2013年北京市东城区中考二模数学试题答案

合集下载

2013年东城区初三中考一模数学试题及答案(免费下载)

2013年东城区初三中考一模数学试题及答案(免费下载)

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

北京市东城区中考二模数学试题(word版含答案)(最新编写)

北京市东城区中考二模数学试题(word版含答案)(最新编写)
答:该校平均每周做家务时间不少于 4 小时的学生约有 540人 20.解: 在△ ABE 中, AE BC , AB 5 , cos B 3
5
∴ BE= 3,AE= 4. ∴ EC=BC-BE =8-3=5 .
∵平行四边形 ABCD, ∴ CD=AB=5. ∴ △CED 为等腰三角形 .……2 分 ∴∠ CDE =∠ CED .
xOy 中,已知二次函数
y
2
ax +2 ax
c 的图像与 y 轴交于
点 C (0,3) ,与 x 轴交于 A、 B 两点,点 B 的坐标为 (-3,0)
( 1) 求二次函数的解析式及顶点 D 的坐标; ( 2) 点 M 是第二象限内抛物线上的一动点,若直线
1:2 的两部分,求出此时点 M 的坐标;
( 3) 点 P 是第二象限内抛物线上的一动点,问:点 最大面积是多少?并求出 此时点 P 的坐标 .
( 2) ∵ 正整数 m 满足 8 2m 2 ,
∴ m 可取的值为 1 和 2 .
又∵ 二次函数 y (1 m) x2 (4 m)x 3 ,
∴ m =2 .…… 4 分 ∴ 二次函数为 y -x2 2x 3 .
∴ A 点、 B 点的坐标分别为( -1,0)、( 3,0). 依题意翻折后的图象如图所示. 由图象可知符合题意的直线 y kx 3 经过点 A、B.
在 Rt CDE 中,CE 设⊙ O的半径为 r, CO 2 CE 2 EO 2
3. 4分 则在 Rt CE O中,
即 ( 6-r) 2 r 2 3, 解得 r
6 .
4
22.解: (1) i 4 1, i 2011 -i i 2012
5分
1…… 3 分
(2)方程 x2 2 x 2 0 的两根为

2013东城区初三二模数学试卷及答案

2013东城区初三二模数学试卷及答案

北京市东城区2012--2013学年第二学期初三综合练习(二) 数 学 试 卷 2013.6学校班级 姓名 考号考生须知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 3的相反数是 A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为A .696×103千米B .6.96×105千米C .6.96×106千米D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 A.3sin α B.3cos αC.αsin 3D.αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为3的倍数的概率为 A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是 A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m )1.501.601.651.701.751.80人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70 B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是 A .11x -≤≤ B .22x -<<C .02x ≤≤D .22x -≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 . 10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三 角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=, 则1A ∠= ;n A ∠= . 三、解答题(本题共30分,每小题5分) 13. 计算:1012cos 45()8(3)4-︒----π-. 14. 解分式方程:211322x x x--=--. 15. 已知:如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠. 求证:AE=CF . 16. 已知2410x x -+=,求2(1)64x x x x-+--的值.17. 列方程或方程组解应用题:我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为 13 800m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)? 18. 如图,一次函数1y x =--的图象与x 轴交于点A , 与y 轴交于点B ,与反比例函数ky x=图象的一个 交点为M (﹣2,m ). (1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上一点, 且2BOP AOB S S =△△,求点P 的坐标.四、解答题(本题共20分,每小题5分)19.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理. 月均用水量x (吨)频数(户)频率 05x <≤ 6 0.12 510x <≤ 0.24 1015x <≤ 16 0.32 1520x <≤ 10 0.20 2025x <≤ 4 2530x <≤20.04请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?20. 已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E .(1)求证:AM =2CM ;(2)若12∠=∠,23CD =,求ME 的值.21.如图,点A ,B ,C 分别是⊙O 上的点,∠B =60°,AC =3,CD是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC . (1)求证:AP 是⊙O 的切线; (2)求PD 的长.22. 阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:①在OA ,OB 上分别截取OD ,OE ,使OD =OE . ②分别以D ,E 为圆心,以大于12DE 为半径作弧,两弧在AOB ∠内交于点C.③作射线OC ,则OC 就是AOB ∠的平分线小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:作法: ①利用三角板上的刻度,在OA ,OB 上分别截取OM ,ON ,使OM =ON . ②分别过以M ,N 为OM ,ON 的垂线,交于点P .③作射线OP ,则OP 就是AOB ∠的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作AOB ∠平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.24. 在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ⊥交AD 于点F ,过点E 作AEH BEC ∠=∠,交射线FD 于点H ,交射线CD 于点N . (1)如图1,当点H 与点F 重合时,求BE 的长;(2)如图2,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)连结AC ,当以点E ,F ,H 为顶点的三角形与△AEC 相似时,求线段DN 的长.25.定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a 与线段b的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____;当m=5,n=2时,如图2,线段BC与线段OA的距离是______ .(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长.北京市东城区2012--2013学年第二学期初三综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分) 13. 解:1012cos 45()(4π-︒--=2(4)214---分3=. ………5分14. 解:211322x x x -+=-- ………………1分 去分母得2113(2)x x -+=-解得6x =. ………………4分 经检验:6x =是原方程的根.所以原方程的根为6x =. ………………5分 15. 证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D .…………………………2分 在△ABE 与△CDF 中,12.AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,∴△ABE ≌△CDF .…………………………4分 ∴AE=CF .………………………………5分16. 解:2(1)64x x x x-+-- 2(1)(4)(6)=(4)x x x x x x ---+-22424=4x x x x-+-2410x x -+=,24=1x x ∴-- .22424124==23.41x x x x -+-+=---原式 ………………………………………5分17. 解:设中国人均淡水资源占有量为x m 3,美国人均淡水资源占有量为y m 3. 根据题意得:5,13800.y x x y =⎧⎨+=⎩……………………………………………2分解得:2300,11500.x y =⎧⎨=⎩ ……………………………………………4分答:中、美两国人均淡水资源占有量各为2 300m 3,11 500m 3.………………………5分 18.解: (1) ∵M (﹣2,m )在一次函数1y x =--的图象上,∴ 211m =-=. ∴ M (﹣2,1).又M (﹣2,1)在反比例函数ky x=图象上, ∴2k =-. ∴2y x-=. ……........................3分 (2)由一次函数1y x =--可求(10)A -,,(0,1)B -. ∴11122112AOB S OB OA ∆=⨯⨯⨯=⨯=. ∴21=BOP AOB S ∆∆=.设BOP ∆边OB 上的高位h ,则=2h . 则P 点的横坐标为2±. 把P 点的横坐标为2±代入2y x-=可得P 点的纵坐标为1. (2,1)P ∴-或(2,1)P -. ……5分四、解答题(本题共20分,每小题5分)19.解:(1) 表格:从上往下依次是:12,0.08;图略; ……3分数学试卷及试题(2)68%;……4分 (3)120户. ……5分20.解:(1)∵四边形ABCD 是菱形.∴BC//AD .∴△∽△CFM ADM . ∴CF CMAD AM=. ∵F 为边BC 的中点,∴1122CF BC AD ==. ∴12CF CM AD AM ==. ∴2AM MC =. ……………………2分 (2)∵A B//DC , ∴ 1=4∠∠. ∵1=2∠∠, ∴ 2=4∠∠. ∵ME ⊥CD , ∴12CE CD =. ∵四边形ABCD 是菱形, ∴ 3=4∠∠. ∵F 为边BC 的中点, ∴12CF BC =. CF CE ∴=.在△CMF 和△CME 中,3=4∠∠,CF =CE ,CM 为公共边,∴△CMF ≌△CME . ∴ =90CFM CEM ∠∠=︒. ∵2=34∠∠=∠, ∴2=3430∠∠=∠=︒.数学试卷及试题∴3ME CE =. ∵223CD CE ==,∴3CE =. ∴1ME =. ……………………………5分 21.解:(1)证明:连接OA . ∵∠B =60°,∴∠AOC =2∠B =120°.又∵OA=OC ,∴∠ACP =∠CAO =30°.∴∠AOP =60°. ∵AP=AC ,∴∠P =∠ACP =30°. ∴∠OAP=90°,∴OA ⊥A P .∴ AP 是⊙O 的切线. …………………2分 (2)解:连接AD .∵CD 是⊙O 的直径,∴∠CAD =90°. ∴AD =AC •tan30°=33=3⨯. ∵∠ADC =∠B =60°,∴∠P AD =∠ADC ﹣∠P =60°﹣30°=30°.∴∠P =∠P AD . ∴PD=AD =3. …………………5分22.解:(1)小聪的作法正确. …………………1分 理由:∵PM ⊥OM , PN ⊥ON , ∴∠OMP =∠ONP =90°. 在Rt △OMP 和Rt △ONP 中, ∵OP=OP ,OM=ON ,∴Rt △OMP ≌R t △ONP (HL ).∴MOP NOP ∠=∠.∴OP 平分∠AOB . …………………2分 (2)解:如图所示. …………………3分作法:①利用刻度尺在OA ,OB 上分别截取OG=OH . ②连结GH ,利用刻度尺作出GH 的中点Q .③作射线OQ ,则OQ 为∠AOB 的平分线. …5分五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)22(2)4(1)m m m ∆=-+-=.∵方程有两个不相等的实数根,∴0≠m .……………………………………………………………………………1分 ∵01≠-m ,∴m 的取值范围是01m m ≠≠且.………………………………………………………2分(2)证明:令0=y 得,01)2()1(2=--+-x m x m . ∴)1(2)2()1(2)2(2-±--=-±--=m m m m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . …………………………………4分 ∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ).∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(1,0-).……5分(3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且01m m ≠≠且,∴2=m .…………………………………………………………………………6分 当2=m 时,抛物线为12-=x y .把它的图象向右平移3个单位长度,得到的抛物线解析式为 861)3(22+-=--=x x x y .…………………………………………………7分24.解:(1)∵EF EC ⊥,∴90AEF BEC ∠+∠=︒.∵AEF BEC ∠=∠,∴45BEC ∠=︒.∵90B ∠=︒,∴BE BC =.∵3BC =,∴3BE =.…………………2分(2)过点E 作EG CN ⊥,垂足为点G .∴BE CG =.∵AB ∥CN ,∴AEH N ∠=∠,BEC ECN ∠=∠.∵AEH BEC ∠=∠,∴N ECN ∠=∠.∴EN EC =.∴22CN CG BE ==.∵BE x =,DN y =,4CD AB ==,∴()2423y x x =-≤≤.…………………4分(3)∵矩形ABCD ,∴90BAD ∠=︒.∴90AFE AEF ∠+∠=︒.∵EF EC ⊥ ,∴90AEF CEB ∠+∠=︒.∴AFE CEB ∠=∠.∴HFE AEC ∠=∠.当以点E ,F ,H 为顶点的三角形与AEC ∆相似时,ⅰ)若FHE EAC ∠=∠,∵BAD B ∠=∠,AEH BEC ∠=∠,∴FHE ECB ∠=∠ .∴EAC ECB ∠=∠.∴tan tan EAC ECB ∠=∠,∴BC BE AB BC =.∴94BE =.∴12DN =. ⅱ)若FHE ECA ∠=∠,如图所示,记EG 与AC 交于点O . ∵AEH BEC ∠=∠,∴AHE BCE ∠=∠.∴ENC ECN ∠=∠.∵EN EC =,EG CN ⊥, ∴12∠=∠.∵AH ∥EG ,∴1FHE ∠=∠.∴2FHE ∠=∠.∴2ECA ∠=∠. ∴EO CO =.设3EO CO k ==,则4,5AE k AO k ==,∴85AO CO k +==. ∴58k =. ∴52AE =,32BE =. ∴1DN =. 综上所述,线段DN 的长为12或1. ………………7分 25.解:(1)2,5; ………………4分(2)当24m ≤≤时,(22)d n n =-≤≤;当46m ≤≤时,2d =. ………………6分(3)16+4π. ………………8分数学试卷及试题。

2013年北京市11个区(县)中考二模数学试题(含参考答案及评分标准)-11

2013年北京市11个区(县)中考二模数学试题(含参考答案及评分标准)-11

2013.6海淀区九年级第二学期数学期末练习一、选择题(本题共32分,每小题4分)1 . 6-的绝对值是A. 6- B.16 C. 16- D. 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A. 76.0110⨯ B. 66.0110⨯ C. 70.60110⨯ D. 560.110⨯3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若4AD =,2DB =,则DE BC 的值为 A. 12 B. 23 C. 34D. 2 4. 下列计算正确的是 A. 632a a a =⋅ B. 842a a a ÷= C. 623)(a a = D. a a a 632=+5.下列图形可以由一个图形经过平移变换得到的是A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .10 7. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:组员1 组员2 组员3 组员4 甲889597100乙 90 94 97 99设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是A.x x =乙甲,22S S >乙甲B. x x =乙甲,22S S <乙甲 C.x x >乙甲,22S S >乙甲 D. x x <乙甲,22S S <乙甲 8.如图1,在矩形A B C D 中,1,3AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A.点AB. 点BC. 点CD. 点D图1 图2二、填空题(本题共16分,每小题4分)9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90OAB ∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则BC 的长为_____________.12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为 ;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -= . 三、解答题(本题共30分,每小题5分)13.计算:201272tan 60(3)3π-⎛⎫-+︒+- ⎪⎝⎭.14.解方程:2250x x --= .15.已知:如图,在△ABC 中,90ABC ∠=︒.DC ⊥AC 于点C ,且CD CA =,DE ⊥BC 交BC 的延长线于点E .求证:CE AB =. 16. 已知:26x x +=,求代数式(21)(21)(3)7x x x x -+---的值. 17.如图,在平面直角坐标系xOy 中,反比例函数xky =的图象与一次函数2+=x y 的图象的一个交点为)1(-,m A . (1)求反比例函数的解析式; (2)设一次函数2+=x y 的图象与y 轴交于点B ,若P 是y 轴上一点, 且满足PAB △的面积是3,直接写出点P 的坐标.18. 列方程(组)解应用题: 园博会招募志愿者,高校学生积极响应.据统计,截至2月28日和3月10日,高校志愿者报名人数分别为2.6万人和3.6万人,而志愿者报OACB名总人数增加了1.5万人,并且两次统计数据显示,高校志愿者报名人数与志愿者报名总人数的比相同.求截至3月10日志愿者报名总人数.四、解答题(本题共20分,每小题5分)19.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线交AB 于点G ,交DC 的延长线于点H ,连接DG .若10BC =,45GDH ∠=︒,DG 82=,求CH 的长及ABCD的周长.20.如图,△ABC 中,E 是AC 上一点,且AE=AB ,BAC EBC ∠=∠21,以AB 为直径的⊙O 交AC 于点D ,交EB 于点F. (1)求证:BC 与⊙O 相切; (2)若18,sin 4AB EBC =∠=,求AC 的长. 21.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图 北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?22.如图1,四边形ABCD 中,AC 、BD 为它的对角线,E 为AB 边上一动点(点E 不与点A 、B 重合),EF ∥AC 交BC 于点F ,FG ∥BD 交DC 于点G ,GH ∥AC 交AD 于点H ,连接HE .记四边形EFGH 的周长为p ,如果在点E 的运动过程中,p 的值不变,则我们称四边形ABCD 为“Ω四边形”, 此时p 的值称为它的“Ω值”.经过探究,可得矩形是“Ω四边形”.如图2,矩形ABCD 中,若AB =4,BC =3,则它的“Ω值”为 .图1 图2 图3(1)等腰梯形 (填“是”或 “不是”)“Ω四边形”;(2)如图3,BD 是⊙O 的直径,A 是⊙O 上一点,=34AD AB =,,点C 为AB 上的一动点,将△DAB 沿CD 的中垂线翻折,得到△CEF .当点C 运动到某一位置时,以A 、B 、C 、D 、E 、F 中的任意四个点为顶点的“Ω四边形”最多,最多有 个. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:抛物线2(2)2y ax a x =+--过点(3,4)A .(1)求抛物线的解析式; (2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤. ①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范为 .24.如图1,在△ABC 中,AB =AC ,ABC α∠=. 过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD . (1)求证:AC AD =; (2)点G 为线段CD 延长线上一点,将射线GC 绕着点G 逆时针旋转β,与射线BD 交于点E . ①若βα=,2GD AD =,如图2所示,求证:2DEG BCD S S ∆∆=;②若2βα=,GD kAD =,请直接写出DEGBCDS S ∆∆的值(用含k 的代数式表示). 25. 在平面直角坐标系xOy 中,点A 的坐标是0,2(),过点A 作直线l 垂直y 轴,点B 是直线l 上异于点A 的一点,且ÐOBA =a .过点B 作直线l 的垂线m ,点C 在直线m 上,且在直线l 的下方,ÐOCB =2a .设点C的坐标为x ,y ().(1) 判断△OBC 的形状,并加以证明;(2) 直接写出y 与x 的函数关系式(不要求写自变量的取值范围); (3) 延长CO 交(2)中所求函数的图象于点D .求证:CD =CO ×DO .海淀区九年级第二学期期末练习数学试卷答案及评分参考一、选择题(本题共32分,每小题4分) 题 号 12345 6 7 8 答 案 D B B C BCAC二、填空题(本题共16分,每小题4分)题 号 9 101112 答 案223 4π2;8048三、解答题(本题共30分,每小题5分)13.计算:201272tan 60(3)3π-⎛⎫-+︒+- ⎪⎝⎭.解:原式933231=-+⨯+ ------------------------- 4分 103=-. ------------------------- 5分 14.解方程:2250x x --= . 解:225x x -=.22151x x -+=+.2(1)6x -=. ------------------------- 2分 16x -=±.------------------------- 3分 16x =±.∴1216,16x x =+=-.------------------------- 5分15. 证明:∵DC ⊥AC 于点C ,∴90.ACB DCE ∠+∠=︒∵90ABC ∠=︒, ∴90.ACB A ∠+∠=︒∴.A DCE ∠=∠ -------------------------1分 ∵DE ⊥BC 于点E , ∴90.E ∠=︒ ∴B E ∠=∠.在△ABC 和△CED 中,,,,B E A DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED .-------------------------4分∴CE AB =. -------------------------5分 16.解:原式=224137x x x --+- ------------------------2分 =2338x x +-. ------------------------3分∵26x x +=, ∴原式=23()8x x +-=368⨯--------------------------4分=10.-------------------------5分17.解:(1)∵ 点)1(-,m A 在一次函数2+=x y 的图象上, ∴ 3m =-. -------------------------1分 ∴ A 点的坐标为(3,1)--. ∵ 点A (3,1)--在反比例函数xky =的图象上, ∴ 3k =. -------------------------2分 ∴ 反比例函数的解析式为3y x=.-------------------------3分 (2)点P 的坐标为(0,0)或(0,4).-------------------------5分 (写对一个给1分)18. 解:设截至3月10日志愿者报名总人数为x 万人. -------------------------1分依题意,得3.6 2.6=1.5x x -. -------------------------3分 解得 5.4x =. -------------------------4分经检验, 5.4x =是原方程的解,且符合题意.答:截至3月10日志愿者报名总人数为5.4万人. -------------------------5分四、解答题(本题共20分,每小题5分) 19.解:∵四边形ABCD 是平行四边形,OFE D C BA∴AB CD =,AB ∥CD ,AD BC =. ∵HG ⊥AB 于点G , ∴90BGH H ∠=∠=︒.在△DHG 中,90H ∠=︒,45GDH ∠=︒,82DG =, ∴8DH GH ==.-------------------------1分 ∵E 为BC 中点,10BC =, ∴5BE EC ==. ∵BEG CEH ∠=∠, ∴△BEG ≌△CEH .∴142GE HE GH ===.-------------------------3分 在△EHC 中,90H ∠=︒,5CE =,4EH =, ∴3CH =.-------------------------4分 ∴5AB CD ==.∴30AB BC CD AD +++=.∴ABCD 的周长为30.-------------------------5分 20. (1)证明:连接AF .∵AB 为直径, ∴∠90AFB =︒. ∵AE AB =,∴△ABE 为等腰三角形.∴∠12BAF =∠BAC .∵BAC EBC ∠=∠21,∴∠BAF =∠.EBC -------------------------1分 ∴∠FAB +∠FBA =∠EBC +∠90FBA =︒. ∴∠90ABC =︒ .∴BC 与⊙O 相切. -------------------------2分 (2) 解:过E 作EG BC ⊥于点.G ∠BAF =∠EBC ,∴1sin sin 4BAF EBC ∠=∠=.在△AFB 中,∠90AFB =︒, ∵8AB =,∴BF AB =⋅sin ∠18 2.4BAF =⨯=--------------3分∴24BE BF ==.在△EGB 中,∠90EGB =︒,∴1sin 4 1.4EG BE EBC =⋅∠=⨯=------------------4分∵EG BC ⊥,AB ⊥BC, ∴EG ∥.AB∴△CEG ∽△.CAB∴CE EGCA AB =. ∴1.88CE CE =+ ∴8.7CE =∴8648.77AC AE CE =+=+= -------------------------5分21. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.---------------------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米. ------5分22.解: “Ω值”为10.---------------------2分(1)是;--------------------3分(2)最多有5个.--------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23解:(1)∵抛物线2(2)2y ax a x =+--过点(3,4)A ,∴93(2)24a a +--=. 解得 1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=. ∴1x =-或2.∴抛物线与x 轴交于点(1,0)A -,(2,0)B .-----3分 当2y =-时,222x x --=-. ∴0x =或1.∴抛物线与直线2y =-交于点(0,2)C -, (1,2)D -.∴C ,D 关于直线1y =-的对称点'(0,0)C ,'(1,0)D .----4分 ∴根据图象可得1-≤m ≤0或1≤m ≤2.----------------5分 ②k 的取值范围为k ≥4或k ≤4-.----------------7分 24.解:(1) ∵BD 平分ABC ∠,∴12∠=∠.∵AD ∥BC , ∴23∠=∠.∴13∠=∠.---------------1分 ∴AB AD =. ∵AB AC =,∴AC AD =.---------------2分 (2)①证明:过A 作AH BC ⊥于点H .∴90AHB ∠=.∵AB AC =,ABC α∠=, ∴ACB ABC α∠=∠=. ∴1802BAC α∠=︒-. 由(1)得=AB AC AD =.∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.∴12BDC BAC ∠=∠. ∴90GDE BDC α∠=∠=︒-.----------3分∵G ∠=β=αABC =∠,∴90G GDE ∠+∠=︒. ∴90DEG AHB ∠=∠=︒.∴△DEG ∽△AHB .------------------4分 ∵2GD AD =,AB AD =,∴22DEG AHB S GD S BA ∆∆==4. ∵AD ∥BC ,∴2BCD ABC AHB S S S ∆∆∆==.∴2DEG BCD S S ∆∆=.----------------------5分 ②2=DEG BCDS k S ∆∆. -------------------------7分 25.解:(1)△OBC 为等腰三角形.---------1分 证明:如图1,∵AB BC ⊥, ∴90ABC ∠=︒. ∵OBA α∠=,∴90CBO α∠=︒-. ∵2BCO α∠=,∴90BOC CBO α∠=︒-=∠. ∴BC OC =.∴ △OBC 为等腰三角形.---------------2分图1(2)y 与x 的函数关系式为y =-14x 2+1.----4分 (3)过D 作DF ^l 于F ,DG BC ⊥于G 交直线OA 于H . ∵C 为抛物线上异于顶点的任意一点,且BC OC =, ∴DO =DF .-------------------------5分 设DO =DF =a ,BC =OC =b , 则DF AH BG a ===,DC a b =+. ①当点C 在x 轴下方时,如图2, ∵2OA =,∴2,OH a CG b a =-=-. ∵OH ∥CG ,∴△DOH ∽△DCG . ∴OH DOCG DC=. ∴2a ab a a b -=-+.∴ab a b =+.∴CD =CO ×DO .------------------------7分 ②当点C 在x 轴上方时,如图3,2OH a =-,CG a b =-.同理可证CD =CO ×DO .③当点C 在x 轴上时,如图4,2CO DO ==.∴CD CO DO =⋅.综上所述,CD CO DO =⋅.------------------8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)图 3图 4。

2012-2013学年度北京市东城区第二学期初三综合练习(一)答案

2012-2013学年度北京市东城区第二学期初三综合练习(一)答案

2012-2013学年度北京市东城区第二学期初三综合练习(一)数学试卷参考答案一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解:原式=231- ………………4分2. ………………5分 14.(本小题满分5分)解:2936x x +≥+, ………………1分2369x x -≥-, ………………2分 3x -≥-, ………………3分 3x ≤. ………………4分∴ 不等式的正整数解为1,2,3.………………5分15.(本小题满分5分)证明:∵ AB =AC ,点D 是BC 的中点,∴ ∠CAD =∠BAD . ………………1分又∵ ∠EAB =∠BAD ,∴ ∠CAD =∠EAB . ………………2分在△ACF 和△ABE 中,,,,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴ △ACF ≌△ABE . ………………4分∴ BE =CF . ………………5分16.(本小题满分5分)解:原式=221)63m m m -+++2(=24263m m m -+++2=225m m ++2. ………………3分 ∵ m 是方程210x x +-=的根, ∴ 210m m +-=. ∴ 21m m +=.∴ 原式=2)5m m ++2(=7.………………………5分17.(本小题满分5分) 解:(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分. 1分 根据题意得:21002100203x x=+. 2分得:70x =.3分经检验70x =是原方程的解. 4分答:小红步行的平均速度是70米/分.(2)根据题意得:21002100404570370+=<⨯∴小红能在联欢会开始前赶到. ……………………………5分18.(本小题满分5分)解:(1)∵平行四边形ABCD ,A (-2,0),B (2,0),D (0,3), ∴可得点C 的坐标为(4,3).∴反比例函数的解析式为12yx =.…………………………………3分(2)将点B的横坐标2代入反比例函数12yx=中,可得y=6.∴将平行四边形ABCD向上平移6个单位,能使点B落在双曲线上.………5分四、解答题(本题共20分,每小题5分)19.(本小题满分5分)解:(1)调查家长总数为:50÷25%=200人;…………………………1分(2)持赞成态度的学生家长有200﹣50﹣120=30人,故统计图为:………………………3分(3)持赞成态度的家长有:80000×15%=12000人.………………………………5分20.(本小题满分5分)解:(1)证明:∵矩形ABCD,∴AD∥BC.∴∠CED =∠ADE.又∵点G是DF的中点,∴AG=DG.∴∠DAG =∠ADE.∴∠CED =∠DAG.…………………………2分(2)∵∠AED=2∠CED,∠AGE=2∠DAG,∴∠AED=∠AGE.∴ AE =AG . ∵ AG =4, ∴ AE =4.在Rt △AEB 中,由勾股定理可求AB∴ sin 4AB AEB AE ∠==…………………………5分 21.(本小题满分5分) 解:(1)证明:连结OC .∵ OE ⊥AC , ∴ AE =CE . ∴ F A =FC . ∴ ∠F AC =∠FCA . ∵ OA =OC , ∴ ∠OAC =∠OCA .∴ ∠OAC +∠F AC =∠OCA +∠FCA . 即∠F AO =∠FCO .∵ F A 与⊙O 相切,且AB 是⊙O 的直径,∴ F A ⊥AB .∴ ∠FCO =∠F AO =90°.∴ PC 是⊙O 的切线.………………………………………………… 2分 (2)∵∠PCO =90°,即∠ACO +∠ACP =90°.又∵∠BCO +∠ACO =90°, ∴ ∠ACP =∠BCO .∵ BO =CO ,∴∠BCO=∠B.∴∠ACP=∠B.∵∠P公共角,∴△PCA∽△PBC.∴PC PA AC PB PC BC==.∵AP∶PC=1∶2,∴1=2 ACBC.∵∠AEO=∠ACB=90°,∴OF∥BC.∴AOF ABC∠=∠.∴1 tan tan2AOF ABC∠=∠=.∴1 tan2AFAOFAO∠==.∵AB=4,∴AO=2 .∴AF=1 .∴CF=1 .………………5分22.(本小题满分5分)解:(1)拼接成的四边形所图虚线所示;………………2分(2)8+8+…………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB=4,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为2)=8+E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于8+.)五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分)解:(1)证明:Δ=23)4(1)m m +-+( =26944m m m ++-- =225m m ++ =2(1)4m ++. ∵ 2(1)m +≥0, ∴ 2(1)4m ++>0.∴ 无论m 取何实数时,原方程总有两个不相等的实数根. …………2分 (2)解关于x 的一元二次方程x 2+(m +3)x +m +1=0,得 x = ………………3分要使原方程的根是整数,必须使得2(1)4m ++是完全平方数. 设22(1)4m a ++=, 则(1)(1)4a m a m ++--=.∵a +1m +和1a m --的奇偶性相同, 可得12,1 2.a m a m ++=⎧⎨--=⎩或12,1 2.a m a m ++=-⎧⎨--=-⎩解得2,1.a m =⎧⎨=-⎩或2,1.a m =-⎧⎨=-⎩. ………………5分将m =-1代入x =122,0x x =-=符合题意. ………………6分∴ 当m =-1 时 ,原方程的根是整数. ……………7分 24.(本小题满分7分)解:(1)猜想的结论:MN =AM +CN . ……………1分 (2)猜想的结论:MN =CN -AM . ……………3分 证明:在 NC 截取 CF = AM ,连接BF 。

2013年东城二模数学25题详解

2013年东城二模数学25题详解

25.定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____;当m=5,n=2时,如图2,线段BC与线段OA的距离是______ .(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长.解:(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离等于平行线之间的距离,即为2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.解析:分析: (1)理解新定义,按照新定义的要求求出两个距离值;(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;。

北京中考13年二模数学部分区23题及答案

北京中考13年二模数学部分区23题及答案

13年二模23题部分区考题23.已知关于x 的一元二次方程x 2+(4-m )x +1-m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy 中,将抛物线y =x 2+(4-m )x +1-m向右平移3个单位,得到一个新的抛物线,当直线y =x +b 与这个新抛物线有且只有一个公共点时,求b 的值.23. 已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线21122y x x =-上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.23.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m 的值.(备图)23. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.23.在平面直角坐标系xOy 中, A ,B 两点在函数11:(0)k C y x x=>的图象上,其中10k >.AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,且 AC =1.(1) 若1k =2,则AO 的长为 ,△BOD 的面积为 ;(2) 如图1,若点B 的横坐标为1k ,且11k >,当AO =AB 时,求1k 的值;(3) 如图2,OC =4,BE ⊥y 轴于点E ,函数22:(0)kC y x x=>的图象分别与线段BE ,BD 交于点M ,N ,其中210k k <<.将△OMN 的面积记为1S ,△BMN 的面积记为2S ,若12S S S =-,求S 与2k 的函数关系式以及Sy x O 23.已知:抛物线2(2)2y ax a x =+--过点(3,4)A . (1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .23.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC . ①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:23. (1)证明:∵△=()()2441m m ---.……………………………………………… 1分 =2412m m -+=()228m -+…………………………………………………………2分 ∴△>0. …………………………………………………………………3分∴无论m 取何值,方程总有两个不相等的实数根.(2)把x =-3代入原方程,解得m =1. …………………………………………………4分 ∴23y x x =+.即23924y x ⎛⎫=+- ⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x ⎛⎫=-- ⎪⎝⎭. ………………………5分即2'3y x x =+∵抛物线'y 与直线y x b =+只有一个公共点,∴23x x x b -=+..…………………………………………………………………6分 即240x x b --=. ∵△=0.∴()()2440b --⨯-=.解得b = -4. ……………………………………………………………………7分23.解:(1)由21122y x x =-=0,得01=x ,21x =. ∴抛物线与x 轴的交点坐标为(0,0)、(1,0). ········································· 2分 (2)当a =1时,得A (1,0)、B (2,1)、C (3,3), ······································· 3分分别过点B 、C 作x 轴的垂线,垂足分别为E 、F ,则有ABC S ∆=AFC S △ - AEB S △ - BEFC S 梯形=12(个单位面积)…………………………………4分 (3)如:)(3123y y y -=.∵22111112222y a a a a =⨯-⨯=-,()()2221122222y a a a a =⨯-⨯=-, ()()2231193332222y a a a a =⨯-⨯=-,又∵3(12y y -)=()()2211113222222a a a a ⎡⎤⎛⎫⎛⎫⨯-⨯-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=29322a a -. ·································································· 5分∴)(3123y y y -=. ···················································································· 6分23、(1)证明:22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,-----------1分∴此方程总有两个实数根.------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分 抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分23.解:(1)22(2)4(1)m m m ∆=-+-=. ∵方程有两个不相等的实数根,∴0≠m .……………………………………………………………………………1分 ∵01≠-m ,∴m 的取值范围是01m m ≠≠且.………………………………………………………2分 (2)证明:令0=y 得,01)2()1(2=--+-x m x m .∴)1(2)2()1(2)2(2-±--=-±--=m mm m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . …………………………………4分∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ).∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(1,0-).……5分 (3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且01m m ≠≠且,∴2=m .…………………………………………………………………………6分 当2=m 时,抛物线为12-=x y .把它的图象向右平移3个单位长度,得到的抛物线解析式为图1l861)3(22+-=--=x x x y .…………………………………………………7分23.解:(1) AO△BOD 的面积为 1; ………………………… 2分(2) ∵A ,B 两点在函数11:(0)k C y x x=>的图象上,∴点A ,B 的坐标分别为1(1,)k ,1(,1)k . ………………… 3分 ∵AO =AB ,由勾股定理得2211+=AO k ,22211(1)(1)=--+AB k k , ∴2221111(1)(1)+=--+k k k .解得12k =12k = …………………………………………… 4分 ∵11k >,∴12k = ………………… 5分 (3) ∵OC =4,∴点A 的坐标为(1,4).∴14k =. 设点B 的坐标为4(,)m m ,∵BE ⊥y 轴于点E ,BD ⊥x 轴于点D , ∴四边形ODBE 为矩形,且=4ODBE S 四边形,点M 的纵坐标为4m,点N 的横坐标为m .∵点M ,N 在函数22:(0)k C y x x=>的图象上,∴点M 的坐标为24(,)4mk m,点N 的坐标为2(,)km m .∴2=2=OME OND k S S ∆∆. ∴222114=()(224)mk k S BM BN m mm⋅=--22(4)8k -=.∴12=S S S -222=(4)k S S ---22=42k S --.∴222222(4)14284k S k k k -=--⨯=-+, ………………………… 6分其中204k <<.∵2222211(2)144S k k k =-+=--+,而104-<,∴当22k =时,S 的最大值为1. …………………………………… 7分23解:(1)∵抛物线2(2)2y ax a x =+--过点(3,4)A ,∴93(2)24a a +--=. 解得 1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=. ∴1x =-或2.∴抛物线与x 轴交于点(1,0)A -,(2,0)B .-----3分 当2y =-时,222x x --=-. ∴0x =或1.∴抛物线与直线2y =-交于点(0,2)C -, (1,2)D -.∴C ,D 关于直线1y =-的对称点'(0,0)C ,'(1,0)D .----4分 ∴根据图象可得1-≤m ≤0或1≤m ≤2.----------------5分 ②k 的取值范围为k ≥4或k ≤4-.----------------7分 23.解: (1)抛物线2y x ax b =-++过点A (-1,0),B (3,0)10930a b a a b --+=⎧∴⎨-++=⎩解得:23a b =⎧⎨=⎩∴抛物线的解析式为223y x x =-++顶点(14)D ,函数(0ky x x=>,m 是常数)图象经过(14)D ,, 4k ∴=.…………………………………………………………………… 2分 (2)①设G 点的坐标为4m ⎛⎫ ⎪⎝⎭m ,,据题意,可得E 点的坐标为41m ⎛⎫ ⎪⎝⎭,,F 点的坐标为40m ⎛⎫ ⎪⎝⎭,,1m >,FG m ∴=,44DE m=-. 由△DFG 的面积为4,即14442m m ⎛⎫-= ⎪⎝⎭,得3m =,∴点G 的坐标为433⎛⎫⎪⎝⎭,.………………………………………………… 3分②直线FC 和DG 平行.理由如下:方法1:利用相似三角形的性质.据题意,点C 的坐标为(10),,1FE =,1m >,易得4EC m =,1EG m =-,44DE m=- 111G E m m EF -∴==-,4414DE m m CEm-==-. G E D EE F C E∴=. D E G F E C∠=∠ ∴△D E G ∽△FEC E D G E C F ∴∠=∠ //FC DG ∴ ………………………………………………… 5分方法2:利用正切值.据题意,点C 的坐标为(10),,1FE =,1m >,易得4EC m=,1EG m =-, 1444G E m m DE m -∴==-,144FE mCE m==. tan tan EDG ECF ∴∠=∠E D G E CF ∴∠=∠ //FC DG ∴.③解:方法1: F C D G ∥,∴当FD CG =时,有两种情况: 当FD CG ∥时,四边形DFCG 是平行四边形, 由上题得,GE DEEF CE=1m =-,11m ∴-=,得2m =. ∴点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.…………………………………… 6分 当FD 与CG 所在直线不平行时,四边形ADCB 是等腰梯形, 则DC FG =,4m ∴=,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.…………………………………… 7分综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+. 方法2.在Rt ⊿DFE 中,1FE =,44DE m=-2222241(4)FD FE DE m∴=+=+-在Rt ⊿GEC 中,4EC m =,1EG m =-, 222224()(1)CG EC EG m m∴=+=+-FD CG = 22FD CG ∴=2241(4)m ∴+-224()(1)m m=+-解方程得:2m =或4m =当2m =时,点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是26y x =-+. 当4m =时,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.注:不同解法酌情给分。

2013北京东城高考二模数学理(含解析)

2013北京东城高考二模数学理(含解析)

北京市东城区2012-2013学年度第二学期高三综合练习(二)数学(理科)第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合{|(1)0,}A x x x x =-<∈R ,{|22,}B x x x =-<<∈R ,那么集合AB 是( ).A .∅B .{|01,}x x x <<∈RC .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R(2)如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100] ,则图中x 的值等于( ). A .0.754 B .0.048 C .0.018D .0.012(3)已知圆的极坐标方程是2cos ρθ=,那么该圆的直角坐标方程是( ).A .22(1)1x y -+=B .22(1)1x y +-=C .22(1)1x y ++=D .222x y +=(4)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( ). A .1 B .2 C .3 D .4(5)阅读程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为( ).A .1B .2C .3D .4(6)已知3sin()45x π-=,那么sin 2x 的值为( ).A .325B .725C .925D .1825(7)过抛物线24y x =焦点的直线交抛物线于A ,B 两点,若10AB =,则AB 的中点到y 轴的距离等于( ). A .1 B .2 C .3 D .4(8)已知函数()y f x =是定义在R 上的奇函数,且当(,0)x ∈-∞时,()()0f x xf x '+<(其中()f x '是()f x 的导函数),若0.30.3(3)(3)a f =⋅,(log 3)(log 3)b f ππ=⋅,3311(log )(log )99c f =⋅,则a ,b ,c 的大小关系是( ).A .a b c >>B .c b a >>C .c a b >>D .a c b >>第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分. (9)已知向量(2,3)=-a ,(1,)λ=b ,若//a b ,则λ= .(10)若复数i1ia +-是纯虚数,则实数a 的值为 .(11)各项均为正数的等比数列{}n a 的前n 项和为n S ,若32a =,425S S =,则1a 的值为 ,4S 的值为 .(12)如图,AB 为⊙O 的直径,AC 切⊙O 于点A ,且过点C 的割线CMN 交AB 的延长线于点D ,若CM MN ND ==,22AC =,则CM = ,AD = .(13)5名志愿者到3个不同的地方参加义务植树,则每个地方至少有一名志愿者的方案共有 种.(14)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列;④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .ABC DMNO三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题共13分)已知函数()sin(3cos sin)f x x x x=-.(Ⅰ)求()f x的最小正周期;(Ⅱ)当2π(0)3x∈,时,求()f x的取值范围.3 / 18(16)(本小题共13分)某校高三年级同学进行体育测试,测试成绩分为优秀、良好、合格三个等级.测试结果如下表:(单位:人)优秀良好合格男1807020女120a30按优秀、良好、合格三个等级分层,从中抽取50人,其中成绩为优的有30人.(Ⅰ)求a的值;(Ⅱ)若用分层抽样的方法,在合格的同学中按男女抽取一个容量为5的样本,从中任选2人,记X为抽取女生的人数,求X的分布列及数学期望.5 / 18(17)(本小题共14分)如图,△BCD 是等边三角形, AB AD =,90BAD ∠=,将△BCD 沿BD 折叠到△'BC D 的位置,使得'AD C B ⊥.(Ⅰ)求证:'AD AC ⊥;(Ⅱ)若M ,N 分别是BD ,C B '的中点,求二面角N AM B --的余弦值.ABC DABCDMN(18)(本小题共14分)已知函数()ln af x x x=+(0)a >. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果00(,)P x y 是曲线()y f x =上的任意一点,若以 00(,)P x y 为切点的切线的斜率12k ≤恒成立,求实数a 的最小值;(Ⅲ)讨论关于x 的方程32()1()22x bx a f x x ++=-的实根情况.7 / 18(19)(本小题共13分)已知椭圆C :22221x y a b+=(0)a b >>的离心率32e =,原点到过点(,0)A a ,(0,)B b -的直线的距离是455. (Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆C 上一动点P ()00,x y 关于直线2y x =的对称点为()111,P x y ,求2211x y +的取值范围.(Ⅲ)如果直线1(0)y kx k =+≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为圆心的圆上,求k 的值.(20)(本小题共13分)已知数列{}n a ,11a =,2n n a a =,410n a -=,411n a +=(*)n ∈N . (Ⅰ)求4a ,7a ;(Ⅱ)是否存在正整数T ,使得对任意的*n ∈N ,有n T n a a +=; (Ⅲ)设3122310101010nna a a a S =+++++,问S 是否为有理数,说明理由.9 / 18北京市东城区2012-2013学年度第二学期高三综合练习(二)数学参考答案(理科)一、选择题(本大题共8小题,每小题5分,共40分) (1)B (2)C (3)A (4)D (5)D (6)B (7)D (8)C 二、填空题(本大题共6小题,每小题5分,共30分)(9)32- (10)1 (11)12152(12)2 27 (13)150 (14)①③ 注:两个空的填空题第一个空填对得3分,第二个空填对得2分. 三、解答题(本大题共6小题,共80分) (15)(共13分)解:(Ⅰ)因为()sin (3cos sin )f x x x x =- 23sin cos sin x x x =- =21(23sin cos 2sin )2x x x -11=(3sin 2cos2)22x x +-1sin(2)62x π=+-.所以()f x 的最小正周期2T π==π2. (Ⅱ)因为203x π<<, 所以32662x πππ<+<. 所以()f x 的取值范围是31(,]22-. ………………………………13分(16)(共13分)解:(Ⅰ)设该年级共n 人,由题意得5030180120n =+,所以500n =. 则500(180120702030)80a =-++++=. (Ⅱ)依题意,X 所有取值为0,1,2.22251(0)10C P X C ===,1123253(1)5C C P X C ===,23253(2)10C P X C ===.X 的分布列为:X 0 12P110353101336012105105EX =⨯+⨯+⨯=. ………………………………………13分 (17)(共14分)(Ⅰ)证明:因为90BAD ∠=所以AD AB ⊥,又因为'C B AD ⊥,且'AB C B B =,所以 AD ⊥平面'C AB ,因为'AC ⊂平面'C AB ,所以 'AD AC ⊥.(Ⅱ)因为△BCD 是等边三角形,AB AD =,90BAD ∠=,不防设1AB =,则 2BC CD BD ===, 又因为M ,N 分别为BD ,'C B 的中点,由此以A 为原点,AB ,AD ,'AC 所在直线为坐标轴建立空间直角坐标系A xyz -.则有(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,'(0,0,1)C ,11(,,0)22M ,11(,0,)22N .所以11(,,0)22AM =,11(,0,)22AN =.设平面AMN 的法向量为(,,)x y z =m . 则00.AM AN ⎧⋅=⎪⎨⋅=⎪⎩m ,m 即110,22110.22x y x z ⎧+=⎪⎪⎨⎪+=⎪⎩ 令1x =,则1y z ==-.AB CDMNxyz11 / 18所以(1,1,1)=--m . 又平面ABM 的一个法向量为(0,0,1)=n . 所以 13cos ,33⋅-<>===-m n m n m n . 所以二面角N AM B --的余弦值为33. ………………………………14分 (18)(共14分)解:(Ⅰ)()ln af x x x=+,定义域为(0,)+∞, 则|221()a x af x x x x-=-=. 因为0a >,由()0,f x '>得(,)x a ∈+∞, 由()0,f x '<得(0,)x a ∈, 所以()f x 的单调递增区间为(,)a +∞ ,单调递减区间为(0,)a . (Ⅱ)由题意,以00(,)P x y 为切点的切线的斜率k 满足00201()2x a k f x x -'==≤ 0(0)x >, 所以20012a x x ≥-+对00x >恒成立.又当00x >时, 2001122x x -+≤,所以a 的最小值为12. (Ⅲ)由题意,方程32()1()22x bx a f x x ++=-化简得 21ln 2b x x =-+12(0,)x ∈+∞令211()ln 22h x x x b =--+,则1(1)(1)()x x h x x x x+-'=-=.当(0,1)x ∈时, ()0h x '>, 当(1,)x ∈+∞时, ()0h x '<,所以()h x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减.所以()h x 在1x =处取得极大值即最大值,最大值为211(1)ln1122h b b =-⨯-+=-.所以 当0b ->, 即0b <时,()y h x = 的图象与x 轴恰有两个交点,方程32()1()22x bx a f x x ++=-有两个实根,当0b =时, ()y h x = 的图象与x 轴恰有一个交点,方程32()1()22x bx a f x x ++=-有一个实根,当0b >时, ()y h x = 的图象与x 轴无交点,方程32()1()22x bx a f x x ++=-无实根. ……14分 (19)(共13分) 解: (Ⅰ)因为32c a =,222a b c -=, 所以 2a b =. 因为原点到直线AB :1x ya b -=的距离22455ab d a b==+, 解得4a =,2b =.故所求椭圆C 的方程为221164x y +=.(Ⅱ)因为点()00,P x y 关于直线2y x =的对称点为()111,P x y , 所以 011010121,2.22y y x x y y x x-⎧⨯=-⎪-⎪⎨++⎪=⨯⎪⎩13 / 18解得 001435y x x -=,001345y x y +=. 所以22221100x y x y +=+.因为点()00,P x y 在椭圆C :221164x y+=上,所以22222011344x x y x y +=+=+.因为044x -≤≤, 所以2211416x y ≤+≤.所以2211x y +的取值范围为[]4,16. (Ⅲ)由题意221,1164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得 22(14)8120k x kx ++-=.可知0∆>. 设22(,)E x y ,33(,)F x y ,EF 的中点是(,)M M M x y , 则2324214M x x k x k +-==+,21114M My kx k =+=+. 所以21M BM M y k x k+==-. 所以20M M x ky k ++=. 即224201414k k k k k -++=++. 又因为0k ≠,所以218k =.所以24k =±. ………………………………13分 (20)(共13分) 解:(Ⅰ)4211a a a ===;74210a a ⨯-==.(Ⅱ)假设存在正整数T ,使得对任意的*n ∈N ,有n T n a a +=. 则存在无数个正整数T ,使得对任意的*n ∈N ,有n T n a a +=. 设T 为其中最小的正整数.若T 为奇数,设21T t =-(*t ∈N ), 则41414124()10n n T n T n t a a a a ++++++-====.与已知411n a +=矛盾. 若T 为偶数,设2T t =(*t ∈N ), 则22n T n n a a a +==, 而222n T n t n t a a a +++== 从而n t n a a +=.而t T <,与T 为其中最小的正整数矛盾.综上,不存在正整数T ,使得对任意的*n ∈N ,有n T n a a +=. (Ⅲ)若S 为有理数,即S 为无限循环小数,则存在正整数0N ,T ,对任意的*n ∈N ,且0n N ≥,有n T n a a +=. 与(Ⅱ)同理,设T 为其中最小的正整数. 若T 为奇数,设21T t =-(*t ∈N ),当041n N +≥时,有41414124()10n n T n T n t a a a a ++++++-====. 与已知411n a +=矛盾. 若T 为偶数,设2T t =(*t ∈N ), 当0n N ≥时,有22n T n n a a a +==, 而222n T n t n t a a a +++== 从而n t n a a +=.而t T <,与T 为其中最小的正整数矛盾.故S 不是有理数. ……………………………………………………13分15 / 18北京市东城区2012-2013学年度第二学期高三综合练习(二)数学选填解析(理科)一、选择题 1.【答案】B【解析】解:由已知,{|01,}A x x x =<<∈R所以{|01,}A B x x x =<<∈R故选B2.【答案】C【解析】解:依题意,(0.00630.010.054)101x ⨯+++⨯=,解得0.018x =,故选C3.【答案】A【解析】解:由2cos ρθ=,得22cos ρρθ=,即222x y x +=,配方得22(1)1x y -+=,故选A4.【答案】D【解析】解:由三视图画出直观图得所以有4个面是直角三角形故选D5.【答案】D【解析】解:x =4、1、4,故选D6.【答案】B【解析】解:2ππππ7sin 2sin(2())cos2()12sin ()244425x x x x =--=-=--=,故选B7.【答案】D 【解析】解:如图,M 是AB 的中点,由抛物线的定义''AA AF BB BF ==,在直角梯形中,'''52AA BB MM +==所以M 到y 轴的距离等于514-= 故选D8.【答案】C【解析】解:令()()g x xf x =,又函数()y f x =是定义在R 上的奇函数;所以()()g x xf x =为偶函数; 又(,0)x ∈-∞,'''()[()]()()0g x xf x f x xf x ==+<所以(,0)x ∈-∞,()g x 单调递减,(0)x ∈+∞,,()g x 单调递增; 又0.3π312310log 31log 29>><<=-,, 所以0.3π31(log 3)(3)(log )9g g g <<即b a c << 故选C二、填空题 9.【答案】32-【解析】解:由已知,23λ=-,得32λ=-,故答案为32-10.【答案】117 / 18【解析】解:i (i)(1+i)1(1)i 1i (1i)(1+i)2a a a a ++-++==--,又i 1ia +-是纯虚数,所以10a -=,得1a = 故答案为111.【答案】12;152【解析】解:由已知,检验知10q q ≠>,所以2142112(1)5(1)11a q a q a q q q ⎧=⎪⎨--=⎪--⎩解得1122a q ⎧=⎪⎨⎪=⎩,414(1)1512a q S q -==- 故答案为12,15212.【答案】2;27【解析】解:由切割线定理,2CA CM CN =⋅,又CM MN = 所以2228CA CM ==,则2CM =36CD CM ==,22228AD CD AC =-=所以27AD = 故答案为2,2713.【答案】150【解析】解:223335353322150C C C A A A +=,故答案为15014.【答案】①③【解析】解:对于①,若{}n a 是等比数列,则2110n n n na a q q a a +++-=-=,则等比数列一定是比等差数列;若{}n a 是等差数列,如n a n =,则211211n n n n a a n n a a n n +++++-=-+,n a n =不是比等差数列,而1n a =,2110n n n na a a a +++-=,1n a =比等差数列.所以①正确;对于②,1222122112(1)21(2)2(1)22n n n n n n n n a a n n a a n n +++-++-=⋅-⋅≠++,所以②错; 对于③,写出前几项得,112358,,,,,,,21321121-≠-,所以{}n c 不是比等差数列,③正确; 对于④,反例2nn n a n b ==,,211(2)2(1)2(1)22n n n nn n n n +++++-+不是常数,所以④错;故答案为①③。

2013东城二模数学答案及评分参考

2013东城二模数学答案及评分参考

北京市东城区2012-2013学年第二学期初三综合练习(二)化学试卷参考答案及评分标准说明:1.考生答案若与本答案不同,只要答案合理,可酌情给分。

2.本答案化学方程式中的“===”和“→”含义相同。

3.若无注明,填化学符号或名称均得分。

一、选择题(每小题1分,共25分)二、填空题(每空1分,共29分)26.(8分)(1)氢、氧(或H、O)(2)分子、原子和离子分子(3)碱Mg(OH)2 + 2HCl = MgCl2 + 2H2O(4)①CH4 + 2O2 点燃CO2 + 2H2 O热② CD27.(5分)(1)①氧气(空气)不充足(或燃料中的碳不能充分燃烧、或燃气发生不完全燃烧)②不易燃烧可燃物(2)NO2和SO2ABCD28.(5分)(1)酸性(2)温度越高,Vc被氧化的速率越快;相同温度时,放置时间越长,Vc含量越低(2分)(3)从0到-1 176 mg29.(6分)(1)漏斗引流(2)CuO + H2SO4= CuSO4 + H2O Zn + CuSO4 = ZnSO4+Cu(3)(NH4)2SO4(4)Zn2(OH)2CO3高温2ZnO + CO2↑+ H2O30.(6分)(1)H N (2)C+O2点燃CO2(或2H2+ O2点燃2H2O、2C+O2点燃2CO)(3)Ca(OH)2 + 2HCl = CaCl2 + 2H2O(4)(NH4)2CO3(或NH4HCO3)作化肥化学试卷答案及评分参考第 1 页(共 3 页)三、实验题(未标分数的空,每空1分,共19分)31.(6分)(1)铁架台(2)Zn + H2SO4 = ZnSO4 + H2↑气体密度比空气小(3)O2能支持燃烧(4)不能燃烧,不支持燃烧32.(7分)(1)①二氧化碳NaOH Ca(OH)2②CO2 + Ca(OH)2 = CaCO3↓+ H2O③碳酸钠溶液(2)一个有气泡,一个无明显现象盐酸(或一个有气泡,一个有白色沉淀碳酸钠溶液;或一个有白色沉淀,一个无明显现象氢氧化钙溶液)33.(6分)【查阅资料】(1)SO23↓+ H2O(2)H22O【方案设计】(1)通入澄清石灰水,没有出现白色浑浊(2)排净管中的空气黑色固体变为红色四、计算题(每小题3分,共6分)34.(3分)解:解:设消耗的氮气质量为xAl2O3 + N2 + 3C = 2A1N + 3CO28 2×41x 8.2t ……………………1分x = 2.8t ……………………1分答:制备制备8.2t氮化铝,消耗的氮气质量是2.8t。

【2013东城二模】北京市东城区2013届高三下学期综合练习(二)理科数学含解析

【2013东城二模】北京市东城区2013届高三下学期综合练习(二)理科数学含解析

北京市东城区2012-2013 学年度第二学期高三综合练习(二)数学(理科)学校 _____________班级 _______________ 姓名 ______________考号 ___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页,共 150 分.考试时长 120 分钟.考生务必然答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)一、本大题共8 小题,每题 5 分,共 40分.在每题列出的四个选项中,选出吻合题目要求的一项.1 已知会集A,R, B x | 2x 2 ,x R,那么会集 A B 是()x | x x 1 0 xA.B. x | 0 x 1 ,x RC. x | 2 x 2 ,x R D. x | 2 x 1 ,x R【答案】 B【 KS5U剖析】 A x | x x 10{ x 0x 1} ,所以 A B { x 0 x 1} ,选 B.2.如图是某班50 位学生期中考试数学成绩的频率分布直方图,其中成频率组距绩分组区间是: 40 ,50, 50 ,60, 60 ,70, 70,80, 80 ,90, 0.05490 ,100 ,则图中x的值等于()A . 0.754B . 0.048xC.0.018D. 0.0120.010.006成绩【答案】 C040 50 60 70 80 90 100【KS5U解析】成绩在8,09的 0矩形的面积为10.006 1 030 . 0 1,所以 1 0x0.,1解得x0.0,1选 C.3 已知圆的极坐标方程是2cos,那么该圆的直角坐标方程是()A. x 1221B. x22 y y 11C. x 1221D. x2y22 y【答案】 A【 KS5U剖析】由2cos 得2cos ,即x2y22x ,即标准方程为x121 ,2y2选 A.4 已知一个三棱锥的三视图以下列图,其中三个视图都是直角三角形,则在该三棱锥的四个面正(主)视图侧(左)视图中,直角三角形的个数为()俯视图A. 1B.2C.3D. 4【答案】 D【 KS5U 剖析】由题意可知,几何体是三棱锥,其放置在长方体中形状以下列图(图中红色部分),利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.应选 D.5 阅读程序框图,运行相应的程序,当输入x 的值为25 时,输出x 的值为()开始输入 xx >1是否x = x 1x =3x +1输出 x结束A.1B.2C. 3D.4【答案】 D【 KS5U剖析】若输入x的值为25 时,则x25 1 4,循环 x411,此时不满足条件,输出 x31 1 4,选D.6 已知 sin πx3,那么 sin 2x 的值为()45A.3B.7C.9D.18 25252525【答案】 B【 KS5U剖析】sin2x cos(2x) cos2(x)12(x) 123 272sin( ),选 B.24452524x焦点的直线交抛物线于A,B 两点,若AB10 ,则AB的中点到y轴的距7 过抛物线 y离等于()A.1B.2C. 3D.4【答案】 D【 KS5U剖析】抛物线 y2 4 x 的焦点( 1,0 ),准线为l:x 1 ,设AB的中点为E,过A、E 、B 分别作准线的垂线,垂足分别为C、 F、D ,EF 交纵轴于点 H,以下列图:则由 EF 为直角梯形的中位线知 EF AC BD AB5 ,所以 EH EF 1 5 1 4,即则B的中22点到 y 轴的距离等于 4 .选 D.8已知函数 y f x 是定义在R上的奇函数,且当x,0时, f x xf x0 (其中f x 是 f x的导函数),若 a30.30.3log 3 f c log31f log1,f 3 ,b log 3 ,939则 a ,b, c 的大小关系是()A. a b c B. c b a C. c a b D. a c b【答案】 C【 KS5U解析】令 F (x)xf (x),则 F ' ( x ) f ( x )x f ', (当x x,0时,f x x f x0 ,所以F '( x)0 ,即函数,所以函数 F ( x)xf ( x) 在x,0上为减函数.因为函数F ( x)xf ( x) 为定义在实数上的偶函数.所以函数F ( x)xf (x) 在x0,,上为增函数.则a30.3f30.3 F (30.3 ) , b log 3 f log 3 F (log 3) , c(log 31) f (log31) F (log 31) ,999因为 30.31, log 3 1 , log 31 2 ,所以 c F (log 31) F (2) F (2).因为当函数99F ( x)x f(x在)x0,,上为增函数,所以 F (2)0.3F (log3) ,即 c a b ,选 C.F (3)第Ⅱ卷(共 110 分)二、填空题:本大题共 6 小题,每题 5 分,共 30 分.9 已知向量 a2, 3, b 1,,若 a ∥ b ,则________.【答案】32【 KS5U剖析】因为 a∥ b ,所以2( 3) 0,解得3。

北京市各区2013中考二模数学试题分类汇编(选择、填空题)

北京市各区2013中考二模数学试题分类汇编(选择、填空题)

2013年初三二模分类试题—选择、填空题1.西城一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .31B .3C .31-D .3-2.下列运算中正确的是A .2a a a =+B .22a a a =⋅C .222()=ab a bD .532)(a a =3.若一个多边形的内角和是720°,则这个多边形的边数是A .5B .6C .7D .8420-=y ,则xy 的值为A .8B .6C .5D .9 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D 6.对于一组统计数据:3,3,6,3,5,下列说法中错误..的是 A .中位数是6 B .众数是3 C .平均数是4 D .方差是1.6 7.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30 °后得到正方形EFCG , EF 交AD 于点H ,则四边形DHFC 的面积为A .3B .33C . 9D .368.如图,点A ,B ,C 是正方体三条相邻的棱的中点,沿着A ,B ,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是A B C D二、填空题(本题共16分,每小题4分) 9.函数32=+y x 中,自变量x 的取值范围是 . 10.若把代数式1782+-x x 化为k h x +-2)(的形式,其中h ,k 为常数,则+h k = .11.如图,在△ABC 中,∠ACB=52°,点D ,E 分别是AB , AC 的中点.若点F 在线段DE 上,且∠AFC=90°, 则∠FAE 的度数为 °.12.如图,在平面直角坐标系xOy 中,点A 在第一象限,点B 在x 轴的正半轴上,∠OAB =90°.⊙P 1是△OAB 的内切圆,且P 1的坐标为(3,1).(1) OA 的长为 ,OB 的长为 ;(2) 点C 在OA 的延长线上,CD ∥AB 交x 轴于点D .将⊙P 1沿水平方向向右平移2个单位得到⊙P 2,将⊙P 2沿水平方向向右平移2个单位得到⊙P 3,按照同样的方法继续操作,依次得到⊙P 4,……⊙P n .若⊙P 1,⊙P 2,……⊙P n 均在△OCD 的内部,且⊙P n 恰好与CD 相切,则此时OD 的长为 .(用含n 的式子表示)2海淀 一、选择题(本题共32分,每小题4分) 1 . 6-的绝对值是A . 6-B .16 C . 16- D . 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A . 76.0110⨯ B . 66.0110⨯ C . 70.60110⨯ D . 560.110⨯3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若4AD =,2DB =,则DEBC的值为 A . 12 B . 23 C . 34D . 24. 下列计算正确的是A . 632a a a =⋅B . 842a a a ÷=C . 623)(a a = D . a a a 632=+5.下列图形可以由一个图形经过平移变换得到的是- 3 -A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .107. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为S 甲,S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B . x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲 D . x x <乙甲,22S S <乙甲8.如图1,在矩形ABCD 中,1,AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A .点AB . 点BC . 点CD . 点D图1 图2二、填空题(本题共16分,每小题4分) 9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90O A B∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则BC 的长为_____________.12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为 ;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -= .3东城 一、选择题(本题共32分,每小题4分) 1. 3的相反数是 A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为A .696×103千米B .6.96×105千米C .6.96×106千米D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 A .3sin α B .3cos αC .αsin 3D .αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一- 5 -面的点数为3的倍数的概率为 A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是 A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是 A .11x -≤≤ B .x << C .0x ≤≤ D .x ≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 .10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为形ABCD 沿直线EF 折叠,则图中折成的4个阴影三 角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与 1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分 线与1n A CD -∠的平分线交于点n A . 设A θ∠=, 则1A ∠= ;n A ∠= .4朝阳一、选择题(本题共32分,每小题4分) 1.的绝对值是 A .B .12C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.千克以下.将0.用科学记数法表示为 A .57.510´ B .57.510-´ C .40.7510-´ D .67510-´3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是A .35 B . 925 C . 38 D . 584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19 B .18 C .29 D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 A .3π B . 6π C . 12π D . 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是A .176,176B .176,177C .176,178D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我C .梦D .中- 7 -二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上, 若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A (-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA nn的式子表示,n 是正整数).5房山一、选择题(本题共32分,每小题4分) 1.-2的倒数为A .2B .-2C .21 D .21- 2.国家统计局22日公布的2012年统计公报显示,我国2012年全年研究与试验发展(R &D )经费支出10240亿元,比上年增长17.9%,占国内生产总值的1.97%.将10240用科学记数法表示应为A .4100240.1⨯ B .5100240.1⨯ C .410240.10⨯ D .41010240.0⨯ 3.在直角坐标系中,点M (1,2)关于y 轴对称的点的坐标为 A .(1,-2) B .(2,-1) C . (-1,2) D . (-1,-2) 4、如图:⊙A 、⊙B 、⊙C 两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为( ) A .π B .π21 C .π2 D .π41第4题图5.某场射击比赛中,第一小组10人第一轮射击成绩分别为8、9、9、10、7、8、8、9、8、8(单位:环),则这组数据的众数和中位数分别为 A .8、8B .8、9C .7、8D .9、86.若两圆的半径分别是2和3,圆心距为5,则这两圆的位置关系是 A .内切B .相交C .外切D .外离7.若一个多边形的内角和等于720,则这个多边形的边数是 A .5B .6C .7D .88.在正方体的表面上画有如图所示的粗线, 则其展开后正确的是二、填空题(本大题共16分,每小题4分):9.图象过点A (-1,2)的反比例函数的解析式为_____________.10.分解因式:22363a ab b -+= __________.11.如图,△ABC 中,D 为AB 上一点, 且∠ACD =∠B ,若AD =2,BD =52, 则AC = .12.观察下列等式:①23a a +=;②65a a +=;③127a a+=;④209a a +=…;则根据此规律第6个等式为 ,第n 个等式为 .DCBAD.C.B.A. B.A.- 9 -6门头沟一、选择题(本题共32分,每小题4分) 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM 2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.米,把0.用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .15B .13C .58D .386.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B .2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<SS 乙甲D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的左视图 俯视图 PF E D CBA两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二、填空题(本题共16分,每小题4分)9.在函数y x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AMBN的值 等于 ;若1CE CD n =(2n ≥,且n 为整数), 则AMBN的值等于 (用含n 的式子表示).7怀柔一、选择题(本题共32分,每小题4分) 1.3的倒数是( )A . -3 B. 3 C . 31-D . 312.土星的直径约为千米,用科学记数法表示为()A .1.193×105B .11.93×104C .1.193×106D . 11.93×106A BCDEFMNADB C30︒60︒- 11 -CPQBAMN3. 下面的图形中,既是轴对称图形又是中心对称图形的是(C )4.甲、乙、丙、丁四位选手各10次射击成绩的平均数均为9.5环,方差(单位:环2)依次分别为0.035、0.015、0.025、0.027. 则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁5.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.以下说法正确的是( ).(A )从甲箱摸到黑球的概率较大 (B )从乙箱摸到黑球的概率较大(C )从甲、乙两箱摸到黑球的概率相等 (D )无法比较从甲、乙两箱摸到黑球的概率6.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) A .40°B .60°C .70°D .80°7.下列函数中,其图象与x 轴有两个交点的是( )A . 2013)23(522+-=x y B . 2013)23(522++=x yC . 2013)23(522---=x yD . 2013)23(522++-=x y8.如图,等边△ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与 点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作 AB 边的垂线,与△ABC 的其它边交于P 、Q 两点.设线段 MN 运动的时间为t 秒,四边形MNQP 的面积为S 厘米2. 则表示S 与t 的函数关系的图象大致是11题图A B OCD二、填空题(本题共16分,每小题4分) 9.若分式32+-a a 值为 0 ,则 a 的值为 . 10.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为120°,则圆锥的母线长为 cm .11. 如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB = °.12. 如12题图1,是由方向线一组同心、等距圆组成的点的位置记录图。

北京市各区2013年中考二模数学试题分类汇编(统计)及答案

北京市各区2013年中考二模数学试题分类汇编(统计)及答案

初三数学分类试题—统计西城1.为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的课程),并将调查的结果绘制成如下两幅不完整的统计图:调查结果的条形统计图调查结果的扇形统计图请根据以上信息回答下列问题:(1) 参加问卷调查的学生共有人;(2) 在扇形统计图中,表示“C”的扇形的圆心角为度;(3) 统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数=1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为.海淀2.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?东城3.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?朝阳4.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?房山5. 某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整)1100 1300 1500 1700 1900 2100 2300 (元)教育支出频数分布表教育支出频数分布直方图请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生; (2)请将上面两幅统计图补充完整;(3)在图1中,“踢毽”部分所对应的圆心角为 度;(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人? 门头沟6.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.其它类别表1 阅读课外书籍人数分组统计表阅读课外书籍人数分组统计图图1人数阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少?(2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.怀柔7.第九届中国(北京)国际园林博览会2013年5月18日正式开幕,,前往参观的人非常多.为了解游客进园前等候检票的时间,赵普同学利用5月19日周末的时间,在当天9:00-10:00,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min 而小于20min ,其它类同. (1)这里采用的调查方式是 ; (2)求表中a 的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min 的有 人; (4)此次调查中,中位数所在的时间段是 min .解:(1)这里采用的调查方式是 ; (2)a = ,补全频数分布直方图在图上; (3) 人; (4) min .大兴8.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进阅读课外书籍人数分组统计图 等候时间(min )行分段(A :50分;B :49~45分;C :44~40分;D :39~30分;E :29~0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ,b 的值为 ,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该区今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?丰台9.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:分数段人数(人) 频率 A48 0.2 Ba 0.25 C84 0.35 D 36 bE 120.05学业考试体育成绩(分数段)统计表分数段学业考试体育成绩(分数段)统计表%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?石景山10.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分; B :39-35分; C :34-30分; D :29-20分;E :19-0分)统计如下:分数段 人数(人) 频率 A 48 0.2 B a 0.25 C 84 b D 36 0.15 E120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为_____,b 的值为______,并将统计图补充完整; (2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?______(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?解:分数段A C昌平11. 某中学艺术节期间,向全校学生征集书画作品. 美术社团从九年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.4个班征集到的作品数量分布统计图4个班征集到的作品数量统计图班级图1 图2(1)直接回答美术社团所调查的4个班征集到作品共件,并把图1补充完整;(2)根据美术社团所调查的四个班征集作品的数量情况,估计全年级共征集到作品的数量为;(3)在全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生. 现在要在其中抽两人去参加学校总结表彰座谈会,用树状图或列表法,求恰好抽中一男生一女生的概率.密云12.在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.顺义13.甲、乙两学校都选派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等.根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统计图,解答下列问题:(1)求甲学校学生获得100分的人数,并补全统计图;(2)分别求出甲、乙两学校学生这次综合素质测试所得分数的中位数和平均数,以此比较哪个学校的学生这次测试的成绩更好些.甲学校学生成绩的条形统计图乙学校学生成绩的扇形统计图213分数510090分分参考答案1.解:(1) 80;……………………………………………………………………1分(2) 54;……………………………………………………………………3分(3) 3 20.2. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.----------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米.3.解:(1)表格:从上往下依次是:12,0.08;图略;……3分(2)68%;……4分(3)120户. ……5分4.解:(1)a=3,b=0.075;……………………………………………………………2分(2)…………………………3分(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分5. 解:(1)200 ………1分(2)图略 ………3分 (3)54 ………4分 (4)744人 ………5分6.解:(1)这次共调查了学生50人,E 组人数在这次调查中所占的百分比是8%.(2)表1中a 的值是15, 补全图1.(3)54人.7. 解:(1)抽样调查或抽查(填“抽样”也可以)…………………………1分 (2)a =0.350频数分布直方图如下………………………3分(3)32 …………………………………………………………………4分 (4)20~30…………………………………………………………………5分 8.解:(1) 60 , 0.15 (图略) ………………………………3分 (2) C ………………………………………………………4分 (3)0.8×10440=8352(名) ……………………………………5分 答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.9. 解:(1)度微度级别20 %-------------3分如图,画图基本准确,每个统计图全部正确得1分.(2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天.10.解:(1)60 ,0.35 ,补充后如右图:………………………… 3分(3)0.8×2400=1920(名)答:该区九年级考生中体育成绩为优秀的学生人数有1920名.…………………………5分1119.解:(1) 12. …………………………………………………………… 1分如图所示. ………………………………………………… 2分4个班征集到的作品数量统计图Array班级(2)42. ………………………………………………………………3分(3)列表如下: ……………………………………………………4分共有20种机会均等的结果,其中一男生一女生占12种,∴ P (一男生一女生)=123=. ……………………5分12. (每空1分)(1)132,48,60;(2)4,6.13.解:(1)设甲学校学生获得100分的人数为x .由题意和甲、乙学校学生成绩的统计图得12356x x =+++ 得2x =所以甲学校学生获得100分的人数有2人.图(略) …………………………………2分 (2)由(1)可知: 甲学校的学生得分与 相应人数为:乙学校的学生得分与相应人数为:所以,甲学校学生分数的中位数为90(分).甲学校学生分数的平均数为 270380590210051585.823526x ⨯+⨯+⨯+⨯==≈+++甲(分)…………3分乙学校学生分数的中位数为80(分) 乙学校学生分数的平均数为 370480390210050025083.3343263x ⨯+⨯+⨯+⨯===≈+++乙(分) …4分由于甲学校学生分数的中位数和平均数都大于乙学校学生分数的中位数和平均 数,所以甲学校学生的数学竞赛成绩较好. ………。

北京市东城区中考数学二模试题(解析版) 新人教版

北京市东城区中考数学二模试题(解析版) 新人教版

2013年北京市东城区中考数学二模试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的....解:∵cosA=∴AB==5.(4分)(2013•东城区二模)抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,.的倍数的概率为:=.8.(4分)(2013•东城区二模)如图,在平面直角坐标系中,已知⊙O的半径为1,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是().∴OA==∴P(∴﹣≤x≤二、填空题(本题共16分,每小题4分)9.(4分)(2013•东城区二模)函数的自变量x的取值范围是x≠2.此题对函数中10.(4分)(2013•东城区二模)分解因式:mn2+4mn+4m= m(n+2)2.11.(4分)(2012•荆州)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为8 .)12.(4分)(2012•乐山)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,…,∠A n﹣1BC的平分线与∠A n﹣1CD的平分线交于点An.设∠A=θ.则:(1)∠A1= ;(2)∠A n= .BC=CD=∠ACD,再根据三角形的一个外角等于与它,可以发现后一个角等于前一个角的,根据此规律即可得解.∠ABC,∠A∠ACD,(∠A+∠ABC)∠A,;∠A=θ,.,.三、解答题(本题共30分,每小题5分)13.(5分)(2013•平凉)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.45°角的余弦等于解:2cos45°﹣(﹣)﹣(﹣=2×2+4﹣﹣14.(5分)(2013•东城区二模)解分式方程:.15.(5分)(2013•东城区二模)已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.16.(5分)(2013•东城区二模)已知x2﹣4x+1=0,求的值.1.17.(5分)(2012•苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?根据题意得:解得:18.(5分)(2013•东城区二模)如图,一次函数y=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)若点P是反比例函数图象上一点,且S=2S,求点P的坐标.y=∴y=﹣;•|OA|•|OB|=,﹣四、解答题(本题共20分,每小题5分)19.(5分)(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?)20.(5分)(2013•东城区二模)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E.(1)求证:AM=2CM;(2)若∠1=∠2,,求ME的值.BC∥AD,故△CFM∽△ADM,由相似三角形的性质可知= BC=ADCD △CMF≌△CME,故可得出∠CFM=∠CEM=90°.再由∠2=∠3=∠4=30°得出==,∴CF=BC=AD==.∴CE=∴CF=,=.∵CD=2CE=2,∴CE=21.(5分)(2012•临沂)如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.∴AD=AC•tan30°=3×,∴PD=AD=.22.(5分)(2013•东城区二模)阅读并回答问题:为圆心,以大于小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)小聪的作法正确吗?请说明理由;(2)请你帮小颖设计用刻度尺作∠AOB平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).(2)根据用刻度尺作角平分线的方法作出图形,写出作图步骤即可.解:(1)小聪的作法正确.理由如下:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°.在Rt△OMP和Rt△ONP中,∵OP=OP,OM=ON,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP.∴OP平分∠AOB;(2)如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH.②连接GH,利用刻度尺作出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2013•东城区二模)已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.,再根据两根之积等于﹣解方程,得,∴只需是整数.24.(7分)(2013•东城区二模)在矩形ABCD中,AB=4,BC=3,E是AB边上一点,EF⊥CE交AD于点F,过点E作∠AEH=∠BEC,交射线FD于点H,交射线CD于点N.(1)如图1,当点H与点F重合时,求BE的长;(2)如图2,当点H在线段FD上时,设BE=x,DN=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)连结AC,当以点E,F,H为顶点的三角形与△AEC相似时,求线段DN的长.tan∠EAC=tan∠ECB,代入求出AE=,,即可得出答案.=,∴BE=∴DN=∴k=∴AE=,的长为或25.(8分)(2013•东城区二模)定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是 2 ;当m=5,n=2时,如图2,线段BC与线段OA的距离是.(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长16+4π.AB=;=;(﹣2≤n≤2)或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
x 2 4 x 24 x2 4x
x2 4 x 1 0 , x2 4 x= 1 .
原式=
x 2 4 x 24 1 24 = 23. x2 4 x 1
………………………………………5 分
17. 解:设中国人均淡水资源占有量为 xm3,美国人均淡水资源占有量为 ym3. 根据题意得:
………………1 分
去分母得 2 x 1 1 3( x 2) 解得 x 6 . 经检验: x 6 是原方程的根. 所以原方程的根为 x 6 . 15. 证明:∵四边形 ABCD 是平行四边形, ∴AB=CD,∠B=∠D.…………………………2 分 在△ABE 与△CDF 中, ………………5 分 ………………4 分
y ( x 3) 2 1 x 2 6 x 8 .…………………………………………………7 分
24.解: (1)∵ EF EC , ∴ AEF BEC 90 . ∵ AEF BEC , ∴ BEC 45 . ∵ B 90 ,∴ BE BC . ∵ BC 3 ,∴ BE 3 .…………………2 分 (2)过点 E 作 EG CN ,垂足为点 G . ∴ BE CG .∵ AB ∥ CN ,∴ AEH N , BEC ECN .
y 5 x, …… ………………………………………2 分 x y 13800.
解得:
x 2 300, ……………………………………………4 分 y 11 500.
答:中、美两国人均淡水资源占有量各为 2 300m3,11 500m3.………………………5 分 18.解: (1) ∵M(﹣2,m)在一次函数 y x 1 的图象上, ∴ m 2 1 1 . ∴ M(﹣2,1). 又 M(﹣2,1)在反比例函数 y ∴ k 2 . ∴y
BC BE 9 1 .∴ BE .∴ DN . 4 AB BC 2
ⅱ)若 FHE ECA ,如图所示,记 EG 与 AC 交于点 O . ∵ AEH BEC ,∴ AHE BCE . ∴ ENC ECN . ∵ EN EC , EG CN , ∴ 1 2 . ∵ AH ∥ EG ,∴ FHE 1 .∴ FHE 2 . ∴ 2 ECA . ∴ EO CO . 设 EO CO 3k ,则 AE 4k , AO 5k , ∴ AO CO 8k 5 . ∴ k ∴ AE
[来源:学*科*网]
∵ AEH BEC ,∴ N ECN .∴ EN EC . ∴ CN 2CG 2BE . ∵ BE x , DN y , CD AB 4 , ∴ y 2 x 4 2 x 3 .…………………4 分 (3)∵矩形 ABCD, ∴ BAD 90 .∴ AFE AEF 90 . ∵ EF EC ,∴ AEF CEB 90 . ∴ AFE CEB .∴ HFE AEC . 当以点 E,F,H 为顶点的三角形与 AEC 相似时, ⅰ)若 FHE EAC , ∵ BAD B , AEH BEC ,∴ FHE ECB .∴ EAC ECB . ∴ tan EAC tan ECB ,∴
北京市东城区 2012--2013 学年第二学期初三综合练习(二) 数学试卷参考答案
一、选择题(本题共 32 分,每小题 4 分) 题 号 答 案 1 A 2 B 3 B 4 D 5 C 6 B 7 C 8 D
二、填空题(本题共 16 分,每小题 4 分) 题号 答案 9 10 11 12 (1)
x2
k 图象上, x
2 . x
……........................3 分
(2) 由 一 次 函 数 y x 1 可 求 A( , 1 0, )
B(0, 1) .
[来源:学#科#网 Z#X#X#K]
∴ SAOB
1 2
OB OA
1 2
11
1 . 2
3 = 3. 3
∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°.∴∠ P=∠PAD. ∴PD=AD= 3 . …………………5 分 22.解: (1)小聪的作法正确. …………………1 分 ∵PM⊥OM , PN⊥ON, OMP=∠ONP=90°. Rt△OMP 和 Rt△ONP 中, ∵OP=OP , OM=ON,
2 2
∵方程有两个不相等的实数根, ∴ m 0 .……………………………………………………………………………1 分 ∵ m 1 0, ∴m 的取值范围是 m 0且m 1 .………………………………………………………2 分 (2)证明:令 y 0 得, (m 1) x 2 (m 2) x 1 0 . ∴x ∴ x1
∴ 2=3 4 30 . ∴
ME 3 . CE 3
∵ CD 2CE 2 3 ,∴ CE 3 . ∴ ME 1 . ……………………………5 分
21.解: (1)证明:连接 OA. ∵∠B=60°,∴∠AOC=2∠B=120°. 又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°. ∵AP=AC,∴∠P=∠ACP=30°. ∴∠OAP=90°,∴OA⊥AP. ∴ AP 是⊙O 的切线. …………………2 分 (2)解:连接 AD. ∵CD 是⊙O 的直径,∴∠CAD=90°. ∴AD=AC•tan30°= 3
1 2, AB CD, B D.
∴△ABE≌△CDF.…………………………4 分 ∴AE=CF .………………………………5 分
16. 解:
2( x 1) x 6 x4 x 2 x( x 1) ( x 4)( x 6) = x( x 4)
( m 2) m 2 ( m 2 ) m . 2( m 1) 2( m 1)
m2m m2m 1 . …………………………………4 分 1, x 2 2 ( m 1 ) m 1 2(m 1)
m 1
∴抛物线与 x 轴的交点坐标为( 1,0 ) , ( 1 ,0 ). ∴无论 m 取何值,抛物线 y (m 1) x (m 2) x 1 总过定点( 1, 0 ).……5 分
1 CD . 2
∵四边形 ABCD 是菱形, ∴ 3=4 . ∵F 为边 BC 的中点, ∴ CF
1 BC . 2
CF CE .
在△CMF 和△CME 中,
3=4 ,CF=CE,CM 为公共边,
∴△CMF≌△CME. ∴ CFM =CEM 90 . ∵ 2=3 4 ,
m(n 2)2
8
; (2) n 2 2
三、解答题: (本题共 30 分,每小题 5 分) 13. 解: 2cos 45 ( ) 1 8 ( 3) 0
1 4Leabharlann = 22 ( 4 ) 2 2 1 2
………5 分
分 4
2 3.
14. 解:
2x 1 1 3 x2 x2
20.解: (1)∵四边形 ABCD 是菱形. ∴BC//AD. ∴ △CFM ∽△ADM . ∴
CF CM . AD AM
∵F 为边 BC 的中点,
1 1 BC AD . 2 2 CF CM 1 ∴ . AD AM 2
∴ CF ∴ AM 2MC . ……………………2 分 (2)∵AB//DC, ∴ 1=4 . ∵ 1=2 , ∴ 2=4 . ∵ME⊥CD, ∴ CE
5 . 8
5 3 , BE . ∴ DN 1 . 2 2 1 综上所述,线段 DN 的长为 或 1. 2
………………7 分
25.解: (1)2, 5 ; ………………4 分 (2)当 2 m 4 时, d n (2 n 2) ; 当 4 m 6 时, d 2 . ………………6 分 (3) 16+4 . ………………8 分
∴ SBOP 2AOB =1 . 设 BOP 边 OB 上的高位 h ,则 h=2 . 则 P 点的横坐标为 2 . 把 P 点的横坐标为 2 代入 y
2 可得 P 点的纵坐标为 1 . x
[来源:学科网]
P(2, 1) 或 P(2,1) .
……5 分
四、解答题(本题共 20 分,每小题 5 分) 19.解:(1) 表格:从上往下依次是:12,0.08;图略; ……3 分 (2)68%;……4 分 (3)120 户. ……5 分
2
(3)∵ x 1 是整数 ∴只需
1 是整数. m 1
∵ m 是整数,且 m 0且m 1 , ∴ m 2 .…………………………………………………………………………6 分 当 m 2 时,抛物线为 y x 1 .
2
把它的图象向右平移 3 个单位长度,得到的抛物线解析式为
∴Rt△OMP≌Rt△ONP(HL). ∴ MOP NOP . OP 平分∠AOB. …………………2 分 2)解:如图所示. …………………3 分
[来源:学科网 ZXXK]
作法:①利用刻度尺在 OA,OB 上分别截取 OG=OH. ②连结 GH,利用刻度尺作出 GH 的中点 Q.
③作射线 OQ,则 OQ 为∠AOB 的平分线. …5 分 五.解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分) 23.解: (1) (m 2) 4(m 1) m .
相关文档
最新文档