益阳市中考数学试题及答案

合集下载

益阳市中考数学试题及答案

益阳市中考数学试题及答案

益阳市2020年普通初中毕业学业考试试卷数 学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上; 3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分; 5.考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中,是无理数的为 AB .13C .0D .3-2.下列运算正确的是 A .236x x x ⋅=B .325()=x xC .2336()xy x y =D .632x x x ÷=3.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是姓名 准考证号图2图 1A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.84.一个几何体的三视图如图1所示,则这个几何体是 A .三棱锥 B .三棱柱 C .圆柱 D .长方体5.如图2,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误..的是 A .90ABC ∠=︒ B .AC BD =C .OA OB =D .OA AD =6.下列等式成立的是 A .123aba b+=+ B .212a b a b =++ C .2ab aab b a b=-- D .a aa b a b=--++ 7.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为A .20(1+2x) =80B .2×20(1+x) =80图 4图3C .20(1+x 2) =80D .20(1+x)2 =808.若抛物线2()(1)y x m m =-++的顶点在第一象限,则m 的取值范围为A .1m >B .0m >C .1m ->D .10m -<<二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡...中对应题号后的横线上)928= .10.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 .11.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为 .12.如图3,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则»AB 的长为 .13.图4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 根小图5图 6 棒.三、解答题(本大题共2小题,每小题8分,共16分)14.化简:2(1)(1)x x x +-+.15.如图5,直线AB ∥CD ,BC 平分∠ABD ,165∠=︒,求2∠的度数.四、解答题(本大题共3小题,每小题10分,共30分)16.如图6,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到像点P 2,点 P 2恰好在直线l 上. (1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.17.2020年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2020年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:图8图7(1)2020年益阳市的地区生产总值为多少亿元? (2)请将条形统计图中第二产业部分补充完整; (3)求扇形统计图中第二产业对应的扇形的圆心角度数.18.如图8,在□ABCD 中,对角线AC 与BD 相交于点O ,∠CAB=∠ACB ,过点B 作BE ⊥AB 交AC 于点E . (1)求证:AC ⊥BD ;(2)若AB=14,7cos 8CAB ∠=,求线段OE 的长.五、解答题(本大题共2小题,每小题12分,共24分)19.大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3图9-2图9-1图9-3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?20.已知点P 是线段AB 上与点A 不重合的一点,且AP<PB .AP 绕点A 逆时针旋转角α(090)α︒<≤︒得到AP 1,BP 绕点B 顺时针也旋转角α得到BP 2,连接PP 1、PP 2.(1)如图9-1,当90α=︒时,求12PPP ∠的度数;(2)如图9-2,当点P 2在AP 1的延长线上时,求证:21P PP △∽2P PA △; (3)如图9-3,过BP 的中点E 作l 1⊥BP ,过BP 2的中点F 作l 2⊥BP 2,l 1与l 2交于点Q ,连接PQ ,求证:P 1P ⊥PQ .图10-1图10-2六、解答题(本题满分15分)21.已知抛物线E 1:2y x =经过点A(1,m),以原点为顶点的抛物线E 2经过点B(2,2),点A 、B 关于y 轴的对称点分别为点A B ''、. (1)求m 的值及抛物线E 2所表示的二次函数的表达式;(2)如图10-1,在第一象限内,抛物线E 1上是否存在点Q ,使得以点Q 、B 、B '为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图10-2,P 为第一象限内的抛物线E 1上与点A 不重合的一点,连接OP并延长与抛物线E 2相交于点P ',求PAA '∆与P BB ''∆的面积之比.益阳市2020年普通初中毕业学业考试 数学参考答案及评分标准一、选择题(本大题共8小题,每小题5分,共40分).二、填空题(本大题共5小题,每小题5分,共25分).9.4;10.1y x =(不唯一);11.23;12.3π;13.51n +.三、解答题(本大题共2小题,每小题8分,共16分).14.解:原式=2221x x x x ++-- ·················· 6分=1x +. ······················ 8分15.解:∵AB ∥CD ,∴165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒. ········· 4分 ∵BC ABD ∠平分,∴2130ABD ABC ∠=∠=︒, ················ 6分∴18050BDC ABD∠=︒-∠=︒,∴250BDC∠=∠=︒.··················8分四、解答题(本大题共3小题,每小题10分,共30分)16.解:(1)P2(3,3).····················3分(2)设直线l所表示的一次函数的表达式为(0)y kx b k=+≠,∵点P1(2,1),P2(3,3)在直线l上,∴2133k bk b+=⎧⎨+=⎩,,解得23kb=⎧⎨=-⎩,.∴直线l所表示的一次函数的表达式为23y x=-. ····7分(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∴2639⨯-=,∴点P3在直线l上.····························10分17.解:(1)237.519%1250÷=(亿元);··············3分(2)第二产业的增加值为1250237.5462.5550--=(亿元),画图如下:·······7分(3)扇形统计图中第二产业部分的圆心角为550360158.41250⨯︒=︒.10分 18.解:(1)∵CAB ACB ∠=∠,∴AB CB =,∴□ABCD 是菱形.∴AC BD ⊥. ···················· 3分(2)在Rt △AOB 中,7cos 8AO OAB AB ∠==,14AB =, ∴7491484AO =⨯=, 在Rt △ABE 中,7cos 8AB EAB AE ∠==,14AB =, ∴8167AE AB ==, ·················· 9分 ∴49151644OE AE AO =-=-=.············ 10分 五、解答题(本大题共2小题,每小题12分,共24分)19.解:(1)设初期购得原材料a 吨,每天所耗费的原材料为b 吨,根据题意得:6361030a b a b -=⎧⎨-=⎩,. ··············· 3分解得451.5a b =⎧⎨=⎩,.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨. 6分(2)设再生产x 天后必须补充原材料,依题意得:4516 1.5 1.5(120%)3x -⨯-+≤, ········ 9分 解得:10x ≥.答: 最多再生产10天后必须补充原材料. ······ 12分20.解:(1)由旋转的性质得:AP = AP 1,BP = BP 2.∵90α=︒,∴12PAP PBP △和△均为等腰直角三角形, ∴1245APP BPP ∠=∠=︒,∴121218090PPP APP BPP ∠=︒-∠-∠=︒.·········· 3分 (2)由旋转的性质可知12APP BPP △和△均为顶角为α的等腰三角形,∴12902APP BPP α∠=∠=︒-,∴1212180()1802(90)2PPP APP BPP αα∠=︒-∠+∠=︒-︒-=. ··· 5分 在21P PP △和2P PA △中,122PPP PAP α∠=∠=, 又212PP P AP P ∠=∠,∴21P PP △∽2P PA △. ·················· 7分(3)如图,连接QB.∵l 1,l 2分别为PB ,P 2B 的中垂线, ∴12EB BP =,212FB BP =. 又BP=BP 2,∴EB FB =. 在Rt △QBE 和Rt △QBF 中,20题解图EB FB =,QB QB =,∴Rt △QBE ≌Rt △QBF , ∴2122QBE QBF PBP α∠=∠=∠=. ············· 9分由中垂线性质得:QP QB =, ∴2QPB QBE ∠=∠=α.由(2)知1902APP α∠=︒-,∴11180180(90)9022PPQ APP QPB ∠=︒-∠-∠=︒-︒--=︒αα,即 P 1P ⊥PQ . ···················· 12分六、解答题(本题满分15分)21.解:(1)∵抛物线E 1经过点A(1,m),∴m=12=1.∵抛物线E 2的顶点在原点,可设它对应的函数表达式为2y ax =(0a ≠),又点B(2,2)在抛物线E 2上,∴222a =⨯,解得:12a =,∴抛物线E 2所对应的二次函数表达式为212y x =. ···· 3分(2)假设在第一象限内 ,抛物线E 1上存在点Q ,使得△QB B '为直角三角形,由图象可知直角顶点只能为点B 或点Q .①当点B 为直角顶点时,过B 作BQ B B '⊥交抛物线E 1于Q , 则点Q 与B 的横坐标相等且为2,将x=2代入y=x 2得y=4 , ∴点Q 的坐标为(2,4). ·············· 5分②当点Q 为直角顶点时,则有222QB QB B B ''+=,过点Q 作QG BB '⊥于G ,设点Q 的坐标为(t ,t 2)( 0t >),则有()()()()222222222224t t t t ++-+-+-=,整理得:4230t t -=,∵0t >, ∴230t -=,解得13t =,23t =-舍去),∴点Q 的坐标为33),综合①②,存在符合条件的点Q 坐标为(2,4)与33). ·· 9分(3)过点P 作PC ⊥x 轴,垂足为点C ,PC 交直线A A '于点E ,过点P '作P 'D ⊥x轴,垂足为点D ,P 'D 交直线B B '于点F ,依题意可设P(c ,c 2)、P '(d ,212d ) (c >0,1c ≠),∵tan tan POC P OD '∠=∠,∴ 2212d c c d=,∴d=2c . ······· 12分 又A A '=2,B B '=4,∴222211211122111422242222PAA P BB AA PE c c S S c BB P F d '∆''∆'⋅⨯⨯--====⨯-''⋅⨯⨯-. ····· 15分21题解图1 21题解图2。

(中考精品卷)湖南省益阳市中考数学真题(解析版)

(中考精品卷)湖南省益阳市中考数学真题(解析版)

2022年湖南省益阳市中考数学试卷一、选择题(本题共10个小题,每小题4分,共40分;每小题给出的四个选项中,只有一项是符合题目要求的)1.,1,2,13中,比0小的数是( )A.﹣ B. 1 C. 2 D.13【答案】A【解析】【分析】利用零大于一切负数来比较即可.<0,故A正确.故选:A.【点睛】本题考查了实数的大小比较,解答此题关键要明确:正实数>零>负实数,两个负实数绝对值大的反而小.2. 下列各式中,运算结果等于a2的是( )A. a3﹣aB. a+aC. a•aD. a6÷a3【答案】C【解析】【分析】根据同底数幂的运算及整式的加减运算进行计算判断即可.【详解】A、∵a3﹣a不是同类项,不能进行合并运算,∴选项A不符合题意;B、∵a+a=2a,∴选项B不符合题意;C、∵a•a=a2,∴选项C符合题意;D、∵a6÷a3=a3,∴选项D不符合题意.故选:C.【点睛】本题考查了同底数幂运算及整式的加减运算,熟记同底数幂的运算的运算法则及整式的加减运算法则是解题的关键.3. 若x=2是下列四个选项中的某个不等式组的一个解,则这个不等式组是()A.11xx<⎧⎨<-⎩B.11xx<⎧⎨>-⎩C.11xx>⎧⎨<-⎩D. 11x x >⎧⎨>-⎩【答案】D【解析】的【分析】先把不等式组的解集求出来,然后根据解集判断x=2是否是解集一个解.【详解】解:A、∵不等式组的解集为x<﹣1,∴x=2不在这个范围内,故选项A不符合题意;B、∵不等式组的解集为﹣1<x<1,∴x=2不在这个范围内,故选项B不符合题意;C、∵不等式组无解,∴x=2不在这个范围内,故选项C不符合题意;D、∵不等式组的解集为x>1,∴x=2在这个范围内,故选项D符合题意.故选:D.【点睛】本题考查了不等式组的解集,不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.4. 若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是( )A. ﹣1B. 0C. 1D. 2【答案】B【解析】【分析】根据根与系数的关系即可求出答案.【详解】设x2+x+m=0另一个根是α,∴﹣1+α=﹣1,∴α=0,故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟练运用一元二次方程根与系数的关系,本题属于基础题型.5. 已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是( )x … ﹣1 0 1 2 …y … ﹣2 0 2 4 …A. y=2xB. y=x﹣1C. y=2xD. y=x2【答案】A【解析】【分析】观察表中x,y的对应值可以看出,y的值恰好是x值的2倍.从而求出y与x的函数表达式.【详解】解:根据表中数据可以看出:y的值是x值的2倍,∴y=2x.故选:A.【点睛】本题考查了列正比例函数表达式,解题的关键是根据所给的数据找出自变量与因变量之间的关系.6. 在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A,B,C,D,E,F,考生从中随机抽取一道试题,则某个考生抽到试题A的概率为( )A. 23B.14C.16D.124【答案】C【解析】【分析】根据抽到试题A的概率=试题A出现的结果数÷所有可能出现的结果数即可得出答案.【详解】解:总共有24道题,试题A共有4道,P(抽到试题A)41 == 246,故选:C.【点睛】本题考查了概率公式,掌握到试题A的概率=试题A出现的结果数÷所有可能出现的结果数是解题的关键.7. 如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题实际上是长为6的线段围成一个等腰三角形,求腰的取值范围.【详解】解:长为6的线段围成等腰三角形的两腰为a.则底边长为6﹣2a.由题意得,262 620a aa>-⎧⎨->⎩,解得32<a<3,所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集,∴a只能取2.故选:B.【点睛】本题考查了三角形三边之间的关系、解不等式组,解题的关键是把把三棱柱的问题转化为三角形三边的问题.8. 1.如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为( )A. 5B. 4C. 3D. 2【答案】C【解析】【分析】根据平行四边形的性质可知CD=AB=8,由AE=3,可得BE的长,再判定四边形DEFC是平行四边形,根据平行四边形的性质可得EF的长,由BF=EF﹣BE,即可求出BF.【详解】解:∵在▱ABCD中,AB=8,∴CD=AB=8,AB∥CD,∵AE=3,∴BE=AB﹣AE=5,∵CF∥DE,∴四边形DEFC是平行四边形,∴DC=EF=8,∴BF=EF﹣BE=8﹣5=3.故选:C.【点睛】本题考查了平行四边形的性质以及判定,能够熟练运用平行四边形的判定是解题的关键.9. 如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是( )A. I到AB,AC边的距离相等B. CI平分∠ACBC. I是△ABC的内心D. I到A,B,C三点的距离相等【答案】D【解析】【分析】根据作图先判断AE平分∠BAC,再由三角形内心的性质解答即可.【详解】解:A.由作图可知,AE是∠BAC的平分线,∴I到AB,AC边的距离相等,故选项正确,不符合题意;B.∵BD平分∠ABC,三角形三条角平分线交于一点,∴CI平分∠ACB,故选项正确,不符合题意;C.由上可知,I是△ABC的内心,故选项正确,不符合题意,D.∵I是△ABC的内心,∴I到AB,AC,BC的距离相等,不是到A,B,C三点的距离相等,故选项错误,符合题意;故选:D.【点睛】此题考查尺规作图,涉及三角形内心的性质,解题的关键是掌握基本的尺规作图和三角形内心的性质.10. 如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】B【解析】【分析】根据旋转的性质可得,BC=B′C′,∠C′AB′=∠CAB=20°,∠AB′C′=∠ABC=30°,再根据旋转角的度数为50°,通过推理证明对①②③④四个结论进行判断即可.【详解】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;②∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°.∵∠CAB=20°,∴∠B′AC=∠BAB′﹣∠CAB=30°.∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC.∴AC∥C′B′.故②正确;③在△BAB′中,AB=AB′,∠BAB′=50°,∴∠AB′B=∠ABB′=12(180°﹣50°)=65°.∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.∴CB′与BB′不垂直.故③不正确;④在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC′=12(180°﹣50°)=65°.∴∠ABB′=∠ACC′.故④正确.∴①②④这三个结论正确.故选:B.【点睛】此题考查了旋转性质的应用,图形的旋转只改变图形的位置,不改变图形的形状与大小,还考查了等腰三角形的判定和性质、平行线的判定等知识.熟练掌握旋转的性质是解题的关键.二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.13的绝对值是________.【答案】1 3【解析】【分析】根据绝对值的几何意义分析即可求解. 【详解】解:由绝对值的几何意义可知,在数轴上13-这个数到原点的距离为13, 故13-的绝对值是13, 故答案为13. 【点睛】本题考查了绝对值的几何意义,绝对值的几何意义是指数轴上的点到原点的距离,本题属于基础题,熟练掌握绝对值的概念是解决本题的关键.12. 计算:21a a -﹣2a 1-=_____. 【答案】2【解析】【分析】同分母分式相加减,分母不变,分子相加减.根据同分母分式加减法则进行计算即可. 【详解】解:21a a -﹣2a 1- =221a a -- =2(1)1a a -- =2.故答案为:2.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解题的关键.13. 已知m ,n 同时满足2m +n =3与2m ﹣n =1,则4m 2﹣n 2的值是 _____.【答案】3【解析】【分析】观察已知和所求可知,22422m n m n m n +=()(﹣﹣),将代数式的值代入即可得出结论.【详解】解:∵2m +n =3,2m ﹣n =1,∴2222341m n m n m n +⨯==())=3﹣(﹣,故答案为:3.【点睛】本题主要考查代数式求值,平方差公式的应用,熟知平方差公式的结构是解题关键.14. 反比例函数y=2kx-的图像分布情况如图所示,则k的值可以是_____(写出一个符合条件的k值即可).【答案】1(答案不唯一)【解析】【分析】根据反比例函数的图像所处的位置确定k﹣2的符号,从而确定k的范围,可得答案.【详解】由反比例函数y=2kx-的图像位于第二,四象限可知,k﹣2<0,∴k<2,∴k的值可以是1,故答案为:1(答案不唯一).【点睛】考查了反比例函数的性质及图像,解题的关键是掌握反比例函数的性质.15. 如图,PA,PB表示以P为起点的两条公路,其中公路PA的走向是南偏西34︒,公路PB的走向是南偏东56︒,则这两条公路的夹角∠APB=_____°.【答案】90【解析】【分析】根据题意可得∠APC=34︒,∠BPC=56︒,然后进行计算即可解答.【详解】解:如图:由题意得:∠APC=34︒,∠BPC=56︒,∴∠APB=∠APC+∠BPC=90︒,故答案为:90.【点睛】本题考查了方向角,熟练掌握方向角的定义是解题的关键.16. 近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A 种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A 种候鸟中有10只佩有识别卡,由此估计该湿地约有 _____只A 种候鸟.【答案】800【解析】【分析】在样本中“200只A 种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.【详解】解:设该湿地约有x 只A 种候鸟,则200:10=x :40,解得x =800.故答案为:800.【点睛】本题主要考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.17. 如图,在Rt △ABC 中,∠C =90°,若sin A =45,则cos B =_____.【答案】45【解析】 【分析】根据三角函数的定义即可得到cos B =sin A =45. 【详解】解:在Rt △ABC 中,∠C =90°,∵sin A =BC AB =45, ∴cos B =BC AB =45.故答案为:45. 【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.18. 如图,将边长为3的正方形ABCD 沿其对角线AC 平移,使A 的对应点A ′满足AA ′=13AC ,则所得正方形与原正方形重叠部分的面积是 _____.【答案】4【解析】【分析】由正方形边长为3,可求AC =,则AA ′=13AC,由平移可得重叠部分是正方形,根据正方形的面积公式可求重叠部分面积.【详解】解:∵正方形ABCD 边长为3,∴AC =,∴AA ′=13AC, ∴A ′C =,由题意可得重叠部分是正方形,, ∴S 重叠部分=4.故答案为:4.【点睛】本题考查了正方形的性质,平移的性质,关键是灵活运用这些性质解决问题. 三、解答题(本题共8个小题,共78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:(﹣2022)0+6×(﹣12).【答案】0【解析】【分析】先利用零指数幂的意义,有理数的乘法,二次根式的性质化简,然后运算即可.的【详解】解:(﹣2022)0+6×(﹣12)=1+(﹣3)13=-+22=-+=0【点睛】本题主要考查了实数的运算,零指数幂的意义,有理数的乘法,二次根式的性质,正确利用上述法则与性质解答是解题的关键.20. 如图,在Rt △ABC 中,∠B =90°,CD ∥AB ,DE ⊥AC 于点E ,且CE =AB .求证:△CED ≌△ABC .【答案】见解析【解析】【分析】由垂直的定义可知,∠DEC =∠B =90°,由平行线的性质可得,∠A =∠DCE ,进而由ASA 可得结论.【详解】证明:∵DE ⊥AC ,∠B =90°,∴∠DEC =∠B =90°,∵CD ∥AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,DCE A CE AB DEC B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CED ≌△ABC (ASA ).【点睛】本题主要考查全等三角形的判定、垂直的定义和平行线的性质,熟知全等三角形的判定定理是解题基础.21. 如图,直线y =12x +1与x 轴交于点A ,点A 关于y 轴的对称点为A ′,经过点A ′和y 轴上的点B (0,2)的直线设为y =kx +b .(1)求点A ′的坐标;(2)确定直线A ′B 对应的函数表达式.【答案】(1)A ′(2,0)(2)y =﹣x +2【解析】【分析】(1)利用直线解析式求得点A 坐标,利用关于y 轴的对称点的坐标的特征解答即可;(2)利用待定系数法解答即可.【小问1详解】解:令y =0,则12x +1=0,∴x =﹣2,∴A (﹣2,0).∵点A 关于y 轴的对称点为A ′,∴A ′(2,0). 小问2详解】解:设直线A ′B 的函数表达式为y =kx +b ,∴202k b b +=⎧⎨=⎩, 解得:12k b =-⎧⎨=⎩, ∴直线A ′B 对应的函数表达式为y =﹣x +2.【点睛】本题主要考查了一次函数图象的性质、一次函数图象上点的坐标的特征、待定系数法确定函数的解析式、关于y 轴的对称点的坐标的特征等知识,利用待定系数法求函数解析式是解题的关键.22. 为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分),已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.【(1)求(2)班学生中测试成绩为10分的人数;(2)请确定下表中a,b,c的值(只要求写出求a的计算过程);统计量平均数众数中位数方差(1)班8 8 c 1.16(2)班 a b 8 1.56(3)从上表中选择合适的统计量,说明哪个班的成绩更均匀.【答案】(1)(2)班学生中测试成绩为10分的人数是6人(2)a,b,c的值分别为8,9,8(3)(1)班成绩更均匀【解析】【分析】(1)根据条形图求出人数,根据扇形统计图求出所占百分比,即可得出结论;(2)根据(1)中数据分别计算a,b,c的值即可;(3)根据方差越小,数据分布越均匀判断即可.【小问1详解】解:由题意知,(1)班和(2)班人数相等,为:5+10+19+12+4=50(人),∴(2)班学生中测试成绩为10分的人数为:50×(1﹣28%﹣22%﹣24%﹣14%)=6(人),答:(2)班学生中测试成绩为10分的人数是6人;【小问2详解】由题意知:a=6105028%95022%85024%75014%650⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=8;∵9分占总体的百分比为28%是最大的,∴9分的人数是最多的,∴众数为9分,即b=9;由题意可知,(1)班的成绩按照从小到大排列后,中间两个数都是8,∴c=882=8;答:a,b,c的值分别为8,9,8;【小问3详解】∵(1)班的方差为1.16,(2)班的方差为1.56,且1.16<1.56,∴根据方差越小,数据分布越均匀可知(1)班成绩更均匀.【点睛】本题主要考查统计的知识,根据方差判断稳定性,熟练根据统计图得出相应的数据是解题的关键.23. 如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB的延长线于点P,连接CA,CO,CB.(1)求证:∠ACO=∠BCP;(2)若∠ABC=2∠BCP,求∠P的度数;(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).【答案】(1)见解析(2)30°(3)2π﹣【解析】【分析】(1)由AB是半圆O的直径,CP是半圆O的切线,可得∠ACB=∠OCP,即得∠ACO=∠BCP;(2)由∠ABC=2∠BCP,可得∠ABC=2∠A,从而∠A=30°,∠ABC=60°,可得∠P 的度数是30°;(3)∠A=30°,可得BC=12AB=2,AC,即得S△ABC,再利用阴影部分的面积等于半圆减去S△ABC即可解题.【小问1详解】∵AB是半圆O的直径,∴∠ACB=90°,∵CP是半圆O的切线,∴∠OCP=90°,∴∠ACB=∠OCP,∴∠ACO=∠BCP;【小问2详解】由(1)知∠ACO =∠BCP ,∵∠ABC =2∠BCP ,∴∠ABC =2∠ACO ,∵OA =OC ,∴∠ACO =∠A ,∴∠ABC =2∠A ,∵∠ABC +∠A =90°,∴∠A =30°,∠ABC =60°,∴∠ACO =∠BCP =30°,∴∠P =∠ABC ﹣∠BCP =60°﹣30°=30°,答:∠P 的度数是30°;【小问3详解】由(2)知∠A =30°,∵∠ACB =90°,∴BC =12AB =2,AC=∴S △ABC =12BC •AC =12×2×∴阴影部分面积是21()22AB π⨯﹣2π﹣答:阴影部分的面积是2π﹣【点睛】本题考查圆的综合应用,涉及圆的切线性质,直角三角形性质及应用等知识,题目难度不大.24. 在某市组织的农机推广活动中,甲、乙两人分别操控A 、B 两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A 、B 型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【答案】(1)甲操控A 型号收割机每小时收割10亩水稻,乙操控B 型号收割机每小时收割6亩水稻(2)最多安排甲收割4小时【解析】的【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;(2)设安排甲收割y小时,则安排乙收割100106y-小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【小问1详解】解:设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:66 (140%)x x-=-0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.【小问2详解】设安排甲收割y小时,则安排乙收割100106y-小时,依题意得:3%×10y+2%×6×100106y-≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.25. 如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P 在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.(1)求a 的值;(2)将A ,B 纵坐标分别记为y A ,y B ,设s =y A ﹣y B ,若s 的最大值为4,则m 的值是多少?(3)Q 是x 轴的正半轴上一点,且PQ 的中点M 恰好在抛物线F 上.试探究:此时无论m 为何负值,在y 轴的负半轴上是否存在定点G ,使∠PQG 总为直角?若存在,请求出点G 的坐标;若不存在,请说明理由.【答案】(1)a =2(2)m(3)存在,G (0【解析】【分析】(1)由抛物线的顶点式可直接得出顶点P 的坐标,再代入抛物线F 可得出结论; (2)根据题意可分别表达A ,B 的纵坐标,再根据二次函数的性质可求出m 的值;(3)过点Q 作x 轴的垂线KN ,分别过点P ,G 作x 轴的平行线,与KN 分别交于K ,N ,则△PKQ ∽△QNG ,设出点M 的坐标,可表达点Q 和点G 的坐标,从而可得出结论.【小问1详解】解:由题意可知,抛物线22:()2(0)E y x m m m =--+<的顶点P 的坐标为2(,2)m m , 点P 在抛物线2:F y ax =上, 222am m ∴=,2a ∴=.【小问2详解】解: 直线x t =与抛物线E ,F 分别交于点A ,B ,2222()22A y t m m t mt m ∴=--+=-++,22B y t =,A B s y y ∴=-的22222t mt m t =-++-2232t mt m =-++22143()33t m m =--+, 30-<Q ,∴当13t m =时,s 的最大值为243m , s 的最大值为4,∴2443m =,解得m =, 0m < ,m =∴.【小问3详解】解:存在,理由如下:设点M 的坐标为n ,则2(,2)M n n ,22(2,4)Q n m n m ∴--,点Q 在x 轴正半轴上,20n m ∴->且2240n m -=,n ∴=,(M ∴,2)m ,(Q m -,0). 如图,过点Q 作x 轴的垂线KN ,分别过点P ,G 作x 轴的平行线,与KN 分别交于K ,N ,90K N ∴∠=∠=︒,90QPK PQK ∠+∠=︒,90PQG ∠=︒ ,90PQK GQN ∴∠+∠=︒,QPK GQN ∴∠=∠,PKQ QNG ∴∆∆∽,::PK QN KQ GN ∴=,即PK GN KQ QN ⋅=⋅.2PK m m m =--=- ,22KQ m =,GN m =-,2(2)()2m m m QN ∴--=⋅解得QM(0,G ∴. 【点睛】本题属于二次函数综合题,涉及待定系数法求函数解析式,二次函数的性质,相似三角形的性质与判定,中点坐标公式等知识,解题的关键是构造相似三角形得出方程进行求解.26. 如图,矩形ABCD 中,AB =15,BC =9,E 是CD 边上一点(不与点C 重合),作AF ⊥BE 于F ,CG ⊥BE 于G ,延长CG 至点C ′,使C ′G =CG ,连接CF ,AC ′.(1)直接写出图中与△AFB 相似的一个三角形;(2)若四边形AFCC ′是平行四边形,求CE 的长;(3)当CE 的长为多少时,以C ′,F ,B 为顶点的三角形是以C ′F 为腰的等腰三角形?【答案】(1)答案不唯一,如△AFB ∽△BCE(2)CE =7.5 (3)当CE 的长为长为545或3时,以C ′,F ,B 为顶点的三角形是以C ′F 为腰的等腰三角形【解析】【分析】(1)因为△AFB 是直角三角形,所以和它相似的三角形都是直角三角形,有三个直角三角形和△AFB 相似,解答时任意写出一个即可;(2)根据△AFB ∽△BGC ,得AF AB BG BC =,即15593AF BG ==,设AF =5x ,BG =3x ,根据△AFB∽△BCE∽△BGC,列比例式可得CE的长;(3)分两种情况:①当C'F=BC'时,如图2,②当C'F=BF时,如图3,根据三角形相似列比例式可得结论.【小问1详解】解:(任意回答一个即可);①如图1,△AFB∽△BCE,理由如下:∵四边形ABCD是矩形,∴DC∥AB,∠BCE=∠ABC=90°,∴∠BEC=∠ABF,∵AF⊥BE,∴∠AFB=90°,∴∠AFB=∠BCE=90°,∴△AFB∽△BCE;②△AFB∽△CGE,理由如下:∵CG⊥BE,∴∠CGE=90°,∴∠CGE=∠AFB,∵∠CEG=∠ABF,∴△AFB∽△CGE;③△AFB∽△BGC,理由如下:∵∠ABF+∠CBG=∠CBG+∠BCG=90°,∴∠ABF=∠BCG,∵∠AFB=∠CGB=90°,∴△AFB∽△BGC;【小问2详解】∵四边形AFCC'是平行四边形,∴AF=CC',由(1)知:△AFB∽△BGC,∴AF ABBG BC=,即15593AFBG==,设AF=5x,BG=3x,∴CC'=AF=5x,∵CG=C'G,∴CG=C'G=2.5x,∵△AFB∽△BCE∽△BGC,∴CG CEBG BC=,即2.539x CEx=,∴CE=7.5;【小问3详解】分两种情况:①当C'F=BC'时,如图2,∵C'G⊥BE,∴BG=GF,∵CG=C'G,∴四边形BCFC'是菱形,∴CF=CB=9,由(2)知:设AF=5x,BG=3x,∴BF=6x,∵△AFB∽△BCE,∴AF BFBC CE=,即569x xCE=,∴596xx CE=,∴CE=54 5;②当C'F=BF时,如图3,由(1)知:△AFB∽△BGC,∴15593 AB BFBC CG===,设BF=5a,CG=3a,∴C'F=5a,∵CG=C'G,BE⊥CC',∴CF=C'F=5a,∴FG=4a,∵tan∠CBE=CE CG BC BG=,∴3945 CE aa a=+,∴CE=3;综上,当CE的长为长为545或3时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形.【点睛】本题是四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,相似三角形的判定和性质,平行线的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题。

湖南省益阳市中考数学试卷含答案试卷分析详解

湖南省益阳市中考数学试卷含答案试卷分析详解

湖南省益阳市中考数学试卷(样卷)一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)的相反数是()A. B.﹣C.D.2.(4分)下列各式化简后的结果为3的是()A.B.C.D.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形6.(4分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67 C.68、68 D.68、677.(4分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤08.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°9.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小10.(4分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.B.C.D.11.(4分)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第象限.12.(4分)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.13.(4分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为.14.(4分)某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=.x (2)1.5﹣1﹣0.500.51 1.52…y…20.750﹣0.250﹣0.250m2…15.(4分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标.16.(4分)如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留π)17.(4分)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为.18.(4分)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤19.(8分)计算:(﹣1)3+||﹣(﹣)0×(﹣).20.(8分)先化简,再求值:(﹣)÷,其中x=﹣.21.(8分)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.(10分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?24.(10分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.(12分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.26.(12分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.湖南省益阳市中考数学试卷(样卷)参考答案与试题解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)的相反数是()A. B.﹣C.D.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.2.(4分)下列各式化简后的结果为3的是()A.B.C.D.【解答】解:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2,在数轴上表示为:.故选:A.5.(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.6.(4分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67 C.68、68 D.68、67【解答】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68.故选:C.7.(4分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选:A.8.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.9.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小【解答】解:画出抛物线y=x2﹣2x+1的图象,如图所示.A、∵a=1,∴抛物线开口向上,A正确;B、∵令x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,∴该抛物线与x轴有两个重合的交点,B正确;C、∵﹣=﹣=1,∴该抛物线对称轴是直线x=1,C正确;D、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x>1时,y随x的增大而增大,D不正确.故选:D.10.(4分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠P B′C=α(B′C 为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.B.C.D.【解答】解:设PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x﹣1=xsinα,∴(1﹣sinα)x=1,∴x=.故选:A.二、填空题:本题共8小题,每小题4分.11.(4分)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第四象限.【解答】解:将正比例函数y=2x的图象向上平移3个单位后得到的一次函数的解析式为:y=2x+3,∵k=2>0,b=3>0,∴该一次函数图象经过第一、二、三象限,即该一次函数图象不经过第四象限.故答案为:四.12.(4分)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.【解答】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间,所以甲没排在中间的概率是=.故答案为.13.(4分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为124°.【解答】解:∵AB ∥CD , ∴∠ABC=∠BCD=28°, ∵CB 平分∠ACD , ∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC ﹣∠ACB=124°, 故答案为:124°.14.(4分)某学习小组为了探究函数y=x 2﹣|x |的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m= 0.75 . x…﹣2﹣1.5﹣1﹣0.50.511.52…y…20.75﹣0.25﹣0.25 0m2…【解答】解:(方法一)当x >0时,函数y=x 2﹣|x |=x 2﹣x , 当=0.75.(方法二)观察表格中的数据,可知:当x=﹣1和x=1时,y 值相等, ∴抛物线的对称轴为y 轴, ∴当x=1.5和=0.75. 故答案为:0.75.15.(4分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标 (1,﹣3) .【解答】解:任意取一个整数值如x=1,将x=1代入解析式得:y=﹣=﹣3,得到点坐标为(1,﹣3),则这个点坐标的横纵坐标都为整数,是符合要求的答案,本题可有多个答案.故答案为:(1,﹣3)(答案不唯一).16.(4分)如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)【解答】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4•π×6=24π.故答案为:24π.17.(4分)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为115°.【解答】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.18.(4分)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤19.(8分)计算:(﹣1)3+||﹣(﹣)0×(﹣).【解答】解:原式=﹣1+﹣1×(﹣)=﹣1++=.20.(8分)先化简,再求值:(﹣)÷,其中x=﹣.【解答】解:原式==.当时,原式=4.21.(8分)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=0.3,b=4,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.23.(10分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.24.(10分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.=BC•AD=×14×12=84.∴S△ABC25.(12分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.【解答】解:(1)∵抛物线顶点为A(,1),设抛物线解析式为y=a(x﹣)2+1,将原点坐标(0,0)在抛物线上,∴0=a()2+1∴a=﹣.∴抛物线的表达式为:y=﹣x2+x.(2)令y=0,得0=﹣x2+x,∴x=0(舍),或x=2∴B点坐标为:(2,0),∵A(,1)在直线OA上,∴k=1,∴k=,∴直线OA对应的一次函数的表达式为y=x.∵BD∥AO,设直线BD对应的一次函数的表达式为y=x+b,∵B(2,0)在直线BD上,∴0=×2+b,∴b=﹣2,∴直线BD的表达式为y=x﹣2.令x=0得,y=﹣2,∴C点的坐标为(0,﹣2),由勾股定理,得:OA=2=OC,AB=2=CD,OB=2=OD.在△OAB与△OCD中,,∴△OAB≌△OCD.(3)点C关于x轴的对称点C'的坐标为(0,2),∴C'D与x轴的交点即为点P,它使得△PCD的周长最小.过点D作DQ⊥y,垂足为Q,∴PO∥DQ.∴△C'PO∽△C'DQ.∴,∴,∴P O=,∴点P的坐标为(﹣,0).26.(12分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.【解答】解:(1)如图①,在△ABC中,∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,,又∵EF是△ACD的中位线,∴,在△ACD中,AD=CD,∠A=60°,∴∠ADC=60°,在△FGD中,GF=DF•sin60°=,∴矩形EFGH的面积;(2)如图②,设矩形移动的距离为x,则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去),当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=,∴,即矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)如图③,作H2Q⊥AB于Q,设DQ=m,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.第21页共21页。

益阳市中考数学试题及答案(Word版)

益阳市中考数学试题及答案(Word版)

益阳市2020年普通初中毕业学业考试试卷数 学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上; 3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为120分; 5.考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个实数2-,0,1中,最大的实数是 A .2-B .0C.D .12.下列式子化简后的结果为6x 的是 A .33x x +B .33x x ⋅C .33()xD . 122x x ÷3.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是 A .120B .15C .14D .134.下列图形中,既是轴对称图形又是中心对称图形的是姓名 准考证号图2ABCD5.一元二次方程220x x m -+=总有实数根,则m 应满足的条件是 A .1m >B .1m =C .1m <D .1m ≤6.正比例函数6y x =的图象与反比例函数6y x=的图象的交点位于 A .第一象限 B .第二象限C .第三象限D .第一、三象限7.如图1,平行四边形ABCD 中,,E F 是对角线BD 上的两点,如果添加一个条件使ABE ∆≌CDF ∆,则添加的条件不能..是 A .AE CF = B .BE FD =2∠8.如图2,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(3,0)-,将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为图11 2 ABCDE FA .1B .1或5C .3D .5二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上)9.若29(3)()x x x a -=-+,则a = . 10.分式方程2332x x=-的解为 . 11.小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 米.12.小明放学后步行回家,他离家的路程s (米)与步行时间(t 分钟)的函数图象如图3所示,则他步行回家的平均速度是 米/分钟.13.如图4,将等边ABC ∆绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD ∆,BC 的中点E 的对应点为F ,则EAF ∠的度数是 .三、解答题(本大题共2小题,每小题6分,共12分)图4A80° EBCF图5BC AFED14.计算:0|3|3-+15.如图5,EF ∥BC ,AC 平分BAF ∠,80B ∠=︒.求C ∠的度数.四、解答题(本大题共3小题,每小题8分,共24分)16.先化简,再求值:21(2)(2)(1)2x x x +-+--,其中x = 17.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(图6),请你结合图中的信息解答下列问题: (1)求被调查的学生人数; (2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?图64 8类别文学科普其他最喜爱的各类图书的人数最喜爱的各类图书的人数占总人数的百分比18.“中国⋅益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图7,新大桥的两端位于A B 、两点,小张为了测量A B 、之间的河宽,在垂直于新大桥AB 的直线型道路l 上测得如下数据:76.1BDA ∠=︒,68.2BCA ∠=︒,82CD =米.求AB 的长(精确到0.1米). 参考数据:sin76.10.97︒≈,cos76.10.24︒≈,tan76.1 4.0︒≈;sin68.20.93︒≈,cos68.20.37︒≈,tan68.2 2.5︒≈.五、解答题(本大题共2小题,每小题10分,共20分)19.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:图7第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.20.如图8,直线33y x =-+与x 轴、y 轴分别交于点A 、B ,抛物线2(2)y a x k=-+经过点A 、B ,并与x 轴交于另一点C ,其顶点为P . (1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使ABQ ∆是以AB为底边的等腰三角形,求Q 点的坐标. (3)在抛物线及其对称轴上分别取点M 、N ,使以,,,A C M N 为顶点的四边形为正方形,求此正方形的边长.六、解答题(本题满分12分)21.如图9,在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,60B ∠=︒,10AB =,4BC =,点P 沿线段AB 从点A 向点B 运动,设AP x =. (1)求AD 的长;DCBA图9P60°(2)点P 在运动过程中,是否存在以A P D 、、为顶点的三角形与以P C B 、、为顶点的三 角形相似?若存在,求出x 的值;若不存 在,请说明理由;(3)设ADP ∆与PCB ∆的外接圆的面积分别为1S 、2S ,若12S S S =+,求S 的最小值.益阳市2020年普通初中毕业学业考试试卷 数学参考答案及评分标准一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共5小题,每小题4分,共20分)9.3; 10.9x =-; 11.2.16; 12.80; 13.60︒. 三、解答题(本大题共2小题,每小题6分,共12分)14.解:原式3131=+-=.…………………………………………………………………6分15.解:∵EF ∥BC ,∴180100BAF B ∠=︒-∠=︒.……………………………………………………2分∵AC 平分BAF ∠,∴1502CAF BAF ∠=∠=︒,………………………………………………………4分∵EF ∥BC ,∴50C CAF ∠=∠=︒.……………………………………………………………6分四、解答题(本大题共3小题,每小题8分,共24分)16.解:21(2)(2)(1)2x x x +-+-- 212421x x x =+-+-+22x =-……………………………………………………………………………6分当x =22=-1=.…………………………………………………8分17.解:(1)被调查的学生人数为:1220%60÷=(人);……………………………2分(2)如图48……………………5分(3)全校最喜爱文学类图书的学生约有24120048060⨯=(人).………………8分18.解:设AD x =米,则(82)AC x =+米.在Rt ABC ∆中,tan ABBCA AC∠=,∴tan 2.5(82)AB AC BCA x =⋅∠=+.…………2分在Rt ABD ∆中,tan ABBDA AD∠=,∴tan 4AB AD BDA x =⋅∠=.……………………4分 ∴ 2.5(82)4x x+=,∴4103x =.………………………………………………………6分 ∴41044546.73AB x ==⨯≈.答:AB的长约为546.7米. …………………………………………………………8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意得:351800,4103100;x y x y +=⎧⎨+=⎩解得250,210.x y =⎧⎨=⎩ 答:A 、B 两种型号电风扇的销售单价分别为250元、210元.……………4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30)a -台. 依题意得:200170(30)a a +-≤5400, 解得:10a ≤.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元.………7分(3)依题意有:(250200)(210170)(30)1400a a -+--=, 解得:20,a =此时,10a >.所以在(2)的条件下超市不能实现利润1400元的目标. …………………10分20. 解:(1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B .又抛物线2(2)y a x k=-+经过点(1,0)A,(0,3)B,∴0,43;a ka k+=⎧⎨+=⎩解得1,1.ak=⎧⎨=-⎩即a,k的值分别为1,1-.………………………………………………3分(2)设Q点的坐标为(2,)m,对称轴2x=交x轴于点F,过点B作BE垂直于直线2x=于点E.在Rt AQF∆中,22221AQ AF QF m=+=+,在Rt BQE∆中,22224(3)BQ BE EQ m=+=+-.∵AQ BQ=,∴2214(3)m m+=+-,∴2m=.∴Q点的坐标为(2,2).………………………………………………………6分(3)当点N在对称轴上时,NC与AC不垂直.所以AC应为正方形的对角线.又对称轴2x=是AC的中垂线,所以,M点与顶点(2,1)P-重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,1MF NF AF CF====,且AC MN⊥,∴四边形AMCN为正方形.在Rt AFN∆中,AN== (10)分六、解答题(本题满分12分)21.解:(1)过点C 作CE AB ⊥于E .在Rt BCE ∆中,60B ∠=︒,4BC =.∴sin 4CE BC B =⋅∠==∴AD CE ==. (2)分(2)存在.若以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似,则PCB∆必有一个角是直角. ……………………………………………………3分①当90PCB ∠=︒时,在Rt PCB ∆中,4,60BC B =∠=︒,8PB =, ∴2AP AB PB =-=.又由(1)知AD =Rt ADP ∆中 ,tan AD DPA AP ∠===, ∴60DPA ∠=︒,∴DPA B ∠=∠. ∴ADP∆∽CPB ∆. ………………………………………………………………5分②当90CPB ∠=︒时,在Rt PCB ∆中,60B ∠=︒,4BC =,∴2PB =,PC =8AP =. 则AD AP PC PB ≠且AD APPB PC≠,此时PCB ∆与ADP ∆不相似. ∴存在ADP∆与CPB∆相似,此时2x =.………………………………………7分(3)如图,因为Rt ADP ∆外接圆的直径为斜边PD ,∴22112()24PD x S ππ+=⋅=⋅.①当210x <<时,作BC 的垂直平分线交BC 于H ,交AB 于G ;作PB 的垂直平分线交PB 于N ,交GH 于M ,连结BM .则BM 为PCB ∆外接圆的半径.在Rt GBH ∆中,122BH BC ==,30MGB ∠=︒,∴4BG =, 又111(10)5222BN PB x x ==-=-,∴112GN BG BN x =-=-. 在Rt GMN ∆中,∴1tan (1)2MN GN MGN x =⋅∠=-. 在Rt BMN ∆中,222211676333BM MN BN x x =+=-+, ∴22211676()333S BM x x ππ=⋅=-+. ②当02x <≤时,2211676()333S x x π=-+也成立. …………………………10分∴22121211676()4333x S S S x x ππ+=+=⋅+-+2732113()1277x ππ=-+.∴当327x =时,12S S S =+取得最小值1137π. ………………………………12分DCBA第21题解图2P 60°NGMHDCBA第21题解图1P 60°E (P ) P。

益阳中考数学试题及答案

益阳中考数学试题及答案

益阳中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. πC. 0.33333D. √4答案:B2. 一个等腰三角形的底边长度为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 17C. 18D. 19答案:A3. 已知函数y=2x+3,当x=2时,y的值是多少?A. 7B. 8C. 9D. 10答案:A4. 一个圆的直径为10cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B5. 下列哪个选项是二次函数?A. y=x+1B. y=x^2+2x+1C. y=3xD. y=1/x答案:B6. 如果一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C7. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么这个长方体的体积是多少立方厘米?A. 24B. 26C. 28D. 30答案:A8. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 6答案:A9. 一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 120°C. 180°D. 240°答案:A10. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 如果一个角是30°的余角,那么这个角的度数是______。

答案:60°13. 一个数的倒数是1/3,那么这个数是______。

答案:314. 一个等差数列的首项是2,公差是3,那么这个数列的第五项是______。

答案:1715. 如果一个三角形的内角和是180°,其中一个角是90°,另外两个角的度数之和是______。

益阳中考数学试题及答案

益阳中考数学试题及答案

益阳中考数学试题及答案一、选择题1. 已知函数 $y = 2x^2 + 3x - 4$,则该函数的图像是一个()。

A. 抛物线B. 直线C. 双曲线D. 双曲线解析式如下:2. $y = 3x + 2$ 和 $y = 4x - 1$ 的解集为()。

A. (1, 5)B. (-3, -7)C. (1, 2)D. (-2, 3)3. 若 $a^2 + b^2 = 25$,且 $ab = 6$,则 $a - b$ 的取值范围是()。

A. $\left[-\sqrt{61}, \sqrt{61}\right]$B. $\left[-\sqrt{31},\sqrt{31}\right]$C. $\left[-\sqrt{29}, \sqrt{29}\right]$D. $\left[-\sqrt{21},\sqrt{21}\right]$4. 曲线 $y = \sqrt{2x + 1}$ 的图像在直线 $y = 2$ 的上方的区间为()。

A. $\left(-\infty, -\frac12 \right]$B. $\left[-\frac12, +\infty\right)$C. $\left[-\infty, -\frac12 \right)$D. $\left(-\frac12, +\infty\right]$5. $\frac{2}{\sin x} + \frac{1}{\cos x} = \frac{5}{\sin x \cos x}$ 的解集为()。

A. $\left\{\frac{\pi}{6} + 2\pi k, \frac{11\pi}{6} + 2\pi k \mid k \in\mathbb Z\right\}$B. $\left\{\frac{\pi}{6} + \pi k, \frac{11\pi}{6} + \pi k \mid k \in\mathbb Z\right\}$C. $\left\{\frac{\pi}{6} + \frac{\pi k}{2} \mid k \in \mathbb Z\right\}$D. $\left\{\frac{\pi}{6} + \frac{\pi k}{6} \mid k \in \mathbb Z\right\}$二、计算题1. 计算:$\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} -\frac{5}{6} + \frac{6}{7}$。

湖南省益阳市中考数学试卷及参考答案(word版)

湖南省益阳市中考数学试卷及参考答案(word版)

益阳市2009年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回。

试 题 卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.21-的绝对值是 A . 2- B . 2 C . 21- D . 212.下列计算正确的是 A .326222=÷B .6232)2(=C .020= D .221-=-3那么这10天的日最高气温的平均数和众数分别是A.32,30 B.31,30 C.32,32D.30,304.一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为A .2B . 3C . 4D . 55.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 图2描述了他上学的情景,下列说法中错误..的是 A .修车时间为15分钟 B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米(分钟)图2主视图 左视图俯视图图16.在电路中,已知一个电阻的阻值R 和它消耗的电功率P .由电功率计算公式RU P 2=可得它两端的电压U 为 A.PR U =B.RPU =C.PR U = D.PR U ±= 7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是8.如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为A .αcos 5 B .αcos 5C . αsin 5D . αsin 5二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡...中对应题号后的横线上.9.据统计,益阳市现有人口总数约为460万人,将4600000用科学记数法表示为 . 10. 如图4,反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,已知A 点坐标为)1,2(-,那么B 点的坐标为 .11.如图5, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm .12.图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成. -图6(1)(2)(3)……AB . D . A .C .13.如图7,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .14.今年“五·一”节,益阳市某超市开展“有奖促销”活动,凡购物不少于30元的顾客均有一次转动转盘的机会(如图8,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向2或5时,该顾客获二等奖(若指针指向分界线则重转). 经统计,当天发放一、二等奖奖品共600份,那么据此估计参与此次活动的顾客为______人次.三、解答题:本大题共2小题,每小题9分,共18分.15.先化简,再求值:)(222y x yx y x +-+-,其中31,3-==y x .16.如图9,在梯形ABCD 中,AB ∥CD ,BD ⊥AD ,BC =CD ,∠A =60°,CD =2cm . (1)求∠CBD 的度数; (2)求下底AB 的长.四、解答题:本大题共2小题,每小题10分,共20分.17.某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图(图10). 请你根据图表提供的信息,解答下列问题:(1) 频数、频率分布表中a = ,b = ; (2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分A BC图9D60°)图10AC (B ′) BA ′图7C ′18. 开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.五、解答题:本题满分12分.19. 如图11,△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题: (1)分别以AB 、AC 为对称轴,画出△ABD 、△ACD 称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于 G 点,证明四边形AEGF 是正方形;(2)设AD =x ,利用勾股定理,建立关于x六、解答题:本题满分14分. 20.阅读材料: 如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.C yB图12-1图11益阳市2009年普通初中毕业学业考试数学参考答案及评分标准二、填空题:本大题共6小题,每小题4分,共24分.9.4.6×106 ,10.)1,2(-,11.4 ,12.3n +1,13.31,14.1600. 三、解答题:本大题共2小题,每小题9分,共18分.15.解:原式=)(2))((y x yx y x y x +-+-+ ··························································· 2分 =y x y x 22--- ··········································································· 5分 =y x 3-- ··················································································· 6分 当31,3-==y x 时原式=)31(33-⨯-- ·········································································· 7分 =2- ························································································· 9分16.解:(1)∵∠A =60°,BD ⊥AD∴∠ABD =30° ·············································································· 2分 又∵AB ∥CD∴∠CDB =∠ABD =30° ·································································· 4分∵BC =CD∴∠CBD =∠CDB =30° ·································································· 5分(2)∵∠ABD =∠CBD =30°∴∠ABC =60°=∠A ······································································ 7分 ∴AD =BC =CD =2cm在Rt △ABD 中,∴AB =2AD =4cm ····················································· 9分四、解答题:本大题共2小题,每小题10分,共20分.17.解:(1)a =8,b =0.08 ················································································ 4分··························· 7分)(3)小华被选上的概率是:41 ········································································· 10分18.解:(1)设每支钢笔x 元,每本笔记本y 元 ······················································· 1分 依题意得:⎩⎨⎧=+=+3152183y x y x ······························································· 3分解得:⎩⎨⎧==53y x ············································································· 4分答:每支钢笔3元,每本笔记本5元 ··············································· 5分 (2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+aa a a 48200)48(53 ·················································· 7分解得:2420≤≤a ···································································· 8分 所以,一共有5种方案. ································································ 9分即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24. ····························· 10分五、解答题:本题满分12分.19.(1)证明:由题意可得:△ABD ≌△ABE ,△ACD ≌△ACF ······························· 1分∴∠DAB =∠EAB ,∠DAC =∠F AC ,又∠BAC =45°, ∴∠EAF =90° ········································································· 3分 又∵AD ⊥BC∴∠E =∠ADB =90°∠F =∠ADC =90° ······································· 4分 又∵AE =AD ,AF =AD ∴AE =AF ················································································ 5分 ∴四边形AEGF 是正方形 ···························································· 6分(2)解:设AD =x ,则AE =EG =GF =x ························································ 7分∵BD =2,DC =3 ∴BE =2 ,CF =3∴BG =x -2,CG =x -3 ································································ 9分 在Rt △BGC 中,BG 2+CG 2=BC 2 ∴( x -2)2+(x -3)2=52 ································································ 11分 化简得,x 2-5x -6=0解得x 1=6,x 2=-1(舍) 所以AD =x =6 ··········································································· 12分六、解答题:本题满分14分.20.解:(1)设抛物线的解析式为:4)1(21+-=x a y ··········································· 1分把A (3,0)代入解析式求得1-=a所以324)1(221++-=+--=x x x y ············································· 3分设直线AB 的解析式为:b kx y +=2由3221++-=x x y 求得B 点的坐标为)3,0( ··································· 4分 把)0,3(A ,)3,0(B 代入b kx y +=2中 解得:3,1=-=b k所以32+-=x y ·········································································· 6分 (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2所以CD =4-2=2 ·········································································· 8分32321=⨯⨯=∆CAB S (平方单位) ··················································· 10分 (3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-= ······················ 12分 由S △P AB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23( ······························································ 14分。

益阳市中考真题数学试卷

益阳市中考真题数学试卷

益阳市中考真题数学试卷第一部分:选择题1. 下列哪个数可以被2,3,5整除?A. 16B. 27C. 30D. 322. 若函数f(x)=ax^2+bx+c的图象经过点(1,4),(2,9),(3,16),则f(x)的解析式是:A. f(x) = x^2B. f(x) = -x^2C. f(x) = 2x^2D. f(x) = 3x^23. 在△ABC中,∠B=90°,BC=3cm,AC=4cm,则AB的长度为:A. 3cmB. 4cmC. 5cmD. 7cm第二部分:填空题1. 已知函数f(x)=ax^2+bx+c的图象经过点(-1,0),(2,9),(3,16),则a 的值为______。

2. 若a:b=2:3,b:c=5:7,则a:c=______。

3. 若直线y=kx-1与圆x^2+y^2=25只有一个交点,则k的值为______。

第三部分:解答题1. 有一只小猫和一只小狗,小猫的年龄是小狗的1/3,若小猫的年龄再过5年后是小狗的1/2,求小猫和小狗的年龄。

2. 若两个正整数的和是12,且它们的乘积是18,求这两个正整数。

3. 甲、乙两人同时从A、B两地相向而行,甲走得较快,相遇后又立即原路折返;乙走得较慢,相遇后则立即从原地返回,当两人的速度、路程均不变时,二人再次相遇在离A、B两地相距1000米的地方,请问,A、B两地的距离是多少?第四部分:应用题某生产车间有甲、乙两个机器,已知甲机器每天可以生产800个产品,乙机器每天可以生产600个产品。

现在规定两个机器交替工作,即先由甲机器生产,第二天由乙机器生产,第三天再由甲机器生产,以此类推。

问经过几天可以生产的产品总量达到8000个?注意:请将答案填写在答题卡上。

第五部分:解答题某数列的第1项是1,第2项是2,第3项是3,之后的每一项都是前三项的和。

请写出这个数列的前10项。

注意:请将答案填写在答题卡上。

第六部分:应用题在平面直角坐标系中,有一个正方形的顶点坐标依次为A(0, 0)、B(2, 0)、C(2, 2)、D(0, 2)。

湖南省益阳市中考数学试卷

湖南省益阳市中考数学试卷

精品基础教育教学资料,请参考使用,祝你取得好成绩!湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列四个实数中,最小的实数是()A.﹣2 B.2 C.﹣4 D.﹣12.(5分)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.B.C.D.3.(5分)下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.(5分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1085.(5分)下列各式化简后的结果为3的是()A.B. C. D.6.(5分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤07.(5分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα8.(5分)如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm2二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为.10.(5分)如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=.11.(5分)代数式有意义,则x的取值范围是.12.(5分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为.13.(5分)如图,多边形ABCDE的每个内角都相等,则每个内角的度数为.14.(5分)如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.三、解答题(本大题8个小题,共80分)15.(8分)计算:|﹣4|﹣2cos60°+(﹣)0﹣(﹣3)2.16.(8分)先化简,再求值:+,其中x=﹣2.17.(8分)如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.18.(10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,2=0.8、S乙你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19.(10分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20.(10分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.21.(12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.22.(14分)如图1,直线y=x+1与抛物线y=2x2相交于A、B两点,与y轴交于点M,M、N关于x轴对称,连接AN、BN.(1)①求A、B的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a>0),其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2017•益阳)下列四个实数中,最小的实数是()A.﹣2 B.2 C.﹣4 D.﹣1【分析】根据选项中的数据,可以比较它们的大小,从而可以解答本题.【解答】解:∵﹣4<﹣2<﹣1<2,故选C.【点评】本题考查实数大小的比较,解答此类问题的关键是明确负数小于0小于正数.2.(5分)(2017•益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.B.C.D.【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左,∴这个不等式组的解集是﹣3<x≤2.故选D.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.(5分)(2017•益阳)下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.【点评】本题主要考查菱形的性质,熟练掌握菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线是解题的关键.4.(5分)(2017•益阳)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:0.000 000 04=4×10﹣8,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(5分)(2017•益阳)下列各式化简后的结果为3的是()A.B. C. D.【分析】根据二次根式的性质逐一化简可得.【解答】解:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.【点评】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.6.(5分)(2017•益阳)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选A【点评】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(5分)(2017•益阳)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=知BC==.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.(5分)(2017•益阳)如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm2【分析】根据给出的空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,比例尺为1:4,可得其主视图的面积=长12×=3cm宽10×=2.5cm的长方体的面积,根据长方形面积公式计算即可求解.【解答】解:12×=3(cm)10×=2.5(cm)3×2.5=7.5(cm2)答:其主视图的面积是7.5cm2.故选:D.【点评】考查了简单几何体的三视图的知识,解题的关键是能得到立体图形的三视图和学生的空间想象能力.二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)(2017•益阳)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A 的度数为124°.【分析】根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=28°,∵CB平分∠ACD,∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC﹣∠ACB=124°,故答案为:124°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.10.(5分)(2017•益阳)如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD= 6.5.【分析】先根据勾股定理的逆定理判定△ABC为直角三角形,然后根据直角三角形的性质即可得到结论.【解答】解:∵在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∵CD是AB边上的中线,∴CD=6.5;故答案为:6.5.【点评】本题考查了勾股定理的逆定理和直角三角形的性质的综合应用.先判定△ABC为直角三角形是解题的关键.11.(5分)(2017•益阳)代数式有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:∴x≤且x≠2,∴x的取值范围为:x≤故答案为:x【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.12.(5分)(2017•益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为48.【分析】设被调查的学生人数为x人,则有=0.25,解方程即可.【解答】解:设被调查的学生人数为x人,则有=0.25,解得x=48,经检验x=48是方程的解.故答案为48;【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.13.(5分)(2017•益阳)如图,多边形ABCDE的每个内角都相等,则每个内角的度数为108°.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵五边形的内角和=(5﹣2)•180°=540°,又∵五边形的每个内角都相等,∴每个内角的度数=540°÷5=108°.故答案是:108°.【点评】本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.14.(5分)(2017•益阳)如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC 的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.三、解答题(本大题8个小题,共80分)15.(8分)(2017•益阳)计算:|﹣4|﹣2cos60°+(﹣)0﹣(﹣3)2.【分析】根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可.【解答】解:原式=4﹣2×+1﹣9,=﹣5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.16.(8分)(2017•益阳)先化简,再求值:+,其中x=﹣2.【分析】根据分式的运算法则先化简单,再代入求值即可.【解答】解:原式==x+1+x+1=2x+2.当x=﹣2时,原式=﹣2.【点评】本题主要考查分式的化简求值,掌握分式的约分、加减运算是解题的关键.17.(8分)(2017•益阳)如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.【分析】根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,又∵F是CD的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.18.(10分)(2017•益阳)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,2=0.8、S乙你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分);(2)易知(分),(分),(分),根据题意不难判断;(3)画出树状图,即可解决问题;【解答】解:(1)甲运动员测试成绩的众数和中位数都是(7分).(2)∵(分),(分),(分),∴>,>∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(10分)(2017•益阳)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?【分析】(1)设去年餐饮利润为x万元,住宿利润为y万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设去年餐饮利润x万元,住宿利润y万元,依题意得:,解得:,答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m万元,依题意得:16+16×(1+10%)+m﹣20﹣11≥10,解之得,m≥7.4,答:今年土特产销售至少有7.4万元的利润.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.20.(10分)(2017•益阳)如图,AB是⊙O的直径,C是⊙O上一点,D在AB 的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.(1)连接OC,由AB是⊙O的直径可得出∠ACB=90°,即∠ACO+∠OCB=90°,【分析】由等腰三角形的性质结合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切线;(2)在Rt△OCD中,由勾股定理可求出OD的值,进而可得出BD的长.【解答】(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.【点评】本题考查了切线的判定与性质、勾股定理以及等腰三角形的性质,解题的关键是:(1)通过角的计算找出∠OCD=90°;(2)根据勾股定理求出OD的长度.21.(12分)(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k ≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(14分)(2017•益阳)如图1,直线y=x+1与抛物线y=2x2相交于A、B两点,与y轴交于点M,M、N关于x轴对称,连接AN、BN.(1)①求A、B的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a>0),其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.【分析】(1)①联立直线和抛物线解析式可求得A、B两点的坐标;②过A作AC ⊥y轴于C,过B作BD⊥y轴于D,可分别求得∠ANM和∠BNM的正切值,可证得结论;(2)当k=0时,由对称性可得出结论;当k≠0时,过A作AE⊥y轴于E,过B 作BF⊥y轴于F,设、B,联立直线和抛物线解析式,消去y,利用根与系数的关系,可求得,则可证明Rt△AEN∽Rt△BFN,可得出结论.【解答】解:(1)①由已知得2x2=x+1,解得或x=1,当时,,当x=1时,y=2,∴A、B两点的坐标分别为(,),(1,2);②如图1,过A作AC⊥y轴于C,过B作BD⊥y轴于D,由①及已知有A(,),B(1,2),且OM=ON=1,∴,,∴tan∠ANM=tan∠BNM,∴∠ANM=∠BNM;(2)∠ANM=∠BNM成立,①当k=0,△ABN是关于y轴的轴对称图形,∴∠ANM=∠BNM;②当k≠0,根据题意得:OM=ON=b,设、B.如图2,过A作AE⊥y轴于E,过B作BF⊥y轴于F,XX 学校--用心用情 服务教育!用心用情 服务教育21由题意可知:ax 2=kx +b ,即ax 2﹣kx ﹣b=0, ∴, ∵===, ∴,∴Rt △AEN ∽Rt △BFN ,∴∠ANM=∠BNM .【点评】本题为二次函数的综合应用,涉及函数图象的交点、三角函数的定义、根与系数的关系、相似三角形的判定和性质等知识.在(1)②中求得两角的正切值是解题的关键,在(2)中利用根与系数的关系,整理求得,是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

益阳市中考数学试卷及答案

益阳市中考数学试卷及答案

益阳市2021年普通初中毕业学业考试试卷数学考前须知:1. 本学科试卷分试题卷和答题卡两局部;请将姓名、准考证号等相关信息按要求填写在答题卡上;请按答题卡上的考前须知在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面总分值为120分;考试结束后,请将试题卷和答题卡一并交回。

试题卷一、选择题:本大题共8小题,每题4分,共32分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.数轴上的点A到原点的距离是6,那么点A表示的数为A.6或6B.6C.6D.3或32.某班体育委员记录了第一小组七位同学定点投篮〔每人投10个〕的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是A.4,7B.7,5C.5,7D.3,7.以下计算正确的选项是A.300B.33C.313D.934.小军将一个直角三角板〔如图1〕绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是图1A.B.C.D.5.如图2,火车匀速通过隧道〔隧道长大于火车长〕时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是火车隧道图2y y y yo x o x o x o xA.B.C.D.6.一元二次方程ax 2bx c 0(a0)有两个不相等的实数根,那么b 24ac 满足的条件...是A.b 2 4ac =0 B.b 2 4ac >0 C.b 24ac <0D.b 24ac ≥07.货车行驶 25千米与小车行驶 35千米所用时间相同 ,小车每小时比货车多行驶20千米,求两车的速度各为多少 ?设货车的速度为 x 千米/小时,依题意列方程正确的选项是A.2535B. 25 35xx20 x 20x C.2535D.2535x x 20 x 20x8.如图3,△A BC ,求作一点 P ,使P 到∠A 的两边的距离相等,且定P 点的方法正确的选项是A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与 A B 的垂直平分C.P 为AC 、AB 两边上的高的交点D.P 为AC 、AB 两边的垂直平分线的交点PA=PB.以下确CP B 图3二、填空题:本大题共5小题,每题4分,共20分.把答案填在答题卡中对应题号后的横...线上.9.假设m2n26,且m n 3,那么m n.10.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是.11.如图4,在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,那么DE=.A yCA2EA B o1xB D CD图4图5图612.如图5,分别以A、B为圆心,线段AB的长为半径的两个圆相交于C、D两点,那么∠CAD的度数为.13.如图6,反比例函数y kA 的图象位于第一、三象限,其中第一象限内的图象经过点x〔1,2〕,请在第三象限内的图象上找一个你喜欢的点P,你选择的P点坐标为.三、解答题:本大题共3小题,每题8分,共24分.5x114.解不等式x 1,并将解集在数轴上表示出来.33 2 1 0 12315.x13,求代数式(x1)24(x1)4的值.16.如图7,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.D C求∠ABD的度数;求线段BE的长.O60A EB图7四、解答题:本大题共2小题,每题10分,共20分.17.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜每亩生产本钱统计图油菜.南县农业部门对2021年的油菜籽生产本钱、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:每亩生产本钱每亩产量油菜籽市场价格种植面积110元130千克3元/千克500000亩种子农药10%化肥35%机械收割费45%17.请根据以上信息解答以下问题18.⑴种植油菜每亩的种子本钱是多少元?19.⑵农民冬种油菜每亩获利多少元?20.2021年南县全县农民冬种油菜的总获利多少元?〔结果用科学记数法表示〕21.22.23.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x千米处的温度为y℃.写出y与x之间的函数关系式;益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,假设机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?五、解答题:此题总分值 12分.19. 我们把对称中心重合,四边分别平行的两个正方形之间的局部叫“方形环〞 ,易知方形环四周的宽度相等.....一条直线l 与方形环的边线有四个交点M 、M'、N'、N .小明在探究线段MM'与N'N 的数量关系时,从点M'、N'向对边作垂线段 M'E 、N'F ,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答以下问题:⑴当直线l 与方形环的对边相交时〔如图8 1〕,直线l 分别交AD 、AD 、BC 、 BC 于M 、M'、N'、N ,小明发现MM'与N'N 相等,请你帮他说明理由; ⑵当直线l 与方形环的邻边相交时〔如图8 2〕,l 分别交AD 、AD 、D'C 、DC于M 、M'、N'、N ,l 与DC 的夹角为,你认为MM'与N'N 还相等吗?假设相等,说明理由;假设不相等,求出MM'的值〔用含 的三角函数表示〕.N'NDC D F Nl(CD'C' ND' N' C'N'lEM'FE M'MB'A'B'MA'AB AB图8 1图8 2六、解答题:此题总分值12分.20.如图9,在平面直角坐标系中, A 、B 、C 三点的坐标分别为 A 〔-2,0〕,B 〔6,0〕,C 〔0,3〕.求经过A 、B 、C 三点的抛物线的解析式;(2)过C点作CD 平行于x 轴交抛物线于点D ,写出D 点的坐标,并求AD 、BC 的交点E的坐标;(3)假设抛物线的顶点为 P,连结PC 、PD ,判断四边形CEDP 的形状,并说明理由.yPCDE1BA1o1x图9益阳市2021年普通初中毕业学业考试试卷数学参考答案及评分标准一.:本大共8小,每小4分,共32分.号12345678答案A C B D A B C B二.填空:本大共5小,每小4分,共20分.9.210.111.412.120 313.答案不唯一,x、y足xy2且x0,y0即可三.解答:本大共3小,每小8分,共24分.14.解:5x13x3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分2x4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分x2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分21012⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分15.解法一:原式=(x12)2=(x1)2当x13原式=(3)2=3解法二:由x13得x31化原式=x22x14x44=x22x1=(31)22(31)1=32312321=3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分16.解:⑴在菱形ABCD中,AB AD,A60∴ABD等三角形∴ABD60⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分⑵由〔1〕可知BD AB4又∵OBD的中点∴OB2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分又∵OE AB,及ABD60∴BOE30∴BE1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答:本大共2小,每小10分,共20分.17.解:⑴110%35%45%10%⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分11010%11〔元〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分⑵1303110280〔元〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分280500000140000000⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分=108〔元〕⋯⋯⋯⋯⋯⋯⋯⋯⋯10分答:略.18.解:⑴y206x〔x0〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分⑵500米=千米⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分y2060517(℃)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分⑶34206x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分x9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分答:略.五、解答:本分12分.19.⑴解:在方形中,∵MEAD,N'FBC,AD∥BC∴MEN'F,MEM N'FN90,EMMN'NF∴△MM'E≌△NN'F∴MM N'N⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分⑵解法一:∵NFN MEM90,FNNEMM∴NFN∽MEM⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴MM MEN'N NF∵ME NF∴MM'NF tan〔或sin〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分N'N NF co s①当45,tan=1,MM NN②当45,MM NNMM tan〔或sin〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分NN cos解法二:在方形中,D 90又∵ME AD,N'F CD ∴ME∥DC,N'F ME ∴MME N'NF在RtNNF与RtMME中,sin N'F,cosME NN MMtan sin N'F MM MM cos NN ME NN即MM tan〔或sin〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分NN cos①当45,MM NN②当45,MM NNMMNNtan 〔或sincos〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分六、解答:本分12分.20.解:⑴由于抛物点C(0,3),可抛物的解析式y ax2bx3(a0),4a2b30 36a6b3,0a 1解得4b1∴抛物的解析式y1x2x3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分4⑵D的坐D(4,3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分直AD的解析式y 11 x2直BC的解析式y1x32y1x1由21x32求得交点E的坐(2,2)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分⑶PE交CD于F ,P的坐(2,4)又∵E(2,2),C(,3),D(4,3)PFEF1,CFFD2,且CDPE∴四形CEDP是菱形⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

湖南省益阳市2022年中考数学试卷

湖南省益阳市2022年中考数学试卷

湖南省益阳市2022年中考数学试卷(共10题;共20分)1.(2分)四个实数﹣√2,1,2,13中,比0小的数是()A.﹣√2B.1C.2D.13【答案】A【解析】【解答】解:∵−√2<0<13<1<2,∴比0小的数是−√2.故答案为:A.【分析】利用实数的大小比较,负数都小于0,可得到已知数中比0小的数.2.(2分)下列各式中,运算结果等于a2的是()A.a3﹣a B.a+a C.a•a D.a6÷a3【答案】C【解析】【解答】解:A、a3﹣a不能计算,故A不符合题意;B、a+a=2a,故A不符合题意;C、a•a=a2,故C符合题意;D、a6÷a3=a3,故D不符合题意;故答案为:C.【分析】只有同类项才能合并,可对A作出判断;利用合并同类项的法则,可对B作出判断;利用同底数幂相乘,底数不变,指数相加,可对C作出判断;利用同底数幂相除,底数不变,指数相减,可对D作出判断.3.(2分)若x=2是下列四个选项中的某个不等式组的一个解,则这个不等式组是()A.{x<1x<−1B.{x<1x>−1C.{x>1x<−1D.{x>1x>−1【答案】D【解析】【解答】解:A、∵{x<1x<−1∴不等式组的解集为x<-1,∴x=2不是此不等式组的解,故A不符合题意;B、{x<1x>−1,∴不等式组的解集为1<x<-1,∴x=2不是此不等式组的解,故B不符合题意;C、{x>1x<−1,∴此不等式组无解,∴x=2不是此不等式组的解,故C不符合题意;D、{x>1x>−1,∴此不等式组的解集为x>1,∴x=2是此不等式组的解,故D符合题意;故答案为:D.【分析】分别求出每一个选项中的不等式组的解集,利用解集进行判断;利用不等式组的解集的确定方法:小小取小,可对A作出判断;利用大于小,小于大,中间找,可对B作出判断;利用大于大,小于小,找不了,可对C作出判断;利用大大取大,可对D作出判断.4.(2分)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2【答案】B【解析】【解答】解:∵ x=﹣1是方程x2+x+m=0的一个根,设另一个根为a,-1+a=-1解之:a=0,∴方程的另一个根为0.故答案为:B.【分析】利用一元二次方程x2+px+q=0的两个根为x1,x2,则x1+x2=-p,据此设另一个根为a,可得到关于a的方程,解方程求出a的值.5.(2分)已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是()A.y=2x B.y=x﹣1C.y=2x D.y=x2【答案】A【解析】【解答】解:∵当x=-1时y=-1×2=-2;当x=1时y=1×2=2; 当x=2时y=2×2=4 … ∴y 与x 的表达式为y=2x. 故答案为:A.【分析】观察表中每一组x ,y 的对应值,可知y 是x 的2倍,可得答案.6.(2分)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( ) A .23B .14C .16D .124【答案】C【解析】【解答】解:∵考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题, ∴某个考生抽到试题A 的概率424=16.故答案为:C.【分析】利用已知条件可知一共有24种结果数,某个考生抽到试题A 的情况有4种,再利用概率公式进行计算.7.(2分)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a 的值可以是( )A .1B .2C .3D .4【答案】B【解析】【解答】解:由题意可知长为6的线段围成的等腰三角形的腰长为a ,则底边长为6-2a ,∴{2a >6−2a6−2a >0 解之:32<a <3∴图中a的值可以是2.故答案为:B.【分析】由题意可知长为6的线段围成的等腰三角形的腰长为a,则底边长为6-2a,利用三角形的三边关系定理及三角形的边长为正数,可得到关于a的不等式组,解不等式组求出a的取值范围,对照各选项,可得到可能的a的值,8.(2分)如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF▱DE,交AB的延长线于点F,则BF的长为()A.5B.4C.3D.2【答案】C【解析】【解答】解:∵平行四边形ABCD,∴CD=AB=8,AB▱CD,∴BE=AB−AE=5;∵CF▱DE,AB▱CD,∴四边形DEFC是平行四边形,∴DC=EF=8,∴BF=EF−BE=8−5=3.故答案为:C.【分析】利用平行四边形的性质可证得CD=AB=8,AB▱CD,由此可求出BE的长;再利用有两组对边分别平行的四边形是平行四边形,可证得四边形DEFC是平行四边形,利用平行四边形的对边相等,可求出EF的长,根据BF=EF−BE,代入计算求出BF的长.9.(2分)如图,在▱ABC中,BD平分▱ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD 于点I,连接CI,以下说法错误的是()A.I到AB,AC边的距离相等B.CI平分▱ACBC.I是▱ABC的内心D.I到A,B,C三点的距离相等【答案】D【解析】【解答】解:A、∵BD平分▱ABC,I是BD上的一点∴I到AB,AC边的距离相等,故A不符合题意;B、由作图可知,AE是▱BAC的平分线,∵BD平分▱ABC,三角形三条角平分线交于一点I,∴CI平分▱ACB,故B不符合题意;C,∵I是▱ABC的三个角的平分线的交点,∴I是▱ABC的内心,故C不符合题意;D、∵I到AB,AC,BC的距离相等,∴I不是到A,B,C三点的距离相等,故D符合题意故答案为:D.【分析】利用角平分线上的点到角两边的距离相等,可对A作出判断;由作图可知,AE是▱BAC 的平分线,根据三角形三条角平分线交于一点I,可对B作出判断;再根据三角形的三个角的平分线的交点是三角形的内心,可对C作出判断;利用角平分线的性质,可对D作出判断.10.(2分)如图,已知▱ABC中,▱CAB=20°,▱ABC=30°,将▱ABC绕A点逆时针旋转50°得到▱AB′C′,以下结论:①BC=B′C′,②AC▱C′B′,③C′B′▱BB′,④▱ABB′=▱ACC′,正确的有()A.①②③B.①②④C.①③④D.②③④【答案】B【解析】【解答】解:∵▱ABC 绕A 点逆时针旋转50°得到▱AB′C′,∴BC =B′C′.故①正确; ∵▱ABC 绕A 点逆时针旋转50°, ∴▱BAB′=50°,∴▱B′AC =▱BAB′−▱CAB =50°-20°=30°, ∵▱AB′C′=▱ABC =30°, ∴▱AB′C′=▱B′AC , ∴AC▱C′B′.故②正确; 在▱BAB′中,∵AB =AB′,▱BAB′=50°,∴▱AB′B =▱ABB′=12(180°−50°)=65°,∴▱BB′C′=▱AB′B +▱AB′C′=65°+30°=95°, ∴C′B′与BB′不垂直.故③错误; 在▱ACC′中,AC =AC′,▱CAC′=50°, ∴▱ACC′=12(180°−50°)=65°,∴▱ABB′=▱ACC′,故④正确. ∴正确结论的序号为:①②④. 故答案为:B.【分析】利用性质的性质可证得BC =B′C′可对①作出判断;利用旋转的性质可得到▱BAB′=50°,由此可求出▱B′AC 的度数,同时可推出▱AB′C′=▱B′AC ,利用内错角相等,两直线平行,可对②作出判断;利用三角形的内角和定理求出▱AB′B 的度数,由此可求出▱可得到▱BB′C′的度数,可对③作出判断;利用三角形的内角和定理求出▱ACC′的度数,可证得▱ABB′=▱ACC′,可对④作出判断;综上所述可得到正确结论的序号.(共8题;共8分)11.(1分)√−13 的绝对值是 . 【答案】1【解析】【解答】解:∵(-1)3=-1∴√−13 =-1故 √−13 的绝对值是1 故答案为:1.【分析】根据立方根的定义及绝对值的性质即可求解.12.(1分)计算:2a a−1﹣2a−1= .【答案】2【解析】【解答】解:原式=2a−2a−1=2(a−1)a−1=2. 故答案为:2.【分析】利用同分母分式相减,分母不变,把分子相减,然后约分化简.13.(1分)已知m ,n 同时满足2m+n =3与2m ﹣n =1,则4m 2﹣n 2的值是 . 【答案】3【解析】【解答】解:4m 2﹣n 2=(2m+n )(2m-n )=3×1=3.故答案为:3.【分析】利用平方差公式将代数式分解因式,然后整体代入求值.14.(1分)反比例函数y =k−2x的图像分布情况如图所示,则k 的值可以是 (写出一个符合条件的k 值即可).【答案】1(答案不唯一)【解析】【解答】∵ 反比例函数y =k−2x的图象分支在第二,四象限,∴k-2<0 解之:k <2. ∴k 的值可用是1.故答案为:1(答案不唯一).【分析】观察函数图象可知 反比例函数y =k−2x 的图象分支在第二,四象限,可得到k-2<0,解不等式求出k 的取值范围,可得到k 的值.15.(1分)如图,PA,PB表示以P为起点的两条公路,其中公路PA的走向是南偏西34°,公路PB 的走向是南偏东56°,则这两条公路的夹角▱APB=°.【答案】90【解析】【解答】解:如图,∵公路PA的走向是南偏西34°,公路PB的走向是南偏东56°,∴▱APC=34°,▱BPC=56°,∴▱APB=34°+56°=90°.故答案为:90.【分析】利用方位角的定义,结合已知条件:公路PA的走向是南偏西34°,公路PB的走向是南偏东56°,可求出▱APB的度数.16.(1分)近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.【答案】800【解析】【解答】解:设该湿地约有x只A种候鸟,根据题意得200 10=x 40解之:x=800.故答案为:800.【分析】设该湿地约有x 只A 种候鸟,根据题意可得到关于x 的方程,解方程求出x 的值.17.(1分)如图,在Rt▱ABC 中,▱C =90°,若sinA =45,则cosB = .【答案】45【解析】【解答】解:∵Rt▱ABC 中,▱C =90°,若sinA =45,∴▱A+▱B=90°,∴sinA =cosB =CB AB =45.故答案为:45.【分析】利用锐角三角函数的定义,可求出cosB 的值.18.(1分)如图,将边长为3的正方形ABCD 沿其对角线AC 平移,使A 的对应点A′满足AA′=13AC ,则所得正方形与原正方形重叠部分的面积是 .【答案】4【解析】【解答】解:∵正方形ABCD ,AB=3,∴2AB 2=AC 2=18, 解之:AC =3√2;∵将边长为3的正方形ABCD 沿其对角线AC 平移, ∴A′C′=3√2;∵ AA′=13AC=√2∴A′C=AC-AA′=3√2−√2=2√2∴所得正方形与原正方形重叠部分是正方形,其面积为12×(2√2)2=4.故答案为:4.【分析】利用正方形的性质和勾股定理求出AC 的长,利用平移的性质可求出A′C′的长;利用已知求出AA′的长,根据A′C=AC-AA′,可求出A′C 的长;然后可证得所得正方形与原正方形重叠部分是正方形,即可求出阴影部分的面积.(共8题;共90分)19.(5分)计算:(﹣2022)0+6×(﹣12)+√8÷√2.【答案】解:(﹣2022)0+6×(﹣12)+√8÷√2=1+(﹣3)+√8÷2=1−3+√4 =−2+2=0【解析】【分析】先算乘方和开方运算,再算乘法运算,然后合并即可.20.(5分)如图,在Rt▱ABC 中,▱B =90°,CD▱AB ,DE▱AC 于点E ,且CE =AB .求证:▱CED▱▱ABC .【答案】证明:∵DE▱AC ,▱B =90°,∴▱DEC =▱B =90°, ∵CD▱AB , ∴▱A =▱DCE , 在▱CED 和▱ABC 中, {∠DCE =∠A CE =AB ∠DEC =∠B, ∴▱CED▱▱ABC (ASA ).【解析】【分析】利用垂直的定义可证得▱DEC =▱B ,利用平行线的性质可推出▱A =▱DCE ;然后利用ASA 可证得结论.21.(10分)如图,直线y =12x+1与x 轴交于点A ,点A 关于y 轴的对称点为A′,经过点A′和y 轴上的点B (0,2)的直线设为y =kx+b .(1)(5分)求点A′的坐标;(2)(5分)确定直线A′B 对应的函数表达式.【答案】(1)解:令y =0,则12x+1=0,∴x =﹣2,∴A (﹣2,0).∵点A 关于y 轴的对称点为A′,∴A′(2,0).(2)解:设直线A′B 的函数表达式为y =kx+b ,∴{2k +b =0b =2,解得:{k =−1b =2,∴直线A′B 对应的函数表达式为y =﹣x+2.【解析】【分析】(1)由y=0可求出对应的x 的值,可得到点A 的坐标,利用关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到点A′的坐标.(2)设直线A′B 的函数表达式为y =kx+b ,将点A′和点B 的坐标代入,可得到关于k ,b 的方程组,解方程组求出k ,b 的值,可得到直线A′B 的函数解析式.22.(15分)为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分),已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)(5分)求(2)班学生中测试成绩为10分的人数;(2)(5分)请确定下表中a ,b ,c 的值(只要求写出求a 的计算过程);(3)(5分)从上表中选择合适的统计量,说明哪个班的成绩更均匀.【答案】(1)解:由题意知,(1)班和(2)班人数相等,为:5+10+19+12+4=50(人),∴(2)班学生中测试成绩为10分的人数为:50×(1﹣28%﹣22%﹣24%﹣14%)=6(人),答:(2)班学生中测试成绩为10分的人数是6人;(2)解:由题意知:a =6×10+50×28%×9+50×22%×8+50×24%×7+50×14%×650=8;∵9分占总体的百分比为28%是最大的,∴9分的人数是最多的,∴众数为9分,即b =9;由题意可知,(1)班的成绩按照从小到大排列后,中间两个数都是8,∴c =8+82=8;答:a ,b ,c 的值分别为8,9,8;(3)解:∵(1)班的方差为1.16,(2)班的方差为1.56,且1.16<1.56,∴根据方差越小,数据分布越均匀可知(1)班成绩更均匀.【解析】【分析】(1)利用(1)班和(2)班人数相等,利用条形统计图可求出(2)班的人数;再利用扇形统计图,列式计算求出(2)班学生中测试成绩为10分的人数.(2)利用平均数公式求出a 的值;利用众数就是一组数据中出现次数最多的数,可求出b 的值;然后利用中位数的定义求出c 的值.(3)利用方差越小,成绩越稳定,比较两个班的方差大小,可作出判断.23.(15分)如图,C 是圆O 被直径AB 分成的半圆上一点,过点C 的圆O 的切线交AB 的延长线于点P ,连接CA ,CO ,CB .(1)(5分)求证:▱ACO =▱BCP ;(2)(5分)若▱ABC =2▱BCP ,求▱P 的度数;(3)(5分)在(2)的条件下,若AB =4,求图中阴影部分的面积(结果保留π和根号).【答案】(1)证明:∵AB 是半圆O 的直径,∴▱ACB =90°,∵CP 是半圆O 的切线,∴▱OCP =90°,∴▱ACB =▱OCP ,∴▱ACO =▱BCP ;(2)解:由(1)知▱ACO =▱BCP ,∵▱ABC =2▱BCP ,∴▱ABC =2▱ACO ,∵OA =OC ,∴▱ACO =▱A ,∴▱ABC =2▱A ,∵▱ABC+▱A =90°,∴▱A =30°,▱ABC =60°,∴▱ACO =▱BCP =30°,∴▱P =▱ABC ﹣▱BCP =60°﹣30°=30°,答:▱P 的度数是30°;(3)解:由(2)知▱A =30°,∵▱ACB =90°,∴BC =12AB =2,AC =√3BC =2√3,∴S ▱ABC =12BC•AC =12×2×2√3=2√3,∴阴影部分的面积是12π×(AB 2)2﹣2√3=2π﹣2√3,答:阴影部分的面积是2π﹣2√3.【解析】【分析】(1)利用直径所对的圆周角是直角,可知▱ACB=90°,利用圆的切线垂直于过切点的半径,可证得▱OCP=90°,利用余角的性质可证得结论.(2)由(1)知▱ACO =▱BCP ,结合已知条件可证得▱ABC =2▱ACO ,利用等腰三角形的性质可得到▱ACO =▱A ,由此可推出▱ABC =2▱A ,利用三角形的内角和定理求出▱A 和▱ABC 的度数;再求出▱BCP 的度数,然后利用三角形的外角的性质,可求出▱P 的度数.(3)利用解直角三角形求出AC ,BC 的长;再利用三角形的面积公式求出▱ABC 的面积;然后利用半圆的面积减去▱ABC 的面积,可求出阴影部分的面积.24.(10分)在某市组织的农机推广活动中,甲、乙两人分别操控A 、B 两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)(5分)甲、乙两人操控A 、B 型号收割机每小时各能收割多少亩水稻?(2)(5分)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【答案】(1)解:设甲操控A 型号收割机每小时收割x 亩水稻,则乙操控B 型号收割机每小时收割(1﹣40%)x 亩水稻,依题意得:6(1−40%)x −6x =0.4,解得:x =10,经检验,x =10是原方程的解,且符合题意,∴(1﹣40%)x =(1﹣40%)×10=6.答:甲操控A 型号收割机每小时收割10亩水稻,乙操控B 型号收割机每小时收割6亩水稻.(2)解:设安排甲收割y 小时,则安排乙收割100−10y 6小时,依题意得:3%×10y +2%×6×100−10y 6≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时. 【解析】【分析】(1)抓住关键已知条件:乙每小时收割的亩数比甲少40%;两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;再利用包含了两个已知条件,据此设未知数,列方程,然后求出方程的解.(2)设安排甲收割y 小时,可表示出安排乙收割的时间,根据要求平均损失率不超过2.4%,建立关于y 的不等式,然后求出不等式的最大值即可.25.(15分)如图,在平面直角坐标系xOy 中,抛物线E :y =﹣(x ﹣m )2+2m 2(m <0)的顶点P 在抛物线F :y =ax 2上,直线x =t 与抛物线E ,F 分别交于点A ,B .(1)(5分)求a的值;(2)(5分)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?(3)(5分)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使▱PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】(1)解:由题意可知,抛物线E:y=−(x−m)2+2m2(m<0)的顶点P的坐标为(m,2m2),∵点P在抛物线F:y=ax2上,∴am2=2m2,∴a=2.(2)解:∵直线x=t与抛物线E,F分别交于点A,B,∴y A=−(t−m)2+2m2=−t2+2mt+m2,y B=2t2,∴s=y A−y B=−t2+2mt+m2−2t2=−3t2+2mt+m2=−3(t−13m)2+4 3m 2,∵−3<0,∴当t=13m时,s的最大值为43m2,∵s的最大值为4,∴43m2=4,解得m=±√3,∵m<0,∴m=−√3.(3)解:存在,理由如下:设点M的坐标为n,则M(n,2n2),∴Q(2n−m,4n2−m2),∵点Q在x轴正半轴上,∴2n−m>0且4n2−m2=0,∴n=−√22m ,∴M(−√22m,m2),Q(−√2m−m,0).如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,∴∠K =∠N =90°,∠QPK +∠PQK =90°,∵∠PQG =90°,∴∠PQK +∠GQN =90°,∴∠QPK =∠GQN ,∴ΔPKQ ∽ΔQNG ,∴PK :QN =KQ :GN ,即PK ⋅GN =KQ ⋅QN .∵PK =−√2m −m −m =−√2m −2m ,KQ =2m 2,GN =−√2m −m ,∴(−√2m −2m)(−√2m −m)=2m 2⋅QN 解得QM =3√2+42.∴G(0,−3√2+42). 【解析】【分析】(1)将抛物线E 的函数解析式转化为顶点式,可得到点P 的坐标;再根据点P 在抛物线F 上,将其代入,可得到关于m 的方程,解方程求出a 的值.(2)将x=t 代入两个抛物线的解析式,求出对应的y 的值;再根据s =yA ﹣yB ,代入可得到s 与t 的函数解析式,再将函数解析式转化为顶点式,利用二次函数的性质及s 的最大值为4,可得到关于m 的方程,解方程求出符合题意的m 的值.(3)设点M 的坐标为n ,可表示出点M ,Q 的坐标;利用点Q 在x 轴的正半轴,可得到关于m 的不等式,求出m 的取值范围;同时可得到关于n 的方程,解方程表示出n ,代入可表示出点M ,Q 的坐标;过点Q 作KN▱x 轴,分别过点P ,G 作x 轴的平行线,与KN 分别交于点K ,N ,利用余角的性质可证得▱QPK=▱GQN ,可得到▱PKQ▱▱QNG ,利用相似三角形的性质,可得对应边成比例,建立关于MQ 的方程,解方程求出QM 的长,即可得到点G 的坐标.26.(15分)如图,矩形ABCD 中,AB =15,BC =9,E 是CD 边上一点(不与点C 重合),作AF▱BE 于F ,CG▱BE 于G ,延长CG 至点C′,使C′G =CG ,连接CF ,AC′.(1)(5分)直接写出图中与▱AFB 相似的一个三角形;(2)(5分)若四边形AFCC′是平行四边形,求CE 的长;(3)(5分)当CE 的长为多少时,以C′,F ,B 为顶点的三角形是以C′F 为腰的等腰三角形?【答案】(1)解:(任意回答一个即可);▱AFB▱▱BCE ;▱AFB▱▱BGC(2)解:∵四边形AFCC'是平行四边形,∴AF =CC',由(1)知:▱AFB▱▱BGC ,∴AF BG =AB BC ,即AF BG =159=53,设AF =5x ,BG =3x ,∴CC'=AF =5x ,∵CG =C'G ,∴CG =C'G =2.5x ,∵▱AFB▱▱BCE▱▱BGC ,∴CG BG =CE BC ,即2.5x 3x =CE 9,∴CE =7.5; (3)解:分两种情况:①当C'F =BC'时,如图2,∵C'G▱BE ,∴BG =GF ,∵CG =C'G ,∴四边形BCFC'是菱形,∴CF =CB =9,由(2)知:设AF=5x ,BG =3x ,∴BF =6x ,∵▱AFB▱▱BCE ,∴AF BC =BF CE ,即5x 9=6x CE ,∴5x 6x =9CE ,∴CE =545;②当C'F =BF 时,如图3,由(1)知:▱AFB▱▱BGC ,∴AB BC =BF CG =159=53,设BF =5a ,CG =3a ,∴C'F =5a ,∵CG =C'G ,BE▱CC',∴CF =C'F =5a ,∴FG =√CF 2−CG 2=4a ,∵tan▱CBE =CE BC =CG BG ,∴CE 9=3a 4a+5a ,∴CE =3;综上,当CE 的长为长为545或3时,以C′,F ,B 为顶点的三角形是以C′F 为腰的等腰三角形.【解析】【解答】解:(1)(任意回答一个即可);①如图1,▱AFB▱▱BCE ,理由如下:∵四边形ABCD是矩形,∴DC▱AB,▱BCE=▱ABC=90°,∴▱BEC=▱ABF,∵AF▱BE,∴▱AFB=90°,∴▱AFB=▱BCE=90°,∴▱AFB▱▱BCE;②▱AFB▱▱CGE,理由如下:∵CG▱BE,∴▱CGE=90°,∴▱CGE=▱AFB,∵▱CEG=▱ABF,∴▱AFB▱▱CGE;③▱AFB▱▱BGC,理由如下:∵▱ABF+▱CBG=▱CBG+▱BCG=90°,∴▱ABF=▱BCG,∵▱AFB=▱CGB=90°,∴▱AFB▱▱BGC;【分析】利用矩形的性质可证得DC▱AB,▱BCE=▱ABC=90°,利用平行线的性质可得到▱BEC=▱ABF,利用垂直的定义可推出▱AFB=▱BCE,利用有两组对应角分别相等的两三角形相似,可证得▱AFB▱▱BCE;利用垂直的定义可证得▱CGE=▱AFB,利用有两组对应角分别相等的两三角形相似,可证得▱AFB▱▱CGE;利用余角的性质可知▱ABF=▱BCG,利用有两组对应角分别相等的两三角形相似,可证得▱AFB▱▱BGC.(2)利用平行四边形的性质,可证得AF=CC';由▱AFB▱▱BGC,利用相似三角形的对应边成比例,可得到AF与BG的比值,设AF=5x,BG=3x,可表示出CC′,CG的长,然后利用相似三角形的对应边成比例,可求出CE的长.(3)利用等腰三角形的定义,分情况讨论:当C'F=BC'时,如图2,利用有一组邻边相等的四边形是菱形,可证得四边形BCFC'是菱形,利用菱形的性质可得到CF的长;再由▱AFB▱▱BC,可得比例式,即可求出CE的长;当C'F=BF时,由▱AFB▱▱BGC,利用相似三角形的性质可得到BF,CG的比值,设BF=5a,CG=3a,可表示出CF,C′F的长,利用勾股定理表示出FG的长;再利用锐角三角函数的定义,可求出CE的长;综上所述可得到符合题意的CE的长.试题分析部分1、试卷总体分布分析2、试卷题量分布分析3、试卷难度结构分析4、试卷知识点分析。

2022年湖南省益阳市中考数学试卷

2022年湖南省益阳市中考数学试卷

2022年湖南省益阳市中考数学试卷1. 四个实数 1,0,√3,−3 中,最大的是 ( ) A . 1B . 0C . √3D . −32. 将不等式组 {x +2≥0,x <1 的解集在数轴上表示,正确的是 ( )A .B .C .D .3. 如图所示的几何体的俯视图是 ( )A .B .C .D .4. 一组数据由 4 个数组成,其中 3 个数分别为 2,3,4,且这组数据的平均数为 4,则这组数据的中位数为 ( ) A . 7B . 4C . 3.5D . 35. 同时满足二元一次方程 x −y =9 和 4x +3y =1 的 x ,y 的值为 ( ) A . {x =4,y =−5B . {x =−4,y =5C . {x =−2,y =3D . {x =3,y =−66. 下列因式分解正确的是 ( ) A . a (a −b )−b (a −b )=(a −b )(a +b ) B . a 2−9b 2=(a −3b )2 C . a 2+4ab +4b 2=(a +2b )2 D . a 2−ab +a =a (a −b )7. 一次函数 y =kx +b 的图象如图所示,则下列结论正确的是 ( )A.k<0B.b=−1C.y随x的增大而减小D.当x>2时,kx+b<08.如图,平行四边形ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是( )A.10B.8C.7D.69.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB,若∠A=50∘,则∠B的度数为( )A.25∘B.30∘C.35∘D.40∘10.如图,在矩形ABCD中,E是CD上的一点,△ABE是等边三角形,AC交BE于点F,则下列结论不成立的是( )A . ∠DAE =30∘B . ∠BAC =45∘C .EF FB=12D .AD AB=√3211. 我国北斗全球导航系统最后一颗组网卫星于 2022 年 6 月 30 日成功定位于距离地球 36000 千米的地球同步轨道,将“36000”用科学计数法表示为 .12. 如图,AB ∥CD ,AB ⊥AE ,∠CAE =42∘,则 ∠ACD 的度数为 .13. 小明家有一个如图所示的闹钟,他观察圆心角 ∠AOB =90∘,测得 ACB⏜ 的长为 36 cm ,则 ADB ⏜ 的长为 cm .14. 若反比例函数 y =k−1x的图象经过点 (−2,3),则 k = .15.时光飞逝,十五六岁的我们,童年里都少不了“弹珠”.小朋友甲的口袋中有6粒弹珠,其中2粒红色,4粒绿色,他随机拿出1颗送给小朋友乙,则送出的弹珠颜色为红色的概率是.16.若一个多边形的内角和是540∘,则该多边形的边数是.17.若计算√12×m的结果为正整数,则无理数m的值可以是(写出一个符合条件的即可).18.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是元.19.计算:(−3)2+2×(√2−1)−∣∣−2√2∣∣.20.先化简,再求值:(2a−1a+1−aa+1)÷a−1a,其中a=−2.21.如图,OM是⊙O的半径,过点M作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O于点C,D,求证:AC=BD.22. 为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇文章,对其部分文字的笔画数进行统计,结果如下表:笔画数123456789101112131415字数4810161420243616141191071请解答下列问题:(1) 被统计汉字笔画数的众数是多少?(2) 该同学将数据进行整理,按如下方案分组统计,并制作扇形统计图:分组笔画数x(画)字数(个)A 组1≤x ≤322B 组4≤x ≤6m C 组7≤x ≤976D 组10≤x ≤12n E 组13≤x ≤1518请确定上表中 m ,n 的值及扇形统计图中组对应扇形圆心角的度数.(3) 若这篇文章共有 3500 个汉字,估计笔画数在 7∼9 画(C 组)的字数有多少个?23. 沿江大堤经过改造后的某处横断面为如图所示的梯形 ABCD ,高 DH =12 米,斜坡 CD 的坡度i =1:1,此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面 AD 的最近距离(P ,D ,H 在同一直线上),在点 C 处测得 ∠DCP =26∘.(参考数据:sin26∘≈0.44,tan26∘≈0.49,sin71∘≈0.95,tan71∘≈2.90)(1) 求斜坡 CD 的坡角 α.(2) 电力部门要求此处高压线离堤面 AD 的安全距离不低于 18 米,请问此次改造是否符合电力部门的安全要求?24. “你怎么样,中国便是怎么样:你若光明,中国便不黑暗”.2022年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有 7 人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作 8 小时增加到 10 小时,每小时完成的工作量不变原来每天能生产防护服 800 套,现在每天能生产防护服 650 套.(1) 求原来生产防护服的工人有多少人?(2) 复工 10 天后,未到的工人同时到岗加入生产,每天生产时间仍然为 10 小时公司决定将复工后生产的防护服 14500 套捐献给某地,则至少还需要生产多少天才能完成任务?25. 如图,在平面直角坐标系中,点 F 的坐标是 (4,2),点 P 为一个动点,过点 P 作 x 轴的垂线PH ,垂足为 H ,点 P 在运动过程中始终满足 PF =PH 【提示:平面直角坐标系内点 M ,N 的坐标分别为 (x 1,y 1),(x 2,y 2),则 MN 2=(x 2−x 1)2+(y 2−y 1)2 】(1) 判断点 P 在运动过程中是否经过点 C (0,5);(2) 设动点 P 的坐标为 (x,y ),求 y 关于 x 的函数表达式:填写下表,并在给定坐标系中画出函数的图象:x⋯02468⋯y⋯⋯(3) 点 C 关于 x 轴的对称点为 Cʹ,点 P 在直线 CʹF 的下方时,求线段 PF 长度的取值范围.26. 定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:(1) 如图 1,正方形 ABCD 中,E 是 CD 上的点,将 △BCE 绕 B 点旋转,使 BC 与 BA 重合,此时点 E 的对应点 F 在 DA 的延长线上,则四边形 BEDF 为“直等补”四边形,为什么?(2) 如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长.②若M,N分别是AB,AD边上动点,求△MNC周长的最小值.答案1. 【答案】C【解析】四个实数1,0,√3,−3中,最大的是√3.2. 【答案】A【解析】{x+2≥0, x<1.由x+2≥0得,x≥−2,所以,不等式组的解集为:−2≤x<1,在数轴上表示为:3. 【答案】D【解析】从上面看该几何体如图:4. 【答案】C【解析】设另一个数为x,∵2,3,4,x,已知这组数据的平均数是4,∴(2+3+4+x)÷4=4,解得:x=7,将数据从小到大重新排列:2,3,4,7,最中间的两个数是:3,4,∴中位数是:3+42=3.5.5. 【答案】A【解析】有题意得:{x−y=9, ⋯⋯①4x+3y=1. ⋯⋯②由①得x=9+y. ⋯⋯③将③代入②得:36+4y+3y=1,解得y=−5,则x=9+(−5)=4,∴x=4,y=−5.6. 【答案】C【解析】A、a(a−b)−b(a−b)=(a−b)(a−b)=(a−b)2,故此选项错误;B、a2−9b2=(a+3b)(a−3b),故此选项错误;C、a2+4ab+4b2=(a+2b)2,故此选项正确;D、a2−ab+a=a(a−b+1),故此选项错误.故选:C.7. 【答案】B【解析】由图象知,k>0,且y随x的增大而增大,故A,C选项错误;图象与y轴负半轴的交点坐标为(0,−1),所以b=−1,B选项正确;当x>2时,图象位于x轴的上方,则有y>0,即kx+b>0,D选项错误,故选:B.8. 【答案】D【解析】∵四边形ABCD是平行四边形,∴OA=12AC=3,BO=12BD=4,在△AOB中,4−3<AB<4+3.∴1<AB<7.结合选项可得,AB的长度可能是6.9. 【答案】B【解析】∵DE是AC的垂直平分线,∴AD=CD,∠ACD=∠A=50∘,∵DC平分∠ACB,∴∠ACB=2∠ACD=100∘,∴∠B=180∘−100∘−50∘=30∘.10. 【答案】B【解析】在矩形ABCD中,△ABE是等边三角形,∴∠DAB=90∘,∠EAB=60∘,∴∠DAE=90∘−60∘=30∘,故A说法正确;若∠BAC=45∘,则AB=BC,又∵AB=BE,∴BE=BC,在△BEC中,BE为斜边,BE>BC,故B说法错误;设EC的长为x,易得∠ECB=30∘,∴BE=2EC=2x,BC=√3x,AB=BE=2x,∵DC∥AB,∴∠ECA=∠CAB,又∵∠EFC=∠BFA,∴△ECF∽△BAF,∴EFBF =ECAB=12,故C说法正确;AD=BC=√3x,∴ADAB =√32,故D说法正确.11. 【答案】3.6×104【解析】36000=3.6×104.12. 【答案】132°【解析】∵AB⊥AE,∠CAE=42∘,∴∠BAC=90∘−∠CAE=90∘−42∘=48∘,∵AB∥CD,∴∠BAC+∠ACD=180∘,∴∠ACD=180∘−∠BAC=180∘−48∘=132∘.13. 【答案】12【解析】设半径OA的长为r.∵∠AOB=90∘,∴∠ACB=270∘,l ACB⏜=270×π×r180=36cm,∴r=24πcm,∴l ADB⏜=90×π×24π180=12cm.14. 【答案】−5【解析】∵反比例函数y=k−1x的图象经过点(−2,3),∴3=k−1−2,解得k=−5.故答案为:−5.15. 【答案】13【解析】∵口袋中有6个小球,分别为2个红球和4个绿球,∴随机取出一个小球,取出的小球的颜色是红色的概率为22+4=13,故答案为:13.16. 【答案】5【解析】设这个多边形的边数是n,则(n−2)⋅180∘=540∘,解得n=5.17. 【答案】 √12(答案不唯一)【解析】 ∵(√12)2=12,∴m =√12 时,√12×m 的结果为正整数.18. 【答案】 1800【解析】由图 1 知,当天数 t =30 时,市场日销售量达到最大 60 件;从图 2 知,当天数 t =30 时,每件产品销售利润达到最大 30 元,∴ 当天数 t =30 时,市场的日销售利润最大,最大利润为 60×30=1800 元.19. 【答案】 (−3)2+2×(√2−1)−∣∣−2√2∣∣=9+2√2−2−2√2=7.20. 【答案】 (2a−1a+1−a a+1)÷a−1a =a−1a+1÷a−1a =a−1a+1⋅a a−1=a a+1. a =−2 时,原式=−2−2+1=2.21. 【答案】 ∵AB 是 ⊙O 的切线,∴∠OMA =∠OMB =90∘,∵MA =MB ,OM =OM ,∴△AOM ≌△BOM ,∴OA =OB ,∵OC ,OD 都是 ⊙O 的半径,∴OC =OD ,∴OA −OC =OB −OD ,即 AC =BD .22. 【答案】(1) 由题所给的表格得 8 画的字数最多,∴ 众数为:8.(2) 由题意可得 B 组是表示笔画为 4,5,6 的字数,∴m 为 50;D 组是表示笔画为 10,11,12 的字数,∴n 为 34;∵A组字数为22个且占11%,∴总统计的字数为200,∴B组,C组,E组各占的比例为:25%,38%,9%;故A组度数:360∘×11%=39.6∘;B组的度数:360∘×25%=90∘;C组的度数:360∘×38%=136.8∘;D组的度数:360∘×17%=61.2∘;E组的度数:360∘×9%=32.4∘.(3) 3500×76200=1330(个).故若这篇文章共有3500个汉字,估计笔画数在7∼9画(C组)的字数有1330个.23. 【答案】(1) ∵tanα=i=1:1=1,∴α=45∘.(2) 延长AD交PC于点E,过点E作EF⊥BC于F,如图,则四边形DEFH是矩形,∴EF=DH=12m,DE=HF,∠HDE=∠EFH=∠DHF=90∘,∵α=45∘,∴∠HDC=45∘,∴HC=DH=12m,又∠PCD=26∘,∴∠ECF=45∘+26∘=71∘,∴tan71∘=EFFC ,即FC=EFtan71∘=122.90≈4.14m,∴HF=HC−CF=12−4.14=7.86m,∴DE=7.86m,∵AE∥BC,∴∠PED=∠PCH=71∘,在Rt△PDE中,tan∠PED=PDDE ,即tan71∘=PD7.86,∴PD=7.86×2.90≈22.80>18m,∴此次改造符合电力部门的安全要求.24. 【答案】(1) 设原来生产防护服的工人有x人,每小时完成的工作量为y套.根据原来每天工作8小时,每天能生产防护服800套,得x×y×8=800.根据现在每天工作10小时,每天能生产防护服650套,得 (x −7)×y ×10=650.联立方程,得{x ×y ×8=800,(x −7)×y ×10=650.所以{x ×y =100,(x −7)×y =65.得x x−7=10065=2013.解得x =20,y =5.经检验 x =20,y =5 是原方程的解.即原来生产防护服的工人有 20 人.(2) 复工 10 天,生产 650×10=6500 套,剩余 14500−6500=8000 套.由(1)可知:原来生产防护服的工人有 20 人,每小时完成的工作量为 5 套.由题意知:10 天后,未到的工人同时到岗加入生产,每天生产时间仍然为 10 小时.则每天生产 20×5×10=1000 套,需要 8000÷1000=8 天.25. 【答案】(1) 若点 P 经过点 C ,则 PH =5,∵PF =√(0−4)2+(5−2)2=5,∴PF =PH ,故点 P 经过点 C .(2) 由 PH =PF 得 (x −4)2+(y −2)2=y 2,化简得:y =14x 2−2x +5,故 y 与 x 的函数表达式为 y =14x 2−2x +5; 分别将 x =0,2,4,6,8 代入表达式中,则对应的 y =5,2,1,2,5,填写表格为:x ⋯02468⋯y ⋯52125⋯函数图象如下: (3) 设直线 CʹF 的函数表达式为 y =kx +b ,将点 F (4,2) 、点 Cʹ(0,−5) 代入,得:{b =−5,4k +b =2,解得:{k =74,b =−5,∴ 直线 CʹF 的函数表达式为 y =74x −5,将 y =74x −5 代入 y =14x 2−2x +5 得: 74x −5=14x 2−2x +5,即 x 2−15x +40=0, 解得:x 1=15−√652,x 2=15+√652, 分别代入 y =74x −5 中,得:y 1=65−7√658,y 2=65+7√658, 当 x =4 时,y =1,∵ 点 P 在直线 CʹF 的下方,且65−7√658>1, ∴ 结合图象知,1<y <65+7√658,即 1<PH <65+7√658,又 PF =PH ,∴1<PF <65+7√658.26. 【答案】(1) 如图 1 由旋转的性质得:∠F =∠BEC ,∠ABF =∠CBE ,BF =BE ,∵∠BEC +∠BED =180∘,∠CBE +∠ABE =90∘,∴∠F +∠BED =180∘,∠ABF +∠ABE =90∘,即 ∠FBE =90∘,故满足“直等补”四边形的定义,∴ 四边形 BEDF 为“直等补”四边形.(2) ① ∵ 四边形 ABCD 是“直等补”四边形,AB =BC ,∴∠A +∠BCD =180∘,∠ABC =∠D =90∘,如图 2,将 △ABE 绕点 B 顺时针旋转 90∘ 得到 △CBF ,则 ∠F =∠AEB =90∘,∠BCF +∠BCD =180∘,BF =BE ,∴D ,C ,F 共线,∴ 四边形 EBFD 是正方形,∴BE =FD ,设 BE =x ,则 CF =x −1,在 Rt △BFC 中,BC =5,由勾股定理得:x 2+(x −1)2=25,即 x 2−x −12=0,解得:x =4 或 x =−3(舍去),∴BE =4.②如图 3,延长 CD 到 P ,使 DP =CD =1,延长 CB 到 T ,使 TB =BC =5,则 NP =NC ,MT =MC ,∴△MNC 周长 =MC +MN +NC =MT +MN +NP ≥PT ,当 T ,M ,N ,P 共线时,△MNC 的周长取得最小值 PT ,过 P 作 PH ⊥BC ,交 BC 延长线于 H ,∵∠F =∠PHC =90∘,∠BCF =∠PCH ,∴△BCF ∽△PCH ,∴BC PC =BF PH =CF CH,即 52=4PH =3CH , 解得:CH =65,PH =85,在 Rt △PHT 中,TH =5+5+65=565,PT =√PH 2+HT 2=8√2∴△MNC 周长的最小值为 8√2.。

湖南省益阳市2022年中考数学真题试题(含解析)3

湖南省益阳市2022年中考数学真题试题(含解析)3

2022年湖南省益阳市中考数学试卷一、选择题〔此题共10个小题,每题4分,共40分.每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.〔4分〕﹣6的倒数是〔〕A.﹣B.C.﹣6 D.62.〔4分〕以下运算正确的选项是〔〕A.=﹣2 B.〔2〕2=6 C.+=D.×=3.〔4分〕以下几何体中,其侧面展开图为扇形的是〔〕A.B.C.D.4.〔4分〕解分式方程+=3时,去分母化为一元一次方程,正确的选项是〔〕A.x+2=3 B.x﹣2=3C.x﹣2=3〔2x﹣1〕D.x+2=3〔2x﹣1〕5.〔4分〕以下函数中,y总随x的增大而减小的是〔〕A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x26.〔4分〕一组数据5,8,8,9,10,以下说法错误的选项是〔〕A.平均数是8 B.众数是8 C.中位数是8 D.方差是87.〔4分〕M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,那么△ABC一定是〔〕A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.〔4分〕南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,测量点与大桥主架的水平距离AB=a,那么此时大桥主架顶端离水面的高CD为〔〕A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+9.〔4分〕如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,以下结论不一定成立的是〔〕A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD 10.〔4分〕二次函数y=ax2+bx+c的图象如下图,以下结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的选项是〔〕A.①②B.①④C.②③D.②④二、填空题〔此题共8个小题,每题4分,共32分,请将答案填在答题卡中对应题号的横线上〕11.〔4分〕国家发改委发布信息,到 2022年12月底,高速公路电子不停车快速收费〔ETC〕用户数量将突破1.8亿,将180 000 000科学记数法表示为.12.〔4分〕假设一个多边形的内角和与外角和之和是900°,那么该多边形的边数是.13.〔4分〕不等式组的解集为.14.〔4分〕如图,直线AB∥CD,OA⊥OB,假设∠1=142°,那么∠2=度.15.〔4分〕在如下图的方格纸〔1格长为1个单位长度〕中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,那么其旋转角的度数是.16.〔4分〕小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册〞的概率是.17.〔4分〕反比例函数y=的图象上有一点P〔2,n〕,将点P向右平移1个单位,再向下平移1个单位得到点Q,假设点Q也在该函数的图象上,那么k=.18.〔4分〕观察以下等式:①3﹣2=〔﹣1〕2,②5﹣2=〔﹣〕2,③7﹣2=〔﹣〕2,…请你根据以上规律,写出第6个等式.三、解答题〔此题共8个小题,共78分,解容许写出文字说明,证明过程或演算步骤〕19.〔8分〕计算:4sin60°+〔﹣ 2022〕0﹣〔〕﹣1+|﹣2|.20.〔8分〕化简:〔﹣4〕÷.21.〔8分〕,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.22.〔10分〕某校数学活动小组对经过某路段的小型汽车每车乘坐人数〔含驾驶员〕进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如下图的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05 〔1〕求本次调查的小型汽车数量及m,n的值;〔2〕补全频数分布直方图;〔3〕假设某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.23.〔10分〕如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.〔1〕判断四边形AMCD的形状,并说明理由;〔2〕求证:ND=NE;〔3〕假设DE=2,EC=3,求BC的长.24.〔10分〕为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻〞轮作模式.某农户有农田20亩,去年开始实施“虾•稻〞轮作,去年出售小龙虾每千克获得的利润为32元〔利润=售价﹣本钱〕.由于开发本钱下降和市场供求关系变化,今年每千克小龙虾的养殖本钱下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.〔1〕求去年每千克小龙虾的养殖本钱与售价;〔2〕该农户今年每亩农田收获小龙虾100千克,假设今年的水稻种植本钱为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻〞轮作收入不少于8万元,那么稻谷的亩产量至少会到达多少千克?25.〔12分〕在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,A〔1,4〕,B〔3,0〕.〔1〕求抛物线对应的二次函数表达式;〔2〕探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M 是BE的中点,那么OM是否将四边形OBAD分成面积相等的两局部?请说明理由;〔3〕应用:如图2,P〔m,n〕是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:假设点A、B的坐标分别为〔x1,y1〕、〔x2,y2〕,那么线段AB的中点坐标为〔,〕.26.〔12分〕如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.假设不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.〔1〕当∠OAD=30°时,求点C的坐标;〔2〕设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;〔3〕当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.2022年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题〔此题共10个小题,每题4分,共40分.每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.〔4分〕﹣6的倒数是〔〕A.﹣B.C.﹣6 D.6【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣.应选:A.【点评】此题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.〔4分〕以下运算正确的选项是〔〕A.=﹣2 B.〔2〕2=6 C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法那么计算即可.【解答】解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法那么知本选项正确.应选:D.【点评】此题考查的是二次根式的性质及二次根式的相关运算法那么,属于根底计算能力的考查,此题较为简单.3.〔4分〕以下几何体中,其侧面展开图为扇形的是〔〕A.B.C.D.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图可能是正方形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三角形,故D错误.应选:C.【点评】此题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.4.〔4分〕解分式方程+=3时,去分母化为一元一次方程,正确的选项是〔〕A.x+2=3 B.x﹣2=3C.x﹣2=3〔2x﹣1〕D.x+2=3〔2x﹣1〕【分析】最简公分母是2x﹣1,方程两边都乘以〔2x﹣1〕,把分式方程便可转化成一元一次方程.【解答】解:方程两边都乘以〔2x﹣1〕,得x﹣2=3〔2x﹣1〕,应选:C.【点评】此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.〔4分〕以下函数中,y总随x的增大而减小的是〔〕A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2【分析】根据各个选项中的函数解析式,可以得到y随x的增大如何变化,从而可以解答此题.【解答】解:y=4x中y随x的增大而增大,应选项A不符题意,y=﹣4x中y随x的增大而减小,应选项B符合题意,y=x﹣4中y随x的增大而增大,应选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,应选项D 不符合题意,应选:B.【点评】此题考查二次函数的性质、一次函数的性质、正比例函数的性质,解答此题的关键是明确题意,利用一次函数和二次函数的性质解答.6.〔4分〕一组数据5,8,8,9,10,以下说法错误的选项是〔〕A.平均数是8 B.众数是8 C.中位数是8 D.方差是8【分析】分别计算平均数,众数,中位数,方差后判断.【解答】解:由平均数的公式得平均数=〔5+8+8+9+10〕÷5=8,方差=[〔5﹣8〕2+〔8﹣8〕2+〔8﹣8〕2+〔9﹣8〕2+〔10﹣8〕2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,应选:D.【点评】此题考查了学生对平均数,众数,中位数,方差的理解.只有熟练掌握它们的定义,做题时才能运用自如.7.〔4分〕M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,那么△ABC一定是〔〕A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【解答】解:如下图,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,应选:B.【点评】此题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.〔4分〕南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,测量点与大桥主架的水平距离AB=a,那么此时大桥主架顶端离水面的高CD为〔〕A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【分析】在Rt△ABD和Rt△ABC中,由三角函数得出BC=a tanα,BD=a tanβ,得出CD =BC+BD=a tanα+a tanβ即可.【解答】解:在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;应选:C.【点评】此题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD是解题的关键.9.〔4分〕如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,以下结论不一定成立的是〔〕A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD【分析】先根据切线长定理得到PA=PB,∠APD=∠BPD;再根据等腰三角形的性质得OP ⊥AB,根据菱形的性质,只有当AD∥PB,BD∥PA时,AB平分PD,由此可判断D不一定成立.【解答】解:∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立.应选:D.【点评】此题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理、垂径定理和等腰三角形的性质.10.〔4分〕二次函数y=ax2+bx+c的图象如下图,以下结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的选项是〔〕A.①②B.①④C.②③D.②④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,能得到:a<0,c>0,∴ac<0,故①正确;②∵对称轴x<﹣1,∴﹣<﹣1,a>0,∴b<2a,∴b﹣2a<0,故②正确.③图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③错误.④当x=﹣1时,y>0,∴a﹣b+c>0,故④错误;应选:A.【点评】此题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题〔此题共8个小题,每题4分,共32分,请将答案填在答题卡中对应题号的横线上〕11.〔4分〕国家发改委发布信息,到 2022年12月底,高速公路电子不停车快速收费〔ETC〕用户数量将突破1.8亿,将180 000 000科学记数法表示为 1.8×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将180 000 000科学记数法表示为1.8×108.故答案为:1.8×108.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.〔4分〕假设一个多边形的内角和与外角和之和是900°,那么该多边形的边数是 5 .【分析】此题需先根据条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【解答】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.【点评】此题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出此题即可.13.〔4分〕不等式组的解集为x<﹣3 .【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共局部就是不等式组的解集.【解答】解:,解①得:x<1,解②得:x<﹣3,那么不等式组的解集是:x<﹣3.故答案为:x<﹣3.【点评】此题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到〔无解〕.14.〔4分〕如图,直线AB∥CD,OA⊥OB,假设∠1=142°,那么∠2=52 度.【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠OCD=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠OCD+∠O=142°,∴∠2=∠1﹣∠O=142°﹣90°=52°,故答案为:52.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.15.〔4分〕在如下图的方格纸〔1格长为1个单位长度〕中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,那么其旋转角的度数是90°.【分析】根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数.【解答】解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为90°.【点评】此题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.16.〔4分〕小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册〞的概率是.【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【解答】解:画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册〞的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册〞的概率为;故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.〔4分〕反比例函数y=的图象上有一点P〔2,n〕,将点P向右平移1个单位,再向下平移1个单位得到点Q,假设点Q也在该函数的图象上,那么k= 6 .【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数y=的图象上,即可得出k=2n=3〔n﹣1〕,解得即可.【解答】解:∵点P的坐标为〔2,n〕,那么点Q的坐标为〔3,n﹣1〕,依题意得:k=2n=3〔n﹣1〕,解得:n=3,∴k=2×3=6,故答案为:6.【点评】此题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.18.〔4分〕观察以下等式:①3﹣2=〔﹣1〕2,②5﹣2=〔﹣〕2,③7﹣2=〔﹣〕2,…请你根据以上规律,写出第6个等式13﹣2=〔﹣〕2.【分析】第n个等式左边的第1个数为2n+1,根号下的数为n〔n+1〕,利用完全平方公式得到第n个等式右边的式子为〔﹣〕2〔n≥1的整数〕.【解答】解:写出第6个等式为13﹣2=〔﹣〕2.故答案为13﹣2=〔﹣〕2.【点评】此题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题〔此题共8个小题,共78分,解容许写出文字说明,证明过程或演算步骤〕19.〔8分〕计算:4sin60°+〔﹣ 2022〕0﹣〔〕﹣1+|﹣2|.【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法那么,以及绝对值的代数意义计算即可求出值.【解答】解:原式=4×+1﹣2+2=4﹣1.【点评】此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.20.〔8分〕化简:〔﹣4〕÷.【分析】根据分式的运算法那么即可求出答案.【解答】解:原式=•=.【点评】此题考查分式的运算法那么,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.21.〔8分〕,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.【分析】由∠ECB=70°得∠ACB=110°,再由AB∥DE,证得∠CAB=∠E,再结合条件AB=AE,可利用AAS证得△ABC≌△EAD.【解答】证明:由∠ECB=70°得∠ACB=110°又∵∠D=110°∴∠ACB=∠D∵AB∥DE∴∠CAB=∠E∴在△ABC和△EAD中∴△ABC≌△EAD〔AAS〕.【点评】此题是全等三角形证明的根底题型,在有些条件还需要证明时,应先把它们证出来,再把条件用大括号列出来,根据等三角形证明的方法判定即可.22.〔10分〕某校数学活动小组对经过某路段的小型汽车每车乘坐人数〔含驾驶员〕进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如下图的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05 〔1〕求本次调查的小型汽车数量及m,n的值;〔2〕补全频数分布直方图;〔3〕假设某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【分析】〔1〕由C类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m、n的值;〔2〕用总数量乘以B、D对应的频率求得其人数,从而补全图形;〔3〕利用样本估计总体思想求解可得.【解答】解:〔1〕本次调查的小型汽车数量为32÷0.2=160〔辆〕,m=48÷160=0.3,n=1﹣〔0.3+0.35+0.20+0.05〕=0.1;〔2〕B类小汽车的数量为160×0.35=56,D类小汽车的数量为0.1×160=16,补全图形如下:〔3〕估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500〔辆〕.【点评】此题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比拟.也考查了用样本估计总体和频率分布表.23.〔10分〕如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.〔1〕判断四边形AMCD的形状,并说明理由;〔2〕求证:ND=NE;〔3〕假设DE=2,EC=3,求BC的长.【分析】〔1〕证明四边形AMCD的对角线互相平分,且∠CNM=90°,可得四边形AMCD为菱形;〔2〕可证得∠CMN=∠DEN,由CD=CM可证出∠CDM=∠CMN,那么∠DEN=∠CDM,结论得证;〔3〕证出△MDC∽△EDN,由比例线段可求出ND长,再求MN的长,那么BC可求出.【解答】〔1〕解:四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,∴CM=AM,∵CM为⊙O的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形.〔2〕∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,∴CD=CM,∴∠CDM=∠CMN,∴∠DEN=∠CDM,∴ND=NE.〔3〕∵∠CMN=∠DEN,∠MDC=∠EDN,∴△MDC∽△EDN,∴,设DN=x,那么MD=2x,由此得,解得:x=或x=﹣〔不合题意,舍去〕,∴,∵MN为△ABC的中位线,∴BC=2MN,∴BC=2.【点评】此题考查了圆综合知识,熟练运用圆周角定理、菱形的判定与性质、直角三角形的性质、勾股定理以及相似三角形的判定与性质是解题的关键.24.〔10分〕为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻〞轮作模式.某农户有农田20亩,去年开始实施“虾•稻〞轮作,去年出售小龙虾每千克获得的利润为32元〔利润=售价﹣本钱〕.由于开发本钱下降和市场供求关系变化,今年每千克小龙虾的养殖本钱下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.〔1〕求去年每千克小龙虾的养殖本钱与售价;〔2〕该农户今年每亩农田收获小龙虾100千克,假设今年的水稻种植本钱为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻〞轮作收入不少于8万元,那么稻谷的亩产量至少会到达多少千克?【分析】〔1〕设去年每千克小龙虾的养殖本钱与售价分别为x元、y元,由题意列出方程组,解方程组即可;〔2〕设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:〔1〕设去年每千克小龙虾的养殖本钱与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖本钱与售价分别为8元、40元;〔2〕设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会到达640千克.【点评】此题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.25.〔12分〕在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,A〔1,4〕,B〔3,0〕.〔1〕求抛物线对应的二次函数表达式;〔2〕探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M 是BE的中点,那么OM是否将四边形OBAD分成面积相等的两局部?请说明理由;〔3〕应用:如图2,P〔m,n〕是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:假设点A、B的坐标分别为〔x1,y1〕、〔x2,y2〕,那么线段AB的中点坐标为〔,〕.【分析】〔1〕函数表达式为:y=a〔x﹣1〕2+4,将点B坐标的坐标代入上式,即可求解;〔2〕利用同底等高的两个三角形的面积相等,即可求解;〔3〕由〔2〕知:点N是PQ的中点,即可求解.【解答】解:〔1〕函数表达式为:y=a〔x﹣1〕2+4,将点B坐标的坐标代入上式得:0=a〔3﹣1〕2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;〔2〕OM将四边形OBAD分成面积相等的两局部,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;〔3〕设点P〔m,n〕,n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P〔4,﹣5〕;如图2,故点D作QD∥AC交PC的延长线于点Q,由〔2〕知:点N是PQ的中点,将点C〔﹣1,0〕、P〔4,﹣5〕的坐标代入一次函数表达式并解得:直线PC的表达式为:y=﹣x﹣1…①,同理直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D〔0,3〕,同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣,即点Q〔﹣,〕,∵点N是PQ的中点,由中点公式得:点N〔,﹣〕.【点评】此题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中〔3〕直接利用〔2〕的结论,即点N是PQ的中点,是此题解题的突破点.26.〔12分〕如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.假设不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.〔1〕当∠OAD=30°时,求点C的坐标;〔2〕设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;〔3〕当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【分析】〔1〕作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE==2,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;〔2〕先求出S△DCM=6,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;〔3〕由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,那么此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN 得==,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【解答】解:〔1〕如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为〔2,3+2〕;〔2〕∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,那么x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3〔负值舍去〕,∴OA=3;〔3〕OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,那么此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD==.【点评】此题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•益阳)下列实数中,是无理数的为()A.B.C.0D.﹣3考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像…,等有这样规律的数.2.(5分)(2015•益阳)下列运算正确的是()A.x2•x3=x6B.(x3)2=x5C.(xy2)3=x3y6D.x6÷x3=x2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据积的乘方,可判断C;根据同底数幂的除法,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、积的乘方等于乘方的积,故C正确;D、通敌数幂的除法底数不变指数相减,故D错误;故选:C.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.(5分)(2015•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)34人数1121A.中位数是4,平均数是B.众数是4,平均数是C.中位数是4,平均数是D.众数是2,平均数是考点:中位数;加权平均数;众数.分析:根据众数和中位数的概念求解.解答:解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=.故选C.点评:本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.4.(5分)(2015•益阳)一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体考点:由三视图判断几何体.分析:根据三视图的知识,正视图为两个矩形,侧视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱.解答:解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.5.(5分)(2015•益阳)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.A C=BD C.O A=OB D.O A=AD考点:矩形的性质.分析:矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.解答:解:∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.点评:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.6.(5分)(2015•益阳)下列等式成立的是()A.+=B.=C.=D.=﹣考点:分式的混合运算.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.(5分)(2015•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80B.2×20(1+x)=80C.20(1+x2)=80D.20(1+x)2=80考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据第一年的销售额×(1+平均年增长率)2=第三年的销售额,列出方程即可.解答:解:设增长率为x,根据题意得20(1+x)2=80,故选D.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(5分)(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1B.m>0C.m>﹣1D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)9.(5分)(2015•益阳)计算:= 4 .考点:二次根式的乘除法.专题:计算题.分析:原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.解答:解:原式===4.故答案为:4点评:此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.10.(5分)(2015•益阳)已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式y=(x>0),答案不唯一.考点:反比例函数的性质.专题:开放型.分析:反比例函数的图象在每个象限内,函数值y随自变量x的增大而增大,则反比例函数的反比例系数k<0;反之,只要k<0,则反比例函数在每个象限内,函数值y随自变量x的增大而增大.解答:解:只要使反比例系数大于0即可.如y=(x>0),答案不唯一.故答案为:y=(x>0),答案不唯一.点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.11.(5分)(2015•益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.考点:列表法与树状图法.分析:列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.解答:解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间,所以甲没排在中间的概率是=.故答案为.点评:本题考查用列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比.12.(5分)(2015•益阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.考点:弧长的计算;正多边形和圆.分析:求出圆心角∠AOB的度数,再利用弧长公式解答即可.解答:解:∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=.故答案为:.点评:此题将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质.13.(5分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成 1 的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有5n+1 根小棒.考点:规律型:图形的变化类.分析:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.解答:解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.三、解答题(本大题共2小题,每小题8分,共16分)14.(8分)(2015•益阳)化简:(x+1)2﹣x(x+1).考点:整式的混合运算.分析:利用完全平方公式和整式的乘法计算,进一步合并得出答案即可.解答:解:原式=x2+2x+1﹣x2﹣x=x+1.点评:此题考查整式的混合运算,掌握计算方法与计算公式是解决问题的关键.15.(8分)(2015•益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.考点:平行线的性质.分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解答:解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.点评:本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.四、解答题(本大题共3小题,每小题10分,共30分)16.(10分)(2015•益阳)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.考点:一次函数图象与几何变换;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.分析:(1)根据“左加右减、上加下减”的规律来求点P的坐标;2(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(2,1),P2(3,3)代入直线方程,利用方程组来求系数的值;(3)把点(6,9)代入(2)中的函数解析式进行验证即可.解答:解:(1)P(3,3).2(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴,解得.∴直线l所表示的一次函数的表达式为y=2x﹣3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵2×6﹣3=9,∴点P3在直线l上.点评:本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(10分)(2015•益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.考点:条形统计图;扇形统计图.分析:(1)用第一产业增加值除以它所占的百分比,即可解答;(2)算出第二产业的增加值即可补全条形图;(3)算出第二产业的百分比再乘以360°,即可解答.解答:解:(1)2375÷19%=1250(亿元);(2)第二产业的增加值为1250﹣﹣=550(亿元),画图如下:(3)扇形统计图中第二产业部分的圆心角为.点评:本题主要考查了条形统计图和扇形统计图,解题的关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.(10分)(2015•益阳)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.考点:菱形的判定与性质;平行四边形的性质;解直角三角形.分析:(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.解答:解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.点评:本题考查了解直角三角形及菱形的判定与性质、平行四边变形的判定与性质的知识,解题的关键是读懂题意,选择合适的边角关系,难度不大.五、解答题(本大题共2小题,每小题12分,共24分)19.(12分)(2015•益阳)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据“当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.”列出方程组解决问题;(2)最多再生产x天后必须补充原材料,根据若剩余原材料数量小于或等于3吨列出不等式解决问题.解答:解:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据题意得:.解得.答:初期购得原材料45吨,每天所耗费的原材料为吨.(2)设再生产x天后必须补充原材料,依题意得:45﹣16×15﹣15(1+20%)x≤3,解得:x≥10.答:最多再生产10天后必须补充原材料.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.20.(12分)(2015•益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1PP2的度数;(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.考点:几何变换综合题.分析:(1)利用旋转的性质以及等腰直角三角形得出∠APP=∠BPP2=45°,进而得出答案;1(2)根据题意得出△PAP1和△PBP2均为顶角为α的等腰三角形,进而得出∠P1PP2=∠PAP2=α,求出△P2P1P∽△P2PA;(3)首先连结QB,得出Rt△QBE≌Rt△QBF,利用∠P1PQ=180°﹣∠APP1﹣∠QPB求出即可.解答:(1)解:由旋转的性质得:AP=AP,BP=BP2.1∵α=90°,∴△PAP1和△PBP2均为等腰直角三角形,∴∠APP1=∠BPP2=45°,∴∠P1PP2=180°﹣∠APP1﹣∠BPP2=90°;(2)证明:由旋转的性质可知△PAP1和△PBP2均为顶角为α的等腰三角形,∴∠APP1=∠BPP2=90°﹣,∴∠P1PP2=180°﹣(∠APP1+∠BPP2)=180°﹣2(90°)=α,在△PP2P1和△P2PA中,∠P1PP2=∠PAP2=α,又∵∠PP2P1=∠AP2P,∴△P2P1P∽△P2PA.(3)证明:如图,连接QB.∵l1,l2分别为PB,P2B的中垂线,∴EB=BP,FB=BP2.又BP=BP2,∴EB=FB.在Rt△QBE和Rt△QBF中,,∴Rt△QBE≌Rt△QBF,∴∠QBE=∠QBF=∠PBP2=,由中垂线性质得:QP=QB,∴∠QPB=∠QBE=,由(2)知∠APP1=90°﹣,∴∠P1PQ=180°﹣∠APP1﹣∠QPB=180°﹣(90°﹣)=90°,即 P1P⊥PQ.点评:此题主要考查了几何变换综合以及相似三角形的判定和全等三角形的判定与性质等知识,得出Rt△QBE≌Rt△QBF是解题关键.六、解答题(本题满分15分)21.(15分)(2015•益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.考点:二次函数综合题.分析:(1)直接将(2,2)代入函数解析式进而求出a的值;(2)由题意可得,在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q,分别利用当点B为直角顶点时以及当点Q为直角顶点时求出Q点坐标即可;(3)首先设P(c,c2)、P′(d,),进而得出c与d的关系,再表示出△PAA′与△P′BB′的面积进而得出答案.解答:解:(1)∵抛物线E经过点A(1,m),1∴m=12=1.∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0),又∵点B(2,2)在抛物线E2上,∴2=a×22,解得:a=,∴抛物线E2所对应的二次函数表达式为y=x2.(2)如图1,假设在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q.①当点B为直角顶点时,过B作QB⊥BB′交抛物线E1于Q,则点Q与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q的坐标为(2,4).②当点Q为直角顶点时,则有QB′2+QB2=B′B2,过点Q作GQ⊥BB′于G,设点Q的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综合①②,存在符合条件的点Q坐标为(2,4)与(,3);(3)如图2,过点P作PC⊥x轴,垂足为点C,PC交直线AA′于点E,过点P′作P′D⊥x轴,垂足为点D,P′D交直线BB′于点F,依题意可设P(c,c2)、P′(d,)(c>0,c≠q),∵tan∠POC=tan∠P′OD,∴=,∴d=2c.∵AA′=2,BB′=4,∴====.点评:此题主要考查了二次函数综合以及直角三角形的性质和三角形面积求法,根据题意利用分类讨论得出是解题关键.。

相关文档
最新文档