高考物理常用模型十六:带电粒子在复合场中的运动

合集下载

带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(2007年全国卷2)25。

(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。

在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。

试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。

(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。

在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。

一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。

粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。

粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。

已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。

(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。

高考物理二轮复习专题归纳—带电粒子在复合场中的运动

高考物理二轮复习专题归纳—带电粒子在复合场中的运动

高考物理二轮复习专题归纳—带电粒子在复合场中的运动考点一带电粒子在组合场中的运动1.带电粒子的“电偏转”和“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转)情景图受力F B =qv 0B ,F B 大小不变,方向变化,方向总指向圆心,F B 为变力F E =qE ,F E 大小、方向均不变,F E 为恒力运动规律匀速圆周运动r =mv 0Bq ,T =2πm Bq类平抛运动v x =v 0,v y =Eqmt x =v 0t ,y =Eq 2mt 22.常见运动及处理方法3.“5步”突破带电粒子在组合场中的运动问题例1如图所示,在平面直角坐标系xOy 的第Ⅰ、Ⅳ象限内有一半径为R 的半圆弧,半圆弧的圆心在坐标原点O 处,半圆弧内有方向沿y 轴正方向的匀强电场,半圆弧外足够大的范围内有磁感应强度大小为B 、方向垂直于坐标平面向外的匀强磁场.现从O 点由静止释放一个质量为m 、电荷量为q 的带正电粒子,粒子经电场加速后进入磁场,并从半圆弧与x 轴的交点P 返回电场,不计粒子受到的重力.(1)求匀强电场的电场强度大小E ;(2)求粒子从O 点运动到P 点的时间t ;(3)证明粒子经过P 点后从y 轴离开电场,并求粒子经过P 点后离开电场时的速度大小v .答案(1)qB 2R 2m(2)4+3πm2qB(3)5qBR 2m解析(1)设粒子进入磁场时的速度大小为v 0,根据动能定理有qER =12mv 02粒子在磁场中做匀速圆周运动的轨迹如图甲所示,根据几何关系可知,粒子的做圆周运动的半径为R粒子在磁场运动的过程中,有qv 0B =mv 02R 联立解得E =qB 2R2m (2)由(1)可得v 0=qBR m设粒子第一次在电场中运动的时间为t 1,有R =12v 0t 1,解得t 1=2mqB 粒子在磁场中做圆周运动的周期T =2πR v 0=2πmqB粒子在磁场中运动的时间t 2=34T解得t 2=3πm 2qB又t =t 1+t 2,解得t =4+3πm 2qB(3)粒子经过P 点后在电场中做类平抛运动,假设粒子经过P 点后从y 轴离开电场,如图乙所示,设粒子从P 点运动到y 轴的时间为t 3,有R =v 0t 3,解得t 3=mqB粒子在电场中运动的加速度大小a =qE m该过程中,粒子沿y 轴方向的位移大小y =12at 32解得y =14R由于y <R ,因此假设成立,粒子经过P 点后从y 轴离开电场;粒子从y 轴离开电场时沿y 轴方向的速度大小v y =at 3,解得v y =qBR2m则合速度v =v 02+v y 2解得v =5qBR2m.考点二带电粒子在叠加场中的运动1.三种典型情况(1)若只有两个场,所受合力为零,则表现为匀速直线运动或静止状态.例如电场与磁场叠加满足qE =qvB 时,重力场与磁场叠加满足mg =qvB 时,重力场与电场叠加满足mg =qE 时.(2)若三场共存,所受合力为零时,粒子做匀速直线运动,其中洛伦兹力F =qvB 的方向与速度v 垂直.(3)若三场共存,粒子做匀速圆周运动时,则有mg =qE ,粒子在洛伦兹力作用下做匀速圆周运动,即qvB =m v 2r.2.当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.3.分析例2(多选)(2022·广东卷·8)如图所示,磁控管内局部区域分布有水平向右的匀强电场和垂直纸面向里的匀强磁场.电子从M点由静止释放,沿图中所示轨迹依次经过N、P两点.已知M、P在同一等势面上,下列说法正确的有()A.电子从N到P,电场力做正功B.N点的电势高于P点的电势C.电子从M到N,洛伦兹力不做功D.电子在M点所受的合力大于在P点所受的合力答案BC解析由题可知电子所受电场力水平向左,电子从N到P的过程中电场力做负功,故A错误;根据沿着电场线方向电势逐渐降低可知,N点的电势高于P点的电势,故B正确;由于洛伦兹力一直都和速度方向垂直,故电子从M到N,洛伦兹力都不做功,故C正确;由于M点和P点在同一等势面上,故从M点到P点电场力做功为0,而洛伦兹力不做功,M点速度为0,根据动能定理可知电子在P点速度也为0,则电子在M点和P点都只受电场力作用,在匀强电场中电子在这两点所受电场力相等,即所受合力相等,故D 错误.例3(2022·广东高州市二模)如图所示,在区域Ⅰ有与水平方向成45°角的匀强电场,电场方向斜向左下方.在区域Ⅱ有竖直向下的匀强电场和垂直纸面向里的匀强磁场,电场强度大小为E 2=mgq,磁感应强度大小为B .质量为m 、电荷量为-q 的粒子从区域Ⅰ的左边界P 点由静止释放,粒子沿虚线水平向右运动,进入区域Ⅱ,区域Ⅱ的宽度为d .粒子从区域Ⅱ右边界的Q 点离开,速度方向偏转了60°.重力加速度大小为g .求:(1)区域Ⅰ的电场强度大小E 1;(2)粒子进入区域Ⅱ时的速度大小;(3)粒子从P 点运动到Q 点的时间.答案(1)2mg q (2)23qBd3m(3)23qBd 3mg +πm3qB解析(1)粒子在区域Ⅰ受重力和静电力,做匀加速直线运动,θ=45°,如图所示故有sin θ=mgqE 1解得E 1=mg q sin θ=2mgq(2)设粒子进入区域Ⅱ的速度为v ,粒子受竖直向下的重力和竖直向上的静电力,且qE 2=mg则所受的洛伦兹力提供向心力,有qvB =mv 2r 速度方向偏转了60°,则对应圆心角为60°,有sin 60°=d r ,联立解得v =23qBd3m(3)设粒子在区域Ⅰ沿虚线水平加速的加速度大小为a ,有a =gtan θ=g ,由速度公式有v =at 1可得加速时间为t 1=23qBd3mg粒子在区域Ⅱ做匀速圆周运动的周期为T =2πr v =2πm qB则做匀速圆周运动的时间为t 2=60°360°T =πm3qB则粒子从P 点运动到Q 点的时间为t =t 1+t 2=23qBd 3mg +πm3qB.(2022·山西省一模)如图所示,以两竖直虚线M 、N 为边界,中间区域Ⅰ内存在方向竖直向下的匀强电场,电场强度大小为E ,两边界M 、N 间距为d .N 边界右侧区域Ⅱ中存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场.M 边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M 上的O 点处有一离子源,水平向右发射同种正离子.已知初速度为v 0的离子第一次回到边界M 时恰好到达O 点,电场及两磁场区域足够大,不考虑离子的重力和离子间的相互作用.(1)求离子的比荷;(2)初速度为v02的离子第二次回到边界M 时也能恰好到达O 点,求区域Ⅲ内磁场的磁感应强度大小.答案(1)v 0dv 0EB (2)B7解析(1)由题可知,离子在区域Ⅰ和Ⅱ中的运动轨迹如图所示,离子在区域Ⅰ由O运动到A 过程中,水平方向以速度v 0做匀速直线运动,有d =v 0t竖直方向做匀加速直线运动,有y 1=12at 2又qE =ma 联立可得y 1=qEd 22mv 02设离子运动到A 点时的速度方向与边界N 的夹角为θ,则离子运动到A 点速度为v =v 0sin θ离子在区域Ⅱ中做匀速圆周运动有qvB =mv 2r 解得r =mv 0qB sin θ由几何关系可知AC =2r sin θ=2mv 0qB从C 点运动到O 点过程,竖直方向有y 2=at ·t +12at 2=32at 2又AC =y 1+y 2联立可得q m =v 0dv 0EB(2)当初速度为v02时,离子运动轨迹如图所示.从O 点射出到进入区域Ⅱ中,竖直方向有y 1′=12at ′2水平方向有d =v02t ′可得y 1′=4y 1设离子运动到A ′点时的速度方向与边界N 的夹角为θ′,则运动到A 点速度为v ′=v 02sin θ′,在区域Ⅱ中有qv ′B =mv ′2r ′,则r ′=mv 02qB sin θ′从进入区域Ⅱ到射出区域Ⅱ,弦长A ′C ′=2r ′sin θ′=mv 0qB再次进入区域Ⅰ中,竖直分位移为y 2′=at ′·t ′+12at ′2=32at ′2=4y 2所以y 1′+y 2′=4(y 1+y 2)=4AC 在区域Ⅲ中的弦长OF =2r ″sin θ″又qv ″B ′=m v ″2r ″,v ″=v 02sin θ″所以OF =mv 0qB ′由几何关系可知OF =y 1′+y 2′-A ′C ′=7mv 0qB联立解得B ′=B7.专题强化练1.(2022·山东省名校联盟高三期末)如图所示,在xOy 坐标系的第一象限内存在沿y 轴负方向的匀强电场,在第四象限内存在垂直坐标平面向里的匀强磁场.一质量为m 、电荷量为q 的带正电粒子(粒子所受重力不计)从坐标原点O 射入磁场,其入射方向与x 轴的夹角θ=30°,第一次进入电场后,粒子到达坐标为(23L +L ,L )的P 点处时的速度大小为v 、方向沿x 轴正方向.求:(1)粒子从O 点射入磁场时的速度大小v 0;(2)电场的电场强度大小E 以及磁场的磁感应强度大小B ;(3)粒子从O 点运动到P 点的时间t .答案(1)233v (2)mv 26qL 23mv3qL (3)3L π+126v解析(1)由题意知,粒子的运动轨迹如图所示,由于洛伦兹力不做功,粒子经过Q 点时的速度大小也为v 0,根据对称性,粒子经过Q 点时的速度方向与x 轴正方向的夹角也为θ,粒子进入第一象限后,沿x 轴方向做匀速直线运动,沿y 轴方向做匀减速直线运动,根据几何关系有vv 0=cos θ解得v 0=233v (2)对粒子从Q 点运动到P 点的过程,根据动能定理有-qEL =12mv 2-12mv 02解得E =mv 26qL设粒子从Q 点运动到P 点的时间为t 1,有0+v 0sin θ2·t 1=L 解得t 1=23L v粒子从Q 点运动到P 点的过程中沿x 轴方向的位移大小为x QP =vt 1解得x QP =23L则OQ =23L +L -x QP =L设粒子在磁场中做圆周运动的半径为R ,根据几何关系有OQ =2R sin θ解得R =L根据洛伦兹力提供向心力有qv 0B =mv 02R 解得B =23mv 3qL(3)粒子在磁场中做圆周运动的周期T =2πR v 0根据几何关系,在粒子从O 点运动到Q 点的过程中,运动轨迹对应的圆心角为90°-θ,故粒子在该过程中运动的时间t 2=90°-θ360°·T 解得t 2=3πL 6v又t =t 1+t 2解得t =3L π+126v.2.(2022·河北唐山市高三期末)如图,顶角为30°的“V”字形区域内存在垂直于纸面向外的匀强磁场.OM 上方存在电场强度大小为E 的匀强电场,方向竖直向上.在OM 上距离O 点3L 处有一点A ,在电场中距离A 为d 的位置由静止释放一个质量为m 、电荷量为q 的带负电的粒子,经电场加速后该粒子以一定速度从A 点射入磁场后,第一次恰好不从ON 边界射出.不计粒子的重力.求:(1)粒子运动到A 点时的速率v 0;(2)匀强磁场磁感应强度大小B ;(3)粒子从释放到第2次离开磁场的总时间.答案(1)2qEd m(2)1L2Edmq(3)32md qE +7πL6m2qEd解析(1)带电粒子由静止开始到达A 点时,由动能定理可得qEd =12mv 02解得v 0=2qEd m(2)根据题意作出粒子在磁场中完整的运动轨迹图如图所示粒子在磁场中的运动轨迹的圆心为O 1,轨迹与ON 边界相切于D 点,设轨迹半径为r ,由几何关系可得sin 30°=r 3L -r解得r =L设匀强磁场磁感应强度大小为B ,由洛伦兹力提供向心力可得Bqv 0=mv 02r 联立解得B =mv 0qr =1L2Edm q(3)带电粒子从静止加速到A 点所用时间为t1=2dv0=2md qE带电粒子在磁场中运动的周期T=2πrv0=πL 2m qEd带电粒子第一次在磁场中运动时间为t2=T 2带电粒子再次进入电场再返回磁场所用时间t3=2t1再次返回磁场由几何关系可知,以O点为圆心继续做圆周运动至ON边界离开,则再次做圆周运动的时间为t4=30°360°T=T12所以总时间为t=t1+t2+t3+t4=32mdqE+7πL6m2qEd.3.(2022·河北张家口市一模)如图所示,平面直角坐标系xOy的第一象限存在垂直于xOy平面向里的匀强磁场,第二象限存在沿x轴正方向的匀强电场,电场强度大小为E.一质量为m、电荷量为q的带正电粒子在x轴上的A(-d,0)点沿y轴正方向射入电场区域,粒子第一次经过y轴时的速度方向与y轴正方向的夹角为60°,之后每相邻两次经过y轴时的位置间距相等.不计粒子重力.求:(1)粒子的初速度的大小v0;(2)匀强磁场磁感应强度的大小B;(3)粒子从A点运动到第n次经过y轴的时间.答案(1)2Eqd3m(2)3Em2qd(3)见解析解析(1)粒子进入电场后做类平抛运动,沿x轴方向的加速度大小a=Eq m从A点第一次运动到y轴的过程,x轴方向有v x2=2ad第一次经过y轴时有tan60°=v x v0联立解得v0=2Eqd 3m(2)粒子第一次经过y轴时的速度大小v=v xsin60°粒子在磁场中运动,由洛伦兹力提供向心力有qvB=m v2r由几何关系可知,粒子每次进入磁场到离开磁场的过程中沿y轴方向运动的距离L=2r sin60°之后粒子每次从y轴进入电场到离开电场,运动的时间t0=2v x at0时间内,粒子沿y轴方向运动的距离为y=v0t0由题意可知y=L联立解得B=3Em 2qd(3)设粒子从A点第一次运动到y轴的时间为t1,则有12at12=d解得t1=2dm Eq粒子第一次经过y轴到第二次经过y轴,在磁场中做匀速圆周运动,由几何关系可知粒子在磁场中运动的时间为t2=T3粒子在磁场中做匀速圆周运动的周期T=2πmqB解得t2=2π96dmEq粒子第二次经过y轴到第三次经过y轴,在电场中运动的时间t3=2v xa=22dmEq=2t1即粒子从A点运动到第三次经过y轴时的时间为t3+t2+t1=3t1+t2所以粒子从A点运动到第n次经过y轴时的时间t=nt1+n-12t2=3n-1π9+n2dmEq(n=1,3,5,7,…)t′=(n-1)t1+n2t2=(3nπ9+n-1)2dmEq(n=2,4,6,8,…)4.(2022·安徽省江南十校一模)如图所示,竖直平面内建立直角坐标系xOy,y轴正向竖直向上,x轴正向水平向右,x轴在水平平面M内,在x轴上方存在方向竖直向下、电场强度大小为E1的匀强电场.两平行水平面M和N之间的距离为d,其间的区域存在方向竖直向上、电场强度大小为E2的匀强电场(E2=12E1)和方向水平向外、磁感应强度大小为B的匀强磁场.带电荷量分别为q和-q(q>0)的小球1和2先后从y轴上距O点为h的P点以相同的初速率v0沿x轴正向水平射出,小球1从x轴上距O点为2h的A点进入MN间,恰好未从平面N离开.小球2从x轴上C点进入两平面间,最后从平面N上某点离开.设两小球质量分别为m 1和m 2,且qE 1=2m 1g ,题中h 、d 和重力加速度g 已知,其他量均未知.(1)求两小球的初速率v 0;(2)求电场强度E 2和磁感应强度B 的大小之比;(3)若C 点坐标为(4h ,0),求m 1和m 2之比以及球2离开平面N 时速度大小.答案(1)6gh(2)23-6d gh6h(3)1830gh +9gd2解析(1)小球1在x 轴上方做类平抛运动,有x 1=2h =v 0t 1y 1=h =12a 1t 12qE 1+m 1g =m 1a 1且qE 1=2m 1g 联立解得v 0=6gh (2)因为E 2=12E 1则m 1g =qE 2所以小球1在MN 间做匀速圆周运动.由题意可知,小球1恰好未从下边界平面N 离开,其轨迹应与平面N 相切,如图所示,设小球1刚进入MN时速度偏转角为θ1,由几何关系可知R cosθ1+R=d由tanθ1=2y1x1=1,知θ1=45°又qv A B=m1v A2 Rv A=v0cosθ1联立解得E2B=23-6d gh6h(3)小球2在x轴上方做类平抛运动,有x2=4h=v0t2y2=h=12a2t22m2g-qE1=m2a2结合(1)问中4个式子可得m1m2=18小球2从P点到离开平面N全过程由动能定理得m2g(h+d)-qE1h+qE2d=12m2v2-12m2v02解得v=30gh+9gd2.。

专题拓展课二 带电粒子在复合场中的运动

专题拓展课二 带电粒子在复合场中的运动

专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。

2.能够运用运动组合的理念分析带电粒子在组合场中的运动。

3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。

拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。

2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。

(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。

(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。

(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。

3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。

(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。

(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。

4.要正确进行受力分析,确定带电粒子的运动状态。

(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。

(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。

5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。

特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。

【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。

图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。

高三物理带电粒子在复合场中的运动知识点总结-带电粒子在电场中的运动知识点

高三物理带电粒子在复合场中的运动知识点总结-带电粒子在电场中的运动知识点

高三物理带电粒子在复合场中的运动知识点总结|带电粒子在电场中的运动知识点一、带点粒子在复合场中的运动本质是力学问题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。

2、分析带电粒子在复合场中的受力时,要注意各力的特点。

如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。

而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。

3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。

必要时加以讨论。

三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:1、匀速直线运动。

自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。

因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。

2、匀速圆周运动。

自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。

3、较复杂的曲线运动。

在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。

带电粒子在复合场中的运动例题

带电粒子在复合场中的运动例题

带电粒子在复合场中的运动例题摘要:I.带电粒子在复合场中的运动概述A.复合场的概念B.带电粒子在复合场中的运动类型II.例题解析A.例题一:带电粒子在电场和磁场中的运动1.问题描述2.受力分析3.运动方程4.结论B.例题二:带电粒子在复合场中的匀速圆周运动1.问题描述2.受力分析3.运动方程4.结论C.例题三:带电粒子在复合场中的匀速直线运动1.问题描述2.受力分析3.运动方程4.结论III.结论A.带电粒子在复合场中的运动规律B.解决类似问题的方法正文:带电粒子在复合场中的运动例题在物理学中,带电粒子在复合场中的运动是一个复杂的问题。

复合场是由电场和磁场组成的,带电粒子在其中受到多种力的作用。

为了更好地理解带电粒子在复合场中的运动规律,我们可以通过一些例题来加深理解。

例题一:带电粒子在电场和磁场中的运动问题描述:设一带电粒子在电场E 和磁场B 中运动,粒子质量为m,电荷为q,运动速度为v。

受力分析:带电粒子在电场中受到电场力Fe = qE,在磁场中受到磁场力Fm = qvB。

运动方程:由于粒子在复合场中运动,所以需要分别考虑在电场和磁场中的运动方程。

在电场中,粒子受到的电场力使其加速,运动方程为:Fe = qE = ma1;在磁场中,粒子受到的磁场力使其偏转,运动方程为:Fm = qvB = 0。

结论:由于粒子在磁场中受到的力为零,所以粒子的运动轨迹将呈直线。

例题二:带电粒子在复合场中的匀速圆周运动问题描述:设一带电粒子在复合场中作匀速圆周运动,运动半径为R,运动速度为v。

受力分析:带电粒子在复合场中受到的力有电场力和磁场力。

由于粒子作匀速圆周运动,所以电场力和磁场力必须平衡。

运动方程:电场力为Fe = qE,磁场力为Fm = qvB。

由于粒子作匀速圆周运动,所以有:Fe = Fm;即:qE = qvB。

结论:带电粒子在复合场中作匀速圆周运动时,其运动速度v 与电场E 和磁场B 的关系为v = E/B。

带电粒子在复合场中的运动(整理).

带电粒子在复合场中的运动(整理).

专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsina,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在X轴上方有匀强电场,场强为E;在X轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离。

带电粒子在复合场中的运动图样赏析

带电粒子在复合场中的运动图样赏析

带电粒子在复合场中的运动是电学的重要题型,是高考考查的重点和热点,分析历年高考题可知,有关复合场的题目一般是运动情景复杂、综合性强,多把场的性质、运动学规律、牛顿运动定律及交变电磁场等知识有机地结合,对考生的空间想像能力、物理过程和运动规律的综合分析能力,及用数学方法解决物理问题的能力要求较高,该类问题情景新颖,变化灵活,难度大、分值高、区分度大,常常作为高考选拔人才的压轴题。

由此能快速准确地解决好该部分问题,便可成功地跨越高考。

本人通过多年教学实际,将带电粒子在复合场中的运动图样进行归类总结,由一般到特殊,再由特殊到一般,让图样形象化、具体化、兴趣化,能让老师和学生比较轻松愉快地度过一教与学的难点。

一、带电粒子在相邻磁场中的运动图样赏析带电粒子由一个磁场进入另一个磁场,只受洛伦兹力,粒子速度大小不变,在两个磁场中都做相应的匀速圆周运动,运动轨迹的方向及半径大小与所处的磁场度有关。

两磁场中的两部分圆弧在分界点处一定是相内切或外切的,即两圆心的连线一定过切点。

☆"一颗心"———孜孜求学之心,用心方能出色。

☆"蛇行弯道"----曲径通幽处,柳暗花明时.[例]如图所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在区域a 中,磁感应强度为2B ,方向垂直于纸面向里;在区域b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l ,3l ),一质量为m 、电荷量为q 的带正电的粒子从P 点沿y 轴负方向射入区域b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力。

(sin37°=0.6,cos37°=0.8)求:(1)粒子从P 点运动到O 点的时间最少是多少?(2)粒子运动的速度可能是多少?二、带电粒子在相邻电场与磁场中的运动图样赏析带电粒子在磁场区域做圆周运动,其轨迹一定是一段圆弧,关键是定圆心、定半径、定圆心角;带电粒子在电场中的运动,高中阶段只分析两种,即直线加速、减速运动或类平抛运动。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动发表时间:2011-08-19T16:29:23.780Z 来源:《学习方法报》教研周刊 作者: 马敬卫[导读] 带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。

山东省郓城第一中学 马敬卫复合场是指电场、磁场、重力场中三者或任意两者共存的场。

虽然带电粒子在复合场中的运动情况一般较为复杂,但它作为一个力学问题,同样遵循联系力和运动的基本规律。

带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。

(1)若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,由于电场力和重力为恒力,洛伦兹力方向和速度方向垂直且大小随速度大小而改变,所以只要带电粒子速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,带电粒子就会脱离原来的直线轨道而沿曲线运动。

可见,只有带电粒子速度大小不变,才可能做直线运动,也就是说,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。

(2)若带电粒子在电场力、重力和洛伦兹力共同作用下做匀速圆周运动时,由于物体做匀速圆周运动的条件是所受合外力大小恒定、方向时刻和速度方向垂直,这是任何几个恒力或恒力和某一变力无法合成实现的,只有洛伦兹力可满足该条件。

也就是说,带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。

总之,处理此类问题,一定要牢牢把握隐含条件。

在解决实际问题时,要做到以下三点:①正确分析受力情况;②充分理解和掌握不同场对带电粒子作用的特点和差异;③认真分析带电粒子运动的详细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表达式。

下面以两个例子来说明处理此类问题的方法。

1. 带电微粒在电场力、重力和洛伦兹力共同作用下做匀速圆周运动。

必然是电场力和重力平衡,而洛伦兹力充当向心力。

例1 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直平面内做匀速圆周运动。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、带电粒子....(通常不计重力)在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。

带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。

否则将发生偏转。

这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。

在本图中,速度方向必须向右。

(1)这个结论与离子带何种电荷、电荷多少都无关。

(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。

【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。

【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B2.回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。

A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。

带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。

专题 带电粒子在复合场中的运动

专题 带电粒子在复合场中的运动
28
图3.6-4 (1)求粒子进入磁场时的速率; (2)求粒子在磁场中运动的轨道半径。 解析 (1)粒子飘入电势差为U的加速电场, 有 qU=12mv2,
29
@《创新设计》
得粒子进入磁场时的速率 v= 2mqU。
(2)粒子进入磁场做匀速圆周运动,洛伦兹力提供向心力,有 qvB=mvR2,R=B1 2mqU。
6
@《创新设计》
联立②④⑤⑥式得
t=B4Ud2π2+
3。 3
答案
4U (1)B2d2
(2)B4Ud2π2+
3
3
7
@《创新设计》
1.如图2所示,在第Ⅱ象限内有沿x轴正方向的匀强电场,电场
强度为E,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,
磁感应强度大小相等。有一个带电粒子以垂直于x轴的初速度
v0从x轴上的P点进入匀强电场中,并且恰好与y轴的正方向成 45°角进入磁场,又恰好垂直于x轴进入第Ⅳ象限的磁场。已
18
(2)由第(1)问得
@《创新设计》
mg=qE,qvB= 2qE,
解得 v= B2E=4 2 m/s。 (3)进入第一象限,电场力和重力平衡,知油滴先做匀速直线运动,进入y≥h的 区域后做匀速圆周运动,轨迹如图,最后从x轴上的N点离开第一象限。
由 O→A 匀速运动的位移为 s1=sinh45°= 2h; 其运动时间 t1=sv1=0.1 s 由 qvB=mvr2,T=2vπr得
@《创新设计》
图6
23
@《创新设计》
解析 由 A、B 相碰时动量守恒得 mv=2mv′,有 v′=v2。据题意碰后 A、B 合 成的大油滴仍受重力与电场力平衡,合外力是洛伦兹力,所以继续做匀速圆周 运动,且有 r=22mqBv′=2mqvB=R2,T=22πq·2Bm=2qπBm,选项 B 正确。 答案 B

带电粒子在复合场中的运动(含答案)

带电粒子在复合场中的运动(含答案)

带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。

不计粒子重力。

求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。

2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。

在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。

y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。

3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。

在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。

某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。

求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。

带电粒子在复合场中的运动

带电粒子在复合场中的运动
考点二:带电粒子在复合场中运动的典型应用
1. 速度选择器: ⑴如图所示,平行板中电场强度E和磁感应 强度B互相垂直。这种装置能把具有一定速 度的粒子选择出来,所以叫做速度选择器。
⑵带电粒子能够沿 直线匀速通过速度 选择器的条件是 qE=qvB,即v=E/B
B
考点二:带电粒子在复合场中运动的典型应用
• 3.如图所示的虚线区域内,充满垂直于纸面向里的匀强 磁场和竖直向下的匀强电场。一带电粒子a(不计重力)以 一定的初速度由左边界的O点射入磁场、电场区域,恰好 沿直线由区域右边界的O' 点(图中未标出)穿出。若撤去该 区域内的磁场而保留电场不变,另一个同样的粒子b(不 计重力)仍以相同初速度由O点射入,从区域右边界穿出, 则粒子b( ) • A.穿出位置一定在O' 点下方 • B.穿出位置一定在O' 点上方 • C.运动时,在电场中的电势能一定减小 • D.在电场中运动时,动能一定减小
6
则类平抛运动中垂直于电场方向的位移
L vt1 4 2m
L y 8m 0 cos 45
即电荷到达y轴上的点的坐标为( 0, 8 ).
练6.在如右图所示的直角坐标系中,x轴的上方存在与x轴 正方向成45°角斜向右下方的匀强电场,场强的大小为E = 2×104 V/m。x轴的下方有垂直于xOy面向外的匀强磁 场,磁感应强度的大小为B=2×10-2 T。把一个比荷为 q/m=2×108 C/kg的正点电荷从坐标为(0,1)的A点处由静 止释放。电荷所受的重力忽略不计。 ⑴求电荷从释放到第一次进入磁场时所用的时间; ⑵求电荷在磁场中做圆周运动的半径(保留两位有效数字); ⑶当电荷第二次到达x轴上时, 电场立即反向,而场强大小不 变,试确定电荷到达y轴时的 位置坐标。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型十六:带电粒子在复合场中的运动
1、 电场中的类平抛运动
⑴ 加速 20mv 21qEd qu W ===加 ①
m 2qu v 0加
=
⑵ 偏转(类平抛)平行E 方向:
加速度:dm qU m qE m F a 2偏=== ② 再加磁场不偏转时:d U q qE qB 0偏
==v
水平:l=v o t ③
竖直:2t 2
1y a = ④ 结论:
①不论粒子m 、q 如何,在同一电场中由静止加速后进入,飞出时侧移和偏转角相同。

②出场速度的反向延长线跟入射速度相交于O 点,粒子好象从中心点射出一样。

o
o y v gt v v tg ==β o o 2v 2gt t v gt tg 21==α αβ2tg tg =(αβ分别为出场速度和水平面的夹角、进场到
出场的偏转角) 2、 磁场中的圆周运动
规律:qB mv R R v m qBv 2=⇒= (不能直接用) qB
m 2v R 2T ππ== 1、 找圆心:①(圆心的确定)因f 洛一定指向圆心,f 洛⊥v 任意两个f 洛方向的指向交点为圆心;
②任意一弦的中垂线一定过圆心;
2、求半径(两个方面):①物理规律qB
mv R R v m qBv 2=⇒= ②由轨迹图得出与半径R 有关的几何关系方程
几何关系:速度的偏向角ϕ=偏转圆弧所对应的圆心角(回旋角)α=2倍的弦切角θ
相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。

3、求粒子的运动时间:偏向角(圆心角、回旋角)α=2倍的弦切角θ,即α=2θ
)360(2)
(0t 或回旋角圆心角π=×T
4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件
a 、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。

b 、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

3、复合场中的特殊物理模型
1.粒子速度选择器
如图所示,粒子经加速电场后得到一定的速度v 0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv 0B =qE,v 0=E/B ,若v= v 0=E/B ,粒子做直线运动,与粒子电量、电性、质量无关 若v <E/B ,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.
若v >E/B ,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.
2.磁流体发电机
如图所示,由燃烧室O 燃烧电离成的正、负离子(等离子体)以高速。

喷入偏转磁场B 中.在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d 时电势差稳定U =dvB ,这就相当于一个可以对外供电的电源.
3.电磁流量计.
电磁流量计原理可解释为:如图所示,一圆形导管直径为d ,用非
磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电
荷(正负离子)在洛伦兹力作用下纵向偏转,a,b 间出现电势差.当自由
电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.
由Bqv=Eq=Uq/d ,可得v=U/Bd.流量Q=Sv=πUd/4B
4.质谱仪:如图所示:组成:离子源O ,加速场U ,速度选择器(E,B ),偏转场B 2,胶
片.
原理:加速场中qU=½mv 2
选择器中: Bq v =Eq ⇒1B E
=v
2/r
比荷:122q E m B B d
= 质量122B B dq m E =
作用:主要用于测量粒子的质量、比荷、研究同位素.
5.回旋加速器
如图所示:组成:两个D 形盒,大型电磁铁,高频振荡交变电压,两缝间可形
成电压U
作用:电场用来对粒子(质子、氛核,a 粒子等)加速,磁场用来使粒子回旋从而能
反复加速.高能粒子是研究微观物理的重要手段.
要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.
关于回旋加速器的几个问题:
(1)回旋加速器中的D 形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动‘
(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:
12qB f T m
π==
(3)回旋加速器最后使粒子得到的能量,可由公式2222122K E mv m
= 来计算, 在粒子电量,、质量m 和磁感应强度B 一定的情况下,回旋加速器的半径R 越大,粒子的能量就越大.。

相关文档
最新文档