人教版初二数学下册第十七章勾股定理数学活动教学设计

合集下载

人教版八年级数学下册17.1.1《勾股定理》教学设计

人教版八年级数学下册17.1.1《勾股定理》教学设计
4.教师点评:针对学生的讨论成果进行点评,强调解题过程中的关键步骤和注意事项。
(四)课堂练习
1.设计具有层次性和挑战性的练习题,让学生在课堂上巩固所学知识。
2.练习题包括:
a.直接应用勾股定理求解直角三角形边长的问题。
b.结合生活实际,运用勾股定理解决实际问题。
c.勾股定理的逆向应用,判断三角形是否为直角三角形。
5.能够运用勾股定理的逆定理判断一个三角形是否为直角三角形。
(二)过程与方法
在教学过程中,采用以下方法引导学生学习:
1.利用历史背景和数学故事激发学生的学习兴趣,如介绍毕达哥拉斯是如何发现勾股定理的。
2.采用探究式学习,鼓励学生通过小组合作、讨论和自主尝试来发现勾股定理。
3.运用多媒体和实物模型,进行直观教学,让学生在观察、操作中理解并记忆勾股定理。
4.设计具有层次性的练习题,由浅入深地引导学生掌握勾股定理的应用,提高解决问题的能力。
5.引导学生通过比较、分析、归纳等方法,掌握勾股定理及其逆定理之间的关系。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,激发他们学习数学的热情。
2.培养学生的团队合作精神,使他们学会在合作中互相学习、共同进步。
(6)设计一道综合性的应用题,要求学生结合勾股定理和之前学过的几何知识进行解答,培养学生的综合分析能力。
4.创新思维:
(7)鼓励学生自编一道关于勾股定理的题目,并与同学进行交流、讨论,激发学生的创新意识。
(8)引导学生思考勾股定理在古代建筑、艺术等方面的应用,撰写一篇短文,分享自己的发现和感悟。
5.合作学习:
2.生活实际应用:
(3)请学生观察生活中存在的直角三角形,测量相关数据,并运用勾股定理解决问题。例如,测量学校旗杆的高度、篮球架的倾斜角度等。

八年级数学下册人教版17.1勾股定理教学设计

八年级数学下册人教版17.1勾股定理教学设计
-让学生尝试运用勾股定理进行几何作图,提高学生的空间想象能力和动手操作能力。
4.小组讨论题:分组讨论课本练习第17.1节的第6题,共同探讨勾股定理在其他数学领域的应用。
-鼓励小组合作,培养学生的团队协作和交流沟通能力。
-引导学生从多角度思考问题,拓宽知识视野,激发学生的创新意识。
5.家庭作业:布置一道综合性的勾股定理题目,要求学生在家庭作业本上完成。
5.能够运用勾股定理及其逆定理解决一些简单的几何作图问题。
(二)过程与方法
1.通过实际操作、观察和思考,提高学生的空间想象能力和逻辑思维能力。
2.学会运用数学语言进行表达和交流,提高学生的数学表达能力和团队协作能力。
3.能够运用勾股定理解决实际问题,培养学生的实际问题解决能力和创新意识。
4.在学习过程中,引导学生总结规律,提高学生的归纳总结能力。
1.注重激发学生的学习兴趣,通过引入生动有趣的实例,使学生感受到勾股定理在实际生活中的重要性。
2.针对不同学生的学习能力,设计梯度性问题和练习,使每个学生都能在原有基础上得到提高。
3.强调几何直观,引导学生通过观察、操作、画图等方式,加深对勾股定理的理解。
4.加强对学生几何逻辑思维能力的培养,引导学生运用勾股定理进行推理和证明。
2.教学方法:独立完成、相互检查、教师辅导。
3.教学过程:
a.教师布置具有梯度性的练习题,涵盖勾股定理的基本应用和拓展应用。
b.学生独立完成练习题,教师巡回指导,解答学生的疑问。
c.学生相互检查练习结果,共同讨论解题思路和方法。
d.教师针对学生的练习情况进行点评,强调解题技巧和注意事项。
(五)总结归纳
-设计综合性题目,让学生自主整合所学知识,形成完整的知识结构。

(完整版)新人教版八年级下册数学第十七章勾股定理教案

(完整版)新人教版八年级下册数学第十七章勾股定理教案

八年级下册数学第十七章勾股定理集体备课(教课设计)17.1 勾股定理(一)一、教课目的1.认识勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培育在实质生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所获得的成就,激发学生的爱国热忱,促其勤劳学习。

二、教课要点、难点1.要点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、讲堂引入当前生界上很多科学家正在试图找寻其余星球的“人”, 为此向宇宙发出了很多信号,如地球上人类的语言、 音乐、各样图形等。

我国数学家华罗庚曾建议,发射一种反应勾股定理的图形, 假如宇宙人是“文明人”, 那么他们必定会辨别这类语言的。

这个事实能够说明勾股定理的重要意义。

特别是在两千年前, 是特别了不起的成就。

让学生画一个直角边为 3cm 和 4cm 的直角△ ABC ,用刻度尺量出 AB 的长。

以上这个事实是我国古代 3000 多年前有一个叫商高的人发现的, 他说:“把一根直尺折成直角,两段连接得向来角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是 3,长的直角边(股)的长是 4,那么斜边(弦)的长是 5。

再画一个两直角边为 5 和 12 的直角△ ABC ,用刻度尺量 AB 的长。

你能否发现 32 +42 与 52 的关系, 52+122 和 132 的关系,即 32+42 =52,52+122=132,那么就有勾 2 +股 2=弦 2 。

关于随意的直角三角形也有这个性质吗?达成 23 页的研究,增补下表,你能发现正方形 A 、B 、C 的关系吗?A 的面积(单位面B 的面积(单位面C 的面积(单位面 积) 积) 积)图 1 图 2由此我们能够得出什么结论?可猜想:命题 1:假如直角三角形的两直角边分别为 a 、b ,斜边为 c , 那么 。

四、合作研究:方法 1:已知:在△ ABC 中,∠ C=90°,∠ A 、∠ B 、 DC∠ C 的对边为 a 、b 、c 。

数学人教版八年级下册第十七章“勾股定理”数学活动教学设计

数学人教版八年级下册第十七章“勾股定理”数学活动教学设计

第十七章“勾股定理”数学活动教学设计【教学目标】知识技能:1、理解勾股定理的多种证明方法,能运用勾股定理解决实际问题。

2、了解勾股定理的文化背景,体验勾股定理探索过程。

数学思考:在拼图证明勾股定理的过程中,体会数形结合思想,发展合情推理能力.问题解决:1.通过剪图、拼图活动,体验数学思维的严谨性,发展形象思维。

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究过程。

情感态度:1、通过对勾股定理历史的了解,增强学生爱国情操,激发学生学习兴趣。

2、在探究活动中,培养学生的合作交流意识和积极探索精神。

【教学重点】1.运用勾股定理解决实际问题,了解勾股定理的历史文化。

2、理解勾股定理的证明。

【教学难点】通过拼图证明勾股定理。

【教学方法】启发式教学法、小组讨论法。

【教学过程设计】活动一、测量学校旗杆高度。

学校需要测量旗杆的高度,观察发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.请你应用勾股定理提出一个解决这个问题的方案。

设计意图:从现实生活中提出问题,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,问题的解决能让学生深刻体验勾股定理的作用。

活动二、了解勾股定理历史,感受数学文化介绍勾股定理的由来、地位、作用等。

设计意图:了解勾股定理的历史,感受数学文化,激发学习热情.通过介绍勾股定理在中国古代的历史,激发学生的民族自豪感。

活动三、通过拼图证明勾股定理。

用若干张全等的直角三角形纸片拼出图案,证明了勾股定理。

设计意图:通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维,使学生对定理的理解更加深刻,体会数学中的数形结合思想。

活动四、剪一剪、拼一拼。

把同学们手中的两张卡片分别剪开,各自拼成一个大的正方形。

图1 图2设计意图:通过由简到繁的拼图,让学生在“做中学”、“学中做”,导、学、做三合一,使学生在活动中感受到学习的乐趣。

人教版八年级数学下册第十七章勾股定理单元教学设计

人教版八年级数学下册第十七章勾股定理单元教学设计
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入地理解直角三角形的特点及其应用。然而,由于勾股定理涉及几何与代数的综合运用,学生在理解上可能存在一定困难。因此,在教学过程中,要注意以下几点:
1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能

人教版数学八年级下册第十七章勾股定理集体备课优秀教学案例

人教版数学八年级下册第十七章勾股定理集体备课优秀教学案例
4.引导学生运用勾股定理解决一些简单的实际问题,培养学生的空间想象能力和解决问题的能力。
(三)学生小组讨论
1.教师将学生分成小组,让学生共同探讨如何运用勾股定理解决复杂实际问题。
2.学生通过合作交流,分享解题方法,互相学习,提高解决问题的能力。
3.教师巡回指导,关注每个小组的学习情况,及时给予支持和帮助。
4.提问:“你们对勾股定理有什么了解?”让学生分享已有的知识,为学习新知识做好铺垫。
(二)讲授新知
1.教师通过几何图形的观察和分析,引导学生发现勾股定理的规律。
2.讲解勾股定理的证明过程,如Pythagorean theorem的证明,让学生理解并掌握勾股定理。
3.教师通过实际例题,演示如何运用勾股定理解决问题,如计算直角三角形的长度。
三、教学策略
(一)情景创设
1.利用多媒体展示勾股定理的历史背景,如古代建筑中的勾股定理应用,激发学生的学习兴趣和民族自豪感。
2.设计有趣的数学故事,如“勾股定理的发现”,让学生在轻松愉快的氛围中感受数学的趣味性。
3.创设现实生活中的问题情境,如测量房屋的长宽高,引导学生运用勾股定理解决问题,体会数学在生活中的应用价值。
3.教师及时批改作业,给予评价和反馈,帮助学生提高学习效果。
五、案例亮点
1.结合历史文化,激发学生兴趣:通过展示古代建筑中的勾股定理应用,引导学生了解勾股定理的历史背景,增强学生的民族自豪感,激发学生学习数学的兴趣。
2.现实生活情境,提高学生应用能力:设计现实生活中的问题情境,让学生运用勾股定理解决问题,体会数学在生活中的应用价值,提高学生的实践能力和解决实际问题的能力。
4.通过展示不同形状的图形,让学生观察、分析,发现勾股定理的普遍性和广泛性,拓宽学生的知识视野。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

人教版数学八年级下册17.1《勾股定理》教学设计4

人教版数学八年级下册17.1《勾股定理》教学设计4

人教版数学八年级下册17.1《勾股定理》教学设计4一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是初等数学中的一个重要定理,也是解决直角三角形相关问题的基础。

本节课的内容主要包括勾股定理的证明、应用以及相关的历史背景。

通过学习本节课,学生能够了解并掌握勾股定理,提高解决几何问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、直角三角形的边角关系等基础知识。

但勾股定理的证明和应用还需要学生具备一定的逻辑思维能力和空间想象力。

对于八年级的学生来说,他们对新鲜事物充满好奇,但同时也可能存在一定的恐惧心理。

因此,在教学过程中,教师需要关注学生的心理变化,激发他们的学习兴趣。

三. 教学目标1.知识与技能:让学生掌握勾股定理的内容、证明方法和应用。

2.过程与方法:通过观察、操作、思考、讨论等过程,培养学生解决几何问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、合作交流的精神。

四. 教学重难点1.重点:勾股定理的证明和应用。

2.难点:勾股定理的证明方法的理解和运用。

五. 教学方法1.情境教学法:通过设置有趣的问题情境,激发学生的学习兴趣。

2.问题驱动法:引导学生提出问题,自主探究,培养解决问题的能力。

3.合作交流法:鼓励学生与他人合作,共同探讨问题,提高沟通与合作能力。

4.案例教学法:通过分析实际案例,使学生更好地理解和掌握勾股定理。

六. 教学准备1.教具:黑板、粉笔、多媒体设备等。

2.学具:笔记本、尺子、圆规、直角三角板等。

3.教学资源:与勾股定理相关的图片、视频、案例等。

七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的历史背景,如古代中国的赵爽弦图、古希腊的毕达哥拉斯等。

引导学生思考:为什么勾股定理如此重要?激发学生的学习兴趣。

2.呈现(10分钟)介绍勾股定理的定义:直角三角形两条直角边的平方和等于斜边的平方。

并通过多媒体展示一些实际的勾股定理的应用案例,让学生初步了解勾股定理的应用。

2021-2021年八年级数学下册 第十七章 勾股定理数学活动教案(新

2021-2021年八年级数学下册 第十七章 勾股定理数学活动教案(新

2021-2021年八年级数学下册第十七章勾股定理数学活动教案(新2021-2021年八年级数学下册第十七章勾股定理数学活动教案(新版)新人教版数学活动【教学目标】知识与技能1.能应用勾股定理的逆定理解决简单的实际问题2.玩拼图游戏,体会出入相补思想,欣赏勾股定理证明思路.过程与方法通过拼图活动,培养学生的动手操作能力和空间想象能力,发展形象思维.在证明勾股定理过程中体会“出入相补”的思想,发展逻辑思维;情感、态度与价值观了解勾股定理历史,感受数学文化.【教学重难点】重点:能应用勾股定理的逆定理解决简单的实际问题难点:玩拼图游戏,体会出入相补思想【导学过程】【情景导入】预习中,同学们已经阅读了教科书第36页的活动2,并用4张全等的直角三角形纸片,拼出了一些与教科书上不同的图案,用自己拼出的图案证明了勾股定理.【新知探究】活动一、1、学校需要知道学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面,并多了一段,但这条绳子的长度未知,请你应用勾股定理提出一个解决问题的方案,并与同学交流。

活动二、1、请拿出准备好的4张全等的直角三角形纸片,把自己的拼图方案展示在桌面上.2、刚才展示的这些拼图的主人都对自己的拼图作了思考,请大家根据自己画下的图形,仿照赵爽弦图中利用面积证明勾股定理的方法,考虑哪些图案是可以证明勾股定理的,若能证又该如何证明?3、小组指派两名代表上台展示证法,互相补充,每个小组汇报完毕,下边学生提问并总结.【知识梳理】这节课你收获了什么?【随堂练习】小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?感谢您的阅读,祝您生活愉快。

人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计

人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其适用条件。
2.运用勾股定理解决实际问题,特别是计算直角三角形斜边长度。
3.理解并掌握勾股定理的证明过程,提高逻辑思维能力。
4.培养学生运用勾股定理发现和解决实际问题的能力。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中的直角三角形实例,如楼梯、墙壁等,引导学生观察、思考,激发学生的好奇心和求知欲,为新课的学习做好铺垫。
(二)过程与方法
1.通过对勾股定理的探究,培养学生提出问题、分析问题、解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作精神和沟通能力。
3.引导学生运用多种方法证明勾股定理,培养学生的发散思维和创新能力。
4.设计实际情境,让学生在实际问题中运用勾股定理,提高学生的应用能力。
(三)情感态度与价值观
3.教师强调勾股定理在实际问题中的应用价值,鼓励学生在生活中发现数学的美。
4.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们运用勾股定理,计算以下直角三角形的斜边长度:
1.引入勾股定理的概念,引导学生了解勾股定理的背景和意义。
2.通过实例演示,让学生直观地感受勾股定理的应用。
3.采用多种方法证明勾股定理,如几何法、代数法等,培养学生的逻辑思维和创新能力。
4.设计丰富的练习题,巩固学生对勾股定理的理解和应用。
5.结合生活实际,让学生在实际情境中运用勾股定理,提高学生的应用能力。
某建筑工地需要测量一块直角三角形的斜边长度,已知两条直角边的长度分别为10米和24米。由于工地条件有限,无法直接测量斜边长度。请问:如何利用勾股定理计算斜边长度?

第十七章-人教版勾股定理教案

第十七章-人教版勾股定理教案

第十七章勾股定理(一)教材所处的地位1、教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。

勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。

在理论和实践上都有广泛的应用。

勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法。

在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用。

2、教材特点:①在呈现方式上,突出实践性与研究性。

(对勾股定理是通过问题引出加以探索认识的。

②突出学数学、用数学的意识与过程,勾股定理的应用尽量和实际问题联系起来。

③对实际问题的选取,注意联系学生的实际生活。

④注意扩大学生的知识面。

(本章安排了两个阅读材料和一个课题学习)⑤注意训练系统的科学性,减少操作性习题,增加探索性问题的比重。

(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。

2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题。

3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。

4、运用勾股定理及其逆宣解决简单的实际问题。

情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。

(四)单元教学策略1、教学步骤:①整个章节的教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。

人教版数学八年级下册17.1《勾股定理》教学设计3

人教版数学八年级下册17.1《勾股定理》教学设计3

人教版数学八年级下册17.1《勾股定理》教学设计3一. 教材分析人教版数学八年级下册17.1《勾股定理》是初中数学的重要内容,它揭示了直角三角形三边之间的数量关系,为学生提供了解决实际问题的工具。

本节课的内容是在学生已经掌握了三角形性质、勾股定理的逆定理等知识的基础上进行学习的。

教材通过丰富的例题和练习,帮助学生深入理解和掌握勾股定理,并能够运用它解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形性质、勾股定理的逆定理等知识,具备了一定的逻辑思维能力和空间想象能力。

但是,对于勾股定理的证明和应用,部分学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。

三. 教学目标1.知识与技能目标:使学生理解和掌握勾股定理,能够运用勾股定理解决实际问题。

2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的探究能力和合作意识。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.教学重点:勾股定理的证明和应用。

2.教学难点:勾股定理的证明过程和运用。

五. 教学方法1.情境教学法:通过创设丰富的教学情境,激发学生的学习兴趣和积极性。

2.探究教学法:引导学生通过观察、操作、猜想、验证等过程,主动探究勾股定理的证明和应用。

3.合作学习法:学生进行小组合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学方案和教学活动。

2.学生准备:预习教材,了解勾股定理的基本概念。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形性质、勾股定理的逆定理等知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示勾股定理的定义和表述,引导学生理解直角三角形三边之间的数量关系。

3.操练(10分钟)教师提出一些运用勾股定理的问题,学生独立解答,培养学生的运用能力和解决问题的能力。

人教版初中数学八年级下册第十七章《勾股定理》教案

人教版初中数学八年级下册第十七章《勾股定理》教案
3.勾股定理的应用:解决实际问题,如计算直角三角形的斜边长度、判断一个三角形是否为直角三角形等。
4.勾股数:介绍勾股数的概念,掌握勾股数的特征和性质,并能找出常见的勾股数。
5.勾股定理的推广:引导学生了解勾股定理在空间几何中的推广——勾股定理的逆定理,即如果一个三角形的两边平方和等于第三边平方,那么这个三角形是直角三角形。
2.教学难点
-理解和证明勾股定理:对于部分学生来说,理解勾股定理的证明过程可能存在困难,尤其是代数法的证明过程。
-勾股数的识别和应用:识别勾股数并应用于实际问题,如判断一个三角形是否为直角三角形,学生可能难以把握判断的依据。
-勾股定理的逆定理:理解并运用勾股定理的逆定理,即如果一个三角形的两边平方和等于第三边平方,那么这个三角形是直角三角形。
然而,我也发现了一些问题。首先,在定理的证明过程中,部分学生对于代数法的推导感到困惑。这可能是因为他们在之前的数学学习中,代数基础不够扎实。为了解决这个问题,我计划在下一节课中,用更多的时间和精力来讲解代数法的证明过程,并为学生提供更多的练习机会。
其次,在小组讨论环节,有些学生参与度不高,可能是因为他们对讨论主题不感兴趣或不知道如何表达自己的观点。针对这个问题,我将在以后的课堂中,尽量设置更多有趣的讨论主题,并鼓励学生大胆发表自己的看法,提高他们的参与度。
举例解释:
a.在证明勾股定理时,可以引导学生通过具体的图形和实际操作来理解几何拼贴法,而对于代数法,则需要详细解释每一步的推导过程,如从直角三角形的面积计算出发,推导出勾股定理的等式。
b.对于勾股数的识别,可以提供一些勾股数和非勾股数的例子,让学生通过观察和计算来发现勾股数的特征,如满足a^2 + b^2 = c^2的三元组。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

人教版数学八年级下册第十七章勾股定理说课稿

人教版数学八年级下册第十七章勾股定理说课稿
(2)将勾股定理应用于实际问题,需要学生能够灵活运用所学知识,建立数学模型。
(3)在解决直角三角形问题时,如何引导学生发现并运用勾股定理,是教学中的难点。
二、学情分析
(一)学生特点
本节课所面向的学生为八年级学生,他们正处于青春期,具有以下特点:首先,年龄特征上,他们好奇心强,思维活跃,具有一定的抽象思维能力,但仍然需要具体形象的支撑。其次,在认知水平上,学生已经掌握了平面几何的基本知识,具备了一定的逻辑推理和空间想象能力。在学习兴趣上,学生对新知识充满好奇,但可能对理论性较强的内容感到枯燥。在学习习惯上,学生可能习惯于机械记忆,缺乏深度思考和探究的习惯。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点:
1.首先介绍勾股定理的定义,通过直观的图形展示,让学生理解直角三角形两条直角边与斜边之间的关系。
2.接着,通过几何画板的动态演示,让学生观察直角三角形的变化,并引导学生发现无论三角形大小如何变化,勾股定理始终成立。
3.然后,我会提供几种不同的证明方法,包括几何拼贴法、代数法等,让学生在理解定理的同时,也了解不同的证明思路。
主要知识点包括:
1.勾股定理的定义及表述。
2.勾股定理的证明方法。
3.勾股定理的应用,包括解决直角三角形中的问题以及实际生活中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握勾股定理的定义、表述及证明方法。
(2)培养学生运用勾股定理解决直角三角形中的问题,能够熟练运用勾股定理进行计算和证明。
板书的主要内容包括勾股定理的表述、证明步骤、应用案例以及相关的数学公式。风格上,我会使用简洁明了的文字和图表,以及不同颜色的粉笔来区分不同类别的内容,增强视觉效果。
板书在教学过程中的作用是提供结构化的信息,帮助学生理解和记忆。为确保板书清晰简洁,我会提前规划板书内容,避免过度拥挤,并在教学过程中适时擦拭不必要的部分,保持板书的整洁。同时,我会用箭头和编号来指示逻辑关系,帮助学生把握知识结构。

人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计

人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计

人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计一. 教材分析人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》主要包括勾股定理的发现、证明及应用。

本章通过探究勾股定理的证明方法,让学生加深对勾股定理的理解,提高运用勾股定理解决实际问题的能力。

教材内容丰富,既有理论探究,又有实践操作,旨在培养学生的动手操作能力、观察能力及创新能力。

二. 学情分析学生在之前的学习中已经掌握了勾股定理的基本知识,但对勾股定理的证明方法了解不多。

本章内容有利于拓展学生对数学知识的理解,提高学生解决实际问题的能力。

在学习过程中,学生需要动手操作,观察分析,合作交流,从而更好地理解勾股定理的证明方法及其应用。

三. 教学目标1.理解勾股定理的证明方法,提高运用勾股定理解决实际问题的能力。

2.培养学生的动手操作能力、观察能力及创新能力。

3.增强学生对数学知识的兴趣,提高学生的数学素养。

四. 教学重难点1.教学重点:勾股定理的证明方法及其应用。

2.教学难点:不同证明方法的推导过程及运用。

五. 教学方法1.情境教学法:通过设置具体情境,激发学生的学习兴趣,提高学生运用勾股定理解决实际问题的能力。

2.探究式教学法:引导学生动手操作,观察分析,合作交流,从而掌握勾股定理的证明方法。

3.案例教学法:分析实际问题,让学生学会将理论知识应用于实际情境中。

六. 教学准备1.准备相关教学素材,如图片、视频、PPT等。

2.准备实验器材,如直尺、三角板、绳子等。

3.提前布置学生预习本章内容,了解勾股定理的证明方法。

七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的实例,如古代建筑、现代科技等,引导学生思考勾股定理在实际生活中的应用。

2.呈现(10分钟)介绍勾股定理的证明方法,如几何画板、三角板等,让学生直观地了解证明过程。

3.操练(10分钟)分组进行实验,让学生动手操作,验证勾股定理。

人教版八年级数学下册第十七章-勾股定理-教案

人教版八年级数学下册第十七章-勾股定理-教案

17.1 勾股定理(第1课时)【教学任务分析】教学目标知识技能1.了解勾股定理的发现过程,掌握勾股定理的内容,会证明勾股定理.2.能运用勾股定理进行简单的运算.3.培养在实际生活中发现问题,总结规律的意识和能力.过程方法经历观察与发现勾股定理的过程,感受直角三角形三边关系,培养学生善于观察、发现、并学会验证.情感态度1.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,勤奋学习。

2.培养学生严谨的数学学习态度,体会勾股定理在现实中的应用.重点勾股定理的内容及证明.难点勾股定理的证明.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.注意观察,你能有什么发现?分析:突出一下,换成下图你有什发现?说出你的观点.学生猜测得出结论:等腰直角三角形斜边的平方等于两直角边的平方和.教师:提出问题、引导学生观察,猜测、发现.学生:观察思考、尝试得出结论自主探究合作交【问题2】其它直角三角形是否也存在这种关系?观察下边两个图并填写下表:【问题3】命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.命题证明:学生阅读课本65页,理解,提示:面积关系是214()2ab b a c⨯+-=.A的面积B的面积C的面积图1-2图1-3教师:变换图形,便于学生观察,得出:由面积和相等到斜边的平方等于两直角边的平方和.学生:观察图形,填表,并简要阐述理由.教师:引导学生得出结论.鼓励学生,敢于猜想、阐述自己观点.教师:引出问题3,怎样证明命题是否正确?流适当穿插我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情.总结:1.勾股定理:如果直角三角形的两直角边长分别为a 、b,斜边长为c ,那么222a b c +=.2.理解:反映了直角三角形三边之间存在的内在联系,可由已知两边求第三边学生:阅读课本理解证明过程. 教师:根据学生实际看能否理解,若不能理解可少作提示分析.也可多列举几种证法.教师:汇总总结,帮助学生理解,激励学生. 尝 试 应 用1.根据图18.1-1你能写出勾股定理的证明过程吗?【分析】总面积等于各面积之和221()42a b ab c +-⨯= 2. 一个门框尺寸如图18.1-2所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?【分析】木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过,对角线AC 是斜着能通过的最大长度,求出AC ,再与木板的宽比较,就能知道木板能否通过.教师:提出问题.学生:思考独立完成后小组内阐述、分析、交流.教师:根据学生完成情况适当讲评.第2题注意过程书写规范,见教材67页成果 展示 引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得及困惑.学习小组互相讨论,交流,补充,展示补 偿 提 高 1. 求出下列各直角三角形中未知边x 的长度.2.已知:如图在Rt △ABC 中,∠C=90°,A B=15,AC=12,求BC 的长3. 已知:如图,等边△ABC 的边长是6cm , AD 为BC 边上的高,求AD 的长2.3.作业 设计必做题:教材69页习题18.1第1、2两题,做在作业本上.选做题:教材69页习题18.1第7题教师布置作业,并提出要求. 学生课下独立完成,延续课堂.17.1 勾股定理 (第2课时)【教学任务分析】图图18.1-2教学目标知识技能1.会用勾股定理进行简单的计算和解决实际问题.2.理解掌握实际问题转化成数学问题的解题思路和方法.过程方法经历探究勾股定理在实际问题中的应用过程,掌握勾股定理的应用方法.情感态度通过学生思维方式、意识的培养,感受数学方法理念,体会勾股定理的应用价值,热爱数学.重点运用勾股定理进行计算的方法难点勾股定理的灵活运用.【教学环节安排】环节教学问题设计教学活动设计情境引入复习什么是勾股定理?勾股定理的作用?教师:勾股定理是直角三角形中特有的三边关系定理,运用它能由已知两边求第三边.学生:回答、理解自主探究合作交流【问题3】如图18.1-7,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?【分析】(1)由图根据勾股定理可求BD的长,看看是否是0.5m(2)已经知道那些线段的长?AB和CD是什么关系?(3)由图可知BD=OD-OB,分别求出OB、OD即可.解:(由学生填全教材67页的空后,尝试在练习本上写出过程)教师:出示题目并引导学生分析,学生:理解、写出过程,感受应用勾股定理进行计算的书写.建议:也可有学生独立分析完成教材填空,然后教师书写过程并强调写法及规范.尝试1. 1.教材68页,练习1、2题2.一个直角三角形的三边为三个连续偶数,则它的三边长分别为。

人教版数学八年级下册第十七章《勾股定理》【教案】勾股定理

人教版数学八年级下册第十七章《勾股定理》【教案】勾股定理
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容:
教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?与同伴进行交流.
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, .
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, .
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
勾股定理
一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
效果:学生进一步加强对本课知识的理解和掌握.
五、教学设计反思
(一)设计理念

人教版八年级数学下册17.1勾股定理教学设计

人教版八年级数学下册17.1勾股定理教学设计
-引导学生思考直角三角形中三边的关系,回顾已学的相关概念,为新课的学习做好铺垫。
2.提出问题:
-在直角三角形中,我们学过哪些关于边长的关系?
-你觉得直角三角形中的斜边和两个直角边之间是否存在某种特定的关系?
3.目标导向:
通过导入环节,激发学生对勾股定理的兴趣,明确本节课的学习目标,即理解并掌握勾股定理。
(二)讲授新知
1.勾股定理的表述:
-以直观的图形和具体的数字为例,引导学生观察直角三角形中斜边和两个直角边之间的关系。
-给出勾股定理的表述:直角三角形中,斜边的平方等于两个直角边的平方和。
2.勾股定理的证明:
-采用数学归纳法,引导学生通过实际操作和逻辑推理,证明勾股定理的正确性。
-结合多媒体演示,形象直观地展示勾股定理的证明过程。
(五)总结归纳
1.教学活动设计:
-组织学生回顾本节课的学习内容,总结勾股定理的表述、证明和应用。
-引导学生反思学习过程中的收获和不足,为下一节课的学习做好准备。
2.归纳总结:
-勾股定理是直角三角形中一个重要的边长关系,具有广泛的应用价值。
-学生通过自主探究、小组讨论和课堂练习,掌握了勾股定理的证明和应用。
1.学生对勾股定理的认知程度:大部分学生可能只知道勾股定理的表述,但对其证明过程和应用范围了解不深,需要引导学生通过实例和练习,逐步加深理解。
2.学生的逻辑推理能力:在本章节的教学过程中,要注重培养学生的逻辑推理能力,引导学生运用已知知识推导出勾股定理,并能够运用定理解决实际问题。
3.学生的动手操作能力:通过设计丰富的实践环节,让学生在实际操作中感受勾股定理的奥妙,提高学生运用勾股定理解决问题的能力。
4.引导学生总结勾股定理的相关性质和规律,形成知识体系,提高学生的总结概括能力。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章《勾股定理》数学活动教学设计
阿勒泰市第三中学张玲
【教材】人教版数学八年级下册
【课时安排】1课时
【教学对象】阿勒泰市第三中学八(7)班学生
【教材分析】本节课是人教版义务教育课程标准试验教科书《数学》八年级下册第十七章《勾股定理》中的数学活动,即通过“赵爽弦图”来进一步对勾股定理的证明。

教学时数为1课时。

勾股定理是直角三角形的重要性质,它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。

是初中数学教学内容重点之一。

勾股定理可以解决许多直角三角形中的计算问题,是直角三角形特有的性质,在数学的发展和现实世界中有着广泛的作用。

此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

【学情分析】学生在以前学习和掌握了一般三角形的基本性质,现在将进一步学习一种特殊三角形-直角三角形的三边关系“勾股定理”。

以与勾股定理有关的历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

【教学目标】
知识技能:
1、理解并掌握勾股定理的内容及其证明方法,能运用勾股定理解决实际问题。

2、了解勾股定理的文化背景,体验勾股定理探索过程。

数学思考:
在勾股定理的探索过程中,发展合情推理能力,体会数形结合思想。

问题解决:
1.通过拼图活动,体验数学思维的严谨性,发展形象思维。

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究过程。

情感态度:
1、通过对勾股定理历史的了解,增强学生爱国情操,激发学生学习兴趣。

【教学重点】
1.掌握勾股定理的内容。

、理解勾股定理的证明。

2.
3、运用勾股定理解决具体问题。

【教学难点、关键】利用“拼图”、“数形结合”的方法验证勾股定理。

【教学方法】观察法、小组讨论法、引导练习法、启发式教学及探究式教学法。

【教学手段】三角尺、拼图、多媒体投影、课件
【教学过程设计】
二、教学过程设计
教学教师学生设计容内教学意活动环节图活动
利用多媒:
学习目标体,展示学目默读目出示教学.通过拼图活动,培养学生的动手操 1习标,板书课题:目标,明标,明思形能想象力,发展象空作能力和间确本节课的确任务数学活动维.在证明勾股定理过程中体会“出入相学习任务, 1分(补”的思想,发展逻辑思维;坚守先学后钟)学
习.了解勾股定理历史,感受数学文化。

2目标教,以学定明确教的理念。

任务
自学指导教师巡视通过自学拿出页活导,让学探导自1请同学们认真看课3己准先独立学张全等的直角三角形纸片的内容并好拼出了一些与教科书上不同的图案,用本节课的自张全己拼出的图案证明了勾股定容,并用的直2图法验证由此你能得出什么结? 指三角股定理
思纸片
探己的图方展示上
一、情境导教师出示照从现实生学生中提出“届及图年在北京召开了展2002察图爽弦图际数学家大会,被誉为数学界的“奥学生能够,会徽的图案会发表极主动地“勾股定理会标中央的图案是一个
【板书设计】
数学活动课题:勾股定理
,那么a,b, 如果直角三角形两直角边分别为斜边为c222 a+b=c 直角三角形两直角边的平方和等于斜边的平方222222b???b?caac,勾股定理的变式:,222222b?cacba?c?b??a?,,
弦勾

教学反思:
勾股定理对于学生来讲是一个全新的内容,但又是一个不很难的问题,那么对于这样的一个新的内容应该如何让学生能很好的接受呢。

我采用了“先学后教,当堂训练”的方法,先让学生在教学目标的引导下自己学习本节的内容。

课堂先让学生体验直角三角形的边与其边上的正方形面积之间的关系。

学生可以猜想大、小正方形的面积与四个直角三角形面积之间数量关系,如果用直角三角形的边来表示
a+b=c直角222。

这个时候我们自然就把直角三角形的三条边关系表示出来:直角三角形两条即为
边的平方和,等于斜边的平方。

接下来当然是对这一知识点的应用。

通过大量的应用,基本上学生能掌握该定理。

会用勾股勾股定理是数学史上最重要的定理之一,我觉得不仅要让学生知道勾股定理,不仅是学习一点简这对学生来说,定理,还很有必要让学生了解这一伟大定理的简要证明。

单的数学知识,更是对心灵的一种震撼。

我想,数学不能只教一些死的、刻板的知识,更要让学生去体验、发现数学的美。

以致于后面的随堂检测本节课的不足之处是:勾股定理的证明过程学生用的时间太多,题没有及时完成。

最后一题的订证只能放到下一节课了。

相关文档
最新文档