第八课时 抛物线的几何性质

合集下载

《抛物线的几何性质》 讲义

《抛物线的几何性质》 讲义

《抛物线的几何性质》讲义一、抛物线的定义在平面内,到一个定点 F 和一条定直线 l(F 不在 l 上)的距离相等的点的轨迹叫做抛物线。

点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。

我们可以这样来理解抛物线的定义:假如有一个点 M,它到定点 F的距离和到定直线 l 的距离总是相等,那么点 M 的运动轨迹就是一条抛物线。

二、抛物线的标准方程抛物线的标准方程有四种形式:1、\(y^2 = 2px (p > 0)\),焦点为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。

2、\(y^2 =-2px (p > 0)\),焦点为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。

3、\(x^2 = 2py (p > 0)\),焦点为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。

4、\(x^2 =-2py (p > 0)\),焦点为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。

这里的 p 表示焦点到准线的距离,它决定了抛物线的开口大小和方向。

例如,对于方程\(y^2 = 8x\),这里\(2p = 8\),所以\(p =4\),焦点为\((2, 0)\),准线方程为\(x =-2\)。

三、抛物线的几何性质1、范围对于\(y^2 = 2px (p > 0)\),因为\(y^2 \geq 0\),所以\(x \geq 0\),即抛物线在 x 轴的右侧。

对于\(y^2 =-2px (p > 0)\),同理可得\(x \leq 0\),抛物线在 x 轴的左侧。

对于\(x^2 = 2py (p > 0)\),\(x \in R\),\(y \geq0\),抛物线在 y 轴的上方。

对于\(x^2 =-2py (p > 0)\),\(x \in R\),\(y \leq 0\),抛物线在 y 轴的下方。

高中数学抛物线的几何性质总结课件

高中数学抛物线的几何性质总结课件
开口大小与函数值随x变化的幅度有关,开口越小,函数值变化幅度越小;开口 越大,函数值变化幅度越大。
开口方向与开口大小的关系
开口方向与开口大小的相互影响
开口方向和开口大小是相互影响的,一般来说,向上开口的抛物线开口会逐渐变小,向下开口的抛物线开口会逐 渐变大。
特殊情况下的关系
当a=0时,抛物线退化为一条直线,此时开口方向和大小无法定义。
04 抛物线的对称性
抛物线的对称轴
抛物线关于其对称轴对称,对称轴是 一条垂直于x轴的直线。
对称轴是抛物线几何性质的一个重要 特征,它决定了抛物线的形状和位置 。
对于标准形式的抛物线 y=ax^2+bx+c,其对称轴的方程是 x=-b/2a。
抛物线的对称中心
抛物线的对称中心是其顶点的位 置,顶点坐标可以通过二次函数 的顶点式y=a(x-h)^2+k得到。
抛物线上的任意一点 到焦点的距离等于该 点到准线的距离。
抛物线的标准方程
开口向右的抛物线方程为 $y^2 = 2px$,其中 $p$ 是焦 距。
开口向左的抛物线方程为 $y^2 = -2px$,其中 $p$ 是 焦距。
ቤተ መጻሕፍቲ ባይዱ
抛物线的标准方程可以根据焦 点和准线的位置进行变换。
抛物线的几何性质
01
02
03
开口方向与函数值变化趋势
开口方向与函数值随x的变化趋势一致,向上开口时函数值随x增大而增大,向 下开口时函数值随x增大而减小。
抛物线的开口大小
开口大小与二次项系数的绝对值大小
开口大小由二次项系数的绝对值|a|决定,|a|越大,抛物线开口越小;|a|越小,抛 物线开口越大。
开口大小与函数值变化幅度的关系

抛物线的简单几何性质课件

抛物线的简单几何性质课件

生活中的抛物线结构
总结词
在建筑、工程和设计等领域中利用抛物线形状的结构。
详细描述
在现实生活中,抛物线结构被广泛应用于建筑、工程和 设计等领域。例如,在建筑设计中,抛物线形状的屋顶 可以有效地排水并保持适当的角度,以适应当地的气候 条件。在工程领域,抛物线结构可以用于桥梁设计,以 实现最佳的承重能力和稳定性。此外,在艺术和装饰领 域,抛物线结构也被广泛使用,如抛物线形状的雕塑和 装饰品等。
抛物线的简单几何பைடு நூலகம்质课件
目录
• 抛物线的定义 • 抛物线的性质 • 抛物线的应用 • 抛物线的几何性质 • 抛物线的画法
01
抛物线的定义
什么是抛物线
定义1
抛物线是一种二次曲线,它的一 般形式是 y2 = 2px,其中p>0。
定义2
抛物线是指满足y^2=2px(p>0) 形式的曲线。当p>0时,抛物线 开口向右,当p<0时,抛物线开 口向左。
抛物线的标准方程
01
抛物线的标准方程是 y^2 = 2px ,其中 p 是焦准距,x 是自变量 ,y 是因变量。
02
焦准距 p 决定了抛物线的形状和 位置。p 越大,抛物线的开口越 窄,p 越小,抛物线的开口越宽 。
抛物线的焦点与准线
焦点:对于开口向右的抛物线,焦点坐标为 (p, 0),对于开口向左的抛物 线,焦点坐标为 (-p, 0)。
使用数学软件绘制抛物线
MATLAB
MATLAB 是一种流行的数学软 件,可以轻松地绘制各种图形, 包括抛物线。只需使用 MATLAB 的图形功能,输入抛物线的方程
即可。
GeoGebra
GeoGebra 是一款流行的几何 软件,提供了丰富的几何工具,

数学选修课件第章抛物线的几何性质

数学选修课件第章抛物线的几何性质
)。
开口方向与宽度
开口方向
对于形如$y^2=2px$的抛物线,当$p>0$时,开口向右;当 $p<0$时,开口向左。对于形如$x^2=2py$的抛物线,当 $p>0$时,开口向上;当$p<0$时,开口向下。
宽度
抛物线的宽度与焦准距$p$有关。当$p$增大时,抛物线开口 变宽;当$p$减小时,抛物线开口变窄。
点为$F(0,p/2)$。
准线
对于形如$y^2=2px$的抛物线 ,其准线方程为$x=-p/2$;对 于形如$x^2=2py$的抛物线,
其准线方程为$y=-p/2$。
对称轴
对于形如$y^2=2px$的抛物线 ,其对称轴为$y=0$(即x轴) ;对于形如$x^2=2py$的抛物 线,其对称轴为$x=0$(即y轴
抛物线焦点与准线的应用
通过抛物线的焦点和准线,可以建立坐标系,将问题转化为坐标运 算,从而简化问题。
在三角函数问题中应用
抛物线参数方程与三角函数的关系
01
通过抛物线的参数方程,可以将三角函数问题转化为参数方程
问题,从而利用三角函数的性质进行求解。
抛物线顶点与三角函数最值的关系
02
利用抛物线的顶点坐标,可以求出三角函数的最值,进而解决
焦点弦两端点横坐标之积等于 $p^2/4$ 。
焦点弦长度计算公式推导
公式推导
设抛物线 $y^2 = 2px$($p > 0$)上两点 $A(x_1, y_1)$ 和 $B(x_2, y_2)$, 且 $AB$ 为焦点弦,则有
证明
由抛物线定义可知 $|AF| = x_1 + p/2$, $|BF| = x_2 + p/2$,因此 $|AB| = |AF| + |BF| = x_1 + x_2 + p$。

抛物线几何性质(抛物线几何性质总结)

抛物线几何性质(抛物线几何性质总结)


方程
焦点 准线
y2 2 px ( p 0)
F
(
p 2
,0)
x


p 2
y2 (p

2 pxF (
0)
p 2
,0)
x
p 2
x2 2 py ( p 0)
F
(0,
p 2
)
y


p 2
x2 2 py ( p 0)
F (0,
p 2
)
y
p 2

图形
y P(x,y)
o F( p ,0) x
|AB|=|AF|+|BF| =x1+x2+2. 由方程 x2-6x+1=0,
ly A1
A
得 x1+x2=6, 于是 |AB|=6+2=8
O
B1
F B
x
弦长计算: 法一:直接求两点坐标,计算弦长(运算量一般较大);
法二:设而不求,运用韦达定理,计算弦长(运算量一般); 法三:设而不求,数形结合,活用定义,运用韦达定理,
x 6, 6 不合题意,舍去
所以这时水面宽为 2 6.
y
O x
B(2, -2)
B(x,3)
小结: 本节主要学习内容
1、抛物线的定义,标准方程类型与图象的 对应关系以及判断方法
2、抛物线的定义、标准方程和它的焦点、 准线方程
3、求标准方程常用方法: (1)用定义 ; (2)用待定系数法.
(0, 0)
p 2

x0
p 2

y0
p (x1 x2) p y1 y2
p 2

y0

抛物线的几何性质

抛物线的几何性质
抛物线的几何性质
一、抛物线的范围: y2=2px y
P(x,y)
•X 0
o
p F ( ,0 ) 2
x
•y取全体实数
二、抛物线的对称性 y2=2px
y
M(x,y)
以-y代y方程不变,所以抛物线 关于x轴对称.我们把抛物线的 对称轴叫做抛物线的轴.
o
F(
p ,0 ) 2
x
M1(x,-y)
三、抛物线的顶点 y2=2px
24cm
o
F
P
x
B
10cm
例3已知点A在平行于y轴的直线L上,且L与x轴的 交点为(4,0)。动点p满足 OA OP y 求P点的轨迹方程,并说明轨迹的形状。 分析:设P( x,y)则A(4,y) OA OP ∴ OA.OP 0
( 。 ∴ x,y) (4,y)=0 L P A
(4,0) x
请具体说出开口方向,焦点坐标,准线方程。
四种抛物线的标准方程的几何性质的对比
好好学习
Y
X
定义 :抛物线 与对称轴的交点, 叫做抛物线的顶 点,只有一个顶 点.
四、抛物线的离心率 y2=2px
Y
X
所有的抛物 线的离心率 都是 1
抛物线上的点与焦点的距离和它到准线的距离的 比,叫做抛物线的离心率,由抛物线的定义可知
e 1
五、焦半径
|PF|=x0+p/2
y
P
O
பைடு நூலகம்
F
x
例1:已知抛物线以x轴为轴,顶点式坐标原点且开口 向右,又抛物线经过点M 4,2 3 ,求它的标准方程。
分析:根据已知条件,可以设抛 物线的方程为
Y

高中数学抛物线的几何性质总结课件

高中数学抛物线的几何性质总结课件

准线上的点到抛物线焦点的距离相等 。
抛物线的离心率与焦距的关系
01
02
03
04
离心率
抛物线的离心率等于1。
焦距
抛物线的焦距等于2p,其中p 是抛物线的准线到焦点的距离

关系
离心率与焦距之间存在直接关 系,离心率越大,焦距越小;
离心率越小,焦距越大。
应用
了解离心率与焦距的关系有助 于解决一些与抛物线相关的几
将直线方程代入抛物线方 程,得到一元二次方程, 利用判别式非负求出交点 。
参数方程法
设定参数表示交点的坐标 ,代入抛物线方程和直线 方程,解出参数。
交点的性质
对称性
抛物线与直线交点的对称 性取决于抛物线的对称性 和直线的斜率。
唯一性
当直线与抛物线相切时, 交点唯一;当直线与抛物 线相交时,交点可能有两 个。
02
抛物线的几何性质
抛物线的对称性
总结词
抛物线具有对称性,其对称轴是 抛物线的准线。
详细描述
抛物线关于其准线对称,这意味着 对于抛物线上的任意一点P,其关 于准线的对称点也在抛物线上。
数学表达
如果点P(x,y)在抛物线上,那么点 P'(-x,-y)也在抛物线上。
抛物线的范围
01
总结词
抛物线在x轴上方的部分是连续且封闭的。
何问题。
THANK YOU
感谢各位观看
02 03
详细描述
对于开口向上的抛物线,其顶点是最低点,对于开口向下的抛物线,其 顶点是最高点。抛物线在x轴上方的部分是连续且封闭的,形成一个完 整的图形。
数学表达
对于标准形式的抛物线y=ax^2+bx+c,当a>0时,顶点为最低点;当 a<0时,顶点为最高点。

抛物线的几何性质

抛物线的几何性质

p 2 x0
1
2p
p 2
x0
1
2p
p 2
y0
1
2p
p 2
y0
1
2p
归纳:
1 、抛物线只位于半个坐标平面内,虽然它也 可以无限延伸,但没有渐近线;
(2)、抛物线只有一条对称轴,没有对称中心;
(3)、抛物线只有一个顶点,一个焦点,一条 准线;
(4)、抛物线的离心率e是确定的为1,
⑸、抛物线的通径为2P, 2p越大,抛物线的张 口越大.
(p>0) y
l
y2 = -2px (p>0)
yl
x2 = 2py (p>0)
y
F
x2 = -2py (p>0)
y
l
OF x F O x
O
x l
O F
x
x≥0 y∈R x≤0 y∈R x∈R y≥0 x∈R y≤0
关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称
(0,0) (0,0) (0,0) (0,0)
计算结果:得到
O
x 一元二次方程,需
计算判别式。相
交。
例3、已知抛物线的方程为y2=4x,直线l过定 点P(-2,1),斜率为k,当k为何值时,直线l与
抛物线:
(1)两个公共点;
(2)没有公共点。
(3)只有一个公共点;
考点四、与弦长、中点有关的问题
例 4 、 顶 点 在 原 点 , 焦 点 在 x 轴 上 的 抛 物 线 , 截 直 线 2 x -y 1 0 所 截 得 弦 长 为 1 5 , 求 抛 物 线 方 程 .
考点三、直线与抛物线位置关系
1、相离;2、相切; 3、相交(一个交点,两个交点)

抛物线的几何性质

抛物线的几何性质

M (x, y)
关于x轴 对称
M1(x, y)
由于点(x, y) 也满
足 y2 = 2px ,故抛物线 y2 = 2px
(p>0)关于x轴对称.
y M(x,y)
o F( p ,0) x
2
M1(x,-y)
3、 顶点
y
定义:抛物线
与它的轴的交点叫 做抛物线的顶点。
o F( p ,0) x
2
抛物线y2 = 2px
抛物线的几何性质
(一)回顾
图形
y
l
OF x
焦点
F ( p ,0) 2
yl
FO x
F ( p ,0) 2
y
F
O
x
l
y
l
O F
x
F (0, p ) 2
F (0, p ) 2
准线
x p 2
x p 2
y p 2
y p 2
方程
y2 = 2px (p>0)
y2 = -2px (p>0) x2 = 2py (p>0)
3.抛物线只有一个顶点,一个焦点,一条 准线; 4.抛物线的离心率是确定的,为1。
5、抛物线的通径 2p
6、抛物线不是双曲线的一部分。
y
1
O1
x
(三)例题
例1.已知抛物线关于x轴 对称,它的顶点在坐标原点, 并且经过点M(2,2 2),求它 的标准方程。
例2.探照灯反光镜的轴截面是 抛物线的一 部分,光源位于抛物 线的焦点处.已知灯口圆的直径 为60cm,灯深40cm.求抛物线的 标准方程和焦点位置。
得到直线l 的方程为 y 2 p (x 2 p) yA yB

抛物线的简单几何性质(综合)

抛物线的简单几何性质(综合)

外切
总结词
当抛物线的焦点在圆外,且圆心在抛物线上 时,抛物线与圆相切于两点,即外切。
详细描述
外切的情况发生在抛物线的焦点位于圆心所 在直线的另一侧时。此时,圆心到抛物线准 线的距离等于圆的半径,因此抛物线与圆相 切于两点。
相交
总结词
当抛物线的焦点在圆内或圆在抛物线上时, 抛物线与圆有两个交点,即相交。
抛物线的简单几何性质(综合)
目 录
• 抛物线的定义与基本性质 • 抛物线的对称性 • 抛物线的几何变换 • 抛物线与直线的交点 • 抛物线与圆的位置关系 • 抛物线的实际应用
01 抛物线的定义与Байду номын сангаас本性质
定义
01
抛物线是一种二次曲线,其方程为 $y = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a neq 0$。
关于原点的对称性
总结词
抛物线关于原点的对称性表现为,将抛物线绕原点旋转180度,其形状和位置 保持不变。
详细描述
当抛物线绕原点旋转180度时,抛物线的开口方向发生改变,顶点的位置也发生 改变,但抛物线的形状和位置保持不变,即关于原点对称。
03 抛物线的几何变换
平移
总结词
平移不改变抛物线的形状和开口方向,只是沿垂直或水平方向移动抛物线。
联立方程法
将抛物线的方程与直线的 方程联立,解出交点的坐 标。
判别式法
利用二次方程的判别式来 判断直线与抛物线是否有 交点,以及交点的个数。
参数方程法
利用抛物线的参数方程, 将参数表示为交点的坐标。
交点与弦长
弦长公式
根据抛物线与直线的交点坐标,利用弦长公式计算弦长。

抛物线的简单几何性质

抛物线的简单几何性质

抛物线与其他图形位置关系探讨
与坐标轴交点
与其他二次曲线关系
抛物线可以与坐标轴交于一点、两点 或不相交,这取决于抛物线的方程和 系数。
抛物线与椭圆、双曲线等二次曲线可 以有不同的位置关系,如相切、相交 或相离。
与直线交点
抛物线与直线的交点个数可以是0个 、1个或2个,具体情况需要联立方程 求解。
位置关系在解题中应用举例
准线
抛物线的准线是一条与对称轴平行的直线,且到焦点的距离等于焦距。对于标准 方程 $y^2 = 4px$,准线的方程为 $x = -p$。
开口方向与对称轴
开口方向
抛物线的开口方向由标准方程中的 $x$ 或 $y$ 的系数决定。对于标准方程 $y^2 = 4px$,抛物线开口向右;对于 $x^2 = 4py$,抛物线开口向上;以 此类推。
对于开口向上的抛物 线 y = ax^2 (a > 0) ,焦点坐标为 (0, 1/4a)。
对于一般形式的抛物 线,焦点坐标可以通 过配方和平移等方法 求得。
对于开口向下的抛物 线 y = -ax^2 (a > 0),焦点坐标为 (0, 1/4a)。
顶点和焦点关系探讨
抛物线的顶点是离焦点最近的点,也是抛物线的对称中心。
对于一般形式的抛物线 Ax^2 + By + C = 0 (A ≠ 0),可以 通过完成平方等方法,将其转化为标准形式,进而求得准线 方程。
对称轴方程求法
对于标准形式的抛物线 y^2 = 2px (p > 0),其对称轴方程为 x = 0,即 y轴。
对于一般形式的抛物线 Ax^2 + By + C = 0 (A ≠ 0),其对称轴方程为 x = -B/2A。

抛物线的简单几何性质

抛物线的简单几何性质

总结
1、范围:抛物线只位于半个坐标平面内,虽然它也可 以无限延伸,但没有渐近线;
2、对称性: 抛物线只有一条对称轴,没有对称中心;
3、顶点:抛物线只有一个顶点,一个焦点,一条准线; 4、离心率:抛物线的离心率是确定的,等于1; 5、通径: 抛物线的通径为2P, 2p越大,抛物线的张口
越大.
原点例,1三并:、且已典经知例过抛精点物析M线(关2于,x轴坐对标)称轴,,求它它的的顶标点准在方坐程标.
2 2 解: 因为抛物线关于x轴对称,它的顶点在坐标原
点,并且经过点M(2,2 2 ),
所以设方程为: y2 2 px ( p 0)
又因为点M在抛物线上:
所以:(2 2)2 2 p 2 p 2
因此所求抛物线标准方程为:y2 4x
当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m ≠0) (x2=2my (m≠0)),可避免讨论
抛物线相交于A, B两点,求线段AB的长。
由已知得抛物线的焦点为F (1,0),
y
所以直线AB的方程为y x 1 A’
A
代入方程 y2 4x,得(x 1)2 4x,
化简得x2 6x 1 0.
OF
x
x1 x2 6
B’ B
AB x1 x2 2 8
所以,线段AB的长是8。
抛物线的焦点弦的特征
段AB的长。
A A`
OF
解这题,你有什么方法呢?
B` B
x
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:设而不求,数形结合,活用定义,运用韦达定理,计 算弦长.
例4 斜率为1的直线l经过抛物线y2 4x的焦点F,且与

高二数学抛物线的几何性质

高二数学抛物线的几何性质

p p A( , p )、B ( , p ) 2 2
P越大,开口越阔
图形
标准方程
2
范围
对称性
关于x 轴 对称,无 对称中心
关于x 轴 对称,无 对称中心 关于y 轴 对称,无 对称中心 关于y 轴 对称,无 对称中心
顶点
离心率 e=1
y 2 px x 0, ( p 0) y R
y 2 px x 0, ( p 0) y R
B’

所以,线段 AB的长是8。
拓展: 过抛物线y2=2px的焦点F任作一条直线m, 交这抛物线于A、B两点,求证:以AB为直径的圆 和这抛物线的准线相切.
y2 4x
y
C H D E F A
B O
分析:运用 抛物线的定 义和平面几 何知识来证 比较简捷.
x
证明:如图.
设AB的中点为E,过A、E、B分别向准线l引垂 线AD,EH,BC,垂足为D、H、C,
课堂小结
(1)抛物线的简单几何性质
(2)抛物线与椭圆、双曲线几何性质的不同点 (3)应用性质求标准方程的方法和步骤
小 结 :
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法 2、抛物线的定义、标准方程和它 的焦点、准线、方程
3、注重数形结合的思想。
;无极3 无极3 ;
2
抛物线相交于 A, B两点,求线段 AB的长。
y
由已知得抛物线的焦点 为F (1,0), 所以直线AB的方程为y x 1
A’
A O F B
x
代入方程y 4x, 得( x 1) 4x,
2 2
化简得x 6 x 1 0.
2

x1 x2 6 AB x1 x2 2 8

高二数学知识点串讲与练习 8 抛物线的基本量与几何性质

高二数学知识点串讲与练习 8 抛物线的基本量与几何性质

p =( )
A. 2
B. 3
C. 6
D. 9
答案 B
解析
将 即
x2√=
2 p
·代−入2√抛p物=线−1y,2解=得2 pxp,=可1得,y
=
±2√ p,由
OD⊥OE ,可得
kOD
·
kOE
=
−1,
22
()
所以抛物线的方程为 y2 = 2x,则其焦点坐标为 1 2 (2020 全国 Ⅲ 理 5)
已知 A、B 两点均在焦点为 F 的抛物线 y2 = 2px (p > 0) 上,若
−→ AF +
−B→F
= 4,线段 AB 的中点到直
线 x = p 的距离为 1,则 p 的值为 ( )
2
A. 1
B. 1 或 3
C. 2
D. 2 或 6
达标检测 2 ★★★ 正确率:82%
设抛物线 C : y2 = 2px (p > 0) 的焦点为 F,点 M 在 C 上,|MF| = 5,若以 MF 为直径的圆过点 (0, 2),
第8讲
抛物线基本量 与几何性质
学习目标
1.掌握抛物线的定义、标准方程及几何性质,能够求解基本量问题. 2.掌握抛物线焦半径、焦点弦公式的两种形式,并能选择合适的形式处理求值问题. 3.综合使用三类圆锥曲线的基本量与性质,处理圆锥曲线综合问题.
第 8 讲 抛物线基本量与几何性质
模1 块 1 方程与基本量

3
已知离心率为 e 的双曲线和离心率为
∠F1PF2 √
=
π 3
,则
e
等于
( ) √
2 2
的椭圆有相同的焦点
F1,F2,P

抛物线的简单几何性质(位置)

抛物线的简单几何性质(位置)
同样地,通过联立抛物线和椭圆的方程,可以求解得到交 点。根据交点的个数和性质,可以判断抛物线与椭圆的位 置关系。
抛物线与双曲线的位置关系
将抛物线和双曲线的方程联立,求解得到交点。根据交点 的个数和性质,可以判断抛物线与双曲线的位置关系。
03 抛物线对称性质
对称轴与对称中心
对称轴
对于一般的抛物线 y = ax^2 + bx + c (a ≠ 0),其对称轴为直线 x = b/2a。特别地,当抛物线方程为 y = ax^2 时,对称轴为 y 轴。
已知焦点和准线求方程
01
根据抛物线的定义,已知焦点和准线可以唯一确定一条抛物线,
进而求出其方程。
已知焦点和曲线上一点求方程
02
通过设点法或待定系数法,可以求出抛物线的方程。
应用场景
03
在解决与抛物线相关的问题时,经常需要利用焦点来求解抛物
线的方程。
焦点在解决实际问题中应用
光学应用
在光学中,抛物线的焦点 性质被广泛应用于凸透镜、 凹透镜等光学器件的设计 和分析。
在解决与抛物线相关的距离问题时,可以利用准线的这一性质,通过计算点到直线的距离来间接求得点到焦点的 距离。
利用准线求曲线方程问题
性质描述
已知抛物线的准线方程和焦点坐标,可以推导出抛物线的标准方程。
应用场景
在求解与抛物线相关的曲线方程时,可以通过分析准线方程和焦点坐标,利用抛物线的定义和性质, 构建出抛物线的方程。
抛物线的顶点位于其对称 轴上,对于标准方程y^2 = 2px,顶点为(0,0)。
抛物线是轴对称图形,其 对称轴为通过顶点且垂直 于x轴的直线。对于标准 方程y^2 = 2px,对称轴 为y轴。
对于标准方程y^2 = 2px, 焦点为(p,0),准线方程为 x = -p。

抛物线的简单几何性质 课件

抛物线的简单几何性质 课件
求A、B两点的坐标 → 求出弦长AB →
写出△OAB的面积,利用面积列方程解p → 得结果
【解】 由题意,抛物线方程为 y2=2px(p≠0), 焦点 Fp2,0,直线 l:x=p2, ∴A、B 两点坐标为p2,p,p2,-p,∴|AB|=2|p|. ∵△OAB 的面积为 4, ∴12·|p2|·2|p|=4,∴p=±2 2. ∴抛物线方程为 y2=±4 2x.
焦点弦问题
设 P(x0,y0)是抛物线 y2=2px(p>0)上一点,F 是 抛物线的焦点,则|PF|=x0+p2,这就是抛物线的 焦半径公式.利用这一公式可以解决过焦点的弦 长问题.
例2 过抛物线y2=4x的焦点作直线交抛物线于 点A(x1,y1),B(x2,y2),若|AB|=7,求AB的中 点M到抛物线准线的距离. 【思路点拨】 设抛物线的焦点为F,则|AB|= |AF|+|BF|,然后利用抛物线的定义求解.
而 y1y2<0,
∴y1y2=-4.
(3)证明:设 OM,ON 的斜率分别为 k1,k2, 则 k1=xy11,k2=xy22, 由(2)知,y1y2=-4,x1x2=4, ∴k1·k2=-44值或定值问题
(1)对抛物线中的定点、定值问题,往往采用设而 不求的方法,即方程中含有参数,不论怎样变化, 某直线过定点,代数式恒为某常数. (2)解决有关抛物线的最值问题,一种思路是合理 转化,用几何法求解;另一种思路是代数法,转 化为二次函数求最值.
则直线 OB 的方程为 y=-1kx,
y=kx, 由y2=2x,
解得xy==00,,
或x=k22, y=2k,
即 A 点的坐标为(k22,2k).同样由yy= 2=-2x1k,x,
解得 B 点的坐标为(2k2,-2k). ∴AB 所在直线的方程为 y+2k=k22k2-+22kk2(x-2k2), 化简并整理,得(1k-k)y=x-2. 不论实数 k 取任何不等于 0 的实数,当 x=2 时, 恒有 y=0.故直线过定点 P(2,0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章圆锥曲线与方程
第八课时抛物线的几何性质
学习目标:
1.掌握抛物线的几何性质;
2.根据几何性质确定抛物线的标准方程.
学习重点:根据几何性质确定抛物线的标准方程.
学习难点:掌握抛物线的几何性质.
学习过程:
一. 自学质疑
1.准线方程为x=2的抛物线的标准方程是.
2.双曲线
22
1
169
x y
-=有哪些几何性质?
类比椭圆、双曲线的几何性质,抛物线又会有怎样的几何性质?
二. 预习自测
三.互动探究
例1:已知抛物线关于y轴对称,它的顶点在坐标原点,并且经过点M(3,-23),求它的标准方程.
变式训练:已知双曲线的方程是9
82
2y x -=1,求以双曲线的右顶点为焦点的抛物线标准方程及抛物线的准线方程.
例2:斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A ,B 两点,求线段AB 的长 .
变式:过点(2,0)M 作斜率为1的直线l ,交抛物线24y x =于A ,B 两点,求AB .
四. 课堂小结
1.抛物线的几何性质 ; 2.求过一点的抛物线方程; 3.求抛物线的弦长.
五. 达标检测
1.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 ;
2.抛物线x y 122
=截直线12+=x y 所得弦长等于 3.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是
4.抛物线x y 162
=上到顶点和焦点距离相等的点的坐标为 ; 5.过点(0,1)作直线,使它与抛物线x y 32
= 有且只有一个公共点,这样的直线有 条
6.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA + 取得最小值时点P 的坐标是 ;
7.已知抛物线)0(22
>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式
2
12
1x x y y 的值一定等于 8.若AB 为抛物线y 2=2p x (p>0)的动弦,且|AB|=a (a >2p),则AB 的中点M 到y 轴的最近距离是_____
9.已知圆0762
2=--+x y x ,与抛物线)0(22
>=p px y 的准线相切,则=p .
六. 拓展延伸
1.已知抛物线y 2=4ax (0<a <1 的焦点为F ,以A(a +4,0)为圆心,|AF |为半径在x 轴上方作半圆交抛物线于不同的两点M 和N ,设P 为线段MN 的中点. (1)求|MF |+|NF |的值;
(2)是否存在这样的a 值,使|MF |、|PF |、|NF |成等差数列?如存在,求出a 的值,若不存在,说明理由.
第8课时 抛物线的几何性质
达标检测:1.y x 82-= 2.15 3.x y 292-=或y x 3
4
2= 4.(2,24±) 5.3条
6.(2,2)7.-4p 8.2
1a -2
1p 9. 2
拓展延伸: 1.[解析]:(1)F (a ,0),设),(),,(),,(002211y x P y x N y x M ,由
16
)4(4222=+--=y a x ax
y
0)8()4(222=++-+⇒a a x a x ,
)4(2,021a x x -=+∴>∆ ,8)()(21=+++=+a x a x NF MF (2)
假设存在a 值,使的
NF
PF MF ,,成等差数列,即21022x x x NF MF PF +=⇒+=
a x -=⇒40 ①,∵P 是圆A 上两点M 、N 所在弦的中点,∴MN AP ⊥1
21
2
004x x y y a x y --=--⇒
由①得0448)(4222200
2212121212120<-=⇒-=+-=---=---=a y y a y y a x x y y a a x x y y a y ,这是不可能的.
∴假设不成立.即不存在a 值,使的NF
PF MF ,,成等差数列.。

相关文档
最新文档