第八章整式的乘法 复习课课件
整式的乘法因式分解复习课件
因式分解
1.运用前两节所学的知识填空
1).m(a+b+c)= ma+mb+你m能. c发现这 2).(a+b)(a-b)= a2-b2 两组.等式之 3).(a+b)2= a2+2ab.+b2间区的别联吗系? 和
2.试一试 填空:
1).ma+mb+mc= m•( a+b+c )
2).a2-b2=((a+b)(a-b))
A. 4X²+y² B. 4 x- (-y)²
C. -4 X²-y³ D. - X²+ y²
D. 4) -4a²+1分解因式的结果应是 (D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
B. -(2a +1)(2a+1) D. -(2a+1) (2a-1)
整式的乘法因式分解复习课件
被除式的系数 除式的系数
底数不变, 指数相减。 整式的乘法因式分解复习课件
保留在商里 作为因式。
解: (1).(2x²y)³·(–7xy²)÷(14x4y³)
=8x6y3 ·(–7xy²)÷(14x4y³)
=-56x7y5 ÷(14x4y³) = -4x3y2 解:(2).(2a+b)4÷(2a+b)²
整式的乘法因式分解复习课件
a a a 同底数幂的乘法
m · n = m+n
幂的乘方
a a ( m )n = mn
整 式
积的乘方
( ab )n= an b n
的 乘
单项式的乘法
4a2x5 ·(-3a3bx2)
整式的乘法复习课件
04
整式乘法的常见错误与纠正
运算顺序的错误
总结词
详细描述
纠正方法
运算顺序错误是整式乘法中常见的问 题之一,主要表现在运算的先后顺序 不正确。
在进行整式乘法时,运算的顺序应该 是先乘方、再乘除、最后加减。如果 运算顺序不正确,会导致计算结果出 现偏差。例如,在进行(a+b)(a-b)的 计算时,应该先进行括号内的加减运 算,再进行乘法运算,得到的结果是 a^2 - b^2。如果先进行乘法运算, 得到的结果将是a^2 + ab - ab b^2,这是错误的。
整式的乘法复习ppt课 件
contents
目录
• 整式乘法的基本概念 • 整式乘法的运算技巧 • 整式乘法的应用实例 • 整式乘法的常见错误与纠正 • 整式乘法的练习题与解析
01
整式乘法的基本概念
整式的定义与表示
整式是由常数、变量、加法、减法、 乘法和乘方等运算构成的代数式。
整式中的字母表示变量,可以是实数 或复数。
在进行整式乘法时,要严格按照先乘 方、再乘除、最后加减的顺序进行运 算,避免因为运算顺序的错误导致结 果不正确。
符号处理的错误
总结词
符号处理错误是整式乘法中常见的问题之一,主要表现在对负号的处理不正确。
详细描述
在进行整式乘法时,负号的处理非常重要。如果对负号处理不当,会导致计算结果出现偏 差。例如,在进行(-a)(-b)的计算时,应该将两个负号相乘得到正号,得到的结果是ab。 如果对负号处理不当,得到的结果将是-ab,这是错误的。
纠正方法
在进行整式乘法时,要特别注意 同类项的合并,严格按照运算法 则进行计算,避免因为合并同类 项错误导致结果不正确。
05
整式乘法的练习题与解析
整式的乘法单元复习ppt
05
整式乘法单元测试题及答案
单元测试题一
总结词:基础题
详细描述:涵盖了整式乘法的基本概念和运算法则,包括单项式与单项式、单项 式与多项式、多项式与多项式的乘法运算,以及乘法公式的应用。
单元测试题二
总结词:进阶题
详细描述:难度略高于基础题,增加了对整式乘法运算法则 的深入理解和应用,包括更为复杂的整式乘法运算和公式的 变形应用。
根式的运算
总结词
根式的运算是一种特殊的运算方式,可以用来表示一些无理数。
详细描述
根式的运算包括根式的性质、根式的化简、根式的加减乘除等,这些运算在解决 一些数学问题时非常有用,需要掌握其运算规则和实际应用。
04
整式乘法的注意事项
符号问题
总结词
正确处理符号是整式乘法中的重要问题。
详细描述
在整式乘法中,尤其是涉及到多项式与多项式相乘时,必须正确处理各项的符号,以确保结果的正确性。例如 ,当两个同类项相乘时,应把它们的系数相乘,并把相同的字母因数合并在一起,且对于不同的项相乘,应把 它们的系数和字母因数分别相乘。
对于只在一个单项式中出现的字母,则连同它的指数 作为积的一个因式。
同类项合并:相同字母的幂分别相加,作为积的一个 因式。
在进行整式乘法运算时,需要注意幂的符号和顺序, 以及因式的合并和分配律的应用。
02
整式乘法公式
单项式乘单项式
总结词
基础运算,直接使用法则
详细描述
单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他 的指数不变,作为积的因式。
整数幂的运算在整式乘法中具有重要地位,是基础且必需的 知识点。
详细描述
整数幂的运算包括同底数幂的乘法、幂的乘方、积的乘方等 ,这些运算规则在整式乘法中经常出现,需要熟练掌握。
整式的乘法第课件
《整式的乘法第课件ppt》2023-10-26•课程介绍•整式乘法基本概念•整式乘法基本运算规则目录•整式乘法的技巧和特殊情况•整式乘法的实际应用•练习与巩固01课程介绍整式的乘法是数学中的重要概念,是后续学习多项式、方程等知识的基础。
对于初中生而言,掌握整式的乘法能够为他们的数学学习打下坚实的基础。
课程背景理解整式的乘法的概念和运算法则。
能够熟练进行整式的乘法运算。
掌握整式的乘法在生活中的应用。
课程目标课程大纲•整式的乘法的概念及运算法则•单项式与单项式相乘的运算法则•单项式与多项式相乘的运算法则•多项式与多项式相乘的运算法则•整式的乘法运算示例及注意事项•示例:$(a+b)(m+n)$的计算过程及结果•注意事项:如何避免计算错误及如何提高计算速度•整式的乘法在生活中的应用•面积计算:如矩形、正方形、三角形等面积的计算公式中都包含整式的乘法•体积计算:如长方体、正方体、圆柱体等体积的计算公式中也都包含整式的乘法•课后练习及自我评估•练习题:提供不同难度等级的题目,让学生根据自身情况进行选择练习•自我评估:让学生对自己的学习成果进行自我评价,找出不足之处及时改进。
02整式乘法基本概念总结词单项式是一种特殊的代数式,它只包含一个字母和一个数字,并且这个数字必须是整数。
详细描述单项式是由一个字母和一个数字组成的代数式,例如:3x、4y等。
其中,字母表示未知数,数字表示该未知数的具体数值。
在单项式中,字母的次数为1,数字的次数为0。
单项式总结词多项式是由多个单项式组成的代数式,每个单项式之间用加号或减号连接。
详细描述多项式是由多个单项式组成的代数式,每个单项式之间用加号或减号连接。
例如:3x + 4y就是一个多项式,其中包含两个单项式3x和4y,并且它们之间用加号连接。
多项式整式乘法是一种特殊的乘法运算,它只适用于整式之间相乘。
总结词整式乘法是一种特殊的乘法运算,它只适用于整式之间相乘。
整式乘法的运算规则包括:交换律、结合律和分配律。
《整式的乘法》课件
整式乘法的基本运算法则是单 项式与单项式的相乘,即系数 相乘、同类项的字母部分相加 。
整式乘法的结果是一个新的多 项式,其项数等于两个整式项 数的乘积。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
整式乘法的运算规则
单项式乘单项式
总结词
直接相乘,系数相乘,同类项的字母 和指数分别相加。
在整式乘法中,应正确使用乘法 公式,如平方差公式、完全平方
公式等。
掌握公式的形式和特点,理解公 式的推导过程和应用条件,以便
在解题时灵活运用。
注意公式的正误和适用范围,避 免使用错误或超出适用范围的公
式。
避免运算错误
在整式乘法中,应注意避免运算错误 ,如符号错误、计算错误等。
在进行复杂计算时,应仔细核对每一 步骤的计算结果,确保整个过程的正 确性。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
《整式的乘法》ppt 课件
目录
CONTENTS
• 整式乘法的定义与性质 • 整式乘法的运算规则 • 整式乘法的应用 • 整式乘法的注意事项 • 练习与巩固
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
整式乘法的定义与性质
详细描述
单项式乘单项式是指两个单项式相乘 ,将它们的系数相乘,并将同类项的 字母和指数分别相加。例如,$2x^3y times 3x^2y = 6x^{3+2}y^{1+1} = 6x^5y^2$。
单项式乘多项式
总结词
逐项相乘,合并同类项。
整式的乘法和乘法公式复习课课件
• 整式的乘法复习 • 乘法公式复习 • 整式的乘法与乘法公式的应用 • 整式的乘法和乘法公式的注意事项 • 练习与巩固
01
整式的乘法复习
单项式乘单项式
总结词
直接相乘,系数相乘,同底数幂 相乘。
详细描述
单项式与单项式相乘时,只需将 它们的系数相乘,并将相同的字 母的幂相加。例如,$2x^3y$与 $3xy^2$相乘得到$6x^4y^3$。
提高练习题
提高练习题1
计算 (x + y)^2(x - y)^2。
提高练习题2
化简 (a^2 - b^2) / (a^2 + ab + b^2)。
提高练习题3
求 (a^2 + 2ab + b^2) / (a^2 - b^2) 的值。
综合练习题
1 2
综合练习题1
计算 ((x + y)(x - y))^2。
VS
公式范围
整式的乘法公式有一定的适用范围,如完 全平方公式适用于任意实数a、b的情况; 平方差公式适用于任意实数a、b(a≠b) 的情况等。
公式推导和证明方法
推导方法
整式的乘法公式可以通过基本的运算法则进 行推导,如通过同底数幂的乘法法则推导出 幂的乘方公式;通过单项式乘以多项式的法 则推导出分配律等。
02
乘法公式复习
平方差公式
总结词
理解平方差公式的结构特点
总结词
掌握平方差公式的应用
详细描述
平方差公式是整式乘法中的重要公式之一,表示 两个平方数的差等于它们的线性组合的平方。这 个公式在代数和几何中都有广泛的应用,是解决 数学问题的关键工具。
详细描述
整式的乘法复习课件
(6) 10 10 10 10 8
5
(7) x x x x 2 x
( 8) y y y y y 2 y
4
3
5
2. 幂的乘方
即: 填空:
底数不变,指数相乘
(a ) a
m n
mn
(1) (10 ) 10
3 5 2 3
3 2
6
( 2) ( x ) x
( x 2 y 1)( x 2 y 1) ( x 2 y )
解:原式= ( x 2 y ) 1 ( x 2 y )
2 2 2
2 2 2
2
理清运算关系,注意运算顺序,巧用运算律和乘法公式
x 4 xy 4 y 1 ( x 4 xy 4 y )
一、幂的运算
1.同底数幂的乘法 底数不变,指数相加
(1) x x x
2 5 6 6
2
3 7
12
( 2) x x x x
5 4 3 2 5
6
12
( 3) a a a
2 3
( 4) y y y y
4
( 5) m m m
2 3
n n
2 2
2 4
( 2) ( 2a b ) 16a 8b12
n
2 3 4
( 3) ( 3 10 ) 27 106
(4) 若x 3, y 2, 则( xy) x y 2 3 6 (5) 若10 2,10 3, 则10 (10 ) (10 ) 2 3 108 4 5 4 5 6 5 0 . 75 [ 0 . 75 ( )] 0 . 75 ( 1 ) 0.75 (6) 0.75 ( ) 3 3
整式的乘法复习课件
bn = (ab)n 反向使用: an·
试用简便方法计算:
(1) 23×53 = ; (2×5)3
= 103 = (-5)×[(-5)×(-2)]15 = -5×1015 = [2×4×(-0.125)]4
(2) (-5)16 × (-2)15
(3) 24 × 44 ×(-0.125)4
x - x 4x + 1 x x -1 + 2x x +1
2 3 2
2
2
计算:
随堂 练习
(1)(x−2y)(x+5y)
(2)x (x -1) + 2x(x - 2x + 2)
2 2
(一)填空:
1.已知xm=4,xn=8(m,n是整数),则 8 . x3m-n= 2.(-x3)÷(-x)2· (-x4)=
x y
深入探索
(1)已知2x+5y-3=0,求 4x ·32y的值 (2)已知 2x =a, 2y =b,求 22x+3y 的值 (3)已知 22n+1 + 4n =48, 求 n 的值 (4)若(9n)2 = 38 ,则n为______
乘法公式与因式分解复习
乘 法 公 式 与 因 式 分 解
(1) x + xy + y
2
2
2
(2) x 2 - 5x + 25
(3) a + 2ab - b
2
(4) x 2 - 2ab + y 2
(6) x2 - 4 y 2
(5) - 4 x2 - y 2 + 4 xy
例2:
完 全 平 方 公 式 的 逆 用
整式的乘法复习课件
典型例题解析
例题3
01
(3x 1)^2
• 分析
02
本题考查的是一元一次整式的平方运算。按照完全平方公式展
开即可。
• 解法
03
(3x - 1)^2 = 9x^2 - 6x + 1(利用完全平方公式)
03 二元一次整式乘法
二元一次整式概念
定义
含有两个未知数,且未知数的最高次 数为1的整式称为二元一次整式。
针对不同题型进行专项训练,提高解题能力
选择题和填空题
通过大量练习,提高对基础概念 和运算规则的掌握程度,培养快
速准确解题的能力。
计算题
针对不同类型的计算题,如单项 式与单项式相乘、单项式与多项 式相乘、多项式与多项式相乘等, 进行专项训练,提高运算速度和
准确性。
证明题
通过分析和证明乘法公式的过程, 培养逻辑推理能力和数学表达能
• 解法
(2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x-3
典型例题解析
例题2
(x + 2)(x - 2)
• 分析
本题同样考查一元一次整式与多项式的乘法运算。注意到(x + 2)和 (x - 2)是平方差的形式,可以利用平方差公式进行简化。
• 解法
(x + 2)(x - 2) = x^2 - 4(利用平方差公式)
06 整式乘法复习策略与建议
系统梳理知识点,形成知识网络图
整式乘法的基本法则
回顾并掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的法则。
乘法公式
熟练掌握平方差公式和完全平方公式,理解其推导过程和应用场景。
《整式的乘法复习》课件
学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04
习
基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。
《整式的乘法》课件
同类项相加
如果两个整式含有同类项,则将它们 的同类项的字母和字母的指数分别相 加,例如:$x^2y cdot xy^2 = x^{2+1}y^{1+2} = x^3y^3$。
整式乘法的应用
01
02
03
解决实际问题
整式乘法在实际问题中有 着广泛的应用,例如计算 面积、体积、路程等。
代数运算
整式乘法是代数运算中的 基本运算之一,它可以用 于解决代数方程、不等式 等问题。
掌握好单项式乘多项式和多项式乘多 项式的计算方法,是学好整式乘法的 基础。
合并同类项时,要注意不要遗漏任何 一项,特别是系数和字母因式部分。
多项式乘多项式的实例解析
例如
$(x+1)(x^2+2x+3)$,先分别用$(x+1)$去乘$(x^2+2x+3)$的每一项,得到 $x^3+2x^2+3x$,$x^2+2x+3$,再将同类项合并,得到 $x^3+3x^2+5x+3$。
整式乘法的符号表示
用“·”表示整式相乘,例如:$a^2 cdot b^3 = a^{2+3} cdot b^{3+1} = a^5 cdot b^4$。
整式乘法的规则
系数相乘
合并同类项
整式相乘时,首先将它们的系数相乘 ,例如:$2x cdot 3y = 6xy$。
在整式乘法中,如果两个整式含有相 同的字母和字母的指数,则可以将它 们合并为一个项,例如:$2x^2y + 3x^2y = 5x^2y$。
再如
$(-2x+3y)(-2x-3y)$,利用平方差公式得到$4x^2-9y^2$。
第八章整式乘除重难易错题型讲解ppt课件
乘法公式
平方差公式 : (a 完全平方公式:(a
b)(a b) b)2 a
a2 b2 2 2ab
b2
考点讲练
考点一 幂的相关运算
例1 计算-(-3a2b3)4的结果是 (
)D
(A)81a8b12
(B)12a6b7 (C)-12a6b7
针对8训1练a8b12
(D)-
1. 下列计算正确的是
方法归纳 在整式的乘法运算中,一要注意运算顺序, 先算括号内的,再算括号外的;二要熟练正确地运用 运算法则.
针对训练
2. 一个长方形的长是a-2b+1,宽为a,则长方形的面积 为 a2-2ab+a.
考点三 乘法公式的运用
例3 先化简,再求值:[(x-y)2+(x+y)(x-y)] -2x2,其中 x=3,y=1.5.
为单项式乘以单项式.
方法总结
将要解决的问题转化为另一个较易解决的问题,这 是初中数学中常用的思想方法.如本章中,多项式×多 项式 转化单项式×多项式 单转化项式×单项式 有理转化数的乘 法和同底数幂的乘法.
针对训练
5. 计算:(4a-b)•(-2b)2 解: 原式=(4a-b)•4b2=16ab24b3.
方法总结
在本章中应用幂的运算法则、乘法公式时,可以将 一个代数式看做一个字母,这就是整体思想,应用这 种思想方法解题,可以简化计算过程,且不易出错.
针对训练
6.若xn=5,则(x3n)2-5(x2)
2n= 15000.
7.若x+y=2,则1 x2 xy 1 y2 =
.
2
2
2
数形结合思想
例6 如图所示,在边长为a的正方形中剪去边长为b的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
m n
a
mn
a
a
m n
b
a
m
n m
a
nБайду номын сангаас
an· bn = (ab)n
试用简便方法计算: (1) 23×53 ; (2) 24 × 44 ×(-0.125)4 ;
已知10 =4, 10 =7,求下列各式的值 ( 1 ) 10
2 a 3b 2a 3b
a
(2) 10 10
2
2
新乐市实验学校
(1)
(2)
(x-2y)( x+2y ) = x -4y
(x 1 2 1 2
2
2
2
y ) ( x- y )= x -xy + y
2
2
1 4
2
(3)
(-x-2y)( -x+2y) =x -4y
(-x1 2 1 2
2
(4)
y )(-x- y )= x +xy + y
1 4
2
新乐市实验学校
新乐市实验学校
二、
乘 法 公 式
平方差公式
(a+b)(a-b) =
a -b
2
2
完全平方公式
(a+b) = a + 2ab +b
2
2
2
新乐市实验学校
下列计算是否正确?如不正确,应 如何改正?
x 6 (-x+ 6)( -x6) = 2 2 2 = (-x) - 6 =x - 36 2 (2)(-x-1)(x+1) = -x - 1 2 = -(x+1)(x+1) = -(x+1) 2 2 =- ( x + 2x + 1) = -x - 2x -1 2 (3) (-2xy-1)(2xy-1) =1-2xy
(1)
2
=(-1) -(2xy) =1-4x y
2
2
2 2
新乐市实验学校
填空:
2 2 3 9 (1)(a ___) a 6a ___
20x 25 5 (2)(2 x ___) 4 x ___
2 2
2ab (3)a b (a b) _____
2 2 2
4xy ( x y ) (4)(x y ) ______
( x 1)( x 2 x 1) x 3 1 ( x 1)( x 3 x 2 x 1) x 4 1 ( x 1)( x x x x 1) x 1
4 3 2 5
...... (1)由此归纳出一般性规律:
( x 1)( x
n1
x
x
1999
x ·
7
3
1 1997 1998 (3) ( ) 7 · = 7 (4) (-abc
(-ab) = -a b c )· 2 3 3 2 (-ab) = -a b c (abc)·
2
3 3 2
(5) ( +abc )
(-ab) = - a b c ·
3 3 2
新乐市实验学校
性质公 式 的 反 向 使 用
已知 (a+b)2=7,(a-b)2=3.求a2+b2 ,ab的值 解:由题意得 a2+2ab+b2=7…① a2-2ab+b2=3…② ①+② 2a2+2b2=10 a2+b2=5 ①-② 4ab=4 ab=1
新乐市实验学校
已知 a+b=1,ab=-6.求a2+b2 ,(a-b)2的值 解:由题意得 a2+2ab+b2=1 ∴a2-12+b2=1 a2-12+b2=1 a2+b2=13 (a-b)2=(a+b)2-4ab ∴ (a-b)2=1-4(-6)=25
新乐市实验学校
x +12xy+k是一个关于x、y的完全 平方式,则k=( B ) 2 2 2 (B) 9y (D) 36y (A) 3y (C) y 2 2 ( 2) 如果4x +kxy + 9y 是一个关于x、y的完全平 方式,则k=( + 12 )
(1) 如果 4
2
新乐市实验学校
观察下面各式 2 ( x 1)( x 1) x 1
新乐市实验学校
授课人 刘荣格 2016.6.6
新乐市实验学校
复习目标
1、复习回顾第八章整式乘法有关的性质、法 则、乘法公式等基础知识 2、进一步掌握整式乘法有关的性质、法则、 乘法公式等基础知识的运用及综合应用 3、提升自己的分析能力及灵活运用知识能力
新乐市实验学校
一、
同底数幂的乘法
幂的乘方
整 式 的 乘 法
n 2
x
3
n3
...... x x 1) ___
2
62 63
(2)根据(1)求:
1 2 2 2 2 ...... 2 2
2 4
新乐市实验学校
新乐市实验学校
分层作业: 学师完成自测卷A、B 学友完成自测卷A。
新乐市实验学校
6
6
a a 6 3 2 5 x (4) ( x ) = x
(2) a· a
2
=
2
3
(5) 5a · 2a =10a (6)
2
2
10a
5
(x-y) (y-x) = (x-y)
5
7
-(x-y) (y-x)
7
7
新乐市实验学校
(1) (2)
(a ) + ( a ) = 2a
6 2 4 3
12
x
2002
=
2
积的乘方
a ·a = a n m ( a ) = amn n n ( ab ) = a b n
m n
m+n
单项式的乘法 单项式与多项式相乘
m(a+b)= ma+mb
多项式的乘法(a+b)(m+n)= am+an+bm+bn
新乐市实验学校
(1) a
2
+a =a
3 3
5
(3) a · a
3
=2a
3
3
a