概率论与数理统计资料
概率论与数理统计考研复习资料
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
概率论与数理统计复习资料
自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。
性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。
注:与集合包含的区别。
相等:若且,则称事件A与事件B相等,记作A=B。
(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
大学概率论与数理统计复习资料
知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。
2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。
3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。
4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。
5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。
(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。
试求他是乘地铁回家的概率。
(完整版)自考概率论与数理统计复习资料要点总结
i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。
非常全面的概率论与数理统计复习材料
为 21 的倍数的概率 p2;
解:p1=错误!=错误!, p2= 错误!= 错误!
前提是如果在某一区域任取一 例 1 把长度为 a 的棒任意折成三段,求它们可以构成一个三角形的概率;
点,而所取的点落在中任意两 解:设折得的三段长度分别为 x,y 和 a-x-y,那么,样本空间,S={x,y|0xa,0ya,0a-x-ya};
A、A=
B、AB= C、A错误!=
D、B=错误!
运 A1,A2,…,An 构成的一个完备事件组或分斥指 A1,A2,…,An 两两互不相容,且错误!Ai=
算
交换律 A∪B=B∪A A∩B=B∩A 运
结合律 A∪B∪C=A∪B∪C A∩B∩C=A∩B∩C 算
分配律 A∪B∩C=AC∪BC A∩B∪C=A∪C∩B∪C 法
题 例 3 某物品成箱出售,每箱 20 件,假设各箱中含 0、1 件次品的概率分别为和,一顾客在购买时,他可以开箱,从箱中任取
三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货;试求:1 顾客买下该箱的概率 ;
2 顾客买下该箱物品,问该箱确无次品的概率 ;
解:设事件 A0—箱中 0 件次品, A1—箱中 1 件次品,事件 B—买下该箱;由已知 PA0=, PA1=,
必然事件---每次试验中必定发生的事件; 不可能事件--每次试验中一定不发生的事件;
事 包含 AB 件 相等 A=B 之 对立事件,也称 A 的逆事件 间 互斥事件 AB=也称不相容事件 的 A,B 相互独立 PAB=PAPB 关
例 1 事件 A,B 互为对立事件等价于 D A、A,B 互不相容 B、A,B 相互独立 C、A∪B=Ω D、A,B 构成对样本空间的一个剖分 例 2 设 PA=0,B 为任一事件,则 C A、A= B、AB C、A 与 B 相互独立 D、A 与 B 互不相容
概率论与数理统计复习资料知识点总结
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计人大版本
概率论与数理统计人大版本
一、概率论与数理统计的概述
概率论是研究随机现象的理论体系,它通过对随机现象的规律性进行研究,为我们预测和决策提供依据。
数理统计则是一种基于数据的研究方法,它通过对数据的分析和处理,提取出数据背后的信息,为实际问题的解决提供支持。
二、概率论与数理统计的基本概念
在概率论中,随机事件是指在一定条件下可能发生的事件,而样本空间则包含了所有可能的结果。
概率分布描述了随机变量取值的概率规律,而概率密度函数则用于描述连续型随机变量的概率分布。
三、常见概率分布及其应用
常见的概率分布有二项分布、泊松分布和正态分布等。
二项分布用于描述一系列伯努利试验的结果,泊松分布用于描述单位时间内随机事件的次数,正态分布则广泛应用于自然科学、社会科学和工程技术领域。
四、数理统计的基本方法
数理统计的基本方法包括描述性统计、推断性统计等。
描述性统计用于概括和描述数据的集中趋势、离散程度等信息,而推断性统计则通过抽样数据对总体参数进行估计和检验。
五、参数估计与假设检验
参数估计是通过对样本数据的研究,估计总体参数的值。
常见的点估计方法有最大似然估计、矩估计等,区间估计则通过构建置信区间来估计参数。
假
设检验则是通过检验统计量与临界值之间的关系,对总体参数进行推断。
六、应用领域与发展趋势
概率论与数理统计在自然科学、社会科学和工程技术等领域具有广泛的应用。
随着大数据时代的到来,概率论与数理统计的研究方法和技术也在不断发展,包括机器学习、数据挖掘等领域。
在我国,概率论与数理统计的研究和应用也取得了显著成果,为各个领域的创新发展提供了有力支持。
自考概率论与数理统计(经管类)自学资料
自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。
引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。
从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。
(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。
由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。
虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。
必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。
例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。
例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。
(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。
例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。
(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。
例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。
∴A={1,2},B={1,2,3}。
所以A发生则必然导致B 发生。
显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。
概率论与数理统计复习资料
2)矩估计、最大似然估计;
3)无偏估计、有效估计 ; 4)求置信区间; 5)假设检验。
概率论与数理统 计复习课
(统计部分)
第五章
“大数定律和中心极限定理”
“切比雪夫不等式”
16 ♀设 n 是 n 次独立重复试验中事件A出现的次数,
♀随机变量X 满足:E(X)=,D(X)=2,则由切比雪夫 1 不等式有 P{| X | 4}
2
(C) S
2 2
2 (D) vS 服从自由度为v的分布
服从自由度为 n 的分布
2
2
2
7.设随机变量 X ~ N 0,1和Y ~ N 0,2,并相互独 立, 则( ) 2 1 2 2 2 (A) X Y 服从 分布 3 3 2 1 1 (B) X 2 Y 2 服从 分布 2 2 2 1 2 (C) X Y 服从 分布
本,则 ( X i X ) /
2 2 i 1
( n 1)
2
2
2.设总体X N (0,22 ) , X 1 , X 2 , X 3 , X 4 为来自
X的一个样本,设 Y a( X1 2 X 2 ) b(3 X 3 4 X 4 ) ,
2
则当a =1/20,b=1/100 时Y 服从
1 n
i 1
n
( X i ) 2 是2的最大似然估
计量
2e 2( x ) , x 13 设总体X的概率密度为 f ( x ) 0, x 其中 > 0是未知参数. X1, X2,…,Xn 是来自X的样本.
求 的矩 估计量及最大似然估计量, 并判断它们是否 是 的无偏估计量.
概率论与数理统计复习资料
ˆ ( B) 2
1 3 X 1 X 4 4
2
ˆ (C ) 3
1 ˆ4 ( X1 X 2 ) ( D) 2
5、假设检验问题中,第一类错误是指 (A)原假设 H 0 为真,经检验后接受 H 0 (B)原假设 H 0 为真,经检验后拒绝 H 0 (C)原假设 H 0 为伪,经检验后接受 H 0 (D)原假设 H 0 为伪,经检验后拒绝 H 0
解: 因为, 2 未知,所以 的 95%的置信区间为
S S ( X t0.025 (8) , X t0.025 (8) ) n n 用 n 9, x 57.5, s 8.3, t0.025 (8) 2.306 代 入 得
的 95%的置信区间为 (51.12, 63.88)
2
x 2334
当 H 0成立时,统计量
11.25 9 对于 0.05 ,查表得分位数,u0.025 1.96 ,因此这一
W {| u | 1.96}
u
X 2350
~ N (0.1),
假设检验问题的拒绝域为
由 x 2334, 得 2334 2350 U 4.24 1.96 11.25 3
5、设总体 X ~ N ( , 2 ) , X 1 , X 2 为来自总体 X 的样本,
1 1 1 2 ˆ 则估计量 1 X 1 X 2 ,ˆ 2 X 1 X 2 中是 的无 2 3 3 3
偏估计量的为 .
6、设总体 X ~ N ( , 2 ) , X1 , X 2 , X 3 是来自总体 X 的样本,
t0.05 (35) 1.6896 ,
t0.05 (36) 1.6883 , t0.025 (35) 2.0301 , t0.025 (36) 2.028
概率论与数理统计复习资料(改)
一、 基础理论1. 在个别试验中呈现出不确定性 ,而在大量重复试验或观察中又具有 统计规律性 的现象,称为随机现象 。
2. 随机现象的每一种结果称为随机事件 ,它的取值称为随机变量 。
3. 根据试验或观测得到的有限信息,对整体做出一定概率的推断,称为统计推断。
4. 在数理统计中常把研究对象的全体称为 总体 。
5. 从母体中抽取若干数量个体来观测母体某种数量指标的取样过程称为 抽样 。
6. 精密度 一在相同条件下,几次测定结果彼此相符合的程度,即平行测定结果相互接近程度。
7. 抽样调查是按照 随机原则 ,从总体中抽取部分单位进行观察用以推算总体数量特征的一种统计调查方式。
8. 集中趋势 是指一组数据向其中心值靠扰的倾向。
9. 总体方差是各个数据与其算术平均数 的高差平方的平均数,通常以σ2表示。
10. 按随机变量取值的特点不同,通常把随机变量分为两类,即离散型随机变量 和连续型随机变量 。
11. 设样本X1,X2,……Xn 来自N(m ,1.69),则对检验H0:m =35,采用的检验量是12. 客观现象之间的数量联系可以归纳为两种不同的类型,一种是 函数关系 ,另一种是 相关关系 。
13. 按变量之间关系的 密切程度 不同,可分为完全相关、不完全相关和不相关。
14. 相关分析 是研究一个变量一个变量与另一个变量式另一组变量之间相关方向和相关密切程度的统计分析方法。
15. 回归分析 是指根据相关关系的具体形态,选择一个适合的数学模型来近似地表达变量间平均变化关系的统计分析方法。
16. 最小二乘法 就是寻找参数β0和β1的估计值β-0和β-1。
使因变量实际值与估计值的残差平方和达到最小。
17. 略18. 略19. 根据抽取样本的方法不同,有 重复抽样 和 不重复抽样 两种具体抽样方法。
20. 以样本指标去估计总体指标有 点估计 和 区间估计 两种方法。
21. 点估计就是用样本指标去直接估计总体指标,它没有考虑抽样误差 ;而区间估计就是根据样本指标和抽样误差去推断总体指标的 可能范围 ,并能够说明估计的 可靠性 ,所以 区间估计 是样本指标推断总体指标的主要方法。
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
《概率论与数理统计》复习-知识归纳整理
《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。
样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。
必然事件---每次试验中必然发生的事件。
不可能事件∅--每次试验中一定不发生的事件。
事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。
概率论与数理统计(完整版)
实用文档
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的 样本空间, 记为S. 样本空间的元素称为样本点,用表 示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E21,.E无2等穷.样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
可列个事件A1 , A2 ,的和事件记为 Ak .
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与
B的积,即事件A与A B同时发生. A B 可简记为AB.
类似地,
事件
SA K
为可列B 个事件A1,
A2,
...的积事件.
k 1
(2)A B
A B
(3)A B
实用文档S
9
4.差事件:
交换律: A B B A;A B B A.
结合律: A (B C) (A B) C ; A (B C) (A B) C.
分配律: A (B C) (A B) (A C); A (B C) (A B) (A C).
对偶律: A B A B;
概率论与数理统计
实用文档
第一章 概率论的基本概
念
前言
1. 确定性现象和不确定性现象.
2. 随机现象: 在个别试验中其结果呈现出不确定性, 在大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
实用文档
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
概率论与数理统计(完整公式,知识点梳理)
p
k
;
对于分布 二项分布
f ( x)dx
。
P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生 的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
k k nk P( X k ) Pn(k ) Cn p q
P( A)
(10)加法 公式 (11)减法 公式 (12)条件 概率
L( A) 。其中 L 为几何度量(长度、面积、体积) 。 L ()
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω 时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
积分元 f ( x)dx 在连续型随机变量理论中所起的作用与 P( X xk ) pk 在离 散型随机变量理论中所起的作用相类似。
4 / 27
(4)分布 函数
设 X 为随机变量, x 是任意实数,则函数
F ( x) P( X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
1-6概率论与数理统计
中找两个事件,它们既相 问:能否在样本空间Ω中找两个事件 它们既相 互独立又互斥? 互独立又互斥
φ 不难发现, 与任何事件既独立又互斥. 不难发现, 与任何事件既独立又互斥
φ A=φ
A
Ω
P( φ A) = 0 =P( φ )P(A)
前面我们看到独立与互斥的区别和联系, 前面我们看到独立与互斥的区别和联系, 练习 1.设A、B为互斥事件,且P(A)>0,P(B)>0, 设 为互斥事件, 为互斥事件 下面四个结论中,正确的是: 下面四个结论中,正确的是: A. P(B|A)>0 C. P(A|B)=0 B. P(A|B)=P(A) D. P(AB)=P(A)P(B)
性质 2 若 A, B 相互独立 , 则下列各对事件 , A 与 B , A 与 B , A 与 B 也相互独立 . 证明: 证明
先证 A 与 B 独立 .
因为 A = AB U A B 且 ( AB )( A B ) = ∅ , 所以 P ( A) = P ( AB ) + P ( A B ), 即 P( AB) = P( A) − P( AB).
则称 A1 , A2 ,L , An 为相互独立的事件 .
有兴趣的同学可以计算一下,上式中要成立的等式个数?
n 个事件相互独立
n个事件两两独立 个事件两两独立
下面我们来举一个右不能推出左的例子。 下面我们来举一个右不能推出左的例子。
伯恩斯坦反例 一个均匀的正四面体, 其第一面染成红色, 例 一个均匀的正四面体, 其第一面染成红色, 第三面染成黑色, 第二面染成白色 , 第三面染成黑色,而第四面同 时染上红、 黑三种颜色.现以 时染上红、白、黑三种颜色 现以 A , B,C 分别 , 记投一次四面体出现红、 黑颜色朝下的事件, 记投一次四面体出现红、白、黑颜色朝下的事件, 是否相互独立? 问 A,B,C是否相互独立 , , 是否相互独立 解 由于在四面体中红、 白、黑分别出现两面, 由于在四面体中红、 黑分别出现两面, 1 因此 P ( A) = P ( B ) = P ( C ) = , 2 1 又由题意知 P ( AB ) = P ( BC ) = P ( AC ) = , 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》
一、单项选择题
1、对某城市工业企业未安装设备进行普查,总体单位是______。
A.工业企业全部未安装设备B.工业企业每一台未安装设备
C.每个工业企业的未安装设备D.每一个工业企业
2、某市工业企业2008年生产经营成果年报呈报时间规定在2009年1月31日,调查期限为______。
A.1日B.1个月C.1年D.1年零1个月
3、工业企业的设备台数、产品产值是______。
A.连续变量
B.离散变量
C.前者是连续变量,后者是离散变量
D.前者是离散变量,后者是连续变量
4、调查单位与填报单位的关系是______。
A.二者是一致的
B.二者有时是一致的
C.二者没有关系
D.调查单位大于填报单位
5、统计调查是进行资料整理和分析的______。
A.基础环节B.中间环节C.最终环节D.必要补充
6、下列分组中______是按品质标志分组。
A.企业按年生产能力分组B.产品按品种分组
5、统计调查是进行资料整理和分析的______。
A.基础环节B.中间环节C.最终环节D.必要补充
6、下列分组中______是按品质标志分组。
A.企业按年生产能力分组B.产品按品种分组
C.家庭按年收入水平分组D.人口按年龄分组
7、在组距分组时,对于连续型变量,相邻两组的组限______。
A.必须是重叠的B.必须是间断的
C.可以是重叠的,也可以是间断的D.必须取整数
8、在什么条件下,简单算术平均数和加权算术平均数计算结果相同______。
A.权数不等B.权数相等C.变量值相同D.变量值不同
9、某厂2007年完成产值2000万元,2008年计划增长10%,实际完成2310万元,
超额完成计划______。
A.5.5%
B.5%
C.115.5%
D.15.5%
10、对甲乙两个工厂工人平均工资进行纯随机不重复抽样调查,调查的工人数一样,两工厂工资方差相同,但甲厂工人总数比乙厂工人总数多一倍,则抽样平均误差______。
A.甲厂比乙厂大B.乙厂比甲厂大C.两个工厂一样大D.无法确定
11、下列指标中属于质量指标的是______。
A.产量B.人口数C.销售额D.出勤率
12、人口普查规定标准时间是为了______。
A.避免登记的重复和遗漏B.确定调查对象的范围
C.确定调查单位D.确定调查时限
13、某企业对其所属车间的生产计划完成百分比采用如下分组,请指出哪项是正确的:______。
A.80%~89%B.80%以下C.90%以下D.85%以下
90%~99% 80.1%~90% 90%~100% 85%~95%
100%~109% 90.1%~100% 100%~110% 95%~105%
110%以下 100.1%~110% 110%以下 105%~115% 14、总量指标按其反映的内容不同可以分为______。
A.时期指和时点指标B.数量指标和质量指标
C.总体单位总量和标志总量D.实物指标和价值指标
15、假设职工用于上、下班路途的时间服从正态分布,经抽样调查得知这一时间为1.2小时,调查人员根据以往的调查经验,认为这一时间与往年没有多大的变化,为了证实这一看法,需采用的假设检验的方法是______。
A.双侧检验B.单侧检验C.左单侧检验D.右单侧检验
二、多项选择题
1、在工业普查中,______。
A.工业企业总数是统计总体B.每一个工业企业是总体单位
C.固定资产总额是统计指标D.机器台数是连续变量
E.职工人数是离散变量
2、在对工业企业生产设备的调查中,______。
A.全部工业企业是调查对象
B.工业企业的全部生产设备是调查对象
C.每台生产设备是调查单位
D.每台生产设备是填报单位
E.每个工业企业是填报单位
3、下列指标中强度相对指标是______。
A.人口密度B.平均每人占有粮食产量
C.人口自然增长率D.人均国内生产总值
E.生产工人劳动生产率
4、抽样估计中的抽样误差______。
A.是不可避免产生的B.是可以通过改进调查方式来消除的C.是可以事先计算出来的D.只能在调查结束后才能计算的E.其大小是可能控制的
5、时点指标的特点有______。
A.可以连续计数B.只能间断计数
C.数值的大小与时间长期有关D.数值可以直接相加
E.数值不能直接相加
6、估计标准误差可用于______。
A.说明回归方程拟合的优劣程度B.反映实际值与估计值的离差大小C.说明变量间的相关程度D.反映回归直线的代表性大小
E.推算回归系数
7、下列各数中属于指数的是______。
A.两工厂劳动生产率水平之比为1.5:1
B.某乡今年油菜播种面积增加20%
C.某厂生产计划完成120%
D.某地区人均消耗食粮食10千克
E.某市今年物价上涨5%
第 3 页共11 页
8、下列社会经济现象属于时期数列的有______。
A.某商店各月商品库存额
B.某商店各月商品销售额
C.某工业企业历年内部调动工种人次数
D.某供销社某年各月末人数
E.某工业企业历年产品产量
9、直线趋势方程y=a+bt中表示______。
A.趋势值
B.趋势线的截距
C.趋势线的斜率
D.当x变动一个单位时y平均增加的数值
E.当x=0时,y的数值
10、国内生产总值的计算方法有______。
A.生产法B.收入法C.支出法
D.付出法E.加减法
三、判断题
1、在对现象进行分析的基础上,有意识地选择若干具有代表性的单位进行调查,这种调查属于重点调查。
2、品质标志表明单位属性方面的特征,其标志表现只能用文字表现,所以品质标志不能直接转化为统计指标。
3、在任何条件下,加权算术平均数都不会等于简单算术平均数。
4、在简单现象总量指标的因素分析中,相对量分析一定要用同度量因素,绝对量分析可以不用同度量因素。
5、动态数列是由在不同时间上的一系列统计指标按时间先后顺序排列形成的。
6、当对品质标志的标志表现所对应的单位进行总计时就形成统计指标。
7、全面调查包括统计报表和普查。
8、全面调查和非全面调查是根据调查结果所取得的资料是否全面来划分的。
9、变异系数指标数值越大,说明总体中各单位标志值的变异程度就越大,则平均
体按照某一标志划分为若干性质不同又有联系的几个部分,称为统计分组。
(2)种类:3种,一是可分为类型分组、结构分组、分析分组;二是简单分组和复合分组;三是品质分组和变量分组。
3、答:抽样推断是在抽样调查的基础上,利用样本的实际资料计算样本指标,并据以推算总体相应数量特征的统计分析方法。
特点:(1)是由部分推算整体的一种认识方法论(2)建立在随机取样的基础上(3)运用概率估计的方法(4)抽样推断的误差可以事先计算并加以控制。
4、答:强度相对指标和平均指标存在着差异:(1)子项和母项的内容差异。
强度相对指标是两个性质不同而有联系的总量指标的对比,平均指标是同一总体的标志总量和单位总量的对比;(2)反映的问题不同。
强度相对指标反映现象的程度、密度和普遍程度,平均指标反映现象总体某种数量特征的一般水平。
1、答:标志指说明总体单位特征的名称,指标是说明总体数量特征的的概念。
区别:(1)指标说明总体的特征,而标志则说明总体单位的物征。
(2)指标只反映总体的数量特征,而标志则标志既有反映总体单位数量特征的也有反映总体单位品质特征的。
联系:许多指标数值都是由总体各单位的数量标志的标志值汇总而得的。
2、答;(1)随机原则就是在抽取调查单位时,完全排除人为的主观因素影响并保证每一个总体单位都有相等的中选可能性。
(2)因为抽样调查的目的在于用样本来推断总体的数量特征。
这就要求抽样的部分单位能够充他地代表总体,办有严格遵守随机原则,才能使现造的样本结构与总体结构相同,或者两者的分布相一致。
另外只有遵守随机原则,才能按概率论的原则计算抽样误差,并进行抽样推断。
3、答:按其任务和作用的不同,分为类型分组,结构分组和分析分组;按分组标志的多少,分为简单分组和复合分组;按分组标志的性质,分为品质分组和变量分组。
五、计算题
1、解(1)。