列方程解三步计算实际问题
列两、三步计算方程解决实际问题练习
还有什么»疑第五问级?
2024/7/21
23
1、学单校击买来此足处球比编篮球辑多母300版个,标其题中足样球式
个数是篮球的3倍。两种球各买了多少个?
• 单击足此球的处个编数辑-母篮版球文的个本数样=式300个
2、–一第个二长级方形的周长是28分米,这个长方形 的长是• 宽第三的级2.5倍。长和宽分别是多少分米?
• 第x 三级 2.2x
– 第四级
» 第五级
(1)300+660=960(只)
(2)660÷3如00何=2.2 检验?
2024/7/21
5
1五0年.少单级先的击队1.员此5参倍加,处植五编树年活级辑动比母,六六年版年级标级少植植题树树2的样4棵棵式树。是两
个年级各植树多少棵?
• 单击六此年处级编植树辑的母棵版数-文五年本级样植式树的棵数=24棵
单击此处与不编同辑? 母版标题样式
• 单击此处编辑母版文本样式
– 第二级
• 第三级
– 第四级 » 第五级
2024/7/21
15
单甲击乙此两艘处轮编船同辑时从母青版岛开标往题上海样。式甲
船每小时行24千米,乙船每小时行21千米。
• 单几击小时此后处两编船辑相母距版15文千本米?样式
– 第二级
乙船•每第小三时行级21千米
– 第四级
» 第1五.级5x-x=24 0.5X=24
X=48
1.5X=48 ×1.5 =72
答:五年级植树48棵,六年级植树72棵。
2024/7/21
7
比一比:这两个问题在解题
单击此处上有编什辑么相母同与版不同标? 题样式
•9.单一击个自此然处保编护辑区母里版一文共本有天样鹅式和丹顶鹤960只,天
列方程解决三步计算的实际问题
速度和X时间=总路程
练一练
两艘轮船从一个码头往相反方向开出,8小时后 两船相距400千米。甲船的速度是26千米/时, 乙船的速度是多少千米/时?
解:设乙船的速度是X千米/时。
解:设乙船的速度是X千米/时。
26×8+8x=400 208+8x=400 208+8x-208=400-208 8x=196 8x÷8=196÷8 x=36
一辆客车和一辆货车同时从两地出发,相向而 行,3小时后在途中相遇。已知客车速度是80千 米/时,货车速度是70千米/时,两地间公路长多 少千米?
客车行的路程+货车行的路程=总路程
速度和X时540千米的 两地出发,相向而行,经过3小时相遇。客车的 速度是95千米/时,货车的速度是多少?
(26+x)×8=400 (26+x)×8÷8=400 ÷8 26+x=50 26+x-26=50-26 x=36
基础练习
1、解方程。
18×2+3x=60 4x-8×5=20
综合练习
1、甲、乙两人骑摩托车同时从相距190千米的 两个城市出发,相向而行。甲的速度是36千米/ 时,乙的速度是40千米/时,经过多少小时两人 相遇? 解:设经过x小时两人相遇。 解:设经过x小时两人相遇。
36x+40x=190 76x=190 76x÷76=190÷76 x=36 (36+40)×x=190 76x=190 76x÷76=190÷76 x=36
综合练习
2、妈妈买了一些苹果和梨,一共用去20元。根 据下表中的数据列方程求出梨的单价。
苹果 梨 数量/千克 4 2 单价(元/千克) 3 ()
小学数学式与方程教案
小学数学式与方程教案第一篇教学目标:1、通过复习,使学生进一步体会方程的意义和思想,会用等式的性质解一些简易方程,能列方程解需两、三步计算的实际问题,提高学生用含有字母的式子表示数量关系的能力。
2、通过复习,增强用字母表示数表达和交流信息的意识,渗透代数思想,体会数学知识与现实生活的密切联系,感受用字母表示数的优越性。
3、通过复习,使学生进一步感受用字母表示数与代数领域学习内容的趣味性和挑战性,产生继续探索学习的积极倾向,增强学好数学的信心。
教学重点:进一步掌握用字母表示数的方法,加深理解方程意义和解法,提高学生列方程解决问题的能力。
理解式、等式和方程之间的联系,完善认知结构。
教学难点:理解等式与方程的联系与区别,列方程解决实际问题。
教学过程一、生活引入:含有字母的式子1、你穿的鞋有多大?2、师:你的脚大约是?3、激疑:想知道老师是怎样算的吗?4、师说明方法:(b+10)25、思考:这是一个什么样式子?二、回顾与整理:(一)、回顾整理用字母表示数1、回忆:小学数学中有很多地方用到用字母表示数?你能举一个例子吗?(1)指名举例。
师:这个式子表示什么?还有哪些?看来用含有字母的式子可以表示运算律。
其他学生说说所表示的意义。
a+b=b+a 表示加法交换律,a、b分别表示两个加数,师:这些运算律中的字母可以表示哪些数?(2)回忆交流用字母表示计算公式。
(3)用字母表示数量关系:①学生练习:说说含有字母式子所表示的意义。
根据什么数量关系得出的?5a表示?a可以表示哪些数?②看来我们用含有字母的式子还可以表示什么?③根据题目说说式中字母可以表示哪些数?0.52a表示什么?2b 呢?0.52a+2b表示什么?2、小结:通过刚才的回忆我们知道了用含有字母的式子可以表示数量关系、运算律、计算公式,这些式子中的字母表示的数根据不同的情况有不同的范围。
3、用字母表示数有什么优越性?(二)回顾整理方程的相关的知识过渡:我也准备了一些含有字母的式子。
五年级数学下册苏教版第一单元第9课《列三步算式方程解决实际问题》教案
课题:列形如ax±b×c=d的方程解决实际问题
课型:新授课
教学内容:教材第14-15页的例10和练一练,练习三的第4-7题。
主备人:
一、教学目标制定依据
1.教材分析
例10呈现的是一个较为典型的行程问题,教材首先引导学生借助线段图整理条件和问题,并借助直观寻找相应的等量关系。考虑到列出的方程涉及三步计算,教材在列出方程之后,示范了求解时的第一步,再要求学生接着进行求解,为了帮助学生进一步加深对行程问题中数量关系的理解,提高灵活列方程解决问题的能力,接下来,教材有启发他们依据“速度和×时间=总路程”这一等量关系列出不同的方程,进一步丰富对方程及其解法的理解。
经历由现实问题抽象为方程的过程。在建构数学模型的过程中,先由情境抽象成数量关系式,再根据数量关系式列出方程,实现了学生在逐步抽象的过程中学习数学的方法,体现了数学的简洁性和学习数学的必要性。
开放延伸
出示:
甲乙两人沿着400米的环形跑道跑步,他们同时从同一地点背向而行。甲的速度是6米/秒,乙的速度是4米/秒。经过多少分钟甲乙第二次相遇?
明确方法,并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书完善课题)
2.完成练一练。
收集并呈现资源。
3.完成练习练习三第7题。
可以先让学生分别说说所购苹果的数量和单价各是多少,所购梨的数量和单价各是多少,购买苹果和梨一共用了多少元。在此基础上,组织讨论:要列方程求梨的单价,你打算选择什么样的等量关系?
二、教学具体目标:
1.在解决实际问题的过程中,理解并掌握形如ax±b×c=d的方程的解法,会列上述方程解决两步计算的实际问题。
2.在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
苏教版小学数学六年级上册教学设计
单元教学要求:本单元使学生在解决实际问题的过程中,理解并掌握ax-b=c,ax+b=c等方程的解法,会列方程解决两三步计算的实际问题。
重点:使学生在解决实际问题的过程中,理解并掌握形如ax±b=c、ax±bx=c等方程的解法。
难点:会列方程解决需要两、三步计算的实际问题。
关键:使学生能根据题意找出数量间的相等关系,并根据等量关系列出方程、正确解答。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、使学生在积极参与数学活动的过程中,树立学好数学的信心。
教学重点和难点:
引导学生独立分析问题,找出题目中的等量关系。
教学过程:
一、复习准备
1、解方程
4x+12=502 3x-1.02=0.36
学生独立完成,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
2)分清等量关系中的已知量和未知量,用字母表示未知量并列方程;
3)解出方程后,要及时进行检验。
二、巩固练习
1、做练一练:读题,并设想解决这一问题的方法和步骤,然后让学生独立完成。
交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。再让学生核对自己的答案,检查自己的解题过程。
启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?
2、做练习一第1题
先让学生说说解这些方程时,第一步要怎么做,依据是什么,然后让学生独立完成。交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。
3、做练习一第2题
学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。
《列方程解三步计算的实际问题》(教案)苏教版五年级下册数学
《列方程解三步计算的实际问题》(教案)一、教学内容本节课的教学内容是苏教版五年级下册数学中的列方程解三步计算的实际问题。
学生已经掌握了简单的方程解法,本节课将进一步学习如何运用方程解决实际问题,重点在于理解问题的数量关系,并能将其转化为方程求解。
二、教学目标1. 知识与技能:学生能够根据实际问题,找出数量关系,列出方程并求解。
2. 过程与方法:通过解决实际问题,培养学生运用数学知识解决生活问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生合作交流、积极参与的学习态度。
三、教学难点本节课的教学难点在于如何引导学生找出实际问题中的数量关系,并将其转化为方程求解。
此外,学生还需要注意方程的解法,确保解答过程的正确性。
四、教具学具准备1. 教具:PPT、黑板、粉笔等。
2. 学具:练习本、笔等。
五、教学过程1. 导入:教师通过PPT展示一些实际问题的图片,引导学生观察并思考,激发学生的学习兴趣。
2. 新课导入:教师讲解列方程解三步计算的实际问题的基本方法,引导学生找出数量关系,并列出方程求解。
3. 例题讲解:教师通过讲解例题,让学生了解如何运用所学知识解决实际问题。
4. 练习:学生独立完成练习题,巩固所学知识。
5. 小组讨论:学生分组讨论,共同解决实际问题,培养合作交流的能力。
6. 课堂小结:教师对本节课所学内容进行总结,强调重点知识。
7. 作业布置:教师布置课后作业,要求学生独立完成。
六、板书设计板书设计应简洁明了,突出重点,便于学生理解和记忆。
教师可以将本节课的重点知识以提纲形式呈现,辅以典型例题和解答过程。
七、作业设计1. 基础题:布置一些简单的实际问题,让学生独立完成,巩固所学知识。
2. 提高题:布置一些稍微复杂的实际问题,让学生尝试解决,提高学生的解题能力。
3. 拓展题:布置一些与生活密切相关的实际问题,让学生学会运用所学知识解决实际问题。
八、课后反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
列方程解决问题(三) 教学设计 教案
教学准备1. 教学目标1. 会寻找等量关系,通过列方程解两、三步计算的简单实际问题。
2. 初步体会利用等量关系分析问题的优越性。
2. 教学重点/难点能根据题意找到正确的等量关系,并出列方程求出解。
3. 教学用具教学课件4. 标签教学过程一、新课导入1.化简下列各字母式子。
3x+x 5x-2x 5×8x 18x÷32.根据下列各题的数量关系列出相应的字母式子。
⑴红花有X朵,黄花的朵数是红花的7倍,黄花有几朵?⑵小胖有X支铅笔,他比小明的铅笔数多5支,小明有几支?他们两人一共有几支?⑶小巧有邮票X张,小胖的邮票张数是她的3倍,他们两人一共有邮票多少张?3.回忆一下列方程解应用题的一般步骤。
师:今天这节课我们继续学习列方程解应用题。
板书:列方程解应用题例2二、新课探索(一)探究一:根据等量关系解和倍关系应用题。
1、出示例2:(将引入第3题改动,得到例2)小胖和小巧一共有232张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票?(1)师:请你仔细读题,说说题目中告诉我们哪些条件,要求什么?(2)师:根据说给的条件,你能画出线段图吗?(教师根据学生回答演示画线段图(3)根据线段图说一说数量关系。
等量关系:小巧的邮票张数+小胖的邮票张数=两个人共有的邮票张数(4)师:设句如何写?解:设小巧有X张邮票,那么小胖有3X张邮票。
2、根据数量关系列出方程:X+ 3X =2324X = 232X = 583X = 3×58 = 1743、代入检验结果的正确性。
左边=58+3×58=232右边=232左边=右边4、师:为什么要把小巧邮票的张数设为X,能不能将小胖的邮票张数设为X?如果设小胖有X张,那么小巧有几张?(讨论)解:设小胖有X张邮票,那么小巧有(X÷3)张邮票。
学生根据设句尝试解方程,在解答中碰到计算困难。
5、小结:可以将小胖邮票的数量设为X,但在解答方程的过程中碰到了困难,所以一般我们都是先把一倍量设为X,那么几倍量就是几X了。
3.4列方程解决问题——教学设计
教师活动
学生活动
目标达成
一、复习引入
二、新课探究
1、例1
2、随堂练习(练习单)
师出示:
1、箱子里有一些网球,每次取3个,取x次后,网球没有了。箱子里原来有_______个网球。
2、箱子里有一些网球,每次取2个,取了x次后,还剩6个,箱子里原来有________个网球。
师:为什么要加6?
师:接下来老师把这两道题整理了一下变成了一道题,请看:(出示,并叫学生读题)
答:……。
生:它们总数都一样
生:总数都不变
生:红球的总数=白球的总数
(生独立列方程解)
生独立选
生:男生的总数=女生的总数
生:……
生:每组分5名女生,分若干组女生正好分完。
生:分下来还少2人就是C方程了。
生:怎么样找等量关系
生:用方程解决问题会方便很多
生:两千多年前就有里这一类问题(盈亏问题)
▲目标1
生:分法1的糖果总数=分法2的糖果总数
生:解:设一共有x个小朋友,有糖果8x颗或(6x+14)颗。
8x =6x+14
X=7
糖果:8x=8×7=56
答:……。
生:网球的总数=羽毛球的总数
生:解:设一共取了x次,网球原来有7x个,羽毛球原来有(4x+9)个。
7x=4x+9
x=3
网球7x=7×3=21
羽毛球4x+9=21
师:我们再来看一题,请同学们看练习单第1题,小组
讨论找出等量关系。
生独立回答
生:3x
生:(2x+6)
生:取了x次后,还剩下6个,所以要加6。
生:这两次取法的次数是相同的。
3列方程解应用题(学生版)
例7.有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.
【答案】甲桶原来65升,乙桶原来有50升
例8.师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.
13.学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,恰巧安排好.则房间有____间.
学校买来一批故事书,每班发16本,多10本;每班发18本,少6本.则买来故事书的本数为____.
一小包糖分给几个小朋友,如果每人分3块,则余3块;如果每人分5块,则少7块.那么小朋友有____个.
某数的5倍减去41,则比其3倍多19.这个数是____.
例12.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人。如果减少一条船,正好每条船坐9人。问:这个班有多少同学?
【解答】
解:设有 条船。
。
6×(5+1)=36(人)。
答:这个班有36个同学。
【答案】36个同学。
例13.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20 ,两地相距298 ,两车同时出发,半小时后相遇。两车的速度各是多少?
【答案】9间,59人.
例14.一个两位数,十位数字与个位数字的和是6.若以原数减去7,十位数字与个位数字相同,求原数.
【答案】51
例15.某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车人数是第一车间人数的一半少1人,三个车间各有多少人.
【答案】40、121、19
【巩固练习】
1.幼儿园的老师给小朋友们发梨,每人6个就剩12个,每人7个便少11个共几位小朋友,几个梨.
列方程解应用题的一般步骤是
列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。
一、怎样找等量关系(一)、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。
(二)、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元?相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。
列方程解两三步应用题
列方程解两、三步应用题一、解方程8.8+4x=40 0.5x-13.2×5=6 2.8×4-5x=5.8 1.6x+2.4=7.2二、在()里填上含有字母的式子1.果园里有梨树x棵,苹果树的棵树比梨树的2倍多10棵。
果园里有苹果树()棵。
2.一台电子琴的价钱比一台手风琴的价钱的3倍少120元,一台手风琴x元。
一台电子琴()元。
三、解答下面各题1.一个小区,去年植树38棵,今年植树的棵数比去年的3倍还多6棵。
今年植树多少棵?2.大货车和客车同时从甲、乙两地相对而行,大货车每小时行35千米,客车每小时行48千米,3小时后两车相遇。
甲、乙两地相距多少千米?3.李村今年买彩色电视机124台,比买黑白电视机的4倍多4台,买黑白电视机多少台?4.图书馆买来故事书560本,比科技书的5倍少20本,科技书有多少本?5.两个工程队和修一条3.9千米的公路,20天完成,已知甲队每天修0.1千米,乙队每天修多少千米?列方程解应用题(一)一、一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?二、好马每天走120千米,劣马每天走75千米,劣马先行12天,好马几天可以追上劣马?三、鸡兔同笼,共有35个头,94条腿,求鸡和兔子各有多少只?四、某班同学去划船,如果少租一条船。
如果少租一条船,每条船正好坐9个学生;如果多租一条船,每条船正好坐6个学生。
这个班有多少学生?第四单元试卷(一)一、填空题1.(a+b)c=()×()+()×().这是根据()2.用字母表示梯形面积计算公式(),当a=3.2米,b=1.6米,h=0.5米时,面积是()平方米3.在()里填上适当的式子(1)a与b的和一半:()(2)m与n的差乘以m与n的和:()(3)5个x减去y:()(4)a除以b再乘以c的3倍:()4.甲乙两数的和是18,甲数得x,乙数是()5.一批货物a吨,第一次运走b吨,第二次运走c吨还剩下()吨.6.食堂运来2000千克煤,烧了a天,还剩b千克,平均每天烧()千克.7.含有()等式,叫做方程.8.求()的过程叫做解方程.9.在()内填上>、<或=10.一个直角三角形,其中一个锐角是x度,另一个锐角是()度;一个三角形中,两个角分别是20度和x度,第三个角是()度.11.x的15倍与17的差,列式为().12.与a相邻的两个整数分别是()和(),它们的和是().二、判断题三、选择题1.下面各式是方程的有[]A.8x=0 B.3x+24 C.8x>7D.x=82.三角形的面积为S平方厘米,其中高是4厘米,那么底是[]A.S÷2÷4B.S÷4C.2S÷43.43除以一个数所得的商是8,余数是3,求这个数的方程是[]A.43÷x-3=8 B.(43-3)÷x=8C.8x+3=434.使方程左右两边相等的未知数的值,叫做[]A.方程的得数B.解方程C.方程D.方程的解四、解方程(1)99-x=64 (2)x-18.9=72.1 (3)5x÷6=1.7 (4)13×0.8-2x=4.9 (5)3(2x-2)=12 (6)32x-7x-5x=420五、列方程解文字题1.x的5倍减去2.5除5的商,差得38,求x.2.一个数加上25等于110与75的差,这个数是多少?3.某数的一半减去18是6.5,求某数.4.一个数的3倍比它的5倍少1.8,求这个数.六、列方程解应用题1.用76厘米的铁丝,做一个长方形,要使宽是16厘米,长应是多少?2.食堂买了8千克黄瓜和6千克茄子,付出15元,找回1.4元,每千克黄瓜是0.8元.每千克茄子是多少钱?3.林业队种的杨树的棵数是柳树的4倍,杨树比柳树多54棵,杨树有多少棵?4.两地相距400千米,甲、乙两辆汽车分别从两地同时相对而行,甲汽车每小时行38千米,乙汽车每小时行42千米,几小时后两车相距40千米.5.果园里的梨树和桃树共有380棵,桃树的棵数比梨树的3倍还多8棵,桃树和梨树各有多少棵?6.有甲、乙两桶油,甲桶里有油45千克,乙桶里有油24千克.从甲桶中倒出多少千克油给乙桶,才能使甲桶里的油的重量等于乙桶里油的重量?。
人教版小学数学五年级上册第四章教案B列方程解应用题
列方程解应用题教学目标1、初步学会列方程解比较容易的两步应用题。
2、知道列方程解应用题的关键是找应用题中相等的数量关系。
教学重点列方程解应用题的方法步骤。
教学难点根据题意分析数量间的相等关系。
教学步骤一、铺垫孕伏1、口算2、出示复习题(课件演示:列方程解应用题例1例2下载)商店原有一些饺子粉,卖出35千克以后,还剩40千克。
这个商店原来有饺子粉多少千克?(1)读题,现解题意。
(2)引导学生用学过的方法解答。
(3)要求用两种方法解答。
(4)集体订正:(5)针对解法二教师说明:这种方法就是我们今天要学习的列方程解应用题。
(板书课题:列方程解应用题)二、探究新知(一)教学例1(继续演示课件:列方程解应用题例1例2下载)例1、商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。
这个商店原来有多少千克饺子粉?1、读题理解题意。
2、提问:通过读题你都知道了什么?3、引导学生知道:已知条件和所求问题:题中涉及到原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。
教师板书:原有的重量-卖出的重量=剩下的重量4、教师提问:等号左边表示什么?等号右边表示什么?(等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。
)卖出的饺子粉重量直接给了吗?应该怎样表示?(卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)改写:原有的重量-每袋的重量×卖出的袋数=剩下的重量5、引导学生根据等量关系式列出方程。
6、让学生分组解答。
教师板书:解:设原来有千克饺子粉。
答:原来有75千克饺子粉。
7、指导看书教师提问:你能用书上讲的检验方法检验例1吗?小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)(二)教学例2 (继续演示课件:列方程解应用题例1例2下载)例2、小青买4节五号电池,付出8.5元,找回0.1元。
每节五号电池的价钱是多少元?1、读题,理解题意。
10.列两、三步计算方程解决实际问题练习
3.小明原来有一些邮票,今年又收集了24枚,送给小军 30枚后还剩52枚。小明原来有邮票多少枚?
4.王叔叔在鱼池里放养鳊鱼400尾,比放养的鲫鱼的4倍 少80尾。放养鲫鱼多少尾?
根据常见的数量关系找等量关系
1.王老师买笔记本一共付了78元,每本笔记本6.5元,王 老师买了多少本笔记本?
浩特开出,每时行驶120km;另一列火车从北京开出,每 时行驶144km。两列火同时开出,经过几时相遇?
等量关系 一列路程+另一列路程=总路程
方 程 120 + 144 = 660
等量关系
速度和× 同行时间=总路程
方 程(120+144)× = 660
6.奇思每分跑280米,妙想每分跑320米。环湖公路一周的
等量关系 单价×数量=总价
方 程 6.5 × = 78
常见的数量关系有哪些? 单价×数量=总价 速度×时间=路程
工作效率×工作时间=工作总量
根据计算公式找等量关系
2.一间长方形计算机房的面积是96平方米,长是12米,宽是多 少米?
等量关系 长方形面积=长 × 宽 长 × 宽=长方形面积
方 程 12 × = 96
……
甲路程+乙路程=总路程
速度和× 同行时间=总路程
8.甲、乙两工程队铺一条长1400米的公路,他们从 两端同时施工,甲队每天铺80米,乙队每天铺60米, 几天后能够铺完这条公路?
9.有一份5700字的文件,由于时间紧急,安排甲、 乙两名打字员同时开始录入。甲打字员每分录 入100个字,乙打字员每分录入90个字,录完 这份文件需用多长时间?
时从这两个城市出发,相向而行,客车平均每小时行88千 米,3小时后两车相遇,货车平均每小时行多少千米?
小学五年级数学教案 列方程解决简单的实际问题9篇
小学五年级数学教案列方程解决简单的实际问题9篇列方程解决简单的实际问题 1[导读]初学列方程解决简单的实际问题,数量关系即使隐蔽一些,对于五年级的学生来说用算术方法解决都不太困难。
相反地,学生会认为列方程解决实际实际问题写的字太多,太麻烦,会以为这是多此一举,这是学生学习本课内容时一般都会存在的心理障碍教学内容苏教版五年级下册第8~11页,例7及相应的试一试,练一练,练习二第5~7题教学目标1.使学生在具体情景中,根据题中数量间的相等关系,能正确列方程解决简单的实际问题,掌握方程解决实际问题的思考方法。
2.使学生在经历将实际问题抽象成方程的过程中,积累将现实问题数学化的经验,进一步感受方程的思想方法和应用价值。
3.通过学习,进一步培养学生独立思考,主动与他人合作,自觉检验的良好习惯。
重点难点理解列方程解决实际问题的基本思考方法。
教具准备多媒体课件教学环节㈠导入谈话:我们已经认识了方程,学会了解只含有加、减或乘、除法一步计算的方程。
那学习方程有什么用呢?用处可大了!在你今后的学习中,特别是到了中学、大学阶段,会经常用到方程。
在实际生活中,用方程、解方程的方法也能把一些分析数量关系比较困难的问题,很容易地用列方程、解方程的办法解决。
这节课我们来学习列方程解决简单的实际问题。
板书课题:列方程解决简单的实际问题。
初学列方程解决简单的实际问题,数量关系即使隐蔽一些,对于五年级的学生来说用算术方法解决都不太困难。
相反地,学生会认为列方程解决实际实际问题写的字太多,太麻烦,会以为这是多此一举,这是学生学习本课内容时一般都会存在的心理障碍。
鉴于此,教师进行这样的学习动员,从今后的数学学习和解决生活问题两个方面阐述学习新知识的必要性,对于克服上述心理障碍会起到作用㈡自主探索,合作交流;对比归纳,掌握方法 1.指导观察,明确题意,列式解答。
⑴出示例7情景图。
师:看画面中你获得那些信息?从“小刚跳高成绩比小军少0.06米”中你知道其中含有什么数量关系吗?小组交流列出不同的数量关系式:(生答师板书)①小军的成绩﹣小刚的成绩=0.06米②小军的成绩﹣0.06米=小刚的成绩③小刚的成绩﹢0.06米=小军的成绩师评价:同学们真爱动脑筋,想出这么多的等量关系式,都符合题意,真了不起!⑵引导学生分析各数量关系,并根据数量关系①列方程。
第5课时列方程解决实际问题(2)
小雁塔高多少米?
8 西安大雁塔高64.7米,比小雁塔高度的2倍少
21.9米。小雁塔高多少米?
大雁塔与小雁塔的高度之间有什么相等关系?
小雁塔的高度×2-21.9=大雁塔的高度 2x-21.9=64.7
未知量,设为x
64.7米
根据“小雁塔的高度×2-21.9=大雁塔的高度”解决问题。
解:设小雁塔高x米。 2x – 21.9 = 64.7 ……把2x看成一个整体
7x = 2.1 x = 0.3
2.先把等量关系式填写完整,再列方程。 京杭大运河的全长约为1794千米,它比埃及的苏伊士运河的全 长的10倍多114千米,比美国的伊利运河的全长的3倍多42千 米,苏伊士运河和伊利运河的全长分别约为多少千米?
(1)( 苏伊士运河 )的长度×10+114=( 京杭大运 河 )的长度
解:2x–21.9+21.9=64.7+21.9 2x = 86.6 x = 43.3
检验:将x = 43.3代入方程2x -21.9=64.7,左边=2×43.3-21.9=64.7, 左边=右边。所以x =43.3是方程的解。
答:小雁塔高43.3米。
8 西安大雁塔高64.7米,比小雁塔度的2倍少21.9
6. 设宽是x米。 2x+180=440 x=130 [提示]篱笆由两条宽和一条长组成。
提升练习
7.为迎接100周年校庆,六年级花了28天做了575个灯笼,六年 级花的时间比五年级的2倍多2天,六年级做的灯笼个数比五年 级的3倍多125个。五年级花了多少天做了多少个灯笼?
解:设五年级花了x天做了y个灯笼。 2x+2=28 解得x=13 3y+125=575 解得y=150
(香港青马)大桥的长度×16 + 0 . 8 =(杭州湾跨海)大桥的长度
列方程解实际问题的步骤
列方程解实际问题的步骤解实际问题是数学中的一个重要部分,尤其是在代数学和应用数学中。
通过列方程解实际问题,我们可以将抽象的数学概念与实际生活中的问题相结合,从而更好地理解和应用数学知识。
在这篇文章中,我们将详细介绍解实际问题的步骤,并通过实际例子来演示如何解决这些问题。
步骤一:理解问题解决任何实际问题的第一步是完全理解问题。
这意味着读者需要仔细阅读问题,并确保理解问题的意义和要求。
有时候,实际问题可能会有一些隐含的信息或假设,读者需要仔细辨别这些信息并将其纳入解决方案中。
如果理解问题有困难,读者可以尝试用自己的话重新表述问题,或者画图或做示意图来帮助理解问题的要求。
步骤二:分析问题一旦理解了问题,下一步就是分析问题。
在分析问题时,读者需要思考问题的各个方面,包括问题的条件、要求和目标。
需要考虑问题中涉及的各种因素、变量和关系,并尝试找到问题的主要矛盾或难点。
在这一步中,读者可能需要花一些时间来整理问题的信息,并确定问题的主要目标和关键要素。
步骤三:建立模型建立模型是解决实际问题的关键一步。
在建立模型时,读者需要将问题抽象化,将实际问题转化为数学问题。
这意味着确定和定义问题中涉及的各种变量、参数和关系,以及建立这些变量和参数之间的数学模型。
建立模型的过程可能需要一些创造力和想象力,读者需要将问题中的复杂因素简化为数学语言,从而更方便地进行分析和解决。
步骤四:列方程在建立了模型之后,下一步就是列方程。
列方程是将实际问题转化为数学问题的关键一步。
通过列方程,读者可以将问题中的各种条件和关系用数学语言进行表达,从而更方便地进行求解和分析。
在列方程时,读者需要确保方程的准确性和完整性,从而能够正确地反映问题的各种条件和要求。
步骤五:求解方程一旦列出了方程,下一步就是求解方程。
在求解方程时,读者需要使用数学工具和方法来解决方程,找到方程的解。
这可能需要一些数学知识和技巧,如代数运算、方程的化简、方程的求解等。
《列方程解决实际问题》教学反思
《列方程解决实际问题》教学反思《列方程解决实际问题》教学反思1虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;二、列方程解答两、三步计算的实际问题。
总之,一切以“解”为出发点,注重的是解决问题的结果。
经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。
这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。
首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。
再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。
然而,追求尽善尽美的我们还是应当引以为戒。
失败之二:没给出点时间让学生探寻其他解法。
其实我私自认为将这一过程放在第一课时,有点难为我的学生。
我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。
庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
《列方程解决实际问题》教学反思2今天教学列方程解决实际问题,这个内容是在学生已经认识等式与方程,并学会应用等式性质解一步计算方程的基础上进行教学的。
苏教版数学五年级下册1.7列方程解三步计算实际问题课前预习
○…………外……○…………内……绝密★启用前苏教版数学五年级下册1.7列方程解三步计算实际问题 课前预习试卷副标题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明一、解方程或比例 1.解下列方程。
3×1.5+6x =33 5.6x ﹣3.8=1.8 10.2﹣5x =2.2二、解答题 2.某市今年和去年共建商品房560万平方米,今年建商品房的面积是去年的4倍。
两年各建商品房多少万平方米?3.如下图,一个近似长方形的池塘周长是300米,它的长是100米,这个池塘的宽是多少米?(列方程解答)是多少千米/时?(列方程解答)参考答案:1.x=4.75;x=1;x=1.6【详解】试题分析:①依据等式的性质,方程两边同时减去4.5,再同时除以6求解;①依据等式的性质,方程两边同时加3.8,再同时除以5.6求解;①依据等式的性质,方程两边同时加5x,再同时减去2.2,再同时除以5求解。
解:①3×1.5+6x=334.5+6x=334.5+6x﹣4.5=33﹣4.56x=28.56x÷6=28.5÷6x=4.75①5.6x﹣3.8=1.85.6x﹣3.8+3.8=1.8+3.85.6x÷5.6=5.6÷5.6x=1①10.2﹣5x=2.210.2﹣5x+5x=2.2+5x2.2+5x﹣2.2=10.2﹣2.25x÷5=8÷5x=1.6【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐。
2.今年建448万平方米,去年建112万平方米【分析】首先根据今年建商品房的面积是去年的4倍,设去年建商品房的面积是x万平方米,则今年建商品房的面积是4x万平方米;然后根据某市今年和去年共建商品房560万平方米,列出方程即可。