严版数据结构知识点
数据结构复习资料复习提纲知识要点归纳
数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。
希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。
在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。
祝你复习顺利,取得好成绩!。
数据结构大纲知识点
数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
数据结构知识点整理
数据结构知识点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中的一个重要分支,它研究的是如何有效地存储、组织和管理数据,以便于计算机可以高效地进行数据的读取、插入、删除等操作。
数据结构的基本概念主要包括两个方面:数据的逻辑结构与数据的物理结构。
1.1 数据的逻辑结构数据的逻辑结构主要描述数据的逻辑关系,不涉及数据的存储方式。
常见的逻辑结构有:•线性结构:如线性表、栈、队列、串等。
线性结构的特点是数据元素之间存在一对一的关系,每个数据元素只有一个直接前驱和一个直接后继。
•非线性结构:如树、图等。
非线性结构的特点是数据元素之间存在一对多或者多对多的关系。
其中,树结构是一种重要的非线性结构,它具有层次性,每个数据元素(树节点)有零个或多个子节点。
1.2 数据的物理结构数据的物理结构主要描述数据在计算机内存中的存储方式,它直接影响了计算机对数据的访问效率。
常见的物理结构有:•顺序存储结构:如数组、链表等。
顺序存储结构将数据元素按照一定的顺序存放在计算机内存中,相邻的数据元素在内存中也是相邻的。
•链式存储结构:如单链表、双向链表、循环链表等。
链式存储结构通过指针将不连续的数据元素连接起来,每个数据元素只存储数据本身以及指向下一个数据元素的指针。
1.3 数据结构的应用场景不同的数据结构适用于不同的应用场景。
例如:•线性表:适用于顺序访问数据元素的场景,如学生成绩管理系统。
•栈和队列:适用于后进先出(LIFO)或先进先出(FIFO)的场景,如表达式求值、任务调度等。
•树结构:适用于具有层次关系的数据组织,如文件系统的目录结构、HTML文档的DOM树等。
•图结构:适用于表示复杂的关系,如社交网络、交通网络等。
第二点:常见数据结构算法与应用在计算机科学中,算法是解决问题的一系列清晰指令。
结合数据结构,算法可以有效地解决实际问题。
以下是一些常见的数据结构及其相关算法与应用。
2.1 线性表的算法与应用线性表是最基本的逻辑结构。
数据结构C语言版复习重点(20210320235134)
《数据结构(C语言版)》复习重点重点在二、三、六、七、九、十章,考试内容两大类:概念,算法第1章、绪论1•数据:是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
2. 数据元素:是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
3. 数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。
其4类基本结构:集合、线性结构、树形结构、图状结构或网状结构4. 逻辑结构:是数据元素之间的逻辑关系的描述。
5. 物理结构(存储结构):是数据结构在计算机中的表示(又称映像)。
其4种存储结构:顺序存数结构、链式存数结构、索引存数结构、散列存数结构6. 算法:是对特定冋题求解步骤的一种描述,它是指令的有限序列,其中每一一条指令表示一个或多个操作。
其5个重要特性:有穷性、确定性、可行性、输入、输出7. 时间复杂度:算法中基本操作重复执行的次数是问题规模n的某个函数f(n), 算法的时间度量记作,T(n)=O(f(n));他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称做算法的渐进时间复杂度,简称时间复杂度。
例如:(a) {++x;s=O;}(b) for(i=1;i<=n;++i){++x;s += x;}(c) for(j=1;j<=n;++j)for(k=1;k<=n;++k){++x;s += x;}含基本操作“ x增1”的语句的频度分别为1、n和n2,则这3个程序段的时间复杂度分别为0(1)、0(n)和O(n2),分别称为常量阶、线性阶和平方阶。
还可呈现对数阶O(log n)、指数阶O(2的n次方)等。
8. 空间复杂度:算法所需存储空间的度量记作,S(n)=O(f(n))。
第2章、线性表1. 线性表:是最常用最简单的一种数据结构,一个线性表是n个数据元素的有限序列。
2. 线性表的顺序存储结构:是用一组地址连续的存储单元依次存储线性表的数据元素。
数据结构知识点全面总结_精华版
数据结构知识点全面总结_精华版数据结构是计算机科学中的重要概念,它涉及到如何有效地存储和组织数据,以便于程序的操作和管理。
在本文中,我将全面总结数据结构的核心知识点,以帮助读者深入理解和掌握这一领域的基础概念和算法。
一、线性结构1. 数组(Array)数组是一种线性结构,它由相同类型的元素组成,通过索引访问。
数组的特点是随机访问快,但插入和删除操作较慢。
2. 链表(LinkedList)链表由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
链表的特点是插入和删除操作快,但访问元素需要遍历整个链表。
3. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只允许在栈顶进行插入和删除操作。
栈的应用场景包括表达式求值、函数调用和递归等。
4. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,只允许在队尾插入元素,在队头删除元素。
队列的应用场景包括任务调度和缓冲区管理等。
二、树形结构1. 二叉树(Binary Tree)二叉树是一种每个节点最多只有两个子节点的树形结构,它可以为空树。
二叉树的遍历方式包括前序、中序和后序遍历。
2. 堆(Heap)堆是一种完全二叉树,其中每个节点的值都大于等于(或小于等于)其子节点的值。
堆常用于实现优先队列和排序算法。
3. 平衡二叉树(Balanced Binary Tree)平衡二叉树是一种高度平衡的二叉树,它的左右子树的高度差不超过1。
平衡二叉树的例子包括AVL树和红黑树。
4. B树(B-Tree)B树是一种多路搜索树,它在一个节点中可以存储多个元素。
B树常用于数据库索引和文件系统等。
三、图形结构1. 图(Graph)图由节点和边组成,节点表示数据元素,边表示节点之间的关系。
图分为有向图和无向图,常用的表示方式有邻接矩阵和邻接表。
2. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历算法,它从起始节点开始,沿着一条路径尽可能深入,直到不能继续为止,然后回溯到前一个节点继续搜索。
数据结构 知识点总结
数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。
数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。
数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。
1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。
1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。
(2)数据项:数据元素中的一个组成部分,通常是基本类型。
(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。
(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。
1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。
(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。
(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。
(4)计算性:数据结构是为了使计算机程序更加高效而存在的。
二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。
常见的线性结构包括数组、链表、栈和队列等。
2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。
(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。
(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。
2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。
栈的操作遵循后进先出(LIFO)的原则。
2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。
数据结构基本知识点
第一章1、什么是数据结构①数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。
②数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
③4类基本结构:⑴集合;⑵线性(一个前驱,一个后继)结构;⑶树形结构;⑷图状结构或网状结构。
2、数据结构的二元组表示:Data_Structure=(D,S)//D是数据元素的有限集,S是D上关系的有限集。
3、算法的5大特性:⑴有穷性;4、衡量算法的标准:时间复杂度和空间复杂度5、数据的逻辑结构分四类6、数据结构写出逻辑结构,反之。
第二章0、线性表的基本概念。
1、线性表的顺序存储的基本操作:Insert, E Is=n/2 Delete. E dl=(n-1)/22、线性表的顺序存储的特点:连续地址,随机查找。
3、线性表的链式存储的特点:地址不保证连续,顺序查找。
(1)重点1:结构类型P28Typedef struct LNode{ElemType data;Struct LNode *next;}LNode,*LinkList;(2)重点2:基本方法Status GetElem_L(LinkList L,int i,ElemType &e); Status ListInsert_L(LinkList &L,int i,ElemType e); Status ListDelete_L(LinkList &L,int i,ElemType &e); void CreateList_L(LinkList &L,int n);void Print(LinkList L){ LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ printf(“%d,”,p->data);while(p->next){p=p->next; printf(“%d,”,p->data); } printf(“\n”);}}void CountNodes(LinkList L,int &nd){ nd=0;//LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ nd++;//while(p->next){p=p->next; nd++;}//}}voidCountAve(LinkList L,int &av){ int n=0,s=0//av=0;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ s=s+p->data; n++;//while(p->next){p=p->next;s=s+p->data; n++;}// av=s/n;}return av;//}void PrintMax(LinkList L,){ int max;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ max=p->data;while(p->next){p=p->next; if(p->data>max) max=p->data;}//printf(“max=%d\n”,max);}}void DeletaMaxNode(LinkList L,){ int max;LinkList q,t;//q---记录p的前驱结点指针,t-----保存最大结点的前驱指针。
(完整版)数据结构知识点总结
数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·索引存储结构:·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·数据运算。
·对数据的操作。
定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
数据结构复习要点(整理版)
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3.树形结构:结构中的数据元素之间存在“一对多“的关系。
若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多”的关系。
若结构为非空集,折每个数据可有多个(或零个)直接后继。
(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。
2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
数据结构(C语言版)期末复习汇总
数据结构(C语言版)期末复习汇总第一章绪论数据结构:是一门研究非数值计算程序设计中的操作对象,以及这些对象之间的关系和操作的学科。
数据结构是一门综合性的专业课程,是一门介于数学、计算机硬件、计算机软件之间的一门核心课程。
是设计和实现编译系统、操作系统、数据库系统及其他系统程序和大型应用程序的基础。
数据:是客观事物的符号表示,是所有能输入到计算机中并被计算机程序处理的符号的总称。
如数学计算中用到的整数和实数,文本编辑中用到的字符串,多媒体程序处理的图形、图像、声音及动画等通过特殊编码定义后的数据。
数据的逻辑结构划分:线、树、图算法的定义及特性算法:是为了解决某类问题而规定的一个有限长的操作序列。
五个特性:有穷性、确定性、可行性、输入、输出评价算法优劣的基本标准(4个):正确性、可读性、健壮性、高效性及低存储量第二章线性表线性表的定义和特点:线性表:由n(n≥0)个数据特性相同的元素构成的有限序列。
线性表中元素个数n(n≥0)定义为线性表的长度,n=0时称为空表。
非空线性表或线性结构,其特点:(1)存在唯一的一个被称作“第一个”的数据元素;(2)存在唯一的一个被称作“最有一个”的数据元素;(3)除第一个之外,结构中的每个数据元素均只有一个前驱;(4)除最后一个之外,结构中的每个数据元素均只有一个后继。
顺序表的插入:n个元素在i位插入,应移动(n-i+1)位元素。
顺序表存储结构的优缺点:优点:逻辑相邻,物理相邻;可随机存取任一元素;存储空间使用紧凑;缺点:插入、删除操作需要移动大量的元素;预先分配空间需按最大空间分配,利用不充分;表容量难以扩充;线性表的应用:一般线性表的合并:★★★算法2.1:LA=(7,5,3,11) LB=(2,6,3)合并后LA=(7,5,3,11,2,6)算法思想:扩大线性表LA,将存在于线性表LB中而不存在于线性表LA中的数据元素插入到线性表LA中去。
只要从线性表LB中依次取得每个数据元素,并依值在线性表LA中进行查访,若不存在,则插入之。
数据结构知识点总结
数据结构知识点总结数据结构知识点总结:一、线性表:⒈数组:定义、初始化、访问元素、插入和删除元素、扩容和缩容、数组的应用⒉链表:定义、单链表、双链表、循环链表、链表的插入和删除操作、链表的反转、链表的应用⒊栈:定义、基本操作(入栈、出栈、获取栈顶元素、判断栈是否为空)、应用场景(递归、表达式求值、括号匹配)⒋队列:定义、基本操作(入队、出队、获取队首元素、判断队列是否为空)、队列的分类(普通队列、双端队列、优先级队列)、队列的应用二、树结构:⒈二叉树:定义、遍历方式(前序遍历、中序遍历、后序遍历)、二叉树的应用(表达式求值、二叉搜索树)⒉堆:定义、堆的插入操作、堆的删除操作、堆的应用(优先级队列、Top K 问题)⒊平衡二叉树:定义、AVL 树、红黑树、平衡二叉树的应用⒋ B 树:定义、B+ 树、B 树、B 树的应用三、图结构:⒈图的存储方式(邻接矩阵、邻接表、十字链表、邻接多重表)⒉图的遍历方式(深度优先搜索、广度优先搜索)⒊最短路径算法(Dijkstra 算法、Bellman-Ford 算法、Floyd-Warshall 算法)⒋最小树算法(Prim 算法、Kruskal 算法)四、查找算法:⒈顺序查找⒉二分查找⒊散列查找(哈希表)⒋平衡查找树(红黑树)五、排序算法:⒈冒泡排序⒉插入排序⒊选择排序⒋快速排序⒌归并排序⒍堆排序⒎希尔排序⒏计数排序⒐桶排序⒑基数排序六、高级数据结构:⒈ Trie 树⒉哈夫曼树⒊并查集⒋线段树⒌ AVL 树附件:⒈相关实例代码⒉数据结构相关的练习题法律名词及注释:⒈版权:指作品的著作权人依照一定的法定条件所享有的权利。
⒉知识产权:指人们创作、发明的智力成果所享有的财产权或相关权益。
⒊法律保护:通过法律手段对知识产权进行保护和维护的行为。
《数据结构(c语言版)》重点知识汇总
数据结构(C语言版)重点知识汇总1. 线性结构数组•数组是一种线性结构,它的每个元素占据一段连续的内存空间;•数组的下标是从0开始的;•数组可以存储同类型的元素,支持随机访问和修改。
链表•链表也是一种线性结构,其元素是以节点的方式逐个存储在内存中;•节点包含元素和指向下一个节点的指针;•链表优点是可以动态增加或删除元素,缺点是访问和修改元素比较麻烦,需要遍历链表。
栈和队列•栈和队列是两种特殊的线性结构;•栈和队列都是通过数组或者链表实现的;•栈的特点是先进后出,可以用于进行函数调用、表达式求值等;•队列的特点是先进先出,可以用于模拟排队、网络数据传输等。
2. 树形结构二叉树•二叉树是一种特殊的树形结构,树中的每个节点最多有两个孩子节点;•二叉树可以是满二叉树、完全二叉树或者普通的二叉树;•遍历二叉树的方法有前序遍历、中序遍历和后序遍历。
二叉搜索树•二叉搜索树也是一种二叉树,具有以下性质:–左子树上的元素都小于根节点的元素;–右子树上的元素都大于根节点的元素;–左右子树也是二叉搜索树。
•二叉搜索树可以用于搜索、排序等算法。
平衡二叉树•平衡二叉树是一种强制性要求左右子树高度差不超过1的二叉树;•平衡二叉树可以在保持搜索树特性的同时,提高搜索效率。
堆•堆也是一种树形结构,常用于实现优先队列;•堆分为最大堆和最小堆,最大堆的根节点最大,最小堆的根节点最小;•堆的插入和删除操作能够始终保证堆的性质。
3. 图形结构图的基本概念•图由节点和边两个基本元素组成;•节点也被称为顶点,边连接两个顶点;•图分为有向图和无向图,有向图中的边是有方向性的;•图还有一些特殊的概念,如权重、连通性、环等。
图的存储结构•图的存储结构有邻接矩阵、邻接表和十字链表三种常见的形式;•邻接矩阵利用二维数组来表示节点之间的关系;•邻接表利用链表来存储节点和其邻居节点的关系;•十字链表进一步扩展了邻接表的概念,可以处理有向图和无向图的情况。
数据结构基础知识总结详细带图
数据结构【基础知识点总结】一、数据数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。
它是计算机程序加工的原料,应用程序处理各种各样的数据。
计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。
数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。
二、数据元素复制代码数据元素(Data Element)是数据的基本单位。
在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。
例如,学生信息检索系统中学生信息表中的一个记录、八皇后问题中状态树的一个状态、教学计划编排问题中的一个顶点等,都被称为一个数据元素。
有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。
它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。
这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。
通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。
复制代码三、数据对象数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。
在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。
例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A 和顶点B 各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A 和B。
四、数据结构复制代码数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。
数据结构必考知识点归纳
数据结构必考知识点归纳数据结构是计算机科学中的核心概念之一,它涉及到数据的组织、存储、管理和访问方式。
以下是数据结构必考知识点的归纳:1. 基本概念:- 数据结构的定义:数据结构是数据元素的集合,这些数据元素之间的关系,以及在这个集合上定义的操作。
- 数据类型:基本数据类型和抽象数据类型(ADT)。
2. 线性结构:- 数组:固定大小的元素集合,支持随机访问。
- 链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
- 单链表:每个节点指向下一个节点。
- 双链表:每个节点同时指向前一个和下一个节点。
- 循环链表:最后一个节点指向第一个节点或第一个节点指向最后一个节点。
3. 栈(Stack):- 后进先出(LIFO)的数据结构。
- 主要操作:push(入栈)、pop(出栈)、peek(查看栈顶元素)。
4. 队列(Queue):- 先进先出(FIFO)的数据结构。
- 主要操作:enqueue(入队)、dequeue(出队)、peek(查看队首元素)。
- 特殊类型:循环队列、优先队列。
5. 递归:- 递归函数:一个函数直接或间接地调用自身。
- 递归的三要素:递归终止条件、递归工作量、递归调用。
6. 树(Tree):- 树是节点的集合,其中有一个特定的节点称为根,其余节点称为子节点。
- 二叉树:每个节点最多有两个子节点的树。
- 二叉搜索树(BST):左子树的所有节点的值小于或等于节点的值,右子树的所有节点的值大于或等于节点的值。
7. 图(Graph):- 图是由顶点(节点)和边(连接顶点的线)组成的。
- 图的表示:邻接矩阵、邻接表。
- 图的遍历:深度优先搜索(DFS)、广度优先搜索(BFS)。
8. 排序算法:- 基本排序:选择排序、冒泡排序、插入排序。
- 效率较高的排序:快速排序、归并排序、堆排序。
9. 查找算法:- 线性查找:在数据结构中顺序查找。
- 二分查找:在有序数组中查找,时间复杂度为O(log n)。
C语言版数据结构知识点汇总
C语言版数据结构知识点汇总C语言是一种强大的编程语言,广泛应用于数据结构与算法的实现。
掌握C语言版数据结构的知识可以帮助开发人员更好地理解和设计高效的程序。
下面是C语言版数据结构的一些重要知识点的汇总:1. 数组(Array):数组是一种基本的数据结构,用于存储一系列相同类型的元素。
在C语言中,数组是通过下标来访问元素的,数组下标从0开始计数。
2. 链表(Linked List):链表是一种动态数据结构,不需要连续的内存空间。
链表由一系列结点组成,每个结点包含数据和指向下一个结点的指针。
常见的链表有单向链表、双向链表和循环链表。
3. 栈(Stack):栈是一种先进后出(LIFO)的数据结构,只能在末尾进行插入和删除操作。
在C语言中,栈可以用数组或链表来实现。
栈常用于表达式求值、函数调用和递归等场景。
4. 队列(Queue):队列是一种先进先出(FIFO)的数据结构,只能在一端进行插入操作,另一端进行删除操作。
在C语言中,队列可以用数组或链表来实现。
队列常用于广度优先和任务调度等场景。
5. 树(Tree):树是一种非线性的数据结构,由一系列的结点组成,每个结点可以有多个子结点。
树的一些重要特点包括根结点、父结点、子结点、叶子结点和深度等。
常见的树结构有二叉树和二叉树。
6. 图(Graph):图是一种非线性的数据结构,由一组顶点和一组边组成。
图的一些重要概念包括顶点的度、路径、连通性和环等。
图有多种表示方法,包括邻接矩阵和邻接表。
7.查找算法:查找算法用于在数据集中查找特定元素或确定元素是否存在。
常见的查找算法有顺序查找、二分查找和哈希查找。
在C语言中,可以使用数组、链表和树来实现不同的查找算法。
8.排序算法:排序算法用于将数据集中的元素按照特定的顺序进行排列。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序和归并排序等。
排序算法的选择取决于数据规模、时间复杂度和稳定性等因素。
9. 堆(Heap):堆是一种特殊的树结构,具有如下特点:完全二叉树、最大堆或最小堆的性质。
数据结构重点知识点
数据结构重点知识点第一章概论1. 数据是信息的载体。
2. 数据元素是数据的基本单位。
3. 一个数据元素可以由若干个数据项组成。
4. 数据结构指的是数据之间的相互关系,即数据的组织形式。
5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。
②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。
数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。
③数据的运算,即对数据施加的操作。
最常用的检索、插入、删除、更新、排序等。
6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。
线性表是一个典型的线性结构。
栈、队列、串等都是线性结构。
②非线性结构:一个结点可能有多个直接前趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
通常借助程序语言的数组描述。
(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。
通常借助于程序语言的指针类型描述。
(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。
索引表由若干索引项组成。
若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。
若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。
索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。
数据结构期末复习重点知识点总结
第一章绪论一、数据结构包括:逻辑结构、存储结构、运算(操作)三方面内容。
二、线性结构特点是一对一。
树特点是一对多图特点是多对多三、数据结构的四种存储结构:顺序存储、链式存储、索引存储、散列存储顺序存储结构和链式存储结构的区别?线性结构的顺序存储结构是一种随机存取的存储结构。
线性结构的链式存储是一种顺序存取的存储结构。
逻辑结构分类:集合线性树图,各自的特点。
或者分为线性结构和非线性结构。
四、算法的特征P13五、时间复杂度(1) i=1; k=0;while(i<n){ k=k+10*i;i++;}分析:i=1; //1k=0; //1while(i<n) //n{ k=k+10*i; //n-1i++; //n-1}由以上列出的各语句的频度,可得该程序段的时间消耗:T(n)=1+1+n+(n-1)+(n-1)=3n可表示为T(n)=O(n)六、数据项和数据元素的概念。
第二章线性表一、线性表有两种存储结构:顺序存储和链式存储,各自的优、缺点。
二、线性表的特点。
三、顺序表的插入、思想、时间复杂度o(n)、理解算法中每条语句的含义。
(1)插入的条件:不管是静态实现还是动态实现,插入的过程都是从最后一个元素往后挪动,腾位置。
静态是利用数组实现,动态是利用指针实现。
不管静态还是动态,在表中第i个位置插入,移动次数都是n-i+1。
四、顺序表的删除、思想、时间复杂度o(n)、理解算法中每条语句的含义。
(1)删除的条件:不管是静态实现还是动态实现,删除的过程都是从被删元素的下一位置向前挪动。
静态是利用数组实现,动态是利用指针实现。
不管静态还是动态,删除表中第i个元素,移动次数都是n-i。
五、顺序表的优缺点?为什么要引入链表?答:顺序表的优点是可以随机存取,缺点是前提必须开辟连续的存储空间且在第一位置做插入和删除操作时,数据的移动量特别大。
如果有一个作业是100k,但是内存最大的连续存储空间是99K,那么这个作业就不能采用顺序存储方式,必须采用链式存储方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 数组与广义表
学过程序语言的朋友,数组的概念我们已经不是第一次见到了,应该已经“一回生,二回熟”了,所以,在概念上,不会存在太大障碍。但作为考研课程来说,本章的考查重点可能与大学里的程序语言所关注的不太一样,下面会作介绍。
广义表的概念,是数据结构里第一次出现的。它是线性表或表元素的有限序列,构成该结构的每个子表或元素也是线性结构的,所以,这一章也归入线性结构中。
本章的考查重点有:
1.多维数组中某数组元素的position求解。一般是给出数组元素的首元素地址和每个元素占用的地址空间并组给出多维数组的维数,然后要求你求出该数组中的某个元素所在的位置。
2.明确按行存储和按列存储的区别和联系,并能够按照这两种不同的存储方式求解1中类型的题。
3.将特殊矩阵中的元素按相应的换算方式存入数组中。这些矩阵包括:对称矩阵,三角矩阵,具有某种特点的稀疏矩阵等。熟悉稀疏矩阵的三种不同存储方式:三元组,带辅助行向量的二元组,十字链表存储。掌握将稀疏矩阵的三元组或二元组向十字链表进行转换的算法。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:
概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
线性表:基础章节,必考内容之一。考题多数为基本概念题,名校考题中,鲜有大型算法设计题。如果有,也是与其它章节内容相结合。
栈和队列:基础章节,容易出基本概念题,必考内容之一。而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
4.广义表的概念,特别应该明确表头与表尾的定义。这一点,是理解整个广义表一节算法的基础。近来,在一些学校中,出现了这样一种题目类型:给出对某个广义表L若干个求了若干次的取头和取尾操作后的串值,要求求出原广义表L。大家要留意。
5.与广义表有关的递归算法。由于广义表的定义就是递归的,所以,与广义表有关的算法也常是递归形式的。比如:求表深度,复制广义表等。这种题目,可以根据不同角度广义表的表现形式运用两种不同的方式解答:一是把一个广义表看作是表头和表尾两部分,分别对表头和表尾进行操作;二是把一个广义表看作是若干个子表,分别对每个子表进行操作。
3.栈的应用:数值表达式的求解,括号的配对等的原理,只作原理性了解,具体要求考查此为题目的算法设计题不多。
4.循环队列中判队空、队满条件,循环队列中入队与出队算法。
如果你已经对上面的几点了如指掌,栈与队列一章可以不看书了。注意,我说的是可以不看书,并不是可以不作题哦。
第三章 串
经历了栈一章的痛苦煎熬后,终于迎来了串一章的柳暗花明。
查找
:重点难点章节,概念较多,联系较为紧密,容易混淆。出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。算法设计型题中可以数组结合来考查,也可以与树一章结合来考查。
排序
:与查找一章类似,本章同属于重点难点章节,且概念更多,联系更为紧密,概念之间更容易混淆。在基本概念的考查中,尤爱考各种排序算法的优劣比较此类的题。算法设计大题中,如果作为出题,那么常与数组结合来考查。
4.线性表的链式存储方式及以下几种常用链表的特点和运算:单链表、循环链表,双向链表,双向循环链表。其中,单链表的归并算法、循环链表的归并算法、双向链表及双向循环链表的插入和删除算法等都是较为常见的考查方式。此外,近年来在不少学校中还多次出现要求用递归算法实现单链表输出(可能是顺序也可能是倒序)的问题。
数据结构复习重点归纳[适于清华严版教材]
一、数据结构的章节结构及重点构成
数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
在链表的小题型中,经常考到一些诸如:判表空的题。在不同的链表中,其判表空的方式是不一样的,请大家注意。
5.线性表的顺序存储及链式存储情况下,其不同的优缺点比较,即其各自适用的场合。单链表中设置头指针、循环链表中设置尾指针而不设置头指针以及索引存储结构的各自好处。
第二章 栈与队列
栈与队列,是很多学习DS的同学遇到第一只拦路虎,很多人从这一章开始坐晕车,一直晕到现在。所以,理解栈与队列,是走向DS高手的一条必由之路,。
4.线索二叉树:
线索二叉树的引出,是为避免如二叉树遍历时的递归求解。众所周知,递归虽然形式上比较好理解,但是消耗了大量的内存资源,如果递归层次一多,势必带来资源耗尽的危险,为了避免此类情况,线索二叉树便堂而皇之地出现了。对于线索二叉树,应该掌握:线索化的实质,三种线索化的算法,线索化后二叉树的遍历算法,基本线索二叉树的其它算法问题(如:查找某一类线索二叉树中指定结点的前驱或后继结点就是一类常考题)。
第五章 树与二叉树
从对线性结构的研究过度到对树形结构的研究,是数据结构课程学习的一次跃变,此次跃变完成的好坏,将直接关系到你到实际的考试中是否可以拿到高分,而这所有的一切,将最终影响你的专业课总分。所以,树这一章的重要性,已经不说自明了。
总体来说,树一章的知识点包括:
二叉树的概念、性质和存储结构,二叉树遍历的三种算法(递归与非递归),在三种基本遍历算法的基础上实现二叉树的其它算法,线索二叉树的概念和线索化算法以及线索化后的查找算法,最优二叉树的概念、构成和应用,树的概念和存储形式,树与森林的遍历算法及其与二叉树遍历算法的联系,树与森林和二叉树的转换。
...
3&bp=2&bt=0)里给出三种遍历的递归和非递归算法的背记版,到时请大家一定熟记。
3.可在三种遍历算法的基础上改造完成的其它二叉树算法:
求叶子个数,求二叉树结点总数,求度为1或度为2的结点总数,复制二叉树,建立二叉树,交换左右子树,查找值为n的某个指定结点,删除值为n的某个指定结点,诸如此类等等等等。如果你可以熟练掌握二叉树的递归和非递归遍历算法,那么解决以上问题就是小菜一碟了。
学习此章前,你可以问一下自己是不是已经知道了以下几点:
1.栈、队列的定义及其相关数据结构的概念,包括:顺序栈,链栈,共享栈,循环队列,链队等。栈与队列存取数据(请注意包括:存和取两部分)的特点。
2.递归算法。栈与递归的关系,以及借助栈将递归转向于非递归的经典算法:n!阶乘问题,fib数列问题,hanoi问题,背包问题,二叉树的递归和非递归遍历问题,图的深度遍历与栈的关系等。其中,涉及到树与图的问题,多半会在树与图的相关章节中进行考查。
பைடு நூலகம்.最优二叉树(哈夫曼树):
最优二叉树是为了解决特定问题引出的特殊二叉树结构,它的前提是给二叉树的每条边赋予了权值,这样形成的二叉树按权相加之和是最小的。最优二叉树一节,直接考查算法源码的很少,一般是给你一组数据,要求你建立基于这组数据的最优二叉树,并求出其最小权值之和,此类题目不难,属送分题。
树与森林的遍历,不像二叉树那样丰富,他们只有两种遍历算法:先根与后根(对于森林而言称作:先序与后序遍历)。在难度比较大的考试中,也有基于此二种算法的基础上再进行扩展要求你利用这两种算法设计其它算法的,但一般院校很少有这种考法,最多只是要求你根据先根或后根写出他们的遍历序列。此二者的先根与后根遍历与二叉树中的遍历算法是有对应关系的:先根遍历对应二叉树的先序遍历,而后根遍历对应二叉树的中序遍历。这一点成为很多学校的考点,考查的方式不一而足,有的直接考此句话,有的是先让你求解遍历序列然后回答这个问题。二叉树、树与森林之所以能有以上的对应关系,全拜二叉链表所赐。二叉树使用二叉链表分别存放他的左右孩子,树利用二叉链表存储孩子及兄弟(称孩子兄弟链表),而森林也是利用二叉链表存储孩子及兄弟。
二、数据结构各章节重点勾划:
第0章 概述
本章主要起到总领作用,为读者进行数据结构的学习进行了一些先期铺垫。大家主要注意以下几点:数据结构的基本概念,时间和空间复杂度的概念及度量方法,算法设计时的注意事项。本章考点不多,只要稍加注意理解即可。
第一章 线性表
作为线性结构的开篇章节,线性表一章在线性结构的学习乃至整个数据结构学科的学习中,其作用都是不可低估的。在这一章,第一次系统性地引入链式存储的概念,链式存储概念将是整个数据结构学科的重中之重,无论哪一章都涉及到了这个概念。
串,在概念上是比较少的一个章节,也是最容易自学的章节之一,但正如每个过来人所了解的,KMP算法是这一章的重要关隘,突破此关隘后,走过去又是一马平川的大好DS山河了,呵呵。
串一章需要攻破的主要堡垒有:
1.串的基本概念,串与线性表的关系(串是其元素均为字符型数据的特殊线性表),空串与空格串的区别,串相等的条件
二叉树的顺序存储和二叉链表存储的各自优缺点及适用场合,二叉树的三叉链表表示方法。
2.二叉树的三种遍历算法
这一知识点掌握的好坏,将直接关系到树一章的算法能否理解,进而关系到树一章的算法设计题能否顺利完成。二叉树的遍历算法有三种:先序,中序和后序。其划分的依据是视其每个算法中对根结点数据的访问顺序而定。不仅要熟练掌握三种遍历的递归算法,理解其执行的实际步骤,并且应该熟练掌握三种遍历的非递归算法。由于二叉树一章的很多算法,可以直接根据三种递归算法改造而来(比如:求叶子个数),所以,掌握了三种遍历的非递归算法后,对付诸如:“利用非递归算法求二叉树叶子个数”这样的题目就下笔如有神了。我会在另一篇系列文章(/ibbs.dll?b
下面我们来看考试中对以上知识的主要考查方法:
1.二叉树的概念、性质和存储结构
考查方法可有:直接考查二叉树的定义,让你说明二叉树与普通双分支树的区别;考查满二叉树和完全二叉树的性质,普通二叉树的五个性质:第i层的最多结点数,深度为k的二叉树的最多结点数,n0=n2+1的性质,n个结点的完全二叉树的深度,顺序存储二叉树时孩子结点与父结点之间的换算关系(左为:2*i,右为:2*i+1)。