七年级数学(下)第二学期期末复习题(6)

合集下载

七年级数学下学期期末复习试题4套

七年级数学下学期期末复习试题4套

七年级数学下学期期末复习试题4套2019七年级数学下学期期末复习试题4套一、选择题(本大题共6题,每题2分,满分12分)1.下列说法正确的是(A)无限循环小数是无理数;(B)任何一个有理数都可以表示为分数的形式;(C)任何一个数的平方根有两个,它们互为相反数;(D)数轴上每一个点都可以表示唯一的一个有理数.2.在、0、3.14159、、、、0.1010010001、中,是无理数的个数为(A)1个; (B)2个; (C)3个; (D)4个.3.下列计算正确的是(A) ; (B) ;(C) ; (D) .4.已知:,那么实数a的取值范围是(A)a (B)a (C)a (D)a0.5.如图,(1)A与AEF是同旁内角;(2)BED与CFG是同位角;(3)AFE与BEF是内错角;(4)A与CFE是同位角.以上说法中,正确的个数为(A)1个; (B)2个;(C)3个; (D)4个.6.在平面直角坐标系中,a取任何实数,那么点M(a,a -1)17.如图,在△ABC中,B = 60,C = 40,AE平分BAC,ADBC,垂足为点D,那么DAE = 度.18.等腰三角形一腰上的高与另一腰的夹角为40,那么这个等腰三角形的顶角为度.三、(本大题共4小题,每题6分,满分24分)19.计算: .20.利用分数指数幂的运算性质进行计算: .21.已知:在△ABC中,A、B、C的外角的度数之比是3︰4︰5,求A的度数.22.如图,已知△ABC,根据下列要求作图并回答问题:(1)作边AB上的高CD;(2)过点D作直线BC的垂线,垂足为E;(3)点B到直线CD的距离是线段的长度.(不要求写画法,只需写出结论即可)四、(本大题共5题,每题8分,满分40分)23.如图,(1)写出点A、B、C的坐标:A ,B ,C ;(2)画出△ABC关于y轴的对称图形△A1B1C1;(3)联结BB1、AB1,求△ABB1的面积.24.如图,已知1 = 65,2 =3 = 115,那么AB与CD平行吗?EF 与GH平行吗?为什么?解:将1的邻补角记作4,则1 +4 = 180( ).因为 1 = 65,( ),所以 4 = 1801 = 180 - 65 = 115.因为 2 = 115( ),所以 2 =4 ( ).所以 ________ // _________( ).因为 4 = 115,3 = 115 ( ),所以 3 =4 ( ).所以 ________ // _________( ).25.如图,已知:B =C =AED = 90.(1)请你添加一个条件,使△ABE与△EC D全等,这个条件可以是 .(只需填写一个)(2)根据你所添加的条件,说明△ABE与△ECD全等的理由.26.如图,点D是等边△ABC中边AC上的任意一点,且△BDE 也是等边三角形,那么AE与BC一定平行吗?请说明理由.27.如图,在△ABC中,C = 90,CA = CB,AD平分BAC,BEAD 于点E。

人教版七年级数学下册期末测试题及复习资料详解共五套

人教版七年级数学下册期末测试题及复习资料详解共五套

李庄人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .1>0 D .1-m <2 2.下列各式中,正确的是( )16±4 B.±164 C 327- 3 2(4)- 4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在马路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为的方程组是( ) A. B. C. D.6.如图,在△中,∠500,∠800,平分∠,平分∠,则∠的大小是( ) A .1000 B .1100 C .1150 D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△沿方向平移了长度的一半得到的,若△的面积为20 cm 2,则四边形A 11的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案干脆填在答题卷的横线上. 11.49的平方根是,算术平方根是8的立方根是. 12.不等式59≤3(1)的解集是.13.假如点P(a,2)在第二象限,那么点Q(-3)在.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为C 1A 1ABB 1CD了使李庄人乘火车最便利(即间隔 最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠度.16.如图∥,∠100°平分∠,则∠.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种可以辅满地面的是.(将全部答案的序号都填上) 18.若│x 2-25则.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.解不等式组:,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, ∥ , 平分∠,你能确定∠B 及∠C 的数量关系吗?请说明理由。

华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。

2022-2023学年青岛新版七年级下册数学期末复习试卷(含答案)

2022-2023学年青岛新版七年级下册数学期末复习试卷(含答案)

2022-2023学年青岛新版七年级下册数学期末复习试卷一.选择题(共12小题,满分36分,每小题3分)1.下列四个图形中,∠1与∠2是对顶角的是( )A.B.C.D.2.如图,已知直线a∥b,把三角尺的顶点放在直线b上.若∠1=42°,则∠2的度数为( )A.138°B.132°C.128°D.122°3.方程组的解是( )A.B.C.D.4.如图,在△ABC中,AD⊥BC于点D,点A到直线BC的距离是( )A.线段AC的长B.线段BC的长C.线段AD的长D.线段AB的长5.(﹣3)0+(﹣)﹣2=( )A.9B.C.10D.6.计算(x2)3÷x2的结果是( )A.x3B.x4C.x6D.x87.若m>n>0,则下列代数式的值最大的是( )A.4mn B.m2+4n2C.4m2+n2D.(m﹣n)28.等腰三角形一边长为3,另一边长为6,则其周长是( )A.12B.15C.12或15D.以上答案都不对9.下列说法正确的是( )A.同旁内角互补B.两边长分别为2、4的等腰△ABC周长是8或10C.三角形一外角等于两内角的和D.八边形的外角和是360°10.在以下四点中,哪一点与点(﹣3,4)所连的线段与x轴和y轴都不相交( )A.(﹣5,1)B.(3,﹣3)C.(2,2)D.(﹣2,﹣1)11.如图,△ABC中,点E是BC上的一点,EC=3BE,点D是AC中点,若S△ABC=36,则S△ADF﹣S△BEF的值为( )A.9B.12C.18D.2412.若|a|=5,b2=16,且点M(a,b)在第二象限,则点M的坐标是( )A.(5,4)B.(﹣5,4)C.(﹣5,﹣4)D.(5,﹣4)二.填空题(共5小题,满分15分,每小题3分)13.如图,直线AB与CD相交于点O.(1)若∠AOC= ,则AB⊥CD;(2)若AB⊥CD,则∠AOC的度数是 .14.在平面直角坐标系中,点(m2+1,1)一定在第 象限.15.正八边形的每一个内角是 ,每一个外角是 .16.一个多边形的内角和是四边形的内角和的2倍,并且这个多边形的各个内角都相等,这个多边形每个外角等于 .17.如果∠α的两边与∠β的两边分别平行,且2∠β﹣∠α=30°,则∠α的度数为 .三.解答题(共8小题,满分69分)18.(4分)解方程组:(1);(2).19.(12分)计算:(1)(x﹣2y)2+4y(x﹣y);(2)[(2ab+1)(ab﹣4)﹣(ab+2)(ab﹣2)]÷ab.20.(12分)因式分解:(1)8﹣2x2;(2)2x3y+4x2y2+2xy3.21.(6分)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”22.(8分)填空完成推理过程:如图,已知AE平分∠BAD,CF平分∠BCD,∠BAD=∠BCD,且AE∥CF,求证:AD∥BC.证明:∵AE平分∠BAD,CF平分∠BCD∴∠1=∠BAD,∠2=∠BCD ∵∠BAD=∠BCD∴∠1=∠2∵AE∥CF(已知)∴∠2= ∴∠1= ∴ ∥ .23.(8分)如图,在△ABC中,∠B=50°,∠C=70°,AD是∠BAC的角平分线,AE 是高,求∠EAD的度数.24.(9分)如图所示的直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),(1)求四边形ABCD的面积.(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形有什么变化?如下变化:纵坐标不变,横坐标减2,并所得的图案与原来相比有什么变化?面积又是多少?(不画图直接回答)25.(10分)我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,a2+b2=(a﹣b)2+2ab.请同学们根据以上变形解决下列问题:(1)已知a2+b2=8,(a+b)2=20,则ab= ;(2)若x满足(2023﹣x)2+(x﹣2020)2=2021,求(2023﹣x)(x﹣2020)的值;(3)如图,在长方形ABCD中,AB=10,AD=6,点E、F分别是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,①CF= ,CE= ;(用含x的式子表示)②若长方形CEPF的面积为40,求图中阴影部分的面积和.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:A、∠1的两边不是∠2的两边的反向延长线,不是对顶角,不合题意;B、∠1的两边不是∠2的两边的反向延长线,不是对顶角,不合题意;C、∠1的两边是∠2的两边的反向延长线,是对顶角,符合题意;D、∠1与∠2没有公共顶点,不是对顶角,不合题意;故选:C.2.解:∵∠1=42°,∴∠3=180°﹣∠1﹣90°=180°﹣42°﹣90°=48°,∵a∥b,∴∠2=180°﹣∠3=132°.故选:B.3.解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.4.解:根据点到直线的距离定义:点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离,得:点A到直线BC的距离为过A做BC的垂线,即图中的线段AD 的长.故选:C.5.解:(﹣3)0+(﹣)﹣2=1+=1+9=10,故选:C.6.解:(x2)3÷x2=x6÷x2=x4.故选:B.7.解:∵m>n>0,∴设m=2,n=1,将m=2,n=1代入选项A,4nm=4×2×1=8;代入选项B,m2+4n2=22+4×12=8;代入选项C,4m2+n2=4×22+12=17;代入选项D,(m﹣n)2=(2﹣1)2=1;故选:C.8.解:∵如果腰长为3,则3+3=6,不符合三角形三边关系,所以腰长只能为6.∴其周长6+6+3=15.故选:B.9.解:A、直线平行,同旁内角互补,所以选项不符合题意;B、腰是2,底边是4时,2+2=4,不满足三角形的三边关系,因此舍去;当底边是2,腰长是4时,能构成三角形,则其周长=2+4+4=10,所以选项不符合题意;C、角形的一个外角等于与之不相邻的两个内角的和,所以选项不符合题意;D、八边形的外角和为360°,所以选项符合题意.故选:D.10.解:点(﹣3,4)在第二象限,点(﹣5,1)也在第二象限,两点的连接线段与x轴,y轴都不相交.故选:A.11.解:∵S△ABC=36,EC=3BE,点D是AC的中点,∴S△ABE=S△ABC=9,S△ABD=S△ABC=18,∴S△ABD﹣S△ABE=S△ADF﹣S△BEF=18﹣9=9.故选:A.12.解:∵点M(a,b)在第二象限,∴a<0,b>0,又∵|a|=5,b2=16,∴a=﹣5,b=4,∴点M的坐标是(﹣5,4).故选:B.二.填空题(共5小题,满分15分,每小题3分)13.解:(1)若∠AOC=90°,则AB⊥CD,故答案为:90°;(2)若AB⊥CD,则∠AOC的度数是90°,故答案为:90°.14.解:∵m2≥0,∴m2+1≥1,∴点(m2+1,1)一定在第一象限.故答案为:一.15.解:正八形的内角和为:(8﹣2)×180°=1080°,内角:1080°÷8=135°,外角:180°﹣135°=45°.故答案为:135°,45°.16.解:设这个多边形的边数为n,则有(n﹣2)•180°=360°×2,解得n=6.∵这个多边形的每个内角都相等,∴它每个外角的度数为360°÷6=60°.答:这个多边形每个外角等于60°.故答案为:60°.17.解:∵∠α与∠β的两边分别平行,∴∠α=∠β或∠β=180°﹣∠α,∴2∠α﹣∠α=30°或2(180°﹣∠α)﹣∠α=30°,解得∠α=30°或∠α=110°,∴∠α的度数是30°或110°.故答案为:30°或110°.三.解答题(共8小题,满分69分)18.解:(1)由②﹣①×3,得x=5,将x=5代入①,得2×5﹣y=5,∴y=5,∴原方程组的解是:;(2)原方程组可化为,由①×3+②,得16x=10,∴,将代入①,得,∴,故原方程组的解是:.19.解:(1)(x﹣2y)2+4y(x﹣y)=x2﹣4xy+4y2+4xy﹣4y2=x2;(2)[(2ab+1)(ab﹣4)﹣(ab+2)(ab﹣2)]÷ab =(2a2b2﹣8ab+ab﹣4﹣a2b2+4)÷ab=(a2b2﹣7ab)÷ab=ab﹣7.20.解:(1)原式=2(4﹣x2)=2(2﹣x)(2+x);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2;21.解:设每头牛值x两银子,每只羊值y两银子,依题意得:,解得:,答:每头牛值3两银子,每只羊值2两银子.22.证明:∵AE平分∠BAD,CF平分∠BCD,∴∠1=∠BAD,∠2=∠BCD(角平分线的定义).∵∠BAD=∠BCD,∴∠1=∠2.∵AE∥CF(已知),∴∠2=∠3.∴∠1=∠3.∴AD∥BC.故答案是:(角平分线的定义);∠3;∠3;AD;BC.23.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是角平分线,∴∠CAD=∠BAC=×60°=30°.∵AE是高,∴∠CAE=90°﹣∠C=90°﹣70°=20°,∴∠EAD=∠CAD﹣∠CAE=30°﹣20°=10°.24.解:(1)四边形ABCD的面积为:×3×6+(6+8)×11+×2×8=94;(2)因为原来四边形ABCD各个顶点纵坐标保持不变,横坐标增加2,就是把四边形ABCD向右平移2个单位,所以,所得的四边形面积不变;当纵坐标不变,横坐标减2,并所得的图案与原来相比形状大小都不变,面积是:94.25.解:(1)∵a2+b2=8,(a+b)2=20,∴==6;故答案为:6.(2)∵[(2023﹣x)+(x﹣2020)]2=(2023﹣x+x﹣2020)2=9,(2023﹣x)2+(x﹣2020)2=2021,∴(2023﹣x)(x﹣2020)==﹣1006,(3)∵AB=10,BC=6,BE=DF=x,∴CF=10﹣x,CE=6﹣x,∴[(10﹣x)﹣(6﹣x)]2=(10﹣x﹣6+x)2=16,∵长方形CEPF的面积为40,∴(10﹣x)(6﹣x)=40,解得x=8+2(舍)x=8﹣2.∴CF=10﹣x=10﹣8+2=2+2,CE=6﹣x=6﹣8+2=2﹣2.故答案为:2+2,2﹣2.∴S阴影=S正方形CFGH+S正方形CEMN=(10﹣x)2+(6﹣x)2=[(10﹣x)﹣(6﹣x)]2+2(10﹣x)(6﹣x)=16+2×40=96.。

苏科版初一数学下册期末复习题6

苏科版初一数学下册期末复习题6

怀文中学2012—2013学年度第二学期期末复习作业(6)初一数学命题人:郁胜军审校:陈秀珍时间:5月29日班级:姓名:学号:一、选择题(每小题只有一个选项是正确的,把正确选项前的字母填入括号中)1.下列各方程中是二元一次方程的是……………………………………………………………()A.122xy+=B.5xy x+=C.22350x y+-=D.124x y+=-2.三角形的高线是…………………………………………………………………………………()A.直线B.线段C.射线D.三种情况都可能3.用下列各组数据作为长度的三条线段能组成三角形的是……………………………………()A.3,3,8B.5,6,11 C.3,4,5 D.2,7,44.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)同角的补角相等;(3)直角都相等;其中真命题的个数是……………………………………………………………………………()A.0 B.1 C.2 D.35.若(x+k)(x-4)的积中不含有x的一次项,则k的值为…………………………………….()A.0 B.4 C.-4 D.-4或46.等腰三角形的两边长分别为5和11,则它的周长为……………………………………….()A.21 B.21或27 C.27 D.257.已知关于x的不等式组10xx a<⎧⎨>⎩无解,则a的取值范围是…………………………………()A.a<10B.a≤ 10C.a≥10D.不能确定8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组()()()()223113325130.9x yx y⎧+--=⎪⎨++-=⎪⎩的解是…()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.如果三角形三边长分别为a+1,a,a-1,则a的取值范围是…………………………….……()A.a>0 B.a>1 C.a>2 D.1<a<210.如图,AB∥DE,则下列说法中一定正确的是……………………………………………()A.∠1=∠2+∠3 B.∠1+∠2-∠3=180°C.∠1+∠2+∠3=270°D.∠1-∠2+∠3=90二、填空题(请把最后结果填在题中横线上.) 11.三角形的外角和等于_______度. 12.若2x +y -3=0,则yx24⨯=_______.13.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m ,则这个数用科学记数法表示是___ ____m . 14.若a +b =6,ab =4,则(a -b )2=_______.15.若多项式x 2+k x -6有一个因式是(x -2),则k =_______16.一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是 三角形.17.代数式q px x ++2中,当x=1时它的值是0;当x=2时,它的值是-9,则p = ,q = .18.方程5x +3y =54共有_______组正整数解..... 19.如果2,3x y =⎧⎨=⎩是方程组 ,2.x y m x y n +=⎧⎨-=⎩的解, 则m = , n = .20.下列各式是个位数为5的整数的平方运算:152=225;252=625;352=1225;452=2025;552=3025;652=4225;………; 观察这些数都有规律,如果x 2=9025,试利用该规律直接写出x 为_______. 三、解答题(解答应写出必要的计算过程、推演步骤或文字说明)21.计算:()()()0320112011130.252⎛⎫-+---⨯ ⎪⎝⎭22.解方程组:(1)32210x y x y -=⎧⎨+=⎩ (2)⎩⎨⎧=+=+75316116y x y xED CB A23.解不等式组:2331,(1)32 2.(2)4x x x x -+⎧⎪⎨+>-⎪⎩<()并把解集在数轴上表示出来.24.分解因式:(1) 4x 2-1 (2)81x 4-72x 2y 2+16y 425.先化简,再求值:(x +y )2-3x (x +3y )+2(x +2y )(x -2y ),其中x =-13,y =13.26.如图,AD 平分∠BAC,∠EAD=∠EDA.(1)∠EAC 与∠B 相等吗?为什么? (2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E 的度数.27.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽。

2022-2023学年北师大版七年级下学期期末数学复习题2(含答案)

2022-2023学年北师大版七年级下学期期末数学复习题2(含答案)

2022-2023学年北师大版七年级下学期期末数学复习题2一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)如图,直线b、c被直线a所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角2.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.323.(3分)如图,E为BC上一点,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )A.相交B.平行C.垂直D.不能确定4.(3分)有下列说法:①任何无理数都是无限小数;②实数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数;④π5是分数,它是有理数;⑤81的算术平方根是9.其中正确的个数是( )A.1B.2C.3D.45.(3分)如图,直线a∥b,∠1=30°,∠2=40°,且∠ADC=∠ACD,则∠3是( )A.70°B.40°C.45°D.35°6.(3分)对任意实数x,点P(x,x2﹣2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为( )A.6B.8C.10D.128.(3分)返校后,老师给同学们分发防疫口罩,如果该班每个学生分5个还差3个,如果每个学生分4个则多出3个,设这批口罩共有y个,该班共有x名学生,列出方程组为( )A.5x+3=y4x―3=y B.5x+3=y 4x+3=yC.5x―y=34x―y=3D.5x―y=3 y―4x=39.(3分)数轴上A、B两点表示的数分别为﹣2和2,数轴上点C在点A的左侧,到点A 的距离等于点B到点A的距离,则点C所表示的数为( )A.﹣3+2B.﹣3―2C.﹣4+2D.﹣4―210.(3分)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为( )A.23°B.33°C.44°D.46°二、填空题(每小题3分,共15分)11.(3分)若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k= .12.(3分)已知a为整数,且340<a+2<18,则a的值为 .13.(3分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.14.(3分)已知图为矩形,根据图中数据,则阴影部分的面积为 .15.(3分)直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点第2021次运动到的点的坐标为 .三、解答题(本大题共8个小题,满分75分)16.(9分)计算:16+(―12)×3―27+(―2)3.17.(9分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a= ,b= ,c= ;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为 ;72分及以上为及格,及格的百分比为 .18.(9分)在边长为1的正方形网格中,A(2,4)、B(4,1)、C(﹣3,4).(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标;(2)直接写出线段AB平移至线段CD处所扫过的面积;(3)平移线段AB,使其两端点都在坐标轴上,则平移后点B的坐标为 .19.(9分)已知y>x―6+12―2x+x,且|y2―49|+2x―y―z=0,求3x―y+3z 的值.20.(9分)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.21.(9分)若关于x的不等式组x>m+2―2x―1≥4m+1无解,且关于x的一元一次方程x+m﹣2=2﹣x有非负整数解,求所有满足条件的整数m的和.22.(9分)为了创建平安校园,某学校计划增加15台监控设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如下表所示.经调查,购买一台甲型设备比购买一台乙型设备少150元,购买3台甲型设备比购买2台乙型设备多150元.甲型设备乙型设备价格(元/台)a b有效半径(米/台)100150(1)求a、b的值;(2)若购买该批设备的资金不超过7200元,且两种型号的设备均要至少买一台,则学校有哪几种购买方案?(3)在(2)的条件下,要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.23.(12分)在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣2|+a+2b―11=0.(1)直接写出A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣3,m),如图(1)所示.若S△ABC=16,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).2019-2020学年河南省焦作市沁阳市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)如图,直线b、c被直线a所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角【解答】解:如图所示:直线b,c被直线a所截,∠1与∠2在直线a的同侧,则∠1与∠2是同位角.故选:A.2.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.32【解答】解:∵总人数为100人,在40~42(岁)组内有职工32名,∴这个小组的频率为32÷100=0.32.故选:C.3.(3分)如图,E为BC上一点,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )A.相交B.平行C.垂直D.不能确定【解答】解:AE∥DC;∵AB∥DE,∴∠1=∠AED,∵∠1=∠2,∴∠AED=∠2,∴AE∥DC,故选:B.4.(3分)有下列说法:①任何无理数都是无限小数;②实数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数;④π5是分数,它是有理数;⑤81的算术平方根是9.其中正确的个数是( )A.1B.2C.3D.4【解答】解:①任何无理数都是无限小数,故①正确;②实数与数轴上的点一一对应,故②正确;③在数轴上,在原点两旁,且到原点的距离相等的两个点所表示的数都是互为相反数,故③不正确;④π5是无理数,不是分数,故④不正确;⑤81的算术平方根是3,故⑤不正确;所以,上列说法中,其中正确的个数是2,故选:B.5.(3分)如图,直线a∥b,∠1=30°,∠2=40°,且∠ADC=∠ACD,则∠3是( )A.70°B.40°C.45°D.35°【解答】解:∵∠ADC=∠1+∠2=30°+40°=70°,∵∠ADC=∠ACD,∴∠DAC=180°﹣2∠ADC=40°,∵直线a∥b,∴∠3=∠DAC=40°,故选:B.6.(3分)对任意实数x,点P(x,x2﹣2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:(1)当0<x<2时,x>0,x2﹣2x=x(x﹣2)<0,故点P在第四象限;(2)当x>2时,x>0,x2﹣2x=x(x﹣2)>0,故点P在第一象限;(3)当x<0时,x2﹣2x>0,点P在第二象限.故选:C.7.(3分)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为( )A.6B.8C.10D.12【解答】解:∵将△ABC沿AC方向平移至△DFE,且AC=CD,∴A点移动的距离是2AC,则BF=AD,连接FC,则S△BFC=2S△ABC,S△ABC=S△FDC=S△FDE=2,∴四边形AEFB的面积为:10.故选:C.8.(3分)返校后,老师给同学们分发防疫口罩,如果该班每个学生分5个还差3个,如果每个学生分4个则多出3个,设这批口罩共有y个,该班共有x名学生,列出方程组为( )A.5x+3=y4x―3=y B.5x+3=y 4x+3=yC.5x―y=34x―y=3D.5x―y=3 y―4x=3【解答】解:∵如果该班每个学生分5个还差3个,∴5x﹣y=3;∵如果每个学生分4个则多出3个,∴y﹣4x=3.∴根据题意可列出方程组5x―y=3 y―4x=3.故选:D.9.(3分)数轴上A、B两点表示的数分别为﹣2和2,数轴上点C在点A的左侧,到点A 的距离等于点B到点A的距离,则点C所表示的数为( )A.﹣3+2B.﹣3―2C.﹣4+2D.﹣4―2【解答】解:设点C所表示的数为x,则x<﹣2.∵AC=AB,∴﹣2﹣x=2―(﹣2),解得x=﹣4―2.故选:D.10.(3分)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为( )A.23°B.33°C.44°D.46°【解答】解:连接AC,设∠EAF=x°,∠ECF=y°,则∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠E=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠F=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠F=23∠E,∵∠E=66°,∴∠F=44°,故选:C.二、填空题(每小题3分,共15分)11.(3分)若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k= ﹣2 .【解答】解:根据题意得:k―2≠0|k|―1=1,解得:k=﹣2.故答案为:﹣2.12.(3分)已知a为整数,且340<a+2<18,则a的值为 2 .【解答】解:∵3<340<4,4<18<5,∴a+2=4,∴a=2,故答案为:2.13.(3分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),则该企业第一季度月产值的平均值是13×240=80(万元).故答案是:80.14.(3分)已知图为矩形,根据图中数据,则阴影部分的面积为 8 .【解答】解:由图可知,阴影部分的面积=(3﹣1)×(5﹣1)=8,故答案为8.15.(3分)直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点第2021次运动到的点的坐标为 (2020,1) .【解答】解:点P的运动规律是每运动四次向右平移四个单位,∵2021=505×4+1,∴动点P第2021次运动时向右505×4+1=2021个单位,∴点P此时坐标为(2020,1),故答案为:(2020,1).三、解答题(本大题共8个小题,满分75分)16.(9分)计算:16+(―12)×3―27+(―2)3.【解答】解:原式=4+(―12)×(﹣3)﹣8=4+32―8=―5 2.17.(9分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a= 8 ,b= 10 ,c= 0.25 ;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为 720人 ;72分及以上为及格,及格的百分比为 85% .【解答】解:(1)a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)补全直方图如下:(3)预计全市优秀人数为120×40×0.15=720(人),及格的百分比为0.2+0.25+0.25+0.15=0.85=85%,故答案为:720人,85%.18.(9分)在边长为1的正方形网格中,A(2,4)、B(4,1)、C(﹣3,4).(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标;(2)直接写出线段AB平移至线段CD处所扫过的面积;(3)平移线段AB,使其两端点都在坐标轴上,则平移后点B的坐标为 (2,0)或(0,﹣3) .【解答】解:(1)∵平移线段AB到线段CD,使点A与点C重合,A(2,4),C(﹣3,4),∴坐标变化规律是:横坐标减去5,纵坐标不变,∵B(4,1),∴点D的坐标为(﹣1,1);(2)∵平移线段AB到线段CD,∴AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴线段AB平移至线段CD处所扫过的面积为:5×3=15;(3)分两种情况:①如果平移后A的对应点在y轴上,B的对应点在x轴上,那么坐标变化规律是:横坐标减去2,纵坐标减去1,∵B(4,1),∴平移后点B的坐标为(2,0);②如果平移后A的对应点在x轴上,B的对应点在y轴上,那么坐标变化规律是:横坐标减去4,纵坐标减去4,∵A(4,1),∴平移后点B的坐标为(0,﹣3);故答案为:(2,0)或(0,﹣3).19.(9分)已知y>x―6+12―2x+x,且|y2―49|+2x―y―z=0,求3x―y+3z 的值.【解答】解:要使x―6+12―2x+x有意义,必须x―6≥0 12―2x≥0,解得:x=6,∵y>x―6+12―2x+x,∴y>6,∵|y2―49|+2x―y―z=0,∴y 2―49=02x―y―z=0,解得:y=7,z=5,∴3x―y+3z=36―7+35=―1+35.20.(9分)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,(2)∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.21.(9分)若关于x的不等式组x>m+2―2x―1≥4m+1无解,且关于x的一元一次方程x+m﹣2=2﹣x有非负整数解,求所有满足条件的整数m的和.【解答】解:x>m+2―2x―1≥4m+1,不等式组整理得:x>m+2x≤―2m―1,由不等式组无解,得到m+2≥﹣2m﹣1,解得:m≥﹣1,∵x+m﹣2=2﹣x有非负整数解,∴x=2―m 2,∴2―m2≥0,∴m≤4,∴﹣1≤m≤4,把m=﹣1代入x+m﹣2=2﹣x得:x=52,不符合题意;把m=0代入得:x=2,符合题意;把m=1代入得:x=32,不符合题意;把m=2代入得:x=1,符合题意,把m=3代入得:x=―12,不符合题意,把m=4代入得:x=0,符合题意,则所有满足条件的整数m的和为0+2+4=6.22.(9分)为了创建平安校园,某学校计划增加15台监控设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如下表所示.经调查,购买一台甲型设备比购买一台乙型设备少150元,购买3台甲型设备比购买2台乙型设备多150元.甲型设备乙型设备价格(元/台)a b有效半径(米/台)100150(1)求a、b的值;(2)若购买该批设备的资金不超过7200元,且两种型号的设备均要至少买一台,则学校有哪几种购买方案?(3)在(2)的条件下,要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.【解答】解:(1)依题意,得:b―a=1503a―2b=150,解得:a=450 b=600.(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意,得:15―x≥1450x+600(15―x)≤7200,解得:12≤x≤14.∵x为整数,∴x=12,13,14.答:学校有三种购买方案,方案1:购进甲型设备12台,乙型设备3台;方案2:购进甲型设备13台,乙型设备2台;方案3:购进甲型设备14台,乙型设备1台.(3)依题意,得:100x+150(15﹣x)≥1600,解得:x≤13,∴12≤x≤13,∴x=12或13.当x=12时,所需资金为:450×12+600×3=7200(元),当x=13时,所需资金为:450×13+600×2=7050(元).∵7200>7050,∴方案2省钱.答:最省钱的购买方案为购买甲型设备13台,乙型设备2台.23.(12分)在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣2|+a+2b―11=0.(1)直接写出A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣3,m),如图(1)所示.若S△ABC=16,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).【解答】(1)解:∵|2a﹣b﹣2|+a+2b―11=0,∴2a ―b ―2=0a +2b ―11=0,解得:a =3b =4,∴A (0,3),B (4,0);(2)解:如图1,过点A 作FG ∥x 轴,过点B 作GH ∥y 轴,交FG 于G ,过点C 作CH ∥x 轴,交GH 于H ,过点C 作CF ∥y 轴,交FG 于F ,则四边形CFGH 为矩形,∵A (0,3),B (4,0),C (﹣3,m ),∴AF =3,CF =3﹣m ,AG =4,BG =3,BH =﹣m ,CH =7,∵S △ABC =S 矩形CFGH ﹣S △AFC ﹣S △AGB ﹣S △BHC =CF •CH ―12AF •CF ―12AG •BG ―12BH •CH =(3﹣m )×7―12×3×(3﹣m )―12×4×3―12×(﹣m )×7=212―2m ,∴212―2m =16,解得:m =―114,∴将线段AB 向左平移了3个单位,向下平移了234个单位,得到CD ,∴点D 的横坐标为4﹣3=1,点D 的纵坐标为0―234=―234,∴D (1,―234);(3)证明:延长AB 交CE 的延长线于N ,如图2所示:∵AN ∥CD ,∴∠DCN =∠N ,∵∠BCE =2∠ECD ,∴∠BCD =3∠DCN =3∠N ,∵PE 平分∠OPB ,∴∠NPE =∠OPE ,∵∠N =∠CEP ﹣∠NPE ,∴∠N =∠CEP ﹣∠OPE ,∴∠BCD =3(∠CEP ﹣∠OPE ).。

人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)

人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)

第6章《实数》易错题汇编一.选择题(共10小题)1.的平方根是()A.±3B.3C.±9D.92.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c4.的算术平方根是()A.2B.±2C.D.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.48.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根二.填空题(共4小题)11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.12.一个正数的平方根分别是x+1和x﹣5,则x=.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共2小题)15.化简求值:(),其中a=2+.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.试题解析1.的平方根是()A.±3B.3C.±9D.9解:∵,9的平方根是±3,故选:A.2.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个解:据无理数定义得有,π和是无理数.故选:B.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.4.的算术平方根是()A.2B.±2C.D.解:=2,2的算术平方根是.故选:C.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.4解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选:A.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.12.一个正数的平方根分别是x+1和x﹣5,则x=2.解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b15.化简求值:(),其中a=2+.解:原式=[+]•+=•+==,当a=2+时,原式=+1.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.。

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版

人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版

人教版2021-2022学年度第二学期七年级数学第6章实数期末复习测试卷附答案教师版一、单选题(共10题;共30分)1.(3分)(−3)2的平方根为()A.±3B.3C.±3D.3【答案】C2.(3分)以下代数式的值可以为负数的是()A.|3-x|B.x2+x C.D.x2-2x+1【答案】B3.(3分)下列算式与所计算出的结果相同的是()A B C D【答案】A4.(3分)下列等式正确的是().A=13B=113C.3−9=−3D=±34【答案】A5.(3分)下列说法错误的是()A.27的立方根是3B.−12是14的平方根C.平方根等于它本身的数只有0D.2的算术平方根是a【答案】D6.(3分)下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)38的平方根是±2;(4= 2+12=212.共有()个是错误的.A.1B.2C.3D.4【答案】C7.(3分)下列各数是无理数的是()A.-2.5B.227C.D.4【答案】C8.(3分)实数2,0,-2,2中,最大的数是()A.2B.0C.-2D.2【答案】A9.(3分)设a,b,c为互不相等的实数,且23+13=,则下列结论正确的是()A.>>B.>>C.−=2(−p D.−=3(−p 【答案】D10.(3分)实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是()A.+>0B.B>0C.−>0D.|U>|U【答案】D二、填空题(共5题;共15分)11.(3分)若2≈1.414,则200≈.【答案】14.1412.(3分)一个正数的两个平方根分别是2+5和−1,则这个正数是.【答案】49913.(3分)若30.3=0.6694,33=1.442,则3300=.【答案】6.69414.(3分)若3=-7,则a=【答案】34315.(3分)计算:18−6cos45°+(12)−2=.【答案】4三、解答题(共8题;共55分)16.(7分)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间(单位:)与细线的长度(单位:)之间满足关系=,当细线的长度为0.4时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】解:把l=0.4m代入关系式=得,∴===2×15=0.4=1.3(秒).17.(6分)小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长宽之比为4:3,他不知道能否裁得出来,聪明的你帮他想想,他能裁得出来吗?(通过计算说明)【答案】解:设设所裁长方形的长、宽分别为4x厘米,3x厘米,由题意得,4×3=360,即2=30,∵>0∴=30∴长方形的长为430,∵正方形纸片的面积为400平方厘米,∴正方形的边长为400=20厘米,∵30>5,∴430>20,∴不能裁出符合要求的长方形.18.(7分)已知一个正数的平方根是3+1与3−,求和的值.【答案】解:∵一个正数a的两个平方根分别为3x+1和3﹣x,∴3x+1+3﹣x=0,解得x=﹣2,∴3﹣x=3﹣(﹣2)=5,∴a=52=25.∴x和a的值分别是﹣2,25.19.(7分)实数a,b互为相反数,c,d互为倒数,x的绝对值为3,求代数式2+++4−327n 的值.【答案】由题意知a+b=0,cd=1,x=±3,则原式=(±3)2+0+4−=3+2−3=2.20.(7分)已知一个正数的平方根是2−3和5−,求7−−1的立方根.【答案】解:∵正数b的平方根是2−3和5−∴(2−3)+(5−p=0∴=−2∴=(2−3)2=(−7)2=49∴7−−1=7×(−2)−49−1=−64而−64的立方根为−4故7−−1的立方根为−421.(7分)已知某正数的两个平方根分别是2m-3和5-m,n-1的算术平方根为2,求3m+n-7的立方根。

人教版七年级数学下册期末复习选择题含答案

人教版七年级数学下册期末复习选择题含答案

人教版七年级数学下册期末复习选择题含答案第五章一、选择题(每小题3分,共36分)1.在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是 (D)2.如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为 (A)A.40°B.50°C.60°D.70°第2题图3.下列语句错误的是 (C)A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成的两线段平行(或在同一直线上)且相等4.直线m外的一点P,它到直线m上三点A,B,C的距离分别是6 cm,3 cm,5 cm,则点P到直线m的距离为 (D)A.3 cm B.5 cm C.6 cm D.不大于3 cm5.如图,下列说法中:①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.正确的有(D)A.①③④ B.③④ C.①②④ D.①②③④第5题图6.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1等于(B) A.65° B.55° C.45° D.35°第6题图7.如图,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能使a∥b成立的条件有(D)A.1个 B.2个 C.3个 D.4个第7题图8.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFC′=∠120°,则∠AED′= (C)A.50° B.55° C.60° D.65°第8题图9.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB =90°,则∠DBC的度数是 (B)A.10° B.15° C.18° D.30°第9题图10.如图,直线EF分别与直线AB,CD相交于点G,H,已知∠1=∠2=60°,GM平分∠HGB交直线CD于点M,则∠3的度数等于(A) A.60° B.65° C.70° D.130°第10题图11.如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC=DF;②ED⊥DF;③四边形ABFD的周长是16;④AD∶EC=2∶3.其中结论正确的个数有(D)A.1个 B.2个 C.3个 D.4个第11题图12.如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系是 (C)A.∠α+∠β+∠γ=180° B.∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α+∠β+∠γ=270°第12题图第六章一、选择题(每小题3分,共36分)1.下面说法没有错误的是 (D )A .两个无理数的和还是无理数B .有限小数和无限循环小数统称为实数C .两个无理数的积还是无理数D .数轴上的点表示实数2.在3.14,297- 3 ,364 ,π这几个数中,无理数有 (B ) A .1个 B .2个 C .3个 D .4个3.下列命题:①3的平方根是 3 ;②-3是9的平方根;③± 5 都是5的平方根;④负数没有立方根.其中正确命题的个数是 (B )A .1个B .2个C .3个D .4个4.在下列各式中,正确的是 (B )A .3(-2)3 =2B .3-0.064 =-0.4C .(±2)2 =±2D .(- 2 )2+(32 )3=05.在|-2|,20,2-1, 2 这四个数中,最大的数是 (A )A .|-2|B .20C .2-1D . 26.若a 2=9,b 3=-64,则a +b 的值是 (D )A .7B .-7C .-1D .-7或-17.|1- 2 |= (B )A .1- 2B . 2 -1C .1+ 2D .-1- 2 8.16 的算术平方根的倒数是 (C )A .14B .±14C .12D .±129.估计10 +1的值是 (C )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间10.若m ,n 满足(m -1)2+n -15 =0,则m +n 的平方根是 (B )A .±4B .±2C .4D .211.下列命题是真命题的是 (C )A .若a 2=b 2,则a =bB .若x =y ,则2-3x>2-3yC .若x 2=2,则x =± 2D .若x 3=8,则x =±212.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是(A )A .|a|<1<|b|B .1<-a <bC .1<|a|<bD .-b <a <-1第七章一、选择题(每小题3分,共36分)1.如果(6,3)表示电影票上“6排3号”,那么3排6号应该表示为(B )A.(6,3) B.(3,6)C.(-3,-6) D.(-6,-3)2.已知点A(-2,3),则点A在 (B)A.第一象限 B.第二象限C.第三象限 D.第四象限3.气象台为了预报台风,首先要确定它的位置,下列说法能确定台风的位置的是 (B)A.西太平洋 B.东经32°,北纬26°C.距台湾40海里 D.台湾与金门之间4.如图,长方形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将长方形OABC平移后,点B与点O重合,得长方形O1A1OC1,那么点O1的坐标为 (C)A.(2,1) B.(-2,1)C.(-2,-1) D.(2,-1)第4题图5.如图,与图①中的三角形相比,图②中的三角形发生的变化是 (A) A.向左平移3个单位 B.向左平移1个单位C.向上平移3个单位 D.向下平移1个单位第5题图6.若点M(x,y)的坐标满足x+y=0,则点M位于 (D)A.第二象限 B.第一、三象限的夹角平分线上C.第四象限 D.第二、四象限的夹角平分线上7.下列说法:①点P(0,-5)在x轴上;②点A(2,-3)到x轴的距离为2,到y轴的距离为3;③若点P(x,y)的坐标满足x2+y2=0,则点P在原点;④平行于x轴的直线上所有点的纵坐标相同.其中正确的是(D)A.①② B.①③ C.②③ D.③④8.小明从家出发,先向东走350 m到小亮家,然后他们又向南走500 m到老师家,如果以老师家的位置为平面直角坐标系的坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,那么小明家的位置可记为(D)A.(350,500) B.(-350,-500)C.(350,-500) D.(-350,500)9.已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1).则点B的对应点的坐标为(C)A.(5,3) B.(-1,-2) C.(-1,-1) D.(0,-1)10.如图,在正方形ABCD中,A,B,C三点的坐标分别是(-1,2),(-1,0),(-3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是(B)A.(-6,2) B.(0,2) C.(2,0) D.(2,2)第10题图11.如图,在4×4的网格纸中,每个小正方形边长为1,点O ,A ,B 在网格纸的格点(交点)上,在网格纸上找格点C ,使△ABC 的面积为3,则这样的格点C 共有 (B )A .5个B .4个C .3个D .2个第11题图12.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm ,则图中转折点P 的坐标表示正确的是(C )A .(5,30)B .(8,10)C .(9,10)D .(10,10)第八章一、选择题(每小题3分,共36分)1.将方程2x -y =3写成用含x 的式子表示y 的形式,正确的是 (B )A .x =y 2 +32B .y =2x -3C .y =-2x +3D .y =-2x -32.下列各组数是二元一次方程⎩⎪⎨⎪⎧x +3y =7,y -x =1的解的是 (A ) A .⎩⎪⎨⎪⎧x =1,y =2 B .⎩⎪⎨⎪⎧x =0,y =1 C .⎩⎪⎨⎪⎧x =7,y =0 D .⎩⎪⎨⎪⎧x =1,y =-2 3.已知四个方程组:①⎩⎪⎨⎪⎧5x -2y =-3,5x +3y =4; ②⎩⎪⎨⎪⎧y =3-2x ,x -2y =-1; ③⎩⎪⎨⎪⎧2x +3y =1,5x -6y =-12; ④⎩⎪⎨⎪⎧x 3+2y 7=1,5x -6y =3, 合理简便的消元方法是 (A )A .①③④用加减消元法,②用代入消元法B .①②用加减消元法,③④用代入消元法C .③④用加减消元法,①②用代入消元法D .②用加减消元法,①③④用代入消元法4.若⎩⎪⎨⎪⎧x =9y =2 是方程组⎩⎪⎨⎪⎧4x -7y =a +b ,3x -y =a -b的解,则a ,b 的值是 (C ) A .⎩⎪⎨⎪⎧a =812,b =14 B .⎩⎪⎨⎪⎧a =3,b =-17 C .⎩⎪⎨⎪⎧a =472,b =-32 D .⎩⎪⎨⎪⎧a =5,b =-195.如果|x +y -1|和2(2x +y -3)2互为相反数,那么x ,y 的值为 (C ) A .⎩⎪⎨⎪⎧x =1,y =2 B .⎩⎪⎨⎪⎧x =-1,y =-2 C .⎩⎪⎨⎪⎧x =2,y =-1 D .⎩⎪⎨⎪⎧x =-2,y =-16.由方程组⎩⎪⎨⎪⎧x -y =2,y -z =3,z +x =5 可求出xyz -20的值为 (D )A .0B .20C .-35D .-207.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是 (A ) A .2x +y =4 B .2x -y =4C .2x +y =-4D .2x -y =-48.为了绿化校园,某校30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,若设男生有x 人,女生有y 人,根据题意,所列方程组正确的是 (D )A .⎩⎪⎨⎪⎧x +y =78,3x +2y =30B .⎩⎪⎨⎪⎧x +y =78,2x +3y =30 C .⎩⎪⎨⎪⎧x +y =30,2x +3y =78 D .⎩⎪⎨⎪⎧x +y =30,3x +2y =789.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为 (B )A .19B .18C .16D .1510.桂花村派男女村民共15人到村外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包,那么这次采购派男女村民的人数为 (B )A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人11.为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有 (A )A .4种B .3种C .2种D .1种12.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量(D )A .2B .3C .4D .5第九章一、选择题(每小题3分,共36分)1.已知a >3,则下列不等式中,不一定正确的是 (D )A .a -3>0B .a +1>4C .2a >6D .am >3m2.不等式组⎩⎪⎨⎪⎧3x -1>28-4x ≤0 的解集在数轴上表示正确的是 (A )3.若式子6-3x 3减去-5的差是负数,则x 的取值范围是 (A ) A .x >7 B .x <7 C .x >17 D .x <174.若代数式12(x +3)的值不小于代数式2x -3的值,那么满足条件的x 的非负整数值有 (C )A .0,1,2B .1,2,3C .0,1,2,3,D .1,2,3,45.天平右盘中的每个砝码的质量都是1 g ,则物体A 的质量 m(g)的取值范围,在数轴上可表示为 (A )6.如果方程组⎩⎪⎨⎪⎧x +y =3x -2y =-3+a 的解满足⎩⎪⎨⎪⎧x >0,y >0, 则a 的取值范围是(C ) A .a >-3 B .-6<a <3C .-3<a <6D .以上答案都不对7.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a<2b +1 的解集为3≤x<5,则b a 的值是 (A )A .-2B .-12C .-4D .2 8.关于x 的一元一次不等式组⎩⎪⎨⎪⎧6-3(x +1)<x -9,x -m>-1 的解集是x>3,则m 的取值范围是 (D )A .m>4B .m ≥4C .m<4D .m ≤49.现用甲、乙两种运输车共10辆,要将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排(C )A .4辆B .5辆C .6辆D .7辆10.某乒乓球馆有两种计费方案,如下表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务员测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为 (B )A.9人 B .8人 C .7人 D .6人11.不等式组⎩⎪⎨⎪⎧x -13-12x<-1,4(x -1)≤2(x -a )有3个整数解,则a 的取值范围是(B )A .-6≤a<-5B .-6<a ≤-5C .-6<a<-5D .-6≤a ≤-512.一种灭虫粉30千克,含药率是15%,现在要用含药率高的同种灭虫粉50千克和它混合,使混合的含药率大于20%且小于35%,则所用灭虫粉的含药率x 的范围是 (C )A .15%<x <23%B .15%<x <35%C .23%<x <47%D .23%<x <50%第十章一、选择题(每小题4分,共32分)1.下列调查适合用全面调查的是 (D )A .调查2016年6月份市场上某品牌饮料的质量B .了解中央电视台新闻联播的全国收视情况C .环保部门调查5月份黄河某段水域的水质情况D.了解全班同学本周末参加社区活动的时间2.要清楚地表明一病人的体温变化情况,应选用的统计图是 (A)A.折线统计图 B.条形统计图C.扇形统计图 D.频数直方图3.小林家今年1-5月份的用电量情况如图所示,由图可知,相邻的两个月中,用电量变化最大的是 (B)A.1月至2月 B.2月至3月C.3月至4月 D.4月至5月第3题图4.从一块稻田中抽出100穗稻穗,测量这些稻穗的质量,以下说法正确的是(C)A.这块稻田中的每一穗稻穗是个体B.这块稻田中所有的稻穗是总体C.抽出的100穗稻穗的质量是总体的一个样本D.以上说法都是不正确的5.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图.据此统计图估计该校八年级支持“分组合作学习”方式的学生数约为(含非常喜欢和喜欢两种情况) (B)A.216 B.252 C.288 D.324第5题图6.将一次知识竞赛成绩(整数)进行整理后,分成五组,绘成频数分布直方图,如图中从左到右的前四组的百分比分别是4%,12%,40%,28%,最后一组的频数是8,则①第五组的百分比为16%;②该班有50名同学参赛;③成绩在70.5-80.5的人数最多;④80分以上(不含80分)的学生共有22名.其中正确的有 (A)A.4个 B.3个 C.2个 D.1个7.某校公布了反映该校各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是(B)A.甲和乙 B.乙和丙 C.甲和丙 D.甲、乙、丙8.如图是杭州市区人口的统计图.根据统计图得出的下列判断,正确的是(D)A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万期中复习一、选择题(每小题3分,共36分)1.下列各数中,3.141 59,-38 ,0.131 131 113…,-π,25 ,-17,无理数的个数有 (B)A.1个 B.2个 C.3个 D.4个2.如图,下列条件中,能判断直线l1∥l2的是 (B)A.∠2=∠3 B.∠1=∠3C.∠4+∠5=180° D.∠2=∠43.下列说法不正确的是 (D)A.±0.3是0.09的平方根,即±0.09 =±0.3B.存在立方根和平方根相等的数C.正数的两个平方根的积为负数D.64 的平方根是±84.已知点M的坐标是M(3,-2),它与点N(x,y)在同一条平行于x轴的直线上,且MN=4,那么点N的坐标是 (A)A.(7,-2)或(-1,-2) B.(3,2)或(3,-6)C.(7,2)或(-1,-6) D.(4,-2)或(-4,-2)5.下列计算:①25 =5;②3-127=±13;③(-2)2=2;④(- 3 )2=3;⑤125144=1512,其中正确的个数有 (C)A.1个 B.2个 C.3个 D.4个6.比较2,3-27 ,7 的大小,正确的是 (A)A.3-27 <2<7 B.2<3-27 <7C.3-27 <7 <2 D.7 <2<3-277.如图,在平面直角坐标系中,▱ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是 (C)A.(3,7) B.(5,3) C.(7,3) D.(8,2)第7题图8.如图,如果直线ON⊥直线a,直线OM⊥直线a,那么OM与ON重合,其理由是 (C)A.过两点只有一条直线B.在同一平面内,过两点有且只有一条直线与已知直线垂直C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短第8题图9.如图,已知AD∥EF∥BC,EH∥AC,则图中与∠1相等的角有(C)A.3个 B.4个 C.5个 D.6个第9题图10.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是(D)A.40° B.50° C.60° D.70°第10题图11.如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB= (B)A.149° B.149.5° C.150° D.150.5°第11题图12.如图是某公园里一处长方形风景欣赏区ABCD ,长AB =50米,宽BC =25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为 (C )A .100米B .99米C .98米D .74米第12题图期末复习一、选择题(每小题3分,共36分)1.给出四个数0, 3 ,12,-1,其中最小的是 (D ) A .0 B . 3 C .12D .-1 2.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3)-3-23 =2;(4)364 是无理数;(5)当a ≠0时,一定有 a 是正数.其中正确的说法有 (B )A .1个B .2个C .3个D .4个3.不等式组⎩⎪⎨⎪⎧x ≤1,x -12<x +1 的解集在数轴上表示为 (A )4.如图,不能作为判断AB ∥CD 的条件是 (D )A.∠FEB =∠ECD B .∠AEC =∠ECDC .∠BEC +∠ECD =180° D .∠AEG =∠DCH5.以下关于扇形统计图的说法不正确的是 (B )A .扇形的大小表示各部分在总体中所占百分比的大小B .扇形所在圆的半径必须是1个单位长度C .每个扇形的圆心角的大小应根据各部分在总体中所占的百分比来确定D .扇形统计图的特点是易于显示部分在总体中所占的百分比6.若a<b ,则下列结论不一定成立的是 (D )A .a -1<b -1B .2a<2bC .-a 3 >-b 3D .a 2<b 2 7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(-1,0),(0, 3 ).现将该三角板向右平移使点A 与点O 重合,得到△OCB ′,则点B 的对应点B ′的坐标是(C )A .(1,0)B .( 3 , 3 )C .(1, 3 )D .(-1, 3 )第7题图8.如图,在直角三角形ABC 中,∠C =90°,AC =4,将三角形ABC 沿CB 向右平移得到三角形DEF ,若四边形ABED 的面积等于8,则平移距离等于(A )A .2B .4C .8D .16第8题图9.如图,直线AB ∥EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若∠BCD =95°,∠CDE =25°,则∠DEF 的度数是 (C )A .110°B .115°C .120°D .125°第9题图10.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -3y =a ,2x +5y =2a -6 的解满足不等式组⎩⎪⎨⎪⎧3x +2y ≥0,x +8y <0.则满足条件的整数a 的值为 (B )A .1,2,3,4B .2,3,4,5C .2,3,4D .3,4,511.五一期间,某商场推出女装部全场八折,男装部全场八五折的优惠活动,某顾客购买了女装部原价x 元的服装、男装部原价y 元的服装各一套,优惠前需付700元,而他实际付款为580元,则可列方程组为(D )A .⎩⎪⎨⎪⎧x +y =580,0.8x +0.85y =700B .⎩⎪⎨⎪⎧x +y =700,0.85x +0.8y =580C .⎩⎪⎨⎪⎧x +y =700,0.8x +0.85y =700-580D .⎩⎪⎨⎪⎧x +y =700,0.8x +0.85y =580 12.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案(至少一名男生)共有(B )A .1种B .2种C .3种D .4种。

2022-2023学年北师大版七年级下学期期末数学复习题6(含答案)

2022-2023学年北师大版七年级下学期期末数学复习题6(含答案)

2022-2023学年北师大版七年级下学期期末数学复习题6一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答答案的序号填入下表中相应题号下的表格内,本题共8个小题,每小题2分,共16分)1.(2分)计算(﹣a m)2的结果是( )A.a2+m B.﹣a2m C.a2m D.a2m22.(2分)下列事件为必然事件的是( )A.小王参加本次数学考试,成绩是500分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球3.(2分)下列计算正确的是( )A.6ab÷3b=2ab B.(x﹣2)2=x2﹣4C.2﹣1=﹣2D.(﹣1)0=14.(2分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )A.55°B.65°C.75°D.125°5.(2分)下列条件中,不能判定△ABC和△A′B′C′全等的是( )A.AB=AˊBˊ,BC=BˊCˊ,∠B=∠BˊB.AB=AˊBˊ,AC=AˊCˊ,∠B=∠BˊC.∠B=∠Bˊ,∠C=∠Cˊ,AB=AˊBˊD.∠B=∠Bˊ,∠C=∠Cˊ,BC=BˊCˊ6.(2分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( )A.轴对称性B.用字母表示数C.随机性D.数形结合7.(2分)如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为a千米,小刚在青稞地除草比在菜地浇水多用了b分钟,则a,b的值分别为( )A.1,8B.0.5,12C.1,12D.0.5,88.(2分)如图在△ABC中,AB=AC,AD=BC=8,点E,F是中线AD上的两点,则图中阴影部分的面积是( )A.6B.9C.16D.24二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 .10.(2分)计算:82020×(﹣0.125)2020= .11.(2分)如图,有下面几张扑克牌,把牌背面朝上,随机抽取一张,则恰好抽到黑桃J 的概率是 .12.(2分)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.50 13.(2分)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y与n之间的函数关系式y= .14.(2分)观察下列图形:轴对称图形有 ,对称轴不止1条的图形有 .(只要填写序号即可)15.(2分)一只小鸟自由自在在空中飞翔,然后随意落在下图(由16个小正方形组成)中,则落在阴影部分的概率是 .16.(2分)已知三角形ABC,且AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,那么x的取值范围是 .三、计算题(本题共2个题,第17题14分,第18题7分,共21分) 17.(14分)计算:①(12)﹣2+20200÷(﹣2)﹣2﹣12;②用简便方法计算:20192﹣2020×2018.③老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:÷(―12y)=﹣6x+2y﹣1ⅰ.求手掌捂住的多项式;ⅱ.若x=23,y=1,求所捂多项式的值.18.(7分)先化简,再求值:[(2ab+3)(2ab﹣3)﹣2a2b(5b﹣a)+9]÷(2ab),其中a=―12,b=23.四、作图题(本题5分)19.(5分)在校运动会上,育才中学七年级(1)班的同学为了给参加比赛的同学加油助威,每人提前制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用尺规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).五、解答题(本题共2个题,第20题6分,21题7分,共13分)20.(6分)请将下列证明过程补充完整已知:如图,∠1=∠2,∠3=∠B.求证:∠DEC+∠BCE=180°.证明:∵∠1=∠2,( )∴EF∥DB,( )∴∠3=∠4,( )∵∠3=∠B,(已知)∴ = ,(等量代换)∴DE∥BC,( )∴∠DEC+∠BCE=180°.( )21.(7分)小明的爸爸拿回一张电影票,儿子小明和妹妹小利都想去看电影,于是爸爸给他们出了一个主意,方法是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,则小明去看电影,否则小利去看电影.(1)你认为爸爸这个方法是否合理?请用概率的知识解释原因.(2)若使方法公平,你认为该如何修改这个方法?六、解答题(本题共3个题,22题6分,23题6分,24题8分,共20分.)22.(6分)某学校的复印任务由红光复印社承接,其复印费用y(元)与复印页数x(页)的关系如表所示:x(页)1002004001000…y(元)204080200…(1)请你根据表中反映y与x之间的关系,求变量y与变量x之间的关系式;(2)七年级(1)班复印720张试卷,那么应该付给红光复印社多少元钱?(假设学校各班复印的纸张规格都相同)23.(6分)如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠4=75°.求∠3的度数.24.(8分)如图,∠BAC=∠ABD=90°,AC=BD,点O是AD、BC的交点,过点O作OE ⊥AB于点E.(1)图中有哪几对全等三角形?(不必说明理由)(2)请说明∠DAB=∠CBA;(3)试判断点E是否为AB的中点,并说明理由.七、探究题(本题9分)25.(9分)生活中的数学:(1)如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是: .(2)小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是: .(3)如图3所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.2019-2020学年辽宁省锦州市黑山县七年级(下)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答答案的序号填入下表中相应题号下的表格内,本题共8个小题,每小题2分,共16分)1.(2分)计算(﹣a m)2的结果是( )A.a2+m B.﹣a2m C.a2m D.a2m2【解答】解:(﹣a m)2=a2m.故选:C.2.(2分)下列事件为必然事件的是( )A.小王参加本次数学考试,成绩是500分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【解答】解:A、是不可能事件,故本选项错误;B、是随机事件,故本选项错误;C、是随机事件,故本选项错误;D、是必然事件,故本选项正确;故选:D.3.(2分)下列计算正确的是( )A.6ab÷3b=2ab B.(x﹣2)2=x2﹣4C.2﹣1=﹣2D.(﹣1)0=1【解答】解:A.6ab÷3b=2a,则选项A不符合题意;B.(x﹣2)2=x2﹣4x+4,则选项B不符合题意;C.2―1=12,则选项C不符合题意;D.任何不等于0的数的0次幂都等于1,则(﹣1)0=1,则选项D符合题意;故选:D.4.(2分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )A.55°B.65°C.75°D.125°【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.5.(2分)下列条件中,不能判定△ABC和△A′B′C′全等的是( )A.AB=AˊBˊ,BC=BˊCˊ,∠B=∠BˊB.AB=AˊBˊ,AC=AˊCˊ,∠B=∠BˊC.∠B=∠Bˊ,∠C=∠Cˊ,AB=AˊBˊD.∠B=∠Bˊ,∠C=∠Cˊ,BC=BˊCˊ【解答】证明:A、∵AB=A′B′,∠B=∠Bˊ,BC=B′C′,∴△ABC≌△A′B′C′(SAS),故选此选项正确,不符合题意;B、∵AB=AˊBˊ,AC=AˊCˊ,∠B=∠Bˊ,不是两边与夹角对应相等,故此选项错误,符合题意;C、∵∠B=∠Bˊ,∠C=∠Cˊ,AB=AˊBˊ∴△ABC≌△A′B′C′(AAS);故选此选项正确,不符合题意;D、∵∠B=∠B′,BC=B′C′,∠C=∠C′,∴△ABC≌△A′B′C′(ASA);故选此选项正确,不符合题意;故选:B.6.(2分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( )A.轴对称性B.用字母表示数C.随机性D.数形结合【解答】解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选:A.7.(2分)如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为a千米,小刚在青稞地除草比在菜地浇水多用了b分钟,则a,b的值分别为( )A.1,8B.0.5,12C.1,12D.0.5,8【解答】解:此函数大致可分以下几个阶段:①0﹣12分种,小刚从家走到菜地;②12﹣27分钟,小刚在菜地浇水;③27﹣33分钟,小刚从菜地走到青稞地;④33﹣56分钟,小刚在青稞地除草;⑤56﹣74分钟,小刚从青稞地回到家;综合上面的分析得:由③的过程知,a=1.5﹣1=0.5千米;由②、④的过程知b=(56﹣33)﹣(27﹣12)=8分钟.故选:D.8.(2分)如图在△ABC中,AB=AC,AD=BC=8,点E,F是中线AD上的两点,则图中阴影部分的面积是( )A.6B.9C.16D.24【解答】解:∵AB =AC ,AD ⊥BC ,BC =8,∴BD =CD =12BC =4,∴S △BEF =S △CEF ,∵AD =8,∴S 阴影=S △ABD =12BD •AD =12×4×8=16.故选:C .二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6 .【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.10.(2分)计算:82020×(﹣0.125)2020= 1 .【解答】解:82020×(﹣0.125)2020=[8×(﹣0.125)]2020=(﹣1)2020=1.故答案为:1.11.(2分)如图,有下面几张扑克牌,把牌背面朝上,随机抽取一张,则恰好抽到黑桃J 的概率是 15 .【解答】解:∵共5张扑克,黑桃J 有1张,∴随机抽取一张,则恰好抽到黑桃J 的概率是15,故答案为:15.12.(2分)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 0.5 (精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.50【解答】解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.故答案为:0.5.13.(2分)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y与n之间的函数关系式y= 4n .【解答】解:y与n之间的函数关系式是y=4n.故答案为:4n.14.(2分)观察下列图形:轴对称图形有 ①② ,对称轴不止1条的图形有 ② .(只要填写序号即可)【解答】解:轴对称图形有①②,对称轴不止1条的图形有②.故答案为:①②,②.15.(2分)一只小鸟自由自在在空中飞翔,然后随意落在下图(由16个小正方形组成)中,则落在阴影部分的概率是 516 .【解答】解:设每个小正方形的边长为1,由图可知:阴影部分面积为:12×1×3―12×1×2+(12×3×4―12×3×3)+(12×3×4―1 2×3×2)=102=5所以图中阴影部分占5个小正方形,其面积占总面积的5 16,所以其概率为5 16.故答案为:5 16.16.(2分)已知三角形ABC,且AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,那么x的取值范围是 1<x<5 .【解答】解:∵△ABC中,AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,∴3﹣2<x<3+2,即:1<x<5,故答案为:1<x<5.三、计算题(本题共2个题,第17题14分,第18题7分,共21分)17.(14分)计算:①(12)﹣2+20200÷(﹣2)﹣2﹣12;②用简便方法计算:20192﹣2020×2018.③老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:÷(―12y)=﹣6x+2y﹣1ⅰ.求手掌捂住的多项式;ⅱ.若x=23,y=1,求所捂多项式的值.【解答】解:①(12)﹣2+20200÷(﹣2)﹣2﹣12=4+1÷14―1=4+4﹣1=7;②20192﹣2020×2018=20192﹣(2019+1)(2020﹣1)=20192﹣(20192﹣1)=20192﹣20192+1=1;③ⅰ.设多项式为A,则A=(﹣6x+2y﹣1)×(―23 xy)=3xy﹣y2+12 y;ⅱ.∵x=23,y=1,∴原式=3×23×1﹣12+12×1=1.5.18.(7分)先化简,再求值:[(2ab+3)(2ab﹣3)﹣2a2b(5b﹣a)+9]÷(2ab),其中a=―12,b=23.【解答】解:原式=(4a2b2﹣9﹣10a2b2+2a3b+9)÷(2ab)=(﹣6a2b2+2a3b)÷(2ab)=﹣3ab+a2,当a=―12,b=23时,原式=﹣3×(―12)×23+(―12)2=1+1 4=5 4.四、作图题(本题5分)19.(5分)在校运动会上,育才中学七年级(1)班的同学为了给参加比赛的同学加油助威,每人提前制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用尺规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).【解答】解:如图所示:△ABC即为所求.五、解答题(本题共2个题,第20题6分,21题7分,共13分)20.(6分)请将下列证明过程补充完整已知:如图,∠1=∠2,∠3=∠B.求证:∠DEC+∠BCE=180°.证明:∵∠1=∠2,( 已知 )∴EF∥DB,( 内错角相等,两直线平行 )∴∠3=∠4,( 两直线平行,内错角相等 )∵∠3=∠B,(已知)∴ ∠B = ∠4 ,(等量代换)∴DE∥BC,( 同位角相等,两直线平行 )∴∠DEC+∠BCE=180°.( 两直线平行,同旁内角互补 )【解答】证明:∵∠1=∠2,(已知)∴EF∥DB,(内错角相等,两直线平行)∴∠3=∠4,(两直线平行,内错角相等)∵∠3=∠B,(已知)∴∠B=∠4,(等量代换)∴DE∥BC,(同位角相等,两直线平行)∴∠DEC+∠BCE=180°.(两直线平行,同旁内角互补)故答案为:已知;内错角相等,两直线平行;两直线平行,内错角相等;∠B;∠4;同位角相等,两直线平行;两直线平行,同旁内角互补.21.(7分)小明的爸爸拿回一张电影票,儿子小明和妹妹小利都想去看电影,于是爸爸给他们出了一个主意,方法是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,则小明去看电影,否则小利去看电影.(1)你认为爸爸这个方法是否合理?请用概率的知识解释原因.(2)若使方法公平,你认为该如何修改这个方法?【解答】解:(1)不合理,理由:一共有8张扑克牌,其中牌面数字比4大的有3张,所以小明去的概率为38,而小利去的概率为58,因为38<58,所以这个方法不合理;(2)规则改为:“抽到大于4的牌”小明去,“抽到小于4的牌”小利去,理由:一共有8张扑克牌,其中牌面数字比4大的有3张,比4小的也有3张,因此小明去的概率为38,而小利去的概率为38,所以是公平的.六、解答题(本题共3个题,22题6分,23题6分,24题8分,共20分.)22.(6分)某学校的复印任务由红光复印社承接,其复印费用y(元)与复印页数x(页)的关系如表所示:x(页)1002004001000…y(元)204080200…(1)请你根据表中反映y与x之间的关系,求变量y与变量x之间的关系式;(2)七年级(1)班复印720张试卷,那么应该付给红光复印社多少元钱?(假设学校各班复印的纸张规格都相同)【解答】解:(1)设解析式为y=kx+b(k≠0),则100k+b=20 200k+b=40,解得k=0.2 b=0,故y=0.2x;(2)当x=720时,y=0.2×720=144(元).所以应付给红光复印社144元.23.(6分)如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠4=75°.求∠3的度数.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠3=∠4=75°(两直线平行,内错角相等).24.(8分)如图,∠BAC=∠ABD=90°,AC=BD,点O是AD、BC的交点,过点O作OE ⊥AB于点E.(1)图中有哪几对全等三角形?(不必说明理由)(2)请说明∠DAB=∠CBA;(3)试判断点E是否为AB的中点,并说明理由.【解答】解:(1)△ABD≌△BAC,△AOC≌△DOB,△AOE≌△BOE;(2)在△ABC与△BAD中,AC=BD∠BAC=∠ABD=90°AB=BA,∴△ABC≌△BAD(SAS),∴∠DAB=∠CBA;(3)E是AB的中点.理由如下:∵OE⊥AB,∴∠OEA=∠OEB=90°.在△OAE和△OBE中,∠OEA=∠OEB=90°∠OAE=∠OBE,OE=OE∴△OAE≌△OBE(AAS),∴AE=BE,∴E是AB的中点.七、探究题(本题9分)25.(9分)生活中的数学:(1)如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是: 三角形的稳定性 .(2)小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是: 垂线段最短 .(3)如图3所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.【解答】解:(1)一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形的稳定性;(2)过甲向AB作垂线,运用的原理是:垂线段最短;(3)∵AB∥CD,∴∠B=∠C,∵点M是BC的中点,∴MB=MC,在△MCF和△MBE中BE=CF∠B=∠C BM=CM,∴△MEB≌△MFC(SAS),∴ME=MF,∴想知道M与F之间的距离,只需要测出线段ME的长度.。

2019年春华东师大版七年级下册数学习题课件:期末复习一 第6,7,8章(共23张PPT)

2019年春华东师大版七年级下册数学习题课件:期末复习一 第6,7,8章(共23张PPT)

11人,则余下1人,若每组12人,则有一组少4人,若每组分配7人时,则该班可分成
(
)B
(A)7组 (B)8组 (C)9组 (D)10组
8.若不等式组
x b

a 2, 2x 0
的解集是-1<x<1,则(a+b)2
017
的值为(
C
)
(A)0
(B)1
(C)-1 (D)2
9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长
5 多少人?
解:设该兴趣小组男生有 x 人,女生有 y 人,
依题意得
y x

2 3 5

x y
1 1 ,
1,
解得

x y

12, 21.
答:该兴趣小组男生有 12 人,女生有 21 人.
25.某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表 是近两周的销售情况:
期末复习一 第6,7,8章
一、选择题
1.下列方程中,解是2的方程是( B )
(A)3x+6=0
(B)- 1 x+ 1 =0 42
(C) 2 x=2 3
(D)5-3x=1
2.不等式2x-3<1的解集在数轴上表示为(
D)
3.若关于x的方程2x+a-4=0的解是x=-2,则a的值为(
D)
(A)-8 (B)0 (C)2 (D)8

4 y
y 7, 4,
① ②
①+②×4 得 23x=23,
解得 x=1,

x=1
代入②得
y=1,则方程组的解为

【北师大版数学期末复习】北京市通州区2020-2022七年级数学下学期期末试题汇编

【北师大版数学期末复习】北京市通州区2020-2022七年级数学下学期期末试题汇编
37.(2022春·北京通州·七年级统考期末)某高校在“爱护地球,绿化祖国”的活动中,组织学生开展植树活动,为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据绘制成如图所示的统计图.那么这组数据的众数是______棵,平均每人植树______棵.
38.(2022春·北京通州·七年级统考期末)手工课上,老师将同学们分成A,B两个小组制作两个汽车模型,每个模型先由A组同学完成打磨工作,再由B组同学进行组装完成制作,两个模型每道工序所需时间如下:
21.5
22.0
22.5
23.0
23.5
人数
2
4
3
8
3
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )A.平均数B.加权平均数C.众数D.中位数
15.(2021春·北京通州·七年级统考期末)下列因式分解正确的是()
A. B.
C. D.
16.(2021春·北京通州·七年级统考期末)如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( )
A.70°B.100°C.110°D.120°
4.(2022春·北京通州·七年级统考期末)下列式子从左到右的变形中,属于因式分解的是()
A. B.
C. D.
5.(2022春·北京通州·七年级统考期末)以下命题是真命题的是()
A.相等的两个角一定是对顶角
B.过直线外一点有且只有一条直线与已知直线平行
C.两条直线被第三条直线所截,内错角相等
A. B.0C.1D.2
8.(2022春·北京通州·七年级统考期末)如图的网格线是由边长为1的小正方形格子组成的,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形,小明研究发现,内部含有3个格点的四边形的面积与该四边形边上的格点数有某种关系,请你观察图中的4个格点四边形.设内部含有3个格点的四边形的面积为S,其各边上格点的个数之和为m,则S与m的关系为()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
D
C
B
A 七年级数学第二学期期末复习题
一、选择题(每小题3分,共24分)
1、用不等式表示图中的解集,其中正确的是()
A x>2
B x﹤2
C x≥2
D x≤2
2、下列四组数中是是方程3x+y=5的解的是()
A
{1
3
=
=
x
y
B
{1
2
-
=
=
x
y
C
{2
1
=
-
=
x
y
D
{2
3
-
=
=
x
y
3、下列各平面直角坐标系的点,其中是第三象限的点是()
A(1,—1)B(2,1)C(—1,—2)D(—3,1)
4、下列调查的样本具有代表性的是()
A为了调查我国初中学生的平均体重,小明建议在本校初中三个年级各抽一个班调查
B在增城科书馆随机抽取全年中的20天调查借阅情况,考察增城读者的借阅图书情况
C为了估计焦石岭一年的登高总人数,小齐利用五一假期做了3天的登高人数统计
D为了了解某校中学生有多少人已经患上近视眼,从每个班随机抽取5名学生做调查
5B、
第5题 A B C
6、如图直线a、b相交,下列结论错误的是()
A ∠1=∠3
B ∠1+∠2=180°
C ∠1+∠3=180°
D ∠3+∠4=180°
7、下列运算正确的是()
A.33
-=B.33
-=-C=D.3
=-
8、若a b a、b的值正确的是()
A a=5 b=0.236
B a=5 b=无法确定C5 D 都无法确定
二、填空题(每小题3分,共21分)
9、不等式组
{1
3
<
-

x
x
的解集是
10、在“我喜欢的体育项目”调查活动中,小明随机
调查了本校30位同学,记录结果如下(其中喜欢打羽
毛球的记为A,喜欢打乒乓球的记为B。

喜欢踢足球
的记为C,喜欢跑步的记为D),
(表2)
11c所截,2= 度。

12、如图,若∠1=∠2,则∥,依据是。

13、
2
1
2
14、—8是的一个平方根,的立方根是
15.如图,点A到直线BC的距离是线段的长。

三、解答题(共分55分)
16、解方程组和不等式组并把不等式组的解集表示在数轴上(共14分)

{4
2
3
4
5
-
=
-
=
+
y
x
y
x②



-
<
+
<
+
10
3
1
5
7
6
x
x
x
x
02
第15题
17. (满分7分)七(4)班与七(5)班每班的学生人数都为40名,某次数学考试成绩统计,七(4)班给出了不完整的频数分布直方图,七(5)班给出了不完整的扇形统计图,这两个图,每组分数段的分数含左端点,不含右端点。

已知本次考试两个班学生都在50分以上(含50分),请根据图中提供的信息,完成下列问题:
①七(1)班这次考试分数x在80≤x﹤90分数段的同学有多少?并把七(1)班的频数分布直方图补充完整;
②比较两个班,90分以上(含90分)的人数哪个班多?
③七(2)班分数x在80≤x﹤90分数段的同学有多少?
18、(满分7
回到家后,她利用平面直角坐标系画出了公园的景区
地图,如图所示。

可是她忘记了在图中标出原点和x
轴、y轴。

只知道游乐园D的坐标为(2,-2),你能帮她求出
其他各景点的坐标?
19、(满分7分)如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.
证明:∵AB∥CD,(已知)
∴∠BAC+∠ACD=180°,()
又∵AE平分∠BAC,CE平分∠ACD,()
∴1
1
2B A C
∠=∠,
1
2
2
A C D
∠=∠,( )
∴00
11
12()1
8
09
22
B
A
C A
C
D

+

=∠+
∠=⨯=.
即∠1+∠2=90°.
20、(满分7分)如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格.
21、(满分13)某煤气公司要给用户安装管道煤气,现有600户申请了但还未安装的
用户,此外每天还有新的申请。

已知煤气公司每个小组每天安装的数量相同,且估计
到每天申请安装的户数也相同,煤气公司若安排2个安装小组同时做,则60天可以装
完所有新、旧申请;若安排4个安装小组同时做,则10天可以装完所有新旧申请。

①求每天新申请安装的用户数及每个安装小组每天安装的数量;
②如果要求在10天内安装完所有新、旧申请,但前6天只能派出2个安装小组安装,
那么最后几天至少需要增加多少个安装小组同时安装,才能完成任务?。

相关文档
最新文档