七年级数学上册 第一单元复习教案 北师大版【教案】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册第一单元复习教案北师大版
1.1 生活中的立体图形(一)
教学目标
1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处
2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。教学重点:认识一些基本的几何体,并能描述这些几何体的特征
教学难点:描述几何体的特征,对几何体进行分类。
教学过程:
一、设疑自探
1.创设情景,导入新课
在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?
2.学生设疑
让学生自己先思考再提问
3.教师整理并出示自探题目
①生活常见的几何体有那些?
②这些几何体有什么特征
③圆柱体与棱柱体有什么的相同之处和不同之处
④圆柱体与圆锥体有什么的相同之处和不同之处
⑤棱柱的分类
⑥几何体的分类
4.学生自探(并有简明的自学方法指导)
举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?
说说它们的区别
二.解疑合探
1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探
2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类
2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展:
1.引导学生自编习题。
请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
1.1 生活中的立体图形(二)
教学目标
1、知识:认识点、线、面的运动后会产生什么的几何体
2、能力:通过点、线、面的运动的认识几何体的产生什么
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。教学重点:几何体是什么运动形成的
教学难点:对“面动成体”的理解
教学过程:
一、设疑自探
1.创设情景,导入新课
我们上节课认识了生活中的基本几何体,它们是由什么形成的呢?
2.学生设疑
点动会生成什么几何体?
线动会生成什么几何体?
面动会生成什么几何体?
3.教师整理并出示自探题目
教师根据学生的設疑情况梳理、归纳、细化得出自探题目(自探要求)
4.学生自探(讨论)
二.解疑合探
举例分析那些几何体由什么运动形成的?
那些图形运动可以形成什么几何体?
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展:
1.引导学生自编习题。
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
1.2 展开与折叠
教学目标:
1.通过折叠棱柱,发展学生空间观念,积累数学活动经验.
2.了解棱柱的相关概念,认识棱柱的某些特性.
教学重点:棱柱的特性.
教学难点:某些平面图形是否可以折叠成棱柱的思索.
教学过程:
一、设疑自探
1.创设情景,导入新课
我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的几何体呢?
2.让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答:(1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢?
(2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢?
(3)这三种棱柱侧面的个数与地面多边形的边数有什么关系?
(4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢?
结合同学们的回答,共同总结出棱柱的性质:
棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形.
3.课堂练习:P11 1.
4.展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米)
二.解疑合探
(1)这个六棱柱一共有多少个面?它们分别是什么形状?那些面的形状、面积完全
相同?
(2)这个六棱柱一共有多少条棱?它们的长度分别是多少?
展示下列图形:
先想一想,再折一折,哪些图形可以围成正方体?哪些图形不能围成正方体?
结合以上问题,全班进一步分组讨论:
你能否指出具有什么特征的平面图形可以折成正方体?什么样的图形不能?
(教师参与小组讨论,并进行适当指导)
总结结论:
凡符合以上基本图形或变式图形的平面图形都可以折叠成正方体.
三.质疑再探:
上例中为什么是旋转90度?
探索并思考:什么样的平面图形可以折叠成三棱柱,四棱柱,五棱柱?
进一步思考什么样的平面图形可以折叠成棱柱?
四.运用拓展:
1、课堂练习 P11 想一想
2、小结
①.棱柱的相关概念及特征
②.什么样的平面图形叠成三棱柱,四棱柱,五棱柱等.
③作业
(1) (2) (3) (4) (5)
(6) (7) (8) (9)
基本图形 特征: 上、下各一块,中间四块
变式图形
特征:
将其中一块或连在一起的数块
绕某一点旋转90度,经过这样的动
作一次或数次,得到基本图形