be estimated and if it fails to support the hypothesis, it fails; and the economist should not search for a better specification.198ArticlesA common variant of this view, however, recognizes that search is likely and might even be useful or fruitful. However, it questions the meaning of the test statistics associated with the final reported model. The implicit argument runs something like this: Conventional test statistics are based on independent draws. The tests in a sequence of tests on the same data used to guide the specification search are not necessarily independent. The test statistics for any specification that has survived such a process are necessarily going to be ‘significant’. They are ‘Darwinian’ in the sense that only the fittest survive. Since we know in advance that they pass the tests, the critical values for the tests could not possibly be correct. The critical values for such Darwinian test statistics must in fact be much higher. The hard part is to quantify the appro-priate adjustment to the test statistics.The interesting thing about this attitude towards data mining is the role that it assigns to the statistics. In the presentation of the textbook interpretation in the last section, those statistics were clearly reflections of sampling distribution. Here the statistics are proposed as measures of epistemic warrant, that is, as measures of our justification for believing a particular specification to be the truth or as measures of the nearness of a particular specification to the truth.4Sampling distribution is independent of the investigator: it is a relationship between the particular specification and the random errors thrown up by the world; the provenance of the specification does not matter. Epistemic warrant is not independent of the investigator. To take an extreme example, if we know an economist to be a prejudiced advocate of a particular result and he presents us with a specification that confirms his prejudice, our best guess is that the specification reflects the decision rule -search until you find a confirming specification.Not all search represents pure prejudice but, if test statistics are conceived of as measures of epistemic warrant, the standard statistics will not be appropriate in the presence of search. Michael Lovell (1983) provides an example of this epistemic approach to test statistics. He argues that critical values must be adjusted to reflect the degree of search. Lovell conducts a number of simulations to make his point. In the first set of simulations, Lovell (1983: 2–4) considers a regression like equation (2) in which the elements of X are mutually orthogonal. He considers sets of regressors that include exactly two members (i.e., a fairly narrow subset of X P). The dependent variabley is actually purely random and unrelated to any of the variables in X (i.e., X T = ). Using five per cent critical values, he demonstrates that one or more significant t-statistics occur more than five percent of the time. He pro-poses a formula to correct the critical values to account for the amount of search.Lovell (1983: 4–11) also considers simulations in which there are genuine underlying relationships and the data are not mutually orthogonal. He uses a data set of twenty actual macroeconomic series as the universe of search X. Subsets of X (i.e., X T for the particular simulation)with at most two membersThree attitudes towards data mining199 are used to generate a simulated dependent variable. He then evaluates the success of different search algorithms in recovering the particular variables used to generate the dependent variable. These algorithms are different methodsfor choosing a ‘best’ set of regressors as Xi ranges over the elements of X P ?Success can be judged by the ability of an algorithm to recover XT . Lovellalso tracks the coefficients on individual variables X g X, noting whether or not they are statistically significant at conventional levels. He is, therefore, able to report empirical type I and type II error rates (i.e., size and power). As in his first simulation, he finds that there are substantial size distortions, so that conventional critical values would be grossly misleading. What is more, he finds low empirical power, which is related to the algorithms inability to recover X T. The critical point for our purposes is that Lovell’s simulations implicitly interpret test statistics as measures of epistemic warrant. The standard critical value or the size of the test refers to the probability of a particular t-statistic on repeated draws of k (k taking on multiple values) from the same distribution (that is the significance of the textbook assumption that the regressors are fixed in repeated samples). Lovell’s experiment, in contrast, takes the error term in the true data-generating process, k, to be fixed (there is a single k for each simulation) but, considers the way in which the distri-bution of k i, the estimated residual for each specification considered in the search process, varies with every new X i. Lovell’s numbers are correct but the question they answer refers to a particular application of a particular search procedure rather than to any property of the specification independently in relation to the world.The difficulty with interpreting test statistics in this manner is that the actual numbers are specific for a particular search procedure in a particular context. This is obvious if we think about how Lovell or anyone would con-duct a Monte Carlo simulation to establish the modified critical values or sizes of tests. A particular choice must be made for which variables appear in X and a particular choice procedure must be adopted for searching over elements of X P. Furthermore, one must establish a measure of the amount of search and keep track of it. Yet, typically economists do not know how much search produced any particular specification, nor is the universe of potential regressors well defined. We do not start with a blank slate. Suppose, for example, we estimate a ‘Goldfeld’ specification for money demand (Goldfeld 1973; also Judd and Scadding 1982). How many times has it been estimated before? What do we know in advance of estimating it about how it is likely to perform? What is the range of alternative specifications that have been or might be considered? A specification such as the Goldfeld money demand equation has involved literally incalculable amounts of search. Where would we begin to assign epistemically relevant numbers to such a specification?200Articles4ONLY THE ROBUST SHOULD SURVIVEEdward Leamer (1978, 1983; and in Hendry et al. 1990) embraces the impli-cation of this last question. He suggests immersing empirical investigation in the vulgarities of data mining in order to exploit the ability of a researcher to produce differing estimates of coefficient values through repeated search. Only if it is not possible for a researcher to eliminate an empirical finding should it be believed. Leamer is a Bayesian. Yet, Bayesian econometrics present a number of technical hurdles that prevent even many of those who, like Leamer, believe that it is the correct way to proceed in principle from applying it in practice. Instead, Leamer suggests a practicable alternative to Bayesian statistics: extreme bounds analysis. The Bayesian question is, how much incremental information is there in a set of data with which we might update our beliefs? Leamer (1983) and Leamer and Leonard (1983) argue that, if econometric conclusions are sensitive to alternative specifications, then they do not carry much information useful for updating our beliefs. Data may be divided into free variables, which theory suggests should be in a regression; focus variables, a subset of the free variables which are of immediate interest; and doubtful variables, which competing theories suggest might be important.5 Leamer suggests estimating specifications that corre-spond to every linear combination of doubtful variables in combination with all of the free variables (including the focus variables). The extreme bounds of the effects of the focus variables are given by the endpoints of the range of values (± 2 standard deviations) assigned to the coefficients on each of them across these alternative regressions. If the extreme bounds are close together then there can be some consensus on the import of the data for the problem at hand; and if the extreme bounds are wide, that import is not pinned down very precisely. If the extreme bounds bracket zero, then the direction of the effect is not even clear. Such a variable can be regarded as not robust to alternative specification.6The linkage between extreme bounds analysis and Bayesian principles is not, however, one-to-one in the sense that the central idea, robustness to alternative specification, represents an attitude to data-mining held by non-Bayesians as well. Thomas Mayer’s (1993, 2000) argument that every regression run by an investigator, not just the final preferred specification, ought to be reported arises from a similar notion of robustness. If a coefficient is little changed under a variety of specifications, we should have confidence in it, and not otherwise. Mayer’s proposal that the evidence ought not to be suppressed, but reported, at least in a summary fashion (e.g., as extreme bounds) is, he argues, an issue of honest communication and not a deep episte-mological problem. But we believe that this is incorrect. The epistemological issue is this: if all the regressions are reported, just what is anyone supposed to conclude from them?The notion of robustness here is an odd one, as can be seen from a simpleThree attitudes towards data mining201 example. Let A, B, and C be mutually orthogonal variables. Let a linear com-bination of the three and a random error term determine a fourth variable D. Now if the coefficient on C relative to its variance is small compared with the coefficients on A and B relative to their variances and, the variance of C is small relative to the variance of the error term, then the coefficient on C may have a low conventionally calculated t-statistic and a high standard error. C has a low signal-to-noise ratio. Let us suppose that C is just significant at a conventional level of significance (say, five per cent) when the true specifi-cation is estimated. How will C fare under extreme bounds analysis? The omission of A, B or both, is likely to raise the standard error substantially and the point estimate of the coefficient on C plus or minus twice its standard deviation might now bracket zero.7 We would then conclude that C is not a robust variable and that it is not possible to reach a consensus, even though ex hypothesi it is a true determinant of D.One response might be that it is just an unfortunate fact that sometimes the data are not sufficiently discriminating. The lack of robustness of variable C tells us that, while there may be a truth, we just do not have enough information to narrow the range of prior beliefs about that truth, despite the willingness of investigators to consider the complete range of possibilities. The difference between the real world and the example here is that, unlike here we never know the actual truth. Thus, if we happen to estimate the truth, yet the truth is not robust, our true estimate carries little conviction or epistemic warrant.A second response, however, is that the example here illustrates that there is no good reason to expect a true specification to be robust – that is, to be robust to mis-specification. Robustness is not, in general, a carrier of epistemic warrant. Leamer (in Hendry et al. 1990: 188) attacks the very notion of a true specifi-cation:I ... don’t think there is a true data-generating process ...To me the essential difference between the Bayesian and a classical point of view is not that the parameters are treated as random variables, but rather that the sampling distributions are treated as subjective distributions or characterizations of states of mind ... And by ‘states of mind’ what I mean is the opinion that it is useful for me to operate as if the data were generated in a certain way.Econometrics for Leamer is about characterizing the data but not about dis-covering the actual processes that generated the data. We find this position to be barely coherent. The relationships among data are interesting only when they go beyond the particular factual context in which they are estimated. If we estimate a relationship between prices and quantities, for instance, we might wish to use it predictively (what is our best estimate of tomorrow’s price?) or counterfactually (if the price had been different, how would the quantity have been different?). Either way, the relationship is meant to go202Articlesbeyond the observed data and apply with some degree of generality to an unobserved domain. To say that there is a true data-generating process is to say that a specification could in principle, at least approximately, capture that implied general relationship. To deny this would appear to defeat the purpose of doing empirical economics. The very idea of a specification in which different observations are connected by a common description seems to imply generality. The idea of Bayesian updating of a prior with new information seems to presuppose that the old and the new information refer to a common relationship among the data – generality once more.5THE TRUTH IS SPECIALLY FITTED TO SURVIVEThe third attitude to data mining embraces the notion that there is a true data-generating process, although recognizing that we cannot ever be sure that we have uncovered it. A good specification-search methodology is one in which the truth is likely to emerge as the search continues on more and more data. On this view, data mining is not a term of abuse but a description of an essential empirical activity. The only issue is whether any particular data mining scheme is a good one. This pro-data mining attitude is most obvious in the so-called LSE (London School of Economics) methodology.8 The relevant LSE methodology is the general-to-specific modelling approach. It relies on an intuitively appealing idea. A sufficiently complicated model can, in principle, describe the economic world.9 Any more parsimonious model is an improve-ment on such a complicated model if it conveys all of the same information in a simpler, more compact form. Such a parsimonious model would necessarily be superior to all other models that are restrictions of the completely general model except, perhaps, to a class of models nested within the parsimonious model itself. The art of model specification in the LSE framework is to seek out models that are valid parsimonious restrictions of the completely general model and, that are not redundant in the sense of having an even more parsi-monious model nested within them that also are valid restrictions of the com-pletely general model.The general-to-specific modelling approach is related to the theory of encompassing.10 Roughly speaking, one model encompasses another if it con-veys all of the information conveyed by another model. It is easy to understand the fundamental idea by considering two non-nested models of the same dependent variable. Which is better? Consider a more general model that uses the non-redundant union of the regressors of the two models. If model I is a valid restriction of the more general model (e.g., based on an F-test) and model II is not, then model I encompasses model II. If model II is a valid restriction and model I is not, then model II encompasses model I. In either case, we know everything about the joint model from one of the restricted models, we therefore know everything about the other restricted model from that one. There is, of course, no necessity that either model will be a validThree attitudes towards data mining203 restriction of the joint model: each could convey information that the other failed to convey. A hierarchy of encompassing models arises naturally in a general-to-specific modeling exercise. A model is tentatively admissible on the LSE view if it is congruent with the data in the sense of being: (i) consistent with the measuring system (e.g., not permitting negative fitted values in cases in which the data are intrinsically positive); (ii) coherent with the data in that its errors are innovations that are white noise as well as a martingale difference sequence relative to the data considered; and (iii) stable (cf. Phillips 1988: 352–53; Mizon 1995: 115–22; White 1990: 370–74). Further conditions (e.g., consistency with economic theory, weak exogeneity of the regressors with respect to parameters of interest, orthogonality of decision variables) may also be required for economic interpretability or, to support policy inter-ventions or other particular purposes. If a researcher begins with a tentatively admissible general model and pursues a chain of simplifications, at each step maintaining admissibility and checking whether the simplified model is a valid restriction of the more general model, then the simplified model will be a more parsimonious representation of all the models higher on that particular chain of simplification and will encompass all of the models lower along the same chain.The general-to-specific approach might be seen as an example of invidious data mining. The encompassing relationships that arise so naturally apply only to a specific path of simplifications. One objection to the general-to-specific approach is that there is no automatic encompassing relationship between the final models of different researchers, who have wandered down different paths in the forest of models nested in the general model. One answer to this is that any two models can be tested for encompassing either through the application of non-nested hypothesis tests or through the approach described above, of nesting them within a joint model. Thus, the question of which, if either, encompasses the other can be resolved, except in cases in which sample size is inadequate.A second objection notes that variables may be correlated either because there is a genuine relation between them or because – in short samples – they are adventitiously correlated. This is the objection of Hess et al. (1998) that the general-to-specific specification search of Baba et al. (1992) selects an ‘overfitting’ model. Any search algorithm that retains significant variables will be subject to this objection since adventitious correlations are frequently encountered in small samples. They can be eliminated only through an appeal to wider criteria, such as agreement with a priori theory. One is entitled to ask though, before accepting this criticism, on what basis should these criteria be privileged?By far the most common reaction of critical commentators and referees to the general-to-specific approach questions the meaning of the test statistics associated with the final model. The idea of Darwinian test statistics arises, as it does for Lovell, because test statistics which are well-defined only under the204Articlescorrect specification, are compared across competing (and, therefore, necessarily not all correct) specifications.The general-to-specific approach is straight-forward regarding this issue. It accepts that choice among specifications is unavoidable, that an economic interpretation requires correct specification and that correct specification is not likely to be given a priori. The general-to-specific search treats and focuses on the relationship between the specification and the data, rather than, as is the case with the other two attitudes, on the relationship between the investigator and the specification. That is, it interprets the test statistics as evidence of sampling distribution rather than as measures of epistemic warrant. Each specification is taken on probation. The question posed is counterfactual: what would the sampling distributions be if the specification in hand were in fact the truth? The true specification, for example, by virtue of recapitulating the underlying data-generating process, should show errors that are white noise innovations. Similarly, the true specification should encompass any other specification (in particular it should encompass the higher dimensional general specification in which it is nested).The general-to-specific approach is Darwinian but in a different sense than that implied in the other two attitudes. The notion that only our prejudices survive, or that the key issue is to modify critical values to account for the degree of search, assumes that we should track some aspect say, the coefficient on a particular variable, through a series of mutations (the alternative specifi-cations) and that the survival criterion is our particular prior commitment to a value, sign or level of statistical significance for that variable. The general-to-specific methodology rejects the idea that it makes sense to track an aspect of an evolving specification. Since the specification is regarded as informative about the data rather than about the investigator or the history of the investi-gation, each specification must be evaluated independently. Nor should our preconceptions serve as a survival index. Each specification is evaluated for its verisimilitude (does it behave statistically like the truth would behave were we to know the truth?) and, for its relative informativeness (does it encompass alternative specifications?). The surviving specification in a search is a model of the statistical properties of the data and identical specifications bear the same relationship to the data whether that search was an arduous bit of data mining or a directly intuited step to the final specification.Should we expect the distillation process to lead to the truth? The Darwinian nature of the general-to-specific search methodology can be explained with reference to a remarkable theorem due to Halbert White (1990: 379–80). The upshot of which is this: for a fixed set of specifications and a battery of specifi-cation tests, as the sample size grows toward infinity and increasingly smaller test sizes are employed, the test battery will – with a probability approaching unity – select the correct specification from the set. In such cases, White’s theorem implies that type I and type II error both fall asymptotically to zero. White’s theorem says that, given enough data, only the true specification will。