2019届一轮复习人教B版(文) 第2章 第10节 变化率与导数、导数的运算 学案
高三数学一轮总复习 第二章 函数、导数及其应用 2.10 变化率与导数、导数的计算课件.ppt
称函数 f′(x)=□9 __Δl_ixm→_0_______Δ_x_____为 f(x)的导函数,导函数有时也记作 y′。
6
4.基本初等函数的导数公式 原函数 f(x)=c
f(x)=xn(n∈Q*) f(x)=sinx f(x)=cosx
f(x)=ax(a>0,且 a≠1) f(x)=ex
处的导数,记作
f′(x0)或
y′|x=x ,即 0
f′(x0)=lim
Δx→0
ΔΔyx=□5
5
(2)几何意义
函数 f(x)在点 x0处的导数 f′(x0)的几何意义是在曲线 y=f(x)上点□6 _(_x_0_,__f(_x_0)_)___ 处的□7 ___切__线__的__斜__率______。相应地,切线方程为□8 _y_-__y_0_=__f′__(_x_0)_(_x_-_x_0_)__。
3
课前学案 基础诊断
夯基固本 基础自测
4
1.函数 y=f(x)从 x1 到 x2 的平均变化率 fx2-fx1
函数 y=f(x)从 x1 到 x2 的平均变化率为□1 ____x_2-__x_1__,若 Δx=x2-x1,Δy=f(x2)
Δy
-f(x1),则平均变化率可表示为□2 __Δ__x____。
7
5.导数运算法则
(1)[f(x)±g(x)]′=□18 ___f′ __(_x_)_±_g_′__(x_)_____; (2)[f(x)g(x)]′=□19 __f′__(_x_)g_(_x_)_+__f(_x_)g_′__(_x_)_; (3)gfxx′=□20 _f_′__x__g_[_xg_-_x_f]_2x__g_′___x__(g(x)≠0)。
高考数学一轮复习 第二章 第十节 变化率与导数导数的计算课件 理
解
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
变化率与导数、导数的计算
考点一:导数的运算
题组练透
求下列函数的.导数
(1)y x2 sinx;
(2)y lnx பைடு நூலகம்; x
cosx (3)y ex ;
(4)y xsin(2x)cos2(x);
2
2
(5)y ln(2x5).
类题通法
函数求导的遵循原则 (1)求导之前,应利用代数、三角恒等式等 变形对函数进行化简,然后求导,这样可以减 少运算量,提高运算速度,减少差错. (2)有的函数虽然表面形式为函数的商的形式, 但在求导前利用代数或三角恒等式等变形 将函数先化简,然后进行求导,有时可以避免 使用商的求导法则,减少运算量. (3)复合函数的求导,要正确分析函数的复 合层次,通过设中间变量,确定复合过程,然 后求导.
考点二:导数的几何意义
角度一:求切线方程
1.(201.云 5 南一)检 函数f(x) l nx2x x
的图象在(1点 ,2)处的切线方程 ( 为)
A2.x y40
B2. x y0
C.x y30
D.x y10
角度二:求切点坐标
2.(201.江 4 西高 )若考曲y线 xlnx上 点P处的切线平行 2x与 y直 10线 ,则 点P的坐标 __是 _____.____
角度三:求参数的值
3.已知f (x) ln x, g(x) 1 x2 mx 7
2
2
(m 0),直线l与函数f (x), g(x)的图象都相切,
且与f (x)图象的切点为(1, f (1)),则m的值为
A. 1
19届高考数学一轮复习 第二章 函数、导数及其应用 2.10 变化率与导数、导数的计算 文
热点一 导数的定义 【例 1】 用导数的定义求函数 y=3x+2 在点 x0 处的导数.
【解】
f′(x0)= lim Δx→0
fx0+Δx-fx0 Δx
= lim
Δx→0
3x0+ΔΔxx-3x0=Δlixm→03=3.
【总结反思】
使用导数定义求导数或者证明一些问
题时,要充分利用 f′(x)=lim
ΔΔyx=__________________.
2.导数的几何意义 函数 f(x)在点 x0 处的导数 f′(x0)的几何意义是在曲线 y=f(x)上 点________处的__________(瞬时速度就是位移函数 s(t)对时间 t 的 导数).相应地,切线方程为________________. 3.函数 f(x)的导函数 称函数 f′(x)=__________________为 f(x)的导函数.
【解】 (1)y′=(ex)′cosx+ex(cosx)′=excosx-exsinx. (2)∵y=x3+1+x12,∴y′=3x2-x23. (3)∵y=x-sin2xcos2x=x-12sinx, ∴y′=x-12sinx′=1-12cosx.
答案
1. lim
Δx→0
fx0+Δx-fx0 Δx
Δy
lim
Δx→0
Δx
lim
Δx→0
fx0+Δx-fx0 Δx
2.P(x0,y0) 切线的斜率 y-y0=f′(x0)(x-x0)
fx+Δx-fx
3. lim
Δx→0
Δx
1.函数 f(x)=x2 在区间[1,2]上的平均变化率为________,在 x=2 处的导数为________.
答案
高考数学一轮复习 第二章 第10讲 变化率与导数、导数
第二章 函数、导数及其应用 第10讲 变化率与导数、导数的计算一、必记3个知识点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0Δy Δx=lim Δx →0 fx 0+Δx -f x 0Δx.(2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数: 称函数f ′(x )=lim Δx →0f x +Δx -f xΔx为f (x )的导函数.2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x)′=a xln_a ,(e x)′=e x,(log a x )=1x ln a ,(ln x )′=1x. 3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).二、必明3个易误区1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.考点一利用导数的定义求函数的导数利用导数的定义求函数的导数:(1)y =x 2; (2)f (x )=1x +2. 解:(1)因为Δy Δx =fx +Δx -f x Δx =x +Δx 2-x 2Δx =x 2+2x ·Δx +Δx2-x2Δx=2x +Δx ,所以y ′=lim Δx →0ΔyΔx =lim Δx →0(2x +Δx )=2x .(2)因为Δy Δx =fx +Δx -f x Δx =1x +Δx +2-1x +2Δx =-1x +Δx +2x +2所以y ′=lim Δx →0ΔyΔx=-lim Δx →01x +Δx +2x +2=-1x +22.[类题通法]定义法求函数的导数的三个步骤一差:求函数的改变量Δy =f (x +Δx )-f (x ).二比:求平均变化率Δy Δx =fx +Δx -f xΔx.三极限:取极限,得导数y ′=f ′(x )=lim Δx →0Δy Δx. 考点二导数的运算[典例] 求下列函数的导数.(1)y =x 2sin x ; (2)y =e x+1e x -1.[解] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=e x+1′e x-1-e x+1e x -1′e x -12=exe x -1-e x +1e x e x -12=-2exe x -12.[类题通法]1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.2.有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量. [针对训练]已知f (x )=sin 2x ,记f n +1(x )=f n ′(x )(n ∈N *),则f 1⎝ ⎛⎭⎪⎫π6+f 2⎝ ⎛⎭⎪⎫π6+…+f 2 013⎝ ⎛⎭⎪⎫π6+f 2 014⎝ ⎛⎭⎪⎫π6=________.解析:由题意,可知f 2(x )=f 1′(x )=(sin 2x )′=2cos 2x ;f 3(x )=f 2′(x )=(2cos 2x )′=-4sin 2x ; f 4(x )=f 3′(x )=(-4sin 2x )′=-8cos 2x ; f 5(x )=f 4′(x )=(-8cos 2x )′=16sin 2x ;…故f 4k +1(x )=24ksin 2x ,f 4k +2(x )=24k +1cos 2x ,f 4k +3(x )=-24k +2sin 2x ,f 4k +4(x )=-24k +3cos 2x (k ∈N ).所以f 1⎝ ⎛⎭⎪⎫π6+f 2⎝ ⎛⎭⎪⎫π6+…+f 2 014⎝ ⎛⎭⎪⎫π6=20sin ⎝ ⎛⎭⎪⎫2×π6+21cos ⎝ ⎛⎭⎪⎫2×π6-22sin ⎝⎛⎭⎪⎫2×π6-23cos ⎝ ⎛⎭⎪⎫2×π6+24sin ⎝ ⎛⎭⎪⎫2×π6+…-22 010sin ⎝ ⎛⎭⎪⎫2×π6-22 011cos ⎝ ⎛⎭⎪⎫2×π6+22 012sin ⎝ ⎛⎭⎪⎫2×π6+22 013cos ⎝⎛⎭⎪⎫2×π6=(20-22+24-26+…+22 008-22 010+22 012)sin π3+(21-23+25-27+…+22 009-22 011+22 013)cos π3=1×[1--22 1 007]1--22×32+2×[1--22 1 007]1--22×12=1+22 0145×32+2×1+22 0145×12=3+21+22 01410答案:3+21+22 01410考点三导数的几何意义角度一 求切线方程1.曲线y =x e x+2x -1在点(0,-1)处的切线方程为( )A .y =3x -1B .y =-3x -1C .y =3x +1D .y =-2x -1 解析:选A 依题意得y ′=(x +1)e x+2,则曲线y =x e x+2x -1在点(0,-1)处的切线的斜率为(0+1)e 0+2=3,故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即3x -y -1=0,故选A. 角度二 求切点坐标2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C 由题意知y ′=3x+1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).角度三 求参数的值3.(2014·郑州第一次质量预测)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2解析:选C ∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),且y =x 3+ax +b 的导数y ′=3x 2+a , ∴⎩⎪⎨⎪⎧3=k ×1+1,3=13+a ×1+b k =3×12+a ,,解得a =-1,b =3,∴2a +b =1.[类题通法]导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.课后作业[试一试]1.(2013·江西高考)若曲线y =x α+1(α∈R )在点(1,2)处的切线经过坐标原点,则α=________.解析:由题意y ′=αx α-1,在点(1,2)处的切线的斜率为k =α,又切线过坐标原点,所以α=2-01-0=2.答案:22.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′=x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x .答案:-x sin x 做一做1.(2013·全国大纲卷)已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( ) A .9 B .6 C .-9 D .-6解析:选D y ′=4x 3+2ax ,由导数的几何意义知在点(-1,a +2)处的切线斜率k =y ′|x =-1=-4-2a =8,解得a =-6.2.(2014·济宁模拟)已知f (x )=x (2 012+ln x ),f ′(x 0)=2 013,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B 由题意可知f ′(x )=2 012+ln x +x ·1x=2 013+ln x .由f ′(x 0)=2 013,得ln x 0=0,解得x 0=1.3.若曲线y =x 2+a ln x (a >0)上任意一点处的切线斜率为k ,若k 的最小值为4,则此时该切点的坐标为( ) A .(1,1) B .(2,3) C .(3,1) D .(1,4) 解析:选A y =x 2+a ln x 的定义域为(0,+∞),由导数的几何意义知y ′=2x +ax≥22a =4,则a =2, 当且仅当x =1时等号成立,代入曲线方程得y =1,故所求的切点坐标是(1,1). 4.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.解析:∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4.∴f ′(0)=-45.(2014·黄冈一模)已知函数f (x )=x (x -1)(x -2)(x -3)·(x -4)(x -5),则f ′(0)=________. 解析:f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+x [(x -1)(x -2)(x -3)(x -4)(x -5)]′, ∴f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.答案:-1206.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解:∵(1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′=-1,y =53,∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,∴切线方程为x +y -113=0. (2)由(1)得k ≥-1,∴tan α≥-1,∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.7.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).8.已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154 D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.9.(2014·济南模拟)已知曲线y 1=2-1x与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0的值为( )A .-2B .2 C.12D .1解析:选D 由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 20-2x 0+2,所以3x 20-2x 0+2x 2,所以x 0=1. 10.已知f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).11.已知函数f (x )=23x 3-2ax 2-3x (a ∈R ),若函数f (x )的图像上点P (1,m )处的切线方程为3x -y +b =0,则m 的值为( )A .-13B .-12 C.13 D.12解析:选A ∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∴过点P (1,m )的切线斜率k =f ′(1)=-1-4a .又点P (1,m )处的切线方程为3x -y +b =0,∴-1-4a =3,∴a =-1,∴f (x )=23x 3+2x 2-3x .又点P 在函数f (x )的图像上,∴m =f (1)=-13.12.(2013·广东高考)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________. 解析:因为y ′=2ax -1x ,依题意得y ′|x =1=2a -1=0,所以a =12.答案:1213.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x-2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.14.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 014⎝ ⎛⎭⎪⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=(cos x -sin x )′=-sin x -cos x ,f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x ,以此类推,可得出f n (x )=f n +4(x ),又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 014⎝ ⎛⎭⎪⎫π2=503f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+f 3⎝ ⎛⎭⎪⎫π2+f 4⎝ ⎛⎭⎪⎫π2+f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2=0.答案:015.求下列函数的导数.(1)y =x ·tan x ; (2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x.(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)·(x +2)+(x +1)(x +3)=3x 2+12x +11.16.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),又f (1)=-1,得:y +1=3(x -1),即切线方程为3x -y -4=0.曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1).又g (1)=-6.得y +6=3(x -1),即切线方程为3x -y -9=0,所以,两条切线不是同一条直线.17.(2014·东营一模)设曲线y =sin x 上任一点(x ,y )处切线的斜率为g (x ),则函数y =x 2g (x )的部分图像可以为( )解析:选C 根据题意得g (x )=cos x ,∴y =x 2g (x )=x 2cos x 为偶函数.又x =0时,y =0,故选C.18.(2013·山西模拟)已知函数f (x )=x +12+sin xx 2+1,其导函数记为f ′(x ),则f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=________.解析:由已知得f (x )=1+2x +sin x x 2+1,则f ′(x )=2+cos xx 2+1-2x +sin x ·2xx 2+12令g (x )=f (x )-1=2x +sin xx 2+1,显然g (x )为奇函数,f ′(x )为偶函数,所以f ′(2 012)-f ′(-2 012)=0,f (2 012)+f (-2 012)=g (2 012)+1+g (-2 012)+1=2,所以f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=2.答案:2。
高考数学文科一轮复习第二章第十节变化率与导数、导数的计算完美
考向一 导数的计算[自主练透型]
求下列函数的导数: (1)y=x2sinx; (2)y=ln x+1x; (3)y=coesxx;
解析:(1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
3.(2018·河南郑州质检)函数 f(x)=excosx 的图象在点(0,f(0)) 处的切线方程是( )
A.x+y+1=0 B.x+y-1=0 C.x-y+1=0 D.x-y-1=0
解析:f(0)=e0cos0=1,因为 f′(x)=excosx-exsinx,所以 f′(0) =1,所以切线方程为 y-1=x-0,
[知识重温]
一、必记 5●个知识点 1.平均变化率及瞬时变化率 (1)f(x)从 x1 到 x2 的平均变化率是:ΔΔyx=fxx22- -fx1x1. (2)f(x)在 x=x0 处的瞬时变化率是: Δlixm→0 ΔΔyx=Δlixm→0 fx0+ΔΔxx-fx0.
2.导数的概念
解析:y′=x′cosx+x(cosx)′-(sinx)′=cosx-xsinx-cosx f(x)=xln x,若 f′(x0)=2,则 x0=( ) A.e2 B.e
ln 2 C. 2
D.ln 2
解析:由已知有 f′(x)=ln x+x·1x=ln x+1, 所以 f′(x0)=2⇒ln x0+1=2⇒x0=e.故选 B. 答案:B
答案:(1,1)
6.已知曲线 y=13x3 上一点 P(2,83),则过点 P 的切线方程为 ________.
解析:设切点坐标为(x0,13x03),由 y′=(13x3)′=x2,得 y′| x=x0 =x20,即过点 P 的切线的斜率为 x02,又切线过点 P(2,83),若 x0≠2, 则 x20=13xx030--283,解得 x0=-1,所以过点 P 的切线的斜率为 1;若 x0 =2,则过点 P 的切线的斜率为 4.
2019版高考数学(文)一轮复习教师用书:第二章 第十节 变化率与导数、导数的运算 Word版含答案
第十节变化率与导数、导数的运算1.导数的概念(1)函数y=f(x)在x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率lim Δx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′| x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式3.(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)因为(ln x )′=1x ,所以⎝⎛⎭⎫1x ′=ln x .( ) 答案:(1)× (2)√ (3)√ (4)×2.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A .e 2 B .e C.ln 22D .ln 2解析:选B f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.3.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2sin x解析:选B ⎝⎛⎭⎫x +1x ′=x ′+⎝⎛⎭⎫1x ′=1-1x 2;(3x )′=3x ln 3;(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x .4.曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3D .y =-2x -2解析:选A 因为y =1-2x +2=x x +2,所以y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2, 所以曲线在点(-1,-1)处的切线斜率为2, 所以所求切线方程为y +1=2(x +1),即y =2x +1.5.(2017·全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即x -y +1=0.。
高三数学一轮复习 第2章第10节 变化率与导数、导数的计算课件 文 (广东专用)
设f(x)=xln x+1,若f′(x0)=2,则f(x)在点(x0,y0)处的切线 方程为________.
【尝试解答】 因为 f(x)=xln x+1, 所以 f′(x)=ln x+x·1x=ln x+1. 因为 f′(x0)=2,所以 ln x0+1=2, 解得 x0=e,y0=e+1. 由点斜式得,f(x)在点(e,e+1)处的切线方程为 y-(e+1)=2(x-e), 即 2x-y-e+1=0. 【答案】 2x-y-e+1=0
设函数 f(x)=ax+x+1 b(a,b∈Z),曲线 y=f(x)在点(2,f(2)) 处的切线方程为 y=3.
(1)求 y=f(x)的解析式; (2)证明曲线 y=f(x)上任一点处的切线与直线 x=1 和直线 y=x 所 围三角形的面积为定值,并求出此定值. 【f′2= f2=3
(3)y′=ln
x′x2+1-ln x2+12
xx2+1′
=1xx2+x21+-122xln
x=x2+x1x-2+21x2l2n
x .,
将例题中的函数改为:(1)f(x)=x2cos x, (2)g(x)=ex+ln x,分别求f(x)与g(x)的导数.
【解】 (1)(1)f′(x)=(x2cos x)′ =(x2)′·cos x+x2(cos x)′ =2xcos x-x2sin x. (2)g′(x)=(ex)′+(ln x)′=ex+1x.
课时知能训练
本小节结束 请按ESC键返回
()
A.(0,+∞)
B.(-1,0)∪(2,+∞)
C.(2,+∞)
D.(-1,0)
【错解】 ∵f′(x)=2x-2-4x=2x2-x2x-4, ∴由 f′(x)>0,可得x2-xx-2>0, 解得 x>2 或-1<x<0,故选 B.
高考数学一轮总复习 第2章 第10节 变化率与导数、导数的计算课件 理
【解析】 y′=4x3+2ax,由导数的几何意义知在点(- 1,a+2)处的切线斜率 k=y′|x=-1=-4-2a=8,解得 a=- 6.
【答案】 D
5.(2012·广东高考)曲线 y=x3-x+3 在点(1,3)处的切线 方程为________.
【解析】 ∵y′=3x2-1,∴y′|x=1=3×12-1=2. ∴所求切线方程为 y-3=2(x-1),即 2x-y+1=0. 【答案】 2x-y+1=0
-
1 x
=
3xexln 3+3xex-1x
=3xexln(3e)-1x.
(3)y′=12(3-x)-12(3-x)′+e2x(2x)′ =-12(3-x)-12+2e2x.
考向 2 导数的几何意义 【例 2】 已知曲线 y=13x3+43. (1)求曲线在点 P(2,4)处的切线方程; (2)求曲线过点 P(2,4)的切线方程; (3)求斜率为 1 的曲线的切线方程.
+excos x.
(2)∵y=x3+1+x12,∴y′=3x2-x23.
(3)∵y=x-12sin x,∴y′=1-12cos x.
(4)y′=ln
x′x2+1-ln x2+12
xx2+1′
=1xx2+x12+-122xln
x=x2+x1x-2+2x12l2n
x .
规律方法 1 1.熟记基本初等函数的导数公式及运 算法则是导数计算的前提,求导之前,应利用代数、三 角恒等式等变形对函数进行化简,然后求导,这样可以 减少运算量提高运算速度,减少差错.
2.复合函数:确定复合关系,由外向内逐层求导.
变式训练 1 求下列函数的导数:
(1)y=eexx-+11;(2)y=3xex-ln x+e;(3)y= 3-x+e2x. 【解】 (1)∵y=eexx+-11=1+ex-2 1,
2019届高考文数一轮复习课件:第2章 第10讲 变化率与导数、导数的计算
【针对补偿】 1.求下列函数的导数: (1)y=x2sin x; 1 (2)y=ln x+ x ; cos x (3)y= ex ;
[解]
(1)y′=(x2)′sin x+x2(sinx)′=2xsin x+x2cos x.
1 1 1 1 x+ x ′=(ln x)′+x′= - 2. x x
[解析] 根据图象知, 函数 y=f(x)的图象与在点 P 处的切线交于 点 P, f(5)=-5+8=3,f′(5)为函数 y=f(x)的图象在点 P 处的切线的 斜率,∴f′(5)=-1;∴f(5)+f′(5)=2.故选:A.
[答案] A
3.(天津卷)已知函数f(x)=axln
x,x∈(0,+∞),其中a为实 .
1 3.已知f(x)= 2 x2+2xf′(2 018)+2 018ln x,则f′(2 018)= ________.
2 018 [解析] 由题意得f′(x)=x+2f′(2 018)+ x , 2 018 所以f′(2 018)=2 018+2f′(2 018)+2 018, 即f′(2 018)=-(2 018+1)=-2 019. [答案] -2 019
【针对补偿】 1 4.(2018· 成都质检)已知函数f(x)=- 3 x3+2x2+2x,若存在满足 0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x +my-10=0垂直,则实数m的取值范围是( A.[6,+∞) C.[2,6] B.(-∞,2] D.[5,6] )
sin x sin (3)y′= cos x ′=
x′cos x-sin xcos x′ cos2x
cos xcos x-sin x-sin x 1 = =cos2x. cos2x
[精品课件]2019届高考数学一轮复习 第二章 函数、导数及其应用 第10讲 变化率与导数、导数的计算课件 文
考向三 求参数值
3.已知f(x)=ln x,g(x)=12x2+mx+72(m<0),直线l与函数f(x), g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为
() A.-1
B.-3
C.-4
D.-2
[解析] ∵f′(x)=1x,∴直线l的斜率为k=f′(1)=1, 又f(1)=0,∴切线l的方程为y=x-1. g′(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0), 则有x0+m=1,y0=x0-1,y0=12x20+mx0+72, m<0,于是解得m=-2,故选D. [答案] D
3.(2015·高考新课标卷Ⅱ)已知曲线 y=x+ln x 在点(1,1)处的切 线与曲线 y=ax2+(a+2)x+1 相切,则 a= ________ .
[解析] 因为 y′=1+1x,所以 y′|x=1=2, 故切线的方程为 y-1=2(x-1),即 2x-y-1=0. 联立2y=x-axy- 2+1=a+0 2x+1 ,由 Δ=0,得 a=8. [答案] 8
即f′(2 018)=-(2 018+1)=-2 019.
[答案] -2 019
题型三 导数的几何意义(高频考点题,多角突破)
考向一 求切线方程
1.(2018·豫东、豫北十所名校联考)已知f(x)=2exsin x,则曲线
f(x)在点(0,f(0))处的切线方程为( )
A.y=0
B.y=2x
C.y=x
x′=ln
x′x-x′ln x2
x=1x·x-x2ln
x=1-xl2n
x .
(3)y′=csoins
xx′=sin
x′cos
x-sin cos2x
2019高三数学理北师大版一轮教师用书:第2章 第10节
第十节变化率与导数、计算导数[考纲传真](教师用书独具)1.了解导数概念的实际背景.2.通过函数图像直观理解导数的几何意义.3.能根据导数的定义求函数y=C(C为常数),y=x,y=1 x,y=x2,y=x3,y=x的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如f(ax+b)的复合函数)的导数.(对应学生用书第32页)[基础知识填充]1.导数与导数的概念(1)当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=limx1→x0f(x1)-f(x0)x1-x0=limΔx→0f(x0+Δx)-f(x0)Δx.(2)如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=limΔx→0f(x+Δx)-f(x)Δx,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0).3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).5.复合函数的导数复合函数y =f (φ(x ))的导数和函数y =f (u ),u =φ(x )的导数间的关系为y x ′=[f (φ(x ))]′=f ′(u )·φ′(x ). [知识拓展]1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 3.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) [答案] (1)× (2)√ (3)√ (4)× (5)× 2.(教材改编)若f (x )=x ·e x ,则f ′(1)等于( )A .0B .eC .2eD .e 2C [∵f ′(x )=e x +x ·e x ,∴f ′(1)=2e.]3.有一机器人的运动方程为s (t )=t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( )A .194B .174C .154D .134D [由题意知,机器人的速度方程为v (t )=s ′(t )=2t -3t 2,故当t =2时,机器人的瞬时速度为v (2)=2×2-322=134.]4.(2017·全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________. x -y +1=0 [∵y ′=2x -1x 2,∴y ′(1)=1, 即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0.]5.曲线y =ax 2-ax +1(a ≠0)在点(0,1)处的切线与直线2x +y +1=0垂直,则a =________.-12 [∵y =ax 2-ax +1,∴y ′=2ax -a ,∴y ′(0)=-a .又∵曲线y =ax 2-ax +1(a ≠0)在点(0,1)处的切线与直线2x +y +1=0垂直,∴(-a )·(-2)=-1,即a =-12.](对应学生用书第33页)求下列函数的导数:(1)y =e x ln x ; (2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2; (4)y =cos x e x .[解] (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ·1x =e x ⎝ ⎛⎭⎪⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.(3)∵y =x -12sin x ,∴y ′=1-12cos x . (4)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.00A .e 2 B .1 C .ln 2D .e(2)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(1)B (2)3 [(1)f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. (2)f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.]◎角度1 求切线方程(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.y =-2x -1 [因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x -3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.] ◎角度2 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【导学号:79140071】(e ,e) [由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).]◎角度3 求参数的值(范围)(1)(2017·西宁复习检测(一))已知曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( ) A .-2 B .2 C .-12D .12(2)(2018·成都二诊)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-12,+∞B .⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)(1)A (2)D [(1)由y ′=-2(x -1)2得曲线在点(3,2)处的切线斜率为-12,又切线与直线ax +y +1=0垂直,则a =-2,故选A .(2)由题意得y ′=1x +2ax (x >0).因为曲线不存在斜率为负数的切线,则y ′≥0恒成立,即a ≥⎝ ⎛⎭⎪⎫-12x 2max .因为x >0,所以-12x 2<0,即a ≥0,故选D .]且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0(2)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )【导学号:79140072】A .1B .2C .-1D .-2(3)(2017·天津高考)已知a ∈R ,设函数f (x )=ax -ln x 的图像在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________. (1)B (2)B (3)1 [(1)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l的方程为y=x-1,即x-y-1=0.(2)设直线y=x+1与曲线y=ln(x+a)的切点为(x0,y0),则y0=1+x0,y0=ln(x0+a).又由曲线方程知y′=1x+a,所以y′(x0)=1x0+a=1,即x0+a=1.又y0=ln(x0+a),所以y0=0,则x0=-1,所以a=2.(3)∵f′(x)=a-1x,∴f′(1)=a-1.又∵f(1)=a,∴切线l的斜率为a-1,且过点(1,a),∴切线l的方程为y-a=(a-1)(x-1).令x=0,得y=1,故l在y轴上的截距为1.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十节变化率与导数、导数的运算1.导数的概念(1)函数y=f(x)在x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率lim Δx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式3.(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)因为(ln x )′=1x ,所以⎝⎛⎭⎫1x ′=ln x .( ) 答案:(1)× (2)√ (3)√ (4)×2.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A .e 2 B .e C.ln 22D .ln 2解析:选B f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.3.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2sin x解析:选B ⎝⎛⎭⎫x +1x ′=x ′+⎝⎛⎭⎫1x ′=1-1x 2;(3x )′=3x ln 3;(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x .4.曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3D .y =-2x -2解析:选A 因为y =1-2x +2=x x +2,所以y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2, 所以曲线在点(-1,-1)处的切线斜率为2, 所以所求切线方程为y +1=2(x +1),即y =2x +1.5.(2017·全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即x -y +1=0.答案:x -y +1=06.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1, ∴e x 0=a ,又-1a ·e x 0=-x 0+1, ∴x 0=2,a =e 2. 答案:e 2考点一 导数的运算 (基础送分型考点——自主练透)[考什么·怎么考]A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x , 得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ; (3)y =cos xe x; 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . [怎样快解·准解]1.谨记1个原则先化简解析式,使之变成能用求导公式求导的函数的和、差、积、商,再求导. 2.熟记求导函数的5种形式及解法(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. 考点二 导数的几何意义 (题点多变型考点——追根溯源)角度(一) 求曲线的切线方程 1.已知函数f (x )=ln x -8x -1x +1,则函数f (x )的图象在⎝⎛⎭⎫1,-72处的切线方程为________. 解析:由f (x )=ln x -8x -1x +1,得f ′(x )=1x -9(x +1)2, 则f ′(1)=1-9(1+1)2=1-94=-54, 故所求切线方程为y -⎝⎛⎭⎫-72=-54(x -1), 即5x +4y +9=0. 答案:5x +4y +9=0 角度(二) 求切点坐标2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.角度(三) 求参数的值(范围)3.(2018·成都诊断)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D f′(x)=1x+2ax=2ax2+1x(x>0),根据题意有f′(x)≥0(x>0)恒成立,所以2ax2+1≥0(x>0)恒成立,即2a≥-1x2(x>0)恒成立,所以a≥0,故实数a的取值范围为[0,+∞).[题“根”探求]1.曲线y=sin x+e x在点(0,1)处的切线方程是()A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0解析:选C因为y=sin x+e x,所以y′=cos x+e x,所以y′|x=0=cos 0+e0=2,所以曲线y=sin x+e x在点(0,1)处的切线方程为y-1=2(x-0),即2x-y+1=0.2.(2017·天津高考)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为________.解析:因为f′(x)=a-1x,所以f′(1)=a-1.又f(1)=a,所以切线l的方程为y-a=(a-1)(x-1).令x=0,得y=1.答案:13.(2018·云南一检)已知函数f(x)=ax ln x+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:4(一)普通高中适用A 级——基础小题练熟练快1.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.2.已知函数f (x )=log a x (a >0且a ≠1),若f ′(1)=-1,则a =( ) A .e B.1e C.1e2 D.12解析:选B 因为f ′(x )=1x ln a ,所以f ′(1)=1ln a =-1,所以ln a =-1,所以a =1e. 3.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.4.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0D .x +y -1=0解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,所以f ′(0)=1.所以所求切线方程为y +1=x ,即x -y -1=0.5.函数g (x )=x 3+52x 2+3ln x +b (b ∈R)在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52C.32D.12解析:选B 当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x ,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5, 由于点⎝⎛⎭⎫1,72+b 在切线上, 所以72+b =11-5,解得b =52.故选B.6.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 7.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x -1x sin x ,∴f (π)+f ′⎝⎛⎭⎫π2=-1π-2π=-3π. 答案:-3π8.(2018·东北四市联考)函数f (x )=e x sin x 的图象在点(0,f (0))处的切线方程是________. 解析:由f (x )=e x sin x ,得f ′(x )=e x sin x +e x cos x ,所以f (0)=0且f ′(0)=1,则切线的斜率为1,切点坐标为(0,0),所以切线方程为y =x .答案:y =x9.若函数f (x )在R 上可导,f (x )=e x ln x +x 3f ′(1),则f ′(1)=________. 解析:由已知可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x +3x 2f ′(1), 故f ′(1)=e ()ln 1+1+3f ′(1),解得f ′(1)=-e2.答案:-e210.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________.解析:因为y ′=-1-cos xsin 2x,所以y ′| x =π2=-1,由条件知1a =-1,所以a =-1. 答案:-1B 级——中档题目练通抓牢1.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1eD .-1e解析:选C y =ln x 的定义域为(0,+∞),设切点为(x 0,y 0),则k =y ′|x =x 0=1x 0,所以切线方程为y -y 0=1x 0(x -x 0),又切线过点(0,0),代入切线方程得y 0=1,则x 0=e ,所以k =y ′|x =x 0=1x 0=1e.2.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax +2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.故选D.3.在直角坐标系xOy 中,设P 是曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A ,B 两点,则下列结论正确的是( )A .△OAB 的面积为定值2 B .△OAB 的面积有最小值为3C .△OAB 的面积有最大值为4D .△OAB 的面积的取值范围是[3,4]解析:选A 由题意知,y =1x (x >0),则y ′=-1x2.设P ⎝⎛⎭⎫a ,1a ,则曲线C 在点P 处的切线方程为y -1a =-1a 2(x -a ), 令x =0可得y =2a ;令y =0可得x =2a , 所以△OAB 的面积为12×2a ×2a =2,即定值2.故选A.4.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则a =________,切点坐标为________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ).则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1.解得x 0=-1,a =-12,切点坐标为(-1,0).答案:-12(-1,0)5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为_______. 解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点,则y ′x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去). ∴点P 0的坐标为(1,1).∴所求的最小距离=|1-1-2|2= 2.答案: 26.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1, ∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 7.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)因为y ′=-2x +92,设切点P 的坐标为(x 1,y 1),则⎩⎪⎨⎪⎧ -2x 1+92=k ,y 1=kx 1,y 1=-x 21+92x 1-4,解得⎩⎪⎨⎪⎧ x 1=2,y 1=1,k =12或⎩⎪⎨⎪⎧x 1=-2,y 1=-17,k =172.因为切点P 在第一象限,所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5. 将其代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. C 级——重难题目自主选做1.已知f (x )=14x 2+sin ⎝⎛⎭⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是()解析:选A ∵f (x )=14x 2+sin ⎝⎛⎭⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x ,它是一个奇函数,其图象关于原点对称,故排除B ,D.又f ″(x )=12-cos x ,当-π3<x <π3时,cos x >12,∴f ″(x )<0,故函数y =f ′(x )在区间⎝⎛⎭⎫-π3,π3上单调递减,故排除C ,选A. 2.若函数f (x )=2sin x (x ∈[0,π))的图象在切点P 处的切线平行于函数g (x )=2x ⎝⎛⎭⎫x 3+1的图象在切点Q 处的切线,则直线PQ 的斜率为( )A.83 B .2 C.73D.33解析:选A 由题意得f ′(x )=2cos x ,g ′(x )=x 12+x -12.设P (x 1,f (x 1)),Q (x 2,g (x 2)),f ′(x 1)=g ′(x 2),即2cos x 1=x 122+x -122,故4cos 2x 1=x 2+x -12+2,所以-4+4cos 2x 1=x 2+x -12-2,即-4sin 2x 1=x 122-x -1222,所以sin x 1=0,x 1=0,x122=x -122,x 2=1,故P (0,0),Q ⎝⎛⎭⎫1,83,故k PQ =83. (二)重点高中适用A 级——保分题目巧做快做1.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1D.12解析:选B 因为y =x 24-3ln x (x >0),所以y ′=x 2-3x .再由导数的几何意义,令x 2-3x =-12,解得x =2或x =-3(舍去).故切点的横坐标为2.4.(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .1B .-1C .2D .-2解析:选A f (x +1)=2(x +1)-1x +1,故f (x )=2x -1x ,即f (x )=2-1x ,对f (x )求导得f ′(x )=1x2,则f ′(1)=1,故所求切线的斜率为1,故选A. 5.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b =1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax +2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.故选D.6.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x -1x sin x ,∴f (π)+f ′⎝⎛⎭⎫π2=-1π-2π=-3π. 答案:-3π7.若函数f (x )在R 上可导,f (x )=e x ln x +x 3f ′(1),则f ′(1)=________. 解析:由已知可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x +3x 2f ′(1), 故f ′(1)=e ()ln 1+1+3×f ′(1),解得f ′(1)=-e2.答案:-e28.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则a =________,切点坐标为________.解析:曲线f (x )在x =0处的切线方程为y =x +1.设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ).则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1.解得x 0=-1,a =-12,切点坐标为(-1,0).答案:-12 (-1,0)9.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +x cos 2x. (3)∵y =(x 2+3x +2)(x +3),∴y ′=(x 2+3x +2)′(x +3)+(x 2+3x +2)(x +3)′ =(2x +3)(x +3)+x 2+3x +2 =2x 2+9x +9+x 2+3x +2 =3x 2+12x +11.10.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1, ∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级——拔高题目稳做准做1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1. ∵g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有⎩⎪⎨⎪⎧x 0+m =1,y 0=x 0-1,y 0=12x 2+mx 0+72,m <0,解得m =-2.3.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x (x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点,则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离=|1-1-2|2= 2.答案: 24.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14得,f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x ,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34, ∴a =-1e34=-e-34.答案:-e -345.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.6.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)因为y ′=-2x +92,设切点P 的坐标为(x 1,y 1),则⎩⎪⎨⎪⎧ -2x 1+92=k ,y 1=kx 1,y 1=-x 21+92x 1-4,解得⎩⎪⎨⎪⎧ x 1=2,y 1=1,k =12或⎩⎪⎨⎪⎧x 1=-2,y 1=-17,k =172,因为切点P 在第一象限,所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5. 将其代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4.。