模电实验11

合集下载

模拟电路实验指导书

模拟电路实验指导书

目录实验一整流、滤波、稳压电路 (1)实验二单级交流放大器(一) (5)实验三单级交流放大器(二) (7)实验四两级阻容耦合放大电路 (9)实验五负反馈放大电路 (11)实验六射极输出器的测试 (14)实验七 OCL功率放大电路 (16)实验八差动放大器 (18)实验九运算放大器的基本运算电路(一) (20)实验十集成运算放大器的基本运算电路(二) (22)实验十一比较器、方波—三角波发生器 (24)实验十二集成555电路的应用实验 (26)实验十三 RC正弦波振荡器 (30)实验十四集成功率放大器 (32)实验十五函数信号发生器(综合性实验) (34)实验十六积分与微分电路(设计性实验) (36)实验十七有源滤波器(设计性实验) (38)实验十八电压/频率转换电路(设计性实验) (40)实验十九电流/电压转换电路(设计性实验) (41)实验一整流、滤波、稳压电路一、实验目的1、比较半波整流与桥式整流的特点。

2、了解稳压电路的组成和稳压作用。

3、熟悉集成三端可调稳压器的使用。

二、实验设备1、实验箱(台)2、示波器3、数字万用表三、预习要求1、二极管半波整流和全波整流的工作原理及整流输出波形。

2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。

3、熟悉三端集成稳压器的工作原理。

四、实验内容与步骤首先校准示波器。

1、半波整流与桥式整流:●分别按图1-1和图1-2接线。

●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用示波器的DC档观察输出波形记入表1-1中。

图1-1图1-2Vi(V) V O(V) I O (A) V O波形半波桥式2、加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图1-3接线,比较并测量接C 与不接C两种情况下的输出电压V O及输出电流I O,并用示波器DC档观测输出波形,记入表1-2中。

图1-33上述电路不动,在电容后面加稳压二极管电路(510Ω、VDz),按图1-4接线。

模电实验报告

模电实验报告

河北科技大学实验报告级专业班学号年月日姓名同组人指导教师张凤凌实验名称实验一常用电子仪器的使用练习成绩实验类型综合型批阅教师一、实验目的(1)学习直流稳压电源、信号发生器、交直流毫伏毫安表和示波器的使用方法。

(2)掌握交直流毫伏毫安表测量静态信号和动态信号的方法。

(2)掌握用示波器观测波形及测量频率和幅值的方法。

二、实验仪器与元器件(1)直流稳压电源1台(2)信号发生器1台(3)交直流毫伏毫安表1台(4)6502型示波器1台三、实验内容及步骤1.直流稳压电源的使用(1)使稳压电源输出+9V电压选择0~30V作为电压输出端。

“可调/固定”键弹起,调节“电压调节”旋钮,从数码显示器上观察输出电压的变化,使数码显示为9V,并使用毫伏毫安表直流挡测量+9V。

(2)使稳压电源输出±12V电压将“可调/固定”键按下,按图2-1-2接线,将其中一路接成+12V,另一路接成-12V。

使用毫伏毫安表的直流挡进行测量,表的地线(黑色线)与稳压电源的参考电位“GND”相连,测试线(红色线)分别测量+12V和-12V。

2.交直流毫伏毫安表的使用(1) 测量+9V、±12V的直流电压。

(2) 测量5mV的交流电压。

3.信号发生器的使用方法信号发生器能产生正弦波、方波、三角波等模拟信号,频率范围为2Hz~2MHz,分六挡连续可调;输出幅度为0V~25V P-P,连续可调。

模拟信号从“模拟输出”端输出。

(1)衰减开关“-20dB”和“-40dB”的作用波形选择“正弦波”,频率挡位选择“2k”。

调节“频率调节”旋钮,使数字频率计上的数码显示为1kHz。

当信号发生器衰减开关为0dB时(“-20dB”和“-40dB”键均弹起),调节其“幅度调节”旋钮,用毫伏毫安表的交流挡测量输出信号的电压值为5V(有效值)。

当衰减值分别为-20dB、-40dB和-60dB时,测量各输出电压值,将结果记入表2-1-1中。

表2-1-1 幅度衰减开关衰减值数据记录(2)使信号发生器输出电压为5mV、频率1kHz的正弦波信号信号发生器选择“正弦波”,频率为1kHz,衰减开关“-20dB”和“-40dB”同时按下。

模电实验常用仪器的介绍及操作

模电实验常用仪器的介绍及操作

模拟电子技术实验 1 实验一常用电子仪器使用及元件测试实验一常用电子仪器使用正确地观察电子技术实验现象、测量实验数据,必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。

所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。

其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。

一、实验内容1. SS-7804(8702)型示波器的面板及其各键钮的功能SS-7804型示波器是双踪示波器,它可以同时观察两个信号的波形,即信号从CH1和CH2输入,便可在荧光屏上得到两个信号的波形;以便分析其特点。

电源按钮POWER 电源开关:按下状态(ON),电源接通;弹出状态(STBY),即切断电源。

垂直系统CH1、CH2 输入端口:测试信号通过测试笔或探头从此端口输入。

CH1、CH2 输入通道选择按钮:按下该钮即被选通,荧屏上即显示该通道的信号波形。

〔VOLTS/DIV〕垂直灵敏度选择开关:对于通道1(CH1)和通道2(CH2)所输入信号的幅度应选择适当的灵敏度。

〔▲ POSITION ▼〕垂直位移旋钮:顺时针旋转,亮线(波形)上升;逆时针旋转,亮线(波形)下降。

即调整亮线(波形)至便于观察、测量即可。

DC/AC 输入耦合方式选择按钮:按下为 DC耦合——即直流耦合,弹出为 AC耦合——交流耦合。

GND 输入接参考地按钮:按下时为接参考地;输入信号被切断,垂直放大器的输入端被接地。

ADD 信号叠加按钮:按下该键,示波器将显示通道1(CH1)和通道2(CH2)两路信号进行代数和的波形,既显示CH1+CH2 的波形。

INV 信号取反按钮:按下该键,将通道2(CH2)输入的信号反向。

*若同时按下了INV、ADD ,既是显示通道1(CH1)和通道2(CH2)两路信号进行代数差的波形,既显示CH1- CH2 的波形。

《模拟电路实验》课件

《模拟电路实验》课件

调整电路参数,记录相关数据。
记录实验过程中的电压、电流等参数。
记录要求
避免出现涂改或遗漏,保持数据的原始性。
记录内容
记录电路元件的数值和规格。
数据记录要准确、完整、清晰。
01
02
03
04
05
06
01
分析内容
02
比较实验数据与理论值之间的差异。
03
分析实验结果,总结电路的工作原理和特性。
04
分析方法
感谢您的观看
THANKS
In-text citation: (Smith, 2018)
MLA格式示例参考文献Smith, Jane. "The effects of social media on mental health." Journal of Social Science 34.2 (2018): 101-120.
所有参与实验的人员必须严格遵守实验室的安全规定,包括但不限于穿戴适当的防护装备、禁止擅自改动实验设备等。
所有参与实验的人员必须严格遵守实验室的安全规定,包括但不限于穿戴适当的防护装备、禁止擅自改动实验设备等。
所有参与实验的人员必须严格遵守实验室的安全规定,包括但不限于穿戴适当的防护装备、禁止擅自改动实验设备等。
分类存放
实验废弃物应按照实验室管理员或教师的指导进行分类存放,不得随意丢弃。
参考文献
1
2
3
主要用于社会科学和人文科学领域的论文引用。
APA格式
主要用于人文学科的论文引用,特别是文学领域。
MLA格式
分为芝加哥格式手册(15版和16版)和芝加哥格式手册(17版)。
Chicago格式
APA格式示例

模拟电子技术实验报告

模拟电子技术实验报告

专业:电气工程及其自动化班级:学号:姓名:指导教师:开课时间:2011至2012学年第一学期成绩:开课学院:电气信息学院实验室:实验楼415室姓名:专业:电气工程及其自动化学号:实验三单级低频放大器实验时间:2011年11月1日一、实验目的:1.进一步熟悉几种常用低频电子仪器的使用方法。

2.掌握单级放大器静态工作点的调测方法。

3.观察静态工作点的变化对输出波形的影响。

4.学习电压放大倍数及最大不失真输出电压幅度的测试方法。

二、实验原理:放大器的的基本任务是不失真大的放大信号,即实现输入变化量的控制作用。

要使放大器正常工作,除了必须有保证晶体管正常工作的偏置电压外,还须有合理的电路结构形式和配置恰当的元器件参数,使得放大器工作在放大区内,即必须设置合适的静态工作点Q。

静态工作点设置过高,会引起饱和失真。

对于小信号单级放大器而言,由于输出交流信号幅度很小,非线性失真不是主要问题,可根据具体要求设置静态工作点。

例如希望交流信号幅度很小,噪声低工作点Q可适当选得低一些:如希望放大器增益高,工作点可适当选得高些。

如果输入信号幅度较大,则要保证输出波形不失真,此时的工作点应先在交流负载线的中点,以获得最大不失真的输出电压幅度。

图2.3.5为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u o,从而实现了电压放大。

图2.3.5 共射极单管放大器实验电路在图2.3.5电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算CCB2B1B1B U R R R U +≈U CE =U CC -I C (R C +Re ) 电压放大倍数be LC V r R R βA // -=输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

模电的实验报告

模电的实验报告

模电的实验报告模电的实验报告模电这门课程,它是一门综合应用相关课程的知识和内容来解决书本上定理的课程以及锻炼学生们的动手操作能力。

下面是模电的实验报告,欢迎阅读!模电的实验报告1在本学期的模电实验中一共学习并实践了六个实验项目,分别是:①器件特性仿真;②共射电路仿真;③常用仪器与元件;④三极管共射级放大电路;⑤基本运算电路;⑥音频功率放大电路。

实验中,我学到了PISPICE等仿真软件的使用与应用,示波器、信号发生器、毫伏表等仪器的使用方法,也见到了理论课上学过的三极管、运放等元件的实际模样,结合不同的电路图进行了实验。

当学过的理论知识付诸实践的时候,对理论本身会有更具体的了解,各种实验方法也为日后更复杂的实验打下了良好的基础。

几次的实验让我发现,预习实验担当了不可或缺的作用,一旦对整个实验有了概括的了解,对理论也有了掌握,那实验做起来就会轻车熟路,而如果没有做好预习工作,对该次实验的内容没有进行详细的了解,就会在那里问东问西不知所措,以致效率较低,完成的时间较晚。

由于我个人对模电理论的不甚了解,所以在实验原理方面理解起来可能会比较吃力,但半学期下来发现理论知识并没有占过多的比例,而主要是实验方法与解决问题的方法。

比如实验前先要检查仪器和各元件(尤其如二极管等已损坏元件)是否损坏;各仪器的地线要注意接好;若稳压源的电流示数过大,证明电路存在问题,要及时切断电路以免元件的损坏,再调试电路;使用示波器前先检查仪器是否故障,一台有问题的示波器会给实验带来很多麻烦。

做音频放大实验时,焊接电路板是我新接触的一个实验项目,虽然第一次焊的不是很好,也出现了虚焊的情况,但技术都是在实践中成熟,相信下次会做的更好些。

而这种与实际相结合的`电路,在最后试听的环节中,也给我一种成就感,想来我们的实验并非只为证实理论,也可以在实际应用上小试身手。

对模电实验的建议:①老师在讲课过程中的实物演示部分,可以用幻灯片播放拍摄的操作短片,或是在大屏幕上放出实物照片进行讲解,因为用第一排的仪器或元件直接讲解的话看的不是很清楚。

模电技术实验报告

模电技术实验报告

一、实验目的1. 理解模拟电子技术的基本原理和实验方法。

2. 掌握晶体管放大电路的基本搭建和调试方法。

3. 学习信号的产生、传输和处理的实验技能。

4. 提高对电路性能指标的理解和测试能力。

二、实验原理模拟电子技术是研究模拟信号处理和传输的理论和技术。

本次实验主要涉及以下内容:1. 晶体管放大电路:利用晶体管的放大作用,将微弱的输入信号放大到所需的幅度。

2. 信号发生器:产生不同频率和幅度的正弦波信号,用于测试电路的性能。

3. 示波器:观察和分析信号的波形,测量信号的幅度、频率和相位等参数。

4. 万用表:测量电路中的电压、电流和电阻等参数。

三、实验内容及步骤1. 晶体管共射放大电路(1)搭建共射放大电路,包括输入端、放大电路和输出端。

(2)调整电路参数,使放大电路工作在最佳状态。

(3)使用信号发生器产生输入信号,观察输出信号的波形和幅度。

(4)测量放大电路的增益、带宽和失真等性能指标。

2. RC正弦波振荡器(1)搭建RC正弦波振荡器电路,包括RC振荡网络和放大电路。

(2)调整电路参数,使振荡器产生稳定的正弦波信号。

(3)使用示波器观察振荡信号的波形和频率。

(4)测量振荡器的振荡频率、幅度和相位等性能指标。

3. 差分放大电路(1)搭建差分放大电路,包括两个共射放大电路和公共发射极电阻。

(2)调整电路参数,使差分放大电路抑制共模信号,提高电路的共模抑制比(CMRR)。

(3)使用信号发生器产生差模和共模信号,观察输出信号的波形和幅度。

(4)测量差分放大电路的增益、带宽和CMRR等性能指标。

四、实验数据记录与分析1. 晶体管共射放大电路| 电路参数 | 测量值 || --- | --- || 输入信号幅度 | 0.1V || 输出信号幅度 | 5V || 增益 | 50 || 带宽 | 10kHz || 失真 | <1% |2. RC正弦波振荡器| 电路参数 | 测量值 || --- | --- || 振荡频率 | 1kHz || 振荡幅度 | 2V || 相位| 0° |3. 差分放大电路| 电路参数 | 测量值 || --- | --- || 差模增益 | 20 || 共模抑制比(CMRR) | 60dB |五、实验结论1. 通过本次实验,加深了对模拟电子技术基本原理的理解。

模电实验报告

模电实验报告

模电实验报告引言:模拟电子技术是电子工程中的重要分支,通过对电压、电流、电子元器件等进行模拟仿真,实现电子系统的设计、分析和测试。

本实验旨在通过实际操作,加深对模拟电子技术的理解和掌握,以及培养实验能力和动手能力。

一、实验目的本实验的主要目的是通过以下几个方面的实验,掌握模拟电子技术的基本原理和实际应用:1. 学习并掌握放大器的工作原理及其电路结构;2. 理解并掌握放大器的特性参数,如增益、带宽等;3. 了解并掌握反馈电路对放大器性能的影响;4. 学习并掌握滤波器的工作原理和电路结构;5. 理解并掌握滤波器的频率响应和滤波特性。

二、实验内容本实验分为两个部分,第一部分为放大器实验,第二部分为滤波器实验。

1. 放大器实验1.1 非反馈放大器实验通过搭建非反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。

1.2 反馈放大器实验通过搭建反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。

2. 滤波器实验通过搭建低通滤波器和高通滤波器电路,测量并计算其频率响应,并分析其滤波特性。

三、实验步骤以下为放大器实验和滤波器实验的基本步骤,具体实验步骤请参考实验手册。

1. 放大器实验1.1 非反馈放大器实验步骤:a) 搭建非反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。

1.2 反馈放大器实验步骤:a) 搭建反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。

2. 滤波器实验步骤:a) 搭建低通滤波器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算频率响应;d) 分析滤波器的滤波特性。

四、实验结果与分析根据实验步骤所得的测量数据,进行数据处理和分析。

计算放大器的电压增益、带宽等参数,并绘制频率响应曲线和滤波特性曲线。

模电实验思考题

模电实验思考题

实验准备1,使用函数信号发生器及直流稳压电源是应注意什么?答:应注意正确将函数信号发生器和直流稳压电源要注意要接地。

2,如何用示波器测量正弦波信号的频率和电压大小?答:看示波器的“v/div”和“T/div”对应示波器上的格子,读出电压的峰峰值U和周期,求出电压和频率。

3双踪示波器的“断续”和“交替”工作方式之间的差别是什么?4,晶体管毫伏表测出的是正弦波的什么值?如果波形不是正弦波,是否采用晶体管毫伏管来测量器电压值?答:测出的是正弦波的有效值,能。

5.晶体毫伏表与万用表的交流表电压档有何不同?答:晶体毫伏表测出的是电压的有效值。

交流表电压档测出的是电路中的瞬时电压。

实验一1测量静态工作点用何仪表?测量放大倍数用何仪表?答:测量静态工作点用万用表,测量放大倍数用晶体毫伏表。

2.如何正确选择放大电路的静态工作点,在调试中应注意什么?答:不断减小输出频率,和调节R调出正弦波,并调出最大不失真。

3测量R档数值,不断开于基极的连线,行吗?为什么?答:不行,因为会影响R的数值。

4.放大器的非线性失真在那些情况下可能出现?5.负载电阻R8变化时对放大器电路的静态工作点Q有误影响?对放大倍数Au有无影响?答:对静态工作点Q有影响,对放大倍数Au有影响。

实验二1.第二级的接入给第一级的电压放大倍数带来什么影响?为什么?答:减小了第一级的放大倍数2.二级单独工作是测出的电压放大倍数的乘积是否等于二级连接工作测得的总的电压放大倍数?答:不等于3.第一级的输出不经耦合电容C2,而直接接到第二级的基极,对电路的静态工作点有何影响?第二级有无负载对第一级的输出以及第一,第二级的静态工作点有无影响?答:会使第一级与第二级的静态工作点相互影响,第一级的集电极与第二级的基极等电势。

无影响4.为什么放大器在频率较低或较高时,电压放大倍数均要下降?答:放大器都有其放大的频率范围。

实验三:负反馈放大电路1·本实验属于什么类型的反馈?作用如何?答:电流并联负反馈2·如果要在实验三上的基础上(不增加放大倍数的级数)构成并联电流负反馈,应如何连线?实验四:差动放大电路1·差动放大器的差模输出电压是与输入电压的差还是和成正比例?答:与差成正比例2·当加到差动放大器两管基极的输入信号幅值相等,相位相同时,理想情况下的双端输出电压等于多少?答:输出电压为零3·差动放大器对差模输入信号起放大作用,还是起抑制作用?对共模信号呢?答:对差模信号起放大作用,对共模信号起抑制作用。

模电(单管放大电路的实验内容与步骤)10-11(2)

模电(单管放大电路的实验内容与步骤)10-11(2)

二、用短路线将放大器(单管ቤተ መጻሕፍቲ ባይዱ负反馈放大器的左 半部分)发射极所接的100Ω电阻短路。
三、将直流 电源的输出电压 调至12V,并接到 电路板上左半部 分的+UCC端(负 极接地)。 四、将电位 器RW调至最大。 +UCC 10k C1 u1 Rw RB2 RC C2 100 R L RB1 uo
ui
RE
2、将短路线去掉,再观察Rw最大和最小时的波 形,并制表记录。
返 回
上一页
下一页
返 回 上一页 下一页
模拟电子技术基础
2、调节输入信号的幅度,使示波器显示的波形 刚好不失真。
3、用交流毫伏表(毫伏表的“地”(黑色接线 孔)接到放大电路的“地”)测量放大器不接负载和 接负载(RL=2.4k)时的输出电压Uo和UL、测量输入 端5.1k电阻左端和右端的电压U1和Ui。制表记录,并 根据实验数据计算放大倍数Au、输入电阻ri和输出电 阻ro。 4、用双踪示波器观察u 和u 的相位关系。制表记
CE
返 回
上一页
下一页
模拟电子技术基础
五、静态测量
1、用直流电压表测量发射极的电位,调节Rw使 电压表的读数为2V(用短路线将毫安表短路),发射 极电流约为多少?
或用直流毫安表(接于电路图中的“mA”位置) 测量集电极电流,调节Rw使毫安表的读数为2mA,测 完将毫安表短路。
2、然后测量基极和集电极的电位,制表记录, 并计算静态工作点。 六、动态测量(此时放大器要加直流电源) 1、将幅度约为10mV、频率为1kHz的正弦信号加 至放大器10k电阻的左端,放大器的输出端接示波器。
模拟电子技术基础
单管放大电路的实验内容与步骤
一、在原理图中标出元件的参数(单管/负反馈放 大器的左半部分)。

模电(实验 模拟运算电路)10-11(2)

模电(实验  模拟运算电路)10-11(2)

实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
3、同相比例运算电路(图4) 、同相比例运算电路( ) RF 100k R1 Ui 10k +12V Uo Ui -12V + R 10k RW 100k -12V RF 10k +12V Uo
+ R 9.1k RW 100k
实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
集成运算放大器的基本应用—模 实验 集成运算放大器的基本应用 模 拟运算电路
一、实验目的 1、掌握集成运放管脚的识别方法。 、掌握集成运放管脚的识别方法。 2、研究由集成运算放大器组成的比例、加法、 、研究由集成运算放大器组成的比例、加法、 减法等基本运算电路的功能。 减法等基本运算电路的功能。 二、实验原理 本实验采用的集成运算放大器型号为µA741(或 本实验采用的集成运算放大器型号为 ( F007),引脚排列如图 所示。 ),引脚排列如图 所示。 ),引脚排列如图1所示 它是八脚双列直插式组件。 它是八脚双列直插式组件。
Байду номын сангаас 实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
8
7
6
5
µA741 + 1 2 3
图1 7脚为正电源端; 脚为正电源端; 脚为正电源端 4脚为负电源端; 脚为负电源端; 脚为负电源端 1脚和 脚为失调调零端,1脚和 脚之间可接入一 脚和5脚为失调调零端 脚和5脚之间可接入一 脚和 脚为失调调零端, 脚和 只几十k 的电位器并将滑动触头接到负电源端; 只几十 的电位器并将滑动触头接到负电源端; 8脚为空脚。 脚为空脚。 脚为空脚

模电电路实验

模电电路实验

模电电路实验实验目的本实验旨在通过搭建和调试模电电路,加深对模拟电路基本概念的理解,掌握模拟电路的测量方法和调试技巧。

实验器材和材料•功能发生器•双踪示波器•直流电源•可变电阻•电容和电感元件•万用表•连接线等实验内容实验一:直流偏置电源实验目的通过搭建直流偏置电源电路,了解直流稳压电源的工作原理,掌握直流电源的调整和测量方法。

实验步骤1.将直流电源连接到功能发生器的输出端。

2.将功能发生器与示波器相连,观察输出波形,调整幅度和频率。

3.将可变电阻与电容和电感元件连接,调整阻值和测量电压,观察电路输出。

4.依次改变电容和电感元件的数值,观察输出波形的变化。

实验目的通过搭建放大电路,了解放大电路的工作原理,掌握放大电路的测量技巧和放大倍数的调整方法。

实验步骤1.将功能发生器与放大电路相连,调整输出波形的幅度和频率。

2.使用万用表测量放大电路的输入和输出电压,计算放大倍数。

3.改变电阻的数值,观察输出波形的变化,调整放大倍数。

4.将频率调整到共振频率附近,观察输出波形是否失真。

实验目的通过搭建滤波电路,了解滤波电路的工作原理,掌握滤波电路的计算和测量方法。

实验步骤1.将功能发生器与滤波电路相连,调整输出波形的幅度和频率。

2.使用示波器观察输出波形,并测量输出电压。

3.根据测量值计算滤波电路的截止频率和增益。

4.改变电容和电感元件的数值,观察输出波形的变化,调整截止频率和增益。

实验结果分析通过实验一、实验二和实验三的实验,我们可以对模拟电路的基本原理有更深入的理解。

实验一主要了解了直流偏置电源的工作原理和调整方法;实验二主要了解了放大电路的工作原理和调整方法;实验三主要了解了滤波电路的工作原理和调整方法。

通过这些实验,我们还可以了解到电容和电感元件对电路性能的影响,并且掌握了测量和调试模拟电路的技巧。

实验总结通过本次模拟电路实验,我们深入了解了模拟电路的基本原理和调试方法。

我们掌握了直流偏置电源、放大电路和滤波电路的工作原理和调整方法,并通过实际的实验操作加深了理论的理解。

模电实验报告

模电实验报告

模电实验报告模拟电子实验报告一、引言模拟电子实验是电子信息工程类专业中一门非常重要的课程,通过这门实验课程,我们可以更加深入地了解模拟电路的基本原理和特性。

本次实验我们将学习并掌握一些基本的模拟电路,包括放大电路、滤波电路和振荡电路等。

二、实验一:放大电路1. 实验目的掌握放大电路的基本原理和特性,了解电压放大和功率放大的区别。

2. 实验原理放大电路是指通过放大器将输入信号放大后输出的电路。

信号放大可以分为电压放大和功率放大两种。

电压放大是指将输入信号的电压放大到一定倍数后输出,而功率放大是指将输入信号的功率放大到一定倍数后输出。

3. 实验步骤(1) 搭建共射放大电路,连接电路中的电阻和电容。

(2) 接通电源,调节电源电压和放大器参数。

(3) 输入不同幅度的信号,观察输出信号的变化。

4. 实验结果通过实验我们可以观察到输入信号经过放大电路后,输出信号的电压发生了变化。

当输入信号的幅度较小时,输出信号的幅度也较小;而当输入信号的幅度较大时,输出信号的幅度也较大。

这说明了放大电路可以放大输入信号的电压。

三、实验二:滤波电路1. 实验目的了解滤波电路的基本原理和滤波效果。

2. 实验原理滤波电路是指通过电容、电感和电阻等元件对输入信号进行滤波处理的电路。

滤波电路可以将输入信号中的某些频率成分削弱或者消除,从而得到滤波后的信号。

3. 实验步骤(1) 搭建RC低通滤波电路,连接电容和电阻。

(2) 接通电源,调节电源电压和电路参数。

(3) 输入不同频率的信号,观察输出信号的变化。

4. 实验结果通过实验我们可以观察到当输入信号的频率较低时,输出信号几乎与输入信号一致;而当输入信号的频率较高时,输出信号的幅度明显下降。

这说明了低通滤波电路可以将高频信号削弱,从而实现对输入信号的滤波处理。

四、实验三:振荡电路1. 实验目的了解振荡电路的基本原理和振荡条件。

2. 实验原理振荡电路是指通过反馈回路将一部分输出信号再次输入到输入端,从而使得电路产生自激振荡的现象。

模电实验报告实验现象

模电实验报告实验现象

一、实验背景模拟电子技术是电子工程和电气工程中的重要基础课程,旨在使学生掌握模拟电路的基本原理、分析方法及实验技能。

本次实验旨在通过实际操作,观察模拟电子电路的实验现象,加深对理论知识的理解。

二、实验目的1. 观察并分析模拟电子电路的实验现象。

2. 掌握实验操作技能,提高实验分析能力。

3. 培养团队合作精神,提高实验报告撰写能力。

三、实验内容本次实验主要包括以下内容:1. 晶体管单级放大器2. 单极共射放大器3. 负反馈放大电路4. RC文氏电桥振荡器5. 直流稳压电源设计6. 场效应管放大电路四、实验现象以下是对各个实验内容的实验现象描述:1. 晶体管单级放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度随输入信号幅度的增大而增大。

2. 单极共射放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度、相位均随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度、相位均随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度、相位均随输入信号幅度的增大而增大。

3. 负反馈放大电路(1)引入负反馈后,放大电路的带宽变宽,稳定性提高。

(2)负反馈可降低放大电路的增益,提高线性度。

(3)负反馈可改善放大电路的频率响应。

4. RC文氏电桥振荡器(1)当电路参数满足振荡条件时,输出信号为正弦波。

(2)调节振荡电路的参数,可改变振荡频率。

(3)加入稳幅电路,可改善输出信号的波形。

5. 直流稳压电源设计(1)变压器输出电压经整流、滤波、稳压后,输出稳定的直流电压。

(2)输出电压的稳定性受负载、温度等因素的影响。

(3)稳压电源的设计需满足实际应用的需求。

模拟电子技术实验报告答案

模拟电子技术实验报告答案

模拟电子技术实验报告答案引言模拟电子技术实验是电子工程专业中重要的基础实验之一。

通过模拟电子技术实验,学生可以掌握各种模拟电子电路的特性和设计方法,并将理论知识应用于实践中。

本文将介绍一系列模拟电子技术实验的答案,包括实验题目、实验步骤、实验结果分析等。

实验一:放大电路实验题目设计一个放大电路,输入电压为1V,要求输出电压放大倍数为10倍。

实验步骤1.根据题目要求,选择合适的放大电路拓扑结构,常见的有共射极、共集电极和共基极三种结构,本实验选择共射极结构。

2.根据放大倍数为10倍,可以使用一个普通的放大电路进行级联以获得所需的放大倍数。

即将输入信号接到第一个放大电路的输入端,输出端接到第二个放大电路的输入端,通过级联方式实现10倍放大。

3.根据实际情况确定所需器件的参数,包括BJT晶体管的类型、电阻的取值等。

4.根据电路拓扑和参数,利用电路分析和计算方法计算得到各个元件的取值。

5.根据计算结果,选择合适的元件进行实际电路的搭建。

6.进行实际测量,输入1V的信号,并测量输出电压的值。

7.比较实际测量结果和理论计算结果,分析可能的误差来源。

实验结果分析通过实验测量得到的结果为:•输入电压:1V•输出电压:10V根据实验结果与理论计算结果的比较,发现实验结果与理论计算结果基本一致,可以证明实验设计及测量操作的正确性。

然而,实际电路中存在一些误差来源,如元件的内阻、元件参数的漂移等,这些误差会对实验结果产生一定的影响。

因此,在进行电路设计和实验测量时,需要综合考虑各种因素,并进行合理的误差分析。

实验二:直流电源设计实验题目设计一个直流电源电路,输出电压为5V,输出电流为1A,要求电源稳定性好、负载能力强。

实验步骤1.根据题目要求和实际需求,选择合适的直流电源拓扑结构。

常见的直流电源拓扑结构有线性稳压电源和开关稳压电源两种,本实验选择线性稳压电源。

2.根据所需的输出电压和电流,计算得到所需的变压器参数。

3.根据变压器参数,选择合适的变压器进行实际电路的搭建。

实验报告模板模电(3篇)

实验报告模板模电(3篇)

第1篇一、实验目的1. 熟悉模拟电子技术的基本原理和实验方法;2. 掌握常用电子元器件的测试方法;3. 培养学生动手能力、分析问题和解决问题的能力;4. 理解模拟电路的基本分析方法。

二、实验原理(此处简要介绍实验原理,包括相关公式、电路图等。

)三、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 模拟电子实验箱5. 连接线四、实验步骤1. 按照实验原理图连接实验电路;2. 使用数字万用表测量相关元器件的参数,如电阻、电容等;3. 使用信号发生器产生不同频率、幅值的信号;4. 使用示波器观察电路输出波形,分析电路性能;5. 根据实验要求,调整电路参数,观察波形变化;6. 记录实验数据,分析实验结果;7. 撰写实验报告。

五、实验数据与分析(此处列出实验数据,包括测量结果、波形图等。

)1. 电路参数测量结果:(列出电阻、电容等元器件的测量值)2. 电路输出波形分析:(分析电路输出波形,如幅度、频率、相位等)3. 实验结果与理论分析对比:(对比实验结果与理论分析,分析误差原因)六、实验结论1. 总结实验过程中遇到的问题及解决方法;2. 总结实验结果,验证理论分析的正确性;3. 对实验电路进行改进,提高电路性能;4. 对实验过程进行反思,提高实验技能。

七、实验报告1. 实验目的;2. 实验原理;3. 实验仪器与设备;4. 实验步骤;5. 实验数据与分析;6. 实验结论;7. 参考文献。

八、注意事项1. 实验过程中注意安全,遵守实验室规章制度;2. 操作实验仪器时,轻拿轻放,避免损坏;3. 严谨实验态度,认真记录实验数据;4. 实验结束后,清理实验场地,归还实验器材。

注:本模板仅供参考,具体实验内容和要求请根据实际课程安排进行调整。

第2篇实验名称:____________________实验日期:____________________实验地点:____________________一、实验目的1. 理解并掌握____________________的基本原理和操作方法。

模电实验(附答案)讲解

模电实验(附答案)讲解

实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。

2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。

2)检查接线无误后,接通电源。

3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。

然后测量U B 、U C ,记入表1中。

表1B2所有测量结果记入表2—1中。

5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

1)检查线路无误后,接通电源。

从信号发生器输出一个频率为1KHz 、幅值为10mv (用毫伏表测量u i )的正弦信号加入到放大器输入端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电子技术实验第十一次实验波形发生电路实验报告2016.12.22一、 实验目的1、 学习用集成运放构成正弦波、方波和三角波。

2、 学会波形发生电路的调整和主要性能指标的测试方法。

二、 实验原理由集成运放构成的正弦波、方波和三角波发生电路有多种形式,本实验采用 最常用且比较简单的几种电路来做分析。

1、 RC 桥式正弦波振荡电路下图所示为RC 桥式正弦波振荡电路。

其中RC 串并联电路构成正反馈支路, 同时起到选频网络的作用。

R1、R2、Rw 及二极管等元件构成负反馈和稳幅环节。

调节电位器Rw ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。

D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保持输出波形正、负半周对称。

R3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率:12o f RCπ=起振的幅值条件:12f R R ≥ (具体推导见书第406页)其中23(//)f w D R R R R r =++,D r 是二极管正向导通电阻调整反馈电阻Rf (调Rw ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应当适当加大Rw ;如波形失真严重,则应当适当减小Rw 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

2、 方波发生电路由集成运放构成的方波发生电路和三角波发生电路,一般均包括比较电路和 RC 积分电路两大部分。

下图所示为由迟滞比较器及简单RC 积分电路组成的方波-三角波发生电路。

它的特点是线路简单,但三角波的线性度较差。

主要用于产生方波,或对三角波要求不高的场合。

电路振荡频率:21122ln(1)o f f f RR C R =+式中11''w R R R =+,22'''w R R R =+ 方波输出幅值:om Z V V =± 三角波输出幅值:212CM Z R V V R R =+调节电位器Rw (即改变R2/R1,),可以改变振荡频率,但三角波的幅值也随之变化。

如要互不影响,则可以通过改变Rf 或Cf 来实现振荡频率的调节。

3、 三角波和方波发生电路如把迟滞比较电路和积分电路首尾相接形成正反馈闭环系统,如下图所示, 则比较电路A1输出的方波经积分电路A2积分可以得到三角波,三角波又触发比较器自动翻转形成方波,这样既可构成三角波、方波发生电路。

电路振荡频率:214()o f w rR f R R R C =+方波幅值:'OM Z V V =± 三角波幅值:12OM Z R V V R =调节Rw 可以改变振荡频率,改变比值R1/R2可以调节三角波的幅值。

三、 实验设备与器件1、±12V 直流电源2、交流毫伏表3、双踪示波器4、运算放大器μA741×25、稳压管2CW231×16、二极管 IN4148×27、电阻器等8、频率计四、 实验内容1、 RC 桥式正弦波振荡电路 按图连接实验电路(1)接通±12V 电源,调节电位器Rw ,使输出波形从无到有,从正弦波到出现失真。

描绘Vo 的波形,记下临界起振、正弦波输出及失真情况下的Rw 值,分析负反馈强弱对起振条件及输出波形的影响。

(2)调节电位器Rw ,使输出电压Vo 幅值最大且不失真,用交流毫伏表分别测量输出电压Vo 、反馈电压V+和V-,分析研究振荡的幅值条件。

(3)用示波器或频率计测量振荡频率fo ,然后在选频网络的两个电阻上并联同一阻值电阻,观察记录振荡频率的变化情况,并与理论值进行比较。

(4)断开二极管D2、D2,重复(2)的内容,将测试结果与(2)进行比较,分析D1、D2的稳幅作用。

(5)RC 串并联网络幅频特性观察:将RC 串并联网络与运放断开,由函数信号发生器输入3V 左右的正弦信号,并用双踪示波器同时观察RC 串并联网络输入、输出波形。

保持输入幅值不变,从低到高改变频率,当信号源达到某一频率时,RC 串并联网络输出将达到最大值(约1V ),且输入输出同相位。

此时的信号源频率:12o f f RCπ==2、方波发生电路按图连接实验电路。

(1)将电位器Rw调至中心位置,用双踪示波器观察并描绘方波Vo及三角波Vc的波形(注意对应关系),测量其幅值及频率,记录之。

(2)改变Rw滑动点的位置,观察Vo、Vc幅值及频率变化情况。

把滑动点调至最上端和最下端,测出频率范围,记录之。

(3)将Rw恢复至中心位置,将一只稳压管短接,观察Vo波形,分析Dz的限幅作用。

3、三角波和方波发生电路按图连接实验电路。

(1)将电位器Rw调至合适位置,用双踪示波器观察并描绘三角波输出Vo及方波输出Vo’,测其幅值、频率及Rw值,记录之。

(2)改变Rw的位置,观察对Vo、Vo’幅值及频率的影响。

(3)改变R1(或R2),观察对Vo、Vo’幅值及频率的影响。

五、实验结果与总结1、RC桥式正弦波振荡电路(1)实验数据:Vo的波形:正弦波出现失真分析:Rw越大,则反馈电阻Rf越大,负反馈越弱。

当Rf过小时,负反馈太强,使得电路无法起振。

当增大Rf时,负反馈减弱,电路开始满足起振条件,输出正弦波。

当Rf继续增大时,负反馈过弱,使得不再满足稳幅要求,输出波形发生失真。

实验中临界起振时的Rw为2.763kΩ,此时Rf=Rw+R2+R3=19.963 kΩ,11.9632f R R =≈,与12fRR≥的起振幅值条件相符。

引起偏差的原因可能是负反馈回路的电阻或正反馈回路的电阻电容的实际值与理论值不同。

(2)分析:振荡的幅值条件由实验数据可以看出,V+与V-之间有微小差别,V-比V+大0.277V。

电路中,若要能够发生振荡,则必须满足AF>1的幅值条件。

另外,发生振荡时,F=1/3(具体证明见后面),所以要求A>1/3。

(3)其中计算值由公式12ofRCπ=计算得到由实验数据可以看到,并联前和并联后的计算值都比测量值略高,可能的原因是实际的R或C值比理论值偏大。

同时,并联后的fo的测量值和计算值都是并联前的两倍,与公式12ofRCπ=相符。

(4)分析:由实验数据可以看出,断开D1、D2后,输出电压Vo增大,反馈电压V+减小,反馈电压V-有很微小的下降。

从实验数据可以体现出D1、D2的稳幅作用。

D1、D2的稳幅作用:D1、D2通过改变运放的放大倍数来实现稳幅。

运放的输出电压超过一定幅度时,负半周D1导通,正半周D2导通,二极管正向导通电压小,相当于减小反馈电阻,从而增强负反馈,减小放大倍数,实现稳幅。

(5)当频率为1.275kHz时,输出电压达到最大值0.953V,约为1V。

且此时输入输出波形同相位,如下图所示:理论上:1//11//fORU jwCFU R RjwC jwC==++113()F j wRC wRC=+-令1o w RC=,有 12o f RCπ=代入上式,有13()o o F f fj f f=+- 幅频特性为F =相频特性为1arctan ()3o F o f ff fφ=-- 当f=fo 时,F=1/3,输入与输出相位差为0。

12o f RCπ=的理论计算值在前面已经提到过,是 1.59kHz ,而测量值为1.275kHz ,与之前的测量值基本相等。

造成与计算值不同的可能的原因是实际的R 或C 值比理论值偏大。

同时,输出电压的实际值为0.953V ,约等于3*(1/3)=1V ,与理论相符。

2、 方波发生电路 (1)频率的理论值通过21122ln(1)o f f f RR C R =+计算得到。

可以看出,波的频率的测量值与理论值相差很大,可能的原因是实际电路中的Cf、Rf、R1、R2值与理论电路图中不符。

波形图:Rw在中间位置Rw最大Rw最小(2)Rw变大时,方波和三角波的频率减小,幅值增大;Rw 变小时,方波和三角波的频率增大,幅值减小。

频率的变化范围为:0.665kHz-2.645kHz 分析:易知当Rw 变大时,R1变小,R2变大,R2/R1变大;Rw 变小时,R1变大,R2变小,R2/R1变小。

所以,当Rw 变小(变大)时,根据214()o f w r R f R R R C =+om Z V V =± 212CM Z R V V R R =+可以得到,振荡频率fo 增大(减小),三角波幅值减小(增大),方波幅值也有微小的减小(增大),但由于Vz 的限制,变化很小。

(3) 讨论二极管Dz 的限幅作用:短接一只稳压管后的波形:当输出电压(即方波)的幅值过大时,由于二极管的稳压作用,幅值会被限制在Vz 。

当Vo 为正时,Dz1发挥稳压作用;当Vo 为负时,Dz2发挥稳压作用。

所以它们可以保证较好地限幅效果。

3、 三角波和方波发生电路 (1)实验数据由数据可以看到,对于三组数据,频率的理论计算值都是是测量值的两倍左右,误差接近50%,可能的原因是R1或R2的对应电阻接错。

同时这印证了理论计算公式的合理性。

(2)波形图:Rw最大Rw最小Rw 适中(3)a. Rw 变化时:由数据可以看出,Rw 变大时,频率减小,方波与三角波幅值变化不大;Rw 变小时,频率增大,方波与三角波幅值变化不大。

这与理论计算公式相符:电路振荡频率:21122ln(1)o f f f RR C R =+式中11''w R R R =+,22'''w R R R =+ 方波输出幅值:om Z V V =± 三角波输出幅值:212CM Z R V V R R =+b .R1、R2变化时:波形图:初始R1从10kΩ变到20kΩR2从20kΩ变到10kΩ由实验数据发现,“R1从10kΩ变到20kΩ”与“R2从20kΩ变到10kΩ”两种情况下,方波的幅值、三角波幅值与波的频率都基本相等,这通过理论计算式可以解释:电路振荡频率:214()o f w rR f R R R C =+方波幅值:'OM Z V V =± 三角波幅值:12OM Z R V V R =当R1、R2变化时,只要R1/R2增大,就会造成电路振荡频率减小,三角波幅值增大,方波幅值基本不变。

反之同理。

六、 预习要求1、 为什么在RC 正弦波振荡电路中要引入负反馈支路?为什么要增加二极管D1和D2?它们是怎样稳幅的? 答:因为振荡电路本身有正反馈,如果没有输出振幅稳定回路起到负反馈的作用,那么输出电压幅值就会不断增大,直至运放最大输出电压,发生非线性失真。

增加D1和D2是为了通过改变运放的放大倍数来实现稳幅。

相关文档
最新文档