2015年新人教版高中数学知识点总结

合集下载

新人教版高中数学第一单元知识点归纳总结

新人教版高中数学第一单元知识点归纳总结

新人教版高中数学第一单元知识点归纳总结1. 直线与平面1.1. 直线的性质- 直线是由无数个点组成的集合,无宽度、无厚度;- 直线上的任意两点可以确定一条直线;- 直线分为有限直线和无限直线。

1.2. 平面的性质- 平面是由无数个点组成的集合,有无限个点,无厚度、无边界;- 任意三点不共线可以确定一个平面;- 平面上的任意直线都在同一平面上。

2. 直线与平面的位置关系2.1. 直线与平面的关系- 直线与平面的关系分为两种:直线与平面相交和直线与平面平行。

2.1.1. 直线与平面相交的条件- 直线与平面相交的条件是直线不在平面内,并且直线平行于平面的一条边。

2.1.2. 直线与平面平行的条件- 直线与平面平行的条件是直线不在平面内,并且直线垂直于平面的法线。

2.2. 平面与平面的关系- 平面与平面的关系分为三种:平面与平面相交、平面与平面平行、平面与平面重合。

2.2.1. 平面与平面相交的条件- 平面与平面相交的条件是两个平面不重合,并且两个平面的法线不平行。

2.2.2. 平面与平面平行的条件- 平面与平面平行的条件是两个平面的法线平行。

2.2.3. 平面与平面重合的条件- 平面与平面重合的条件是两个平面完全重合。

3. 直线与角3.1. 角的定义- 角是由两条射线共同起点组成的图形。

3.2. 角的分类- 按角的度数可分为锐角、直角、钝角和平角。

3.3. 角的性质- 锐角的度数小于90°;- 直角的度数等于90°;- 钝角的度数大于90°;- 平角的度数等于180°。

4. 三角函数的概念4.1. 三角函数的定义- 正弦函数:对于任意角θ,都有正弦函数sinθ = y / r;- 余弦函数:对于任意角θ,都有余弦函数cosθ = x / r;- 正切函数:对于任意角θ,都有正切函数tanθ = y / x。

4.2. 三角函数的性质- 正弦函数和余弦函数的定义域是实数集R,值域是[-1, 1];- 正切函数的定义域是实数集R,值域是R。

新人教版高中数学知识点全总结

新人教版高中数学知识点全总结

新人教版高中数学知识点全总结高中数学是学生在中学阶段学习的最后一个数学科目,它在知识体系上是对初中数学的拓展和深化,同时也是大学数学的基础。

新人教版高中数学教材按照必修和选修的不同模块进行编排,涵盖了从函数、导数、积分等基本概念到立体几何、概率统计等应用领域的广泛内容。

以下是新人教版高中数学知识点的全总结:一、集合与函数概念集合是高中数学的基础概念,包括集合的含义、表示方法、基本关系和运算。

函数部分则介绍了函数的定义、性质、函数的图像以及常见函数类型,如一次函数、二次函数、幂函数、指数函数和对数函数等。

二、数列与数学归纳法数列是一系列按照特定顺序排列的数,本部分内容包括数列的概念、等差数列、等比数列以及数列求和。

数学归纳法是一种证明方法,用于证明与自然数相关的命题,本部分将介绍其基本步骤和应用。

三、函数的极限与导数极限是微积分的基础概念,涉及到函数值的趋近性。

导数则描述了函数在某一点的切线斜率,是研究函数局部性质的重要工具。

本部分内容包括极限的定义、性质、导数的定义、求导法则以及高阶导数。

四、函数的积分积分是微积分的另一核心概念,用于求解曲线下面积或物体的体积。

本部分内容包括不定积分、定积分的概念、性质和计算方法,以及积分在几何和物理中的应用。

五、三角函数三角函数是解决与三角形相关问题的重要工具。

本部分内容包括三角函数的定义、基本关系式、三角恒等变换、三角函数的图像和性质,以及解三角形的方法。

六、平面向量与解析几何向量是描述几何形状和物理现象的重要工具。

本部分内容包括向量的基本概念、线性运算、数量积和向量积,以及向量在解析几何中的应用,如直线、圆和圆锥曲线的方程。

七、立体几何立体几何研究三维空间中的几何形状。

本部分内容包括空间几何体的基本概念、性质,以及直线与平面、平面与平面之间的相互关系和判定方法。

八、概率与统计概率与统计是研究随机现象的数学分支。

本部分内容包括随机事件的概率、条件概率、独立事件、随机变量及其分布、数学期望和方差,以及统计中的样本、总体、抽样分布和假设检验等。

新教材人教版高中数学必修第一册 第二章 知识点总结

新教材人教版高中数学必修第一册 第二章 知识点总结

必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<。

2.恒成立的不等式:一般地,∀R b a ∈,,有ab b a 222≥+,当且仅当b a =时等号成立。

说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。

3.等式的性质:性质1:若a =b ,则b =a ;性质2:若a=b,b=c,则a=c;性质3:若a=b ,则a±c=b±c;性质4:若a=b ,则ac=bc;性质5:若a=b ,c≠0,则cb c a = 4.不等式的性质:性质1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。

说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。

性质2:若a b >,b c >,则a c >。

不等式的传递性。

性质3:若a b >,则a c b c +>+。

性质4:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。

性质5:若,,a b c d a c b d >>+>+且则。

性质6:如果0>>b a 且0>>d c ,那么bd ac >。

性质7:如果0>>b a , 那么n n b a > )1(>∈n N n 且。

2.2 基本不等式1. 如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。

人教版高一数学知识点总结

人教版高一数学知识点总结

人教版高一数学知识点总结一、集合与函数1.集合的概念及表示方法,包括集合元素的特点和集合关系的运算。

2.不等式解集的概念、表示及应用。

3.函数的概念及表示方法,包括函数的定义域、值域、图像和性质。

4.复合函数与反函数的概念及相关性质,包括复合函数的性质和反函数的求法。

5.函数的运算及函数方程的应用,包括函数的加、减、乘、除、求逆等运算,以及函数方程的解法。

二、数列与数学归纳法1.数列的概念及表示方法,包括等差数列、等比数列和锐角三角函数数列的性质与应用。

2.数列的通项公式及相关性质,包括等差数列通项公式、等差数列前n项和公式、等差数列求和等,以及等比数列通项公式和前n项和公式。

3.数学归纳法的原理及应用,包括数学归纳法的基本原理和应用题的解题思路。

三、函数的极限与连续1.函数的极限的概念、性质与运算法则,包括函数极限的定义、极限运算法则、无穷小量与无穷大量等。

2.无穷极限的概念、性质与运算法则,包括无穷大量的性质、无穷大量的运算法则等。

3.函数的连续性的概念、判定条件与性质,包括函数连续性的定义、连续性的判定条件及连续函数的性质等。

四、导数与函数的应用1.导数的概念、运算法则及几何意义,包括导数的定义、导数的四则运算法则、导数的几何意义等。

2.函数的导数及导数的应用,包括函数的导数、函数单调性、函数极值、函数图像等。

3.特殊函数的导数及应用,包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数等的导数。

4.中值定理与泰勒公式的概念和应用,包括罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒公式等。

五、平面向量1.平面向量的概念、表示方法及运算法则,包括平面向量的定义、向量的运算法则(加法、数乘等)。

2.向量的线性相关与线性无关的概念与判定方法,包括向量组的线性相关与线性无关的定义、方法与判定法则。

3.平面向量的数量积的概念、性质及相关运算法则,包括向量的数量积的定义、性质和运算法则,如数量积的坐标表示、数量积的几何意义等。

高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。

以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。

- 代数式:基本概念、多项式、公式等。

- 幂与乘方:指数、乘方、幂等运算。

- 整式的加减法:同类项、整式的加减法规则。

- 分式:基本概念、分式的性质与化简等。

2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。

- 一元一次不等式:基本概念、解不等式的方法、应用问题等。

3. 函数及其图像
- 函数与自变量、函数与因变量的关系。

- 函数的表示与性质:映射、函数图像、奇偶性等。

- 一次函数:定义、性质、图像、方程等。

- 反函数与复合函数:定义、性质、求反函数、求复合函数等。

4. 等差数列
- 等差数列的定义与性质。

- 等差数列的前n项和与通项公式。

- 应用问题:等差数列应用于数学与生活中的实际问题。

5. 平面向量
- 向量的基本概念与表示法。

- 向量的运算:加法、数乘等。

- 向量共线与共面的判定。

- 向量的数量积与模的概念与性质。

6. 不等式与线性规划
- 不等式的基本性质与解法。

- 一元一次不等式组:基本概念、解法、应用问题等。

- 线性规划的基本概念与常见问题。

以上是高中数学(新人教版)必修一的主要知识点的简要归纳。

详细内容可以参考相关教材或课堂讲义。

希望这份归纳对你有帮助!。

高中数学知识点全总结目录人教版

高中数学知识点全总结目录人教版

高中数学知识点全总结目录人教版高中数学知识点全总结(人教版)一、函数与导数1. 函数的概念与性质- 定义域与值域- 函数的奇偶性- 反函数- 基本初等函数(线性函数、二次函数、幂函数、指数函数、对数函数、三角函数)2. 函数的运算- 函数的四则运算- 复合函数- 反函数的求法3. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 链式法则、乘积法则、商法则- 高阶导数- 微分的概念与应用4. 函数的极值与最值- 极值的定义与判定- 最值问题- 应用题5. 导数在几何上的应用- 曲线的切线与法线- 函数图像的凹凸性与拐点 - 渐近线二、三角函数与解三角形1. 三角函数的基本概念- 正弦、余弦、正切函数- 三角函数的图像与性质- 三角函数的基本关系式2. 三角恒等变换- 同角三角函数的关系- 恒等变换公式3. 解三角形- 正弦定理与余弦定理- 三角形的面积公式- 应用题三、数列与数学归纳法1. 等差数列与等比数列- 通项公式与求和公式- 等差数列与等比数列的性质2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 原理与步骤- 证明方法四、解析几何1. 平面直角坐标系- 点的坐标- 距离公式与中点公式2. 直线与圆的方程- 直线的斜率与方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线4. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型与连续型随机变量- 概率分布与概率密度函数3. 统计量与抽样分布- 常见的统计量(均值、方差、标准差)- 抽样分布与正态分布4. 参数估计- 点估计与区间估计- 置信区间的概念与计算六、数学思维与方法1. 逻辑推理与证明- 演绎推理与归纳推理- 证明方法(直接证明、间接证明、数学归纳法)2. 数学建模与应用- 数学建模的基本步骤- 数学在实际问题中的应用3. 数学思想方法- 函数与方程的思想- 转化与化归的思想- 极限与无穷的思想结语高中数学的学习不仅是对数学知识的掌握,更重要的是培养数学思维和解决问题的能力。

人教版高中数学知识点总结

人教版高中数学知识点总结

人教版高中数学知识点总结高中数学是学生进入高中阶段后所学习的一门主要学科,人教版高中数学是其中一种教材版本。

以下是针对人教版高中数学的知识点的总结:一、函数与方程1. 函数与映射- 函数的定义、性质和表示方法- 映射的定义和性质- 函数的四则运算和复合运算2. 一次函数与二次函数- 一次函数的定义、图像和性质- 一次函数的解析式及其在实际问题中的应用- 二次函数的定义、图像和性质- 二次函数的标准型、顶点型和一般型的相互转化- 二次函数的解析式及其在实际问题中的应用3. 指数与对数函数- 指数函数的定义、图像和性质- 对数函数的定义、图像和性质- 指数方程与对数方程的解法4. 三角函数- 弧度制和角度制- 三角函数的定义、图像和性质- 三角函数的周期性、奇偶性和单调性- 三角函数的和差化积公式和倍角公式- 三角方程和三角不等式的解法5. 不等式与方程组- 一元一次不等式与一元一次方程组的解法- 一元二次不等式的解法- 一元二次方程的解法- 二元一次方程组的解法6. 高次方程- 因式分解与求根公式- 高次方程的解的判别法和综合问题二、数列与数列的极限1. 数列的概念和表示- 数列的定义、性质和表示方法- 等差数列和等比数列的概念和表示2. 数列的通项公式及其性质- 等差数列和等比数列的通项公式- 数列的前n项和公式3. 数列的极限- 数列极限的定义和性质- 数列收敛和发散的判断- 等比数列和等差数列的极限性质三、平面几何1. 直线与线段- 直线、线段和射线的概念- 直线的方程和性质2. 角与三角形- 角的概念和性质- 三角形的概念和性质- 三角形的面积和周长公式- 三角形的分类和判定方法3. 圆与圆的切线- 圆的概念和性质- 圆的方程和性质- 圆的弦、弧和切线的概念和性质4. 二次曲线- 抛物线、椭圆和双曲线的概念和性质- 二次曲线的标准方程和性质四、立体几何和空间解析几何1. 空间中的直线和平面- 空间直线的概念和性质- 空间平面的概念和性质- 空间中的直线与平面的位置关系2. 空间中的立体图形- 空间中的球、柱、锥、棱柱和棱锥的概念和性质- 空间图形的表面积和体积公式3. 空间解析几何- 点、直线和平面的坐标表示和性质- 空间中的距离和夹角的计算五、概率论- 概率的概念和性质- 试验、基本事件和样本空间的概念- 随机事件的概念和性质- 事件的概率计算方法- 条件概率和独立事件的概念和计算方法总结:以上是人教版高中数学的主要知识点总结,其中包含了函数与方程、数列与数列的极限、平面几何、立体几何和空间解析几何以及概率论等内容。

(完整版)人教版高中数学知识点汇总,推荐文档

(完整版)人教版高中数学知识点汇总,推荐文档
-8-
人教版高中数学
当型循环结构、直到型循环结构 5、基本算法语句: ①赋值语句:“=”(有时也用“←”) ②输入输出语句:“INPUT” “PRINT” ③条件语句:
If … Then … Else … End If ④循环语句: “Do”语句 Do
… Until … End
“While”语句 While … … WEnd ⑹算法案例:辗转相除法—同余思想 第二章:统计 1、抽样方法: ①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显) 注意:在 N 个个体的总体中抽取出 n 个个体组成样本,每个个体被抽到的机会(概率)均为 n 。
过定点 (1, 0)
减函数
增函数
减函数
增函数
x (, 0)时,y (1, x) (, 0)时,y (0,1) x (0,1)时,y (0, ) x (0,1)时,y (, 0) x (0, )时,y (0,1)x (0, )时,y (1, x) (1, )时,y (, 0x) (1, )时,y (0, ) 性 质

log
a
M N
log a
M
loga
N;
⑶ log a
Mn
n loga
M
.
5、换底公式: log a
b
log c log c
b a
a
0, a
1, c
0, c
1, b
0.
a 0, a 1, b 0, b 1.
-3-
6、
log a
b
1 log b
a
人教版高中数学
§2..2.2、对数函数及其性质
ab
表2
p q

新人教版高中数学第一单元知识点归纳总结

新人教版高中数学第一单元知识点归纳总结

新人教版高中数学第一单元知识点归纳总结1. 数列与数列的表示- 数列的定义:按照一定顺序排列的数的集合。

- 数列的表示方法:通项公式、递推公式、数列的前n项和。

2. 等差数列与等差数列的性质- 等差数列的定义:相邻两项的差是常数的数列。

- 等差数列的通项公式:an = a1 + (n - 1)d。

- 等差数列的前n项和公式:Sn = (n/2)(a1 + an)。

3. 等比数列与等比数列的性质- 等比数列的定义:相邻两项的比是常数的数列。

- 等比数列的通项公式:an = a1 * q^(n - 1)。

- 等比数列的前n项和公式:Sn = a1 * (1 - q^n) / (1 - q),其中q≠1。

4. 数列的应用- 数列在实际生活中的应用:金融投资、工程建设、自然科学等方面都会涉及数列的应用。

- 判断一个数列的性质:通过观察数列的通项公式或前n项和公式,可以判断数列的性质,如等差、等比性质。

5. 数列的递推关系与常用定理- 数列的递推关系:数列的第n项与前几项的关系。

- 斐波那契数列:典型的递推数列,前两项为1,之后的每一项都等于前两项的和。

- 常用定理:数列的通项公式、前n项和公式等都是通过观察数列的递推关系得出的,掌握这些定理可以方便求解数列相关问题。

6. 数列的求和方法- 常用的求和方法:从公式求和、奇偶分解法、两项和法等。

7. 数学归纳法- 数学归纳法的基本思想:证明命题p(n)对所有自然数n成立的一种证明方法。

- 数学归纳法的三个步骤:基本步骤、归纳步骤、归纳假设。

8. 数学归纳法的应用- 利用数学归纳法证明数列性质:例如证明一个数列是否满足递推关系,或数列的性质是否对所有项成立。

以上是新人教版高中数学第一单元的知识点归纳总结。

希望对你的学习有所帮助!。

人教版高中数学必修一知识点

人教版高中数学必修一知识点

人教版高中数学必修一知识点直线与平面
直线与平面是高中数学中的基础知识点,需要我们了解和掌握
的概念和性质有:
1. 直线的定义:直线是由无数个点连成的轨迹,具有无限延伸
的特性。

2. 平面的定义:平面是由无数个点及其之间的直线连成的面,
具有无限延伸的特性。

3. 直线与平面的相交关系:直线与平面有三种可能的相交关系,即相交于一点、相交于一条直线或者平行。

4. 直线的倾斜角:直线与平面的交角称为倾斜角,可以通过相
应的角度计算公式求解。

5. 平面间的夹角:两个平面之间的夹角是由两个平面的法线向
量确定的,可以通过相应的向量运算求解。

平面图形的性质
平面图形是高中数学中重要的研究对象,其中常见的平面图形
及其性质有:
1. 三角形的性质:三角形是三边和三角的几何图形,根据其边
长和角度的不同,可以分为等边三角形、等腰三角形等,具备各自
的性质和特点。

2. 四边形的性质:四边形是具有四条边的几何图形,常见的四
边形有矩形、正方形、菱形等,每种四边形都有特定的性质和定理。

3. 圆的性质:圆是由等距离于一个固定点的所有点组成的图形,圆的性质包括圆心、半径、弦、弧等概念,以及相应的定理和公式。

4. 多边形的性质:多边形是具有多条边的几何图形,常见的多
边形有五边形、六边形等,每种多边形都有各自的性质和特点。

通过对这些知识点的研究和理解,我们可以更好地应用数学知
识解决实际问题,进一步提高数学能力。

以上就是人教版高中数学必修一涉及的一些主要知识点简介,
希望对您的学习有所帮助!。

高中数学教材人教版知识点总结

高中数学教材人教版知识点总结

高中数学教材人教版知识点总结高中数学教材人教版知识点总结必修1第一章集合与函数概念1.1.1 集合集合是由一些元素组成的总体,元素是研究对象的统称。

集合具有确定性、互异性和无序性。

两个集合中的元素相同,则这两个集合相等。

常见的集合有正整数集合、整数集合、有理数集合和实数集合。

集合可以用列举法和描述法表示。

1.1.2 集合间的基本关系对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集,记作A⊆B。

如果集合A是集合B的子集,但存在一个元素x属于B而不属于A,则称集合A是集合B的真子集,记作A⊂B。

空集是不含任何元素的集合,记作∅,是任何集合的子集。

如果集合A 中含有n个元素,则集合A有2^n个子集。

1.1.3 集合间的基本运算集合A与B的并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

集合A与B的交集是由所有属于集合A且属于集合B的元素所组成的集合,记作A∩B。

全集是指包含所有元素的集合,补集是指一个集合中不属于另一个集合的元素组成的集合。

集合的运算可以用XXX示。

1.2.1 函数的概念函数是两个非空数集之间的一种对应关系,对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应。

函数可以用解析式、图像和映射表示。

函数的定义域、值域和象集是函数的重要概念。

函数的基本性质有奇偶性、单调性、周期性和分段定义。

x) (a>0,a≠1)相关性质:⑴对数函数y=loga(x)的定义域为(0,+∞),值域为(-∞,+∞);⑵y=loga(x)与y=logb(x)的图象在x轴上的交点为x=a^1/(loga(b));⑶对数函数y=loga(x)的反函数为y=a^x;⑷对数函数y=loga(x)的导数为y'=(1/x)ln(a)。

2.3.1、幂函数及其性质1、记住图象:y=x^a (a为常数)相关性质:⑴当a>0时,幂函数y=x^a的定义域为(0,+∞),值域为(0,+∞);⑵当a<0时,幂函数y=x^a的定义域为(0,+∞),值域为(0,1/∞)U(1,+∞);⑶幂函数y=x^a的导数为y'=ax^(a-1)。

高一数学知识点重点总结人教版

高一数学知识点重点总结人教版

高一数学知识点重点总结人教版高一数学知识点重点总结(人教版)高一的数学学科是学生们进入高中阶段所面对的首个数学专题。

对于许多同学而言,这是一个关键的时期,因为高一的数学知识点将奠定数学学科的基础。

本文将以人教版教材为基准,对高一数学课程的重点知识进行总结。

1. 数与代数的基础知识在高一数学中,数与代数的基础知识是构建后续学习内容的基础。

这包括整数、有理数、无理数和实数的性质、运算和表示方法。

学生应熟练掌握数轴、绝对值、数的开方等概念,并能够灵活运用于解决实际问题。

2. 函数与方程函数与方程是高一数学中核心的知识点之一。

重点涵盖函数的定义、性质、图像和应用,以及方程的解法与应用。

在函数部分,需特别关注一次函数、二次函数和反比例函数的性质及其图像表达;在方程部分,重点是一次方程、二次方程和一元二次方程的解法,以及方程在实际问题中的应用。

3. 三角函数三角函数是高一数学中的重要内容,对于进一步学习几何和解析几何等领域至关重要。

学生应掌握正弦、余弦和正切函数的定义、性质和图像;同时学习与三角函数相关的基本公式,如和差化积、倍角公式和半角公式等。

4. 平面向量平面向量是高一数学中引入的新概念。

重点包括向量的定义、表示、运算及其在几何和物理等领域中的应用。

学生需要理解向量的平行和垂直性质,掌握向量的加减法和数量积的计算方法,同时了解向量的线性运算和共线性判定等内容。

5. 概率与统计概率与统计是高一数学的另一大板块。

学生需要掌握基本的统计概念、频率分布及其图表的表示方法。

在概率部分,强调概率的定义、计算方法和常见问题的解决策略。

6. 解析几何解析几何是高一数学的拓展内容,侧重于平面与直线、圆与曲线的相关知识。

学生需要熟悉平面直角坐标系、直线和圆的方程,以及它们之间的关系和性质。

同时,加强对直线与平面的位置关系的理解,如平行、垂直和相交关系。

总结:高一数学知识点的重点总结包括数与代数的基础知识、函数与方程、三角函数、平面向量、概率与统计和解析几何。

2015年新人教版高中数学知识点总结

2015年新人教版高中数学知识点总结

2015年新人教版高中数学知识点总结高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性... 合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子nn A A= ∅=∅ B A ⊆A A = A ∅= AB A ⊇()U A A =∅ð2()U AA U =ð含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2的实数x[,)a b ,).②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:0,则在(5A B →.a 的象,(1)函数的单调性①定义及判定方法o(2]a 上为减函数. ①一般地,;(2)存在0x max ()f x m =.(4)函数的奇偶性①定义及判定方法(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1(0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a xN a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()aa a M N MN +=②减法:log log log a a aM M N N-=③数乘:log log ()n aa n M M n R =∈④log a N a N=n nlog b N 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数①(图象关于y.)+∞上为减q Z ∈),若p 则q py x =y x=(1①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --.②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11(M x (4这两种情况(5设()f x (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p =②若2b p q a ≤-≤,则(2b m f a =-③若2b q a ->,则()m f q = )q ②p x x、函数零点的概念:对于函数)D 的零点。

人教版高中数学必修一知识点总结

人教版高中数学必修一知识点总结

人教版高中数学必修一知识点总结
本文将对人教版高中数学必修一的知识点进行总结,帮助学生复和掌握这门课程的核心内容。

1. 线性方程及一元一次方程
一元一次方程是高中数学的基础,研究者需要掌握解一元一次方程的方法,包括两个方程的联立和图像法。

2. 二元一次方程组
二元一次方程组是两个一元一次方程的联立,研究者需要学会使用消元法、代入法和加减消法等方法解决方程组。

3. 函数与方程
研究者需要理解函数与方程的关系,掌握函数表示法和一些基本函数的性质。

同时,研究者还需要研究方程的根与图象的关系,以及函数与图象的关系。

4. 一元二次方程
一元二次方程是高中数学中重要的内容,研究者需要研究解一
元二次方程的方法,包括配方法、公式法和图像法等。

5. 等差数列
等差数列是数学中常见的数列形式,研究者需要了解等差数列
的概念、公式和性质,能够求解等差数列的前n项和以及通项公式。

6. 等比数列
等比数列也是常见的数列形式,研究者需要学会求解等比数列
的前n项和与通项公式,了解等比数列的性质及其在实际问题中的
应用。

7. 三角函数
研究者需要熟悉常见三角函数的定义、性质和图像,能够运用基本的三角函数关系解决问题。

以上是人教版高中数学必修一的主要知识点总结,希望对研究者复和掌握这门课程有所帮助。

(以上是一个简单的数学知识点总结,内容仅供参考。

具体的知识点以教材为准。

)。

人教版高一数学第二册知识点总结

人教版高一数学第二册知识点总结

人教版高一数学第二册知识点总结人教版高一数学第二册是高中数学教材中的一本教材,本册教材主要包含了数列与数列的极限、数列的通项公式、函数与它的图象、函数的性质、函数的运算、函数的应用等内容。

下面将从这几方面对这本教材的知识点进行总结。

一、数列与数列的极限1.数列的概念:数列是按一定顺序排列的一列数,可以用临项表示,如a1,a2,a3......2.数列的性质:随着项数n的增加,数列的值会发生变化,而且可以按照一定的规律进行变化。

3.数列的通项公式:有些数列可以用一个公式来表示,这个公式称为数列的通项公式。

通项公式通常是关于项数n的表达式。

4.数列的极限:当数列的项数趋于无穷大时,数列的值可能趋于无穷大、趋于某个有限值或者趋于无穷小。

这种趋势就称为数列的极限。

5.数列极限的定义:对于任意一个正数ε,存在正整数N,使得当n > N时,|an - A| < ε,那么数列的极限为A。

其中an为数列的第n项。

二、函数与它的图象1.函数的定义:函数是两个集合之间的一种对应关系。

常用的函数类型有映射函数、反函数、复合函数等。

2.函数的图象:函数的图象是函数在直角坐标系上的表示,可以通过具体的点来表示函数的值。

3.平移与伸缩:函数的图像可以通过平移和伸缩来改变其位置和形状。

平移可以用函数表达式中的加减常数来表示,伸缩可以用函数表达式中的乘除常数来表示。

三、函数的性质1.定义域和值域:函数的定义域是指函数可以接受的自变量的取值范围,值域是指函数可能的输出值的集合。

2.奇偶性:函数的奇偶性可以通过函数的表达式来判断,例如f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。

3.单调性:函数的单调性可以通过函数的导数来判断。

导数大于0表示函数递增,导数小于0表示函数递减。

4.极大值与极小值:函数在一定区间上的最大值和最小值称为极大值和极小值。

四、函数的运算1.函数的四则运算:函数可以进行加减乘除运算,其运算结果仍然是一个函数。

高中数学新人教版知识点

高中数学新人教版知识点

高中数学新人教版知识点高中数学是学生们在数学学科中的重要阶段。

新人教版作为一套经典的教材,涵盖了广泛的数学知识点。

在本文中,我们将逐步介绍一些高中数学新人教版的重要知识点。

1.一元二次方程:一元二次方程是高中数学中的基础知识点。

通过解一元二次方程,我们可以求得方程的根,从而解决实际问题。

在解一元二次方程时,我们可以使用因式分解、配方法或求根公式等方法。

2.函数与导数:函数与导数是高中数学中的重要内容。

学习函数与导数可以帮助我们研究函数的性质与变化规律。

在函数与导数的学习中,我们会了解到函数的定义域、值域、单调性等概念,以及导数的定义、求导法则等内容。

3.三角函数:三角函数是高中数学中的重要分支。

学习三角函数可以帮助我们研究三角形的各种性质和计算各类角度。

在三角函数的学习中,我们会了解到正弦、余弦、正切等基本三角函数的定义与性质,并学习如何利用三角函数解决实际问题。

4.解析几何:解析几何是高中数学中的重要内容。

学习解析几何可以帮助我们研究平面和空间中的几何图形,通过坐标表示和方程表示进行研究。

在解析几何的学习中,我们会了解到坐标系、直线、圆、曲线等基本概念,并学习如何求解几何问题。

5.概率与统计:概率与统计是高中数学中的实用内容。

学习概率与统计可以帮助我们分析和解决各类随机事件问题。

在概率与统计的学习中,我们会了解到概率的基本概念、概率计算方法、统计图表等内容,并学习如何应用概率与统计解决实际问题。

以上是高中数学新人教版的一些重要知识点。

通过逐步学习和掌握这些知识,我们可以提高数学解决问题的能力,并为将来的学习和应用打下坚实的基础。

希望同学们能够认真学习,并运用数学知识解决实际问题。

加油!。

人教版高中数学知识点总结(二篇)

人教版高中数学知识点总结(二篇)

人教版高中数学知识点总结一、函数与方程1. 函数的定义与性质:函数的概念、关系与函数、函数的特性、函数的分类、函数的运算、函数的图象。

2. 一次函数:函数的表达式与图象、函数的增减性与单调性、零点与根的概念、函数的解与方程。

3. 二次函数:函数的表达式与图象、函数的增减性与单调性、函数的最值与极值、函数的解与方程。

4. 幂函数与指数函数:函数的定义域与值域、函数的图象与性质、函数的运算与应用。

二、数列与数列的表示方法1. 等差数列:等差数列的概念与特性、等差数列的通项公式、等差数列的前n项和、等差数列的应用。

2. 等比数列:等比数列的概念与特性、等比数列的通项公式、等比数列的前n项和、等比数列的应用。

3. 通项公式与通项公式的逆向推导:等差数列与等比数列的通项公式的推导与应用。

三、平面坐标系与直线1. 平面直角坐标系:直角坐标系的概念、直角坐标系的运用及常用定理。

2. 直线的方程:直线的一般方程、直线的斜截式方程、直线的截距式方程、两直线的位置关系。

四、图形的变换1. 平移:图形的平移规律、平移的定义与性质、平移的向量表示。

2. 旋转:图形的旋转规律、旋转的定义与性质、旋转的向量表示。

3. 对称:图形的对称规律、对称的定义与性质、对称的向量表示。

五、三角函数1. 角与弧度:角的度量与单位、角的标准位置、弧度制与角度制的换算。

2. 正弦函数:正弦函数的定义与性质、正弦函数的图象与性质、正弦函数的应用。

3. 余弦函数:余弦函数的定义与性质、余弦函数的图象与性质、余弦函数的应用。

4. 正切函数:正切函数的定义与性质、正切函数的图象与性质、正切函数的应用。

六、解析几何1. 平面与空间几何:平面的点坐标与方程、平面的性质及应用、空间几何的概念与基本性质。

2. 平面图形:平面图形的概念与性质、平面图形的参数方程、平面图形的拟合。

3. 空间图形:立体图形的概念与性质、立体图形的参数方程、立体图形的拟合。

七、立体几何1. 空间中的位置关系:直线的位置关系、平面的位置关系、直线与平面的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年新人教版高中数学知识点总结高中数学 必修1知识点 第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且ab <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a=;当n为奇数时,a=;当n为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N,即log eN (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aM M N N-=③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()xy ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--.②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a-=;当0a<时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a=++≠在闭区间[,]p q上的最值设()f x在区间[,]p q上的最大值为M,最小值为m,令1()2x p q=+.(Ⅰ)当0a>时(开口向上)①若bp-<,则()m f p=②若2bp qa≤-≤,则()2bm fa=-③若2bqa->,则m f=①若2bxa-≤,则()M f q=②2bxa->,则()M f p=(Ⅱ)当0a<时(开口向下)①若2bpa-<,则()M f p=②若2bp qa≤-≤,则()2bM fa=-③若2bqa->,则()M f q=①若2bxa-≤,则()m f q=②2bxa->,则()m f p=.x xxxxfxfx第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

相关文档
最新文档