2018-2019学年河南省新乡市高一上学期期末考试数学试题(答案+解析)
河南省新乡市2023-2024学年高一下学期期末测试数学试题
河南省新乡市2023-2024学年高一下学期期末测试数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.如图,在长方体1111ABCD A B C D -中,点M ,N ,E ,F 分别在棱11A B ,11A D ,11B C ,11C D 上,且平面AMN ∥平面EFDB ,下列结论正确的是( )三、填空题(1)该校根据试卷的难易程度进行分析,认为此次成绩不低于110分,则阶段性学习达到“优秀”,试估计这1000名学生中阶段性学习达到“优秀”的人数;(2)若采用等比例分层抽样的方法,从成绩在[)50,70和[)110,130内的学生中共抽取6人,查看他们的答题情况来分析知识点的掌握情况,再从中随机选取3人进行面对面调查分析,求这3人中恰有1人成绩在[)110,130内的概率.18.如图,在四棱锥P ABCD -中,PD ^底面ABCD ,E 是PC 的中点,点F 在棱BP 上,且EF BP ^,四边形ABCD 为正方形,2PD CD ==.(1)证明:BP DF^;(2)求三棱锥F BDE -的体积;(3)求二面角F DE B --的余弦值.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的,DA MF 是交线,所以DA MF∥,而1111,DA D A DA D A =∥,所以11MF D A ∥,又因为11D F MA ∥,所以四边形11D FMA 是平行四边形,所以11MF D A =,MF DA =,所以四边形DAMF 是平行四边形,所以DF AM ∥,因为AM AN A =I ,所以AN 与DF 不平行,故C 错误;如图,连接NE ,由长方体性质得面11BCC B ∥面11AA D D,此时平面NEBA与这两个平面的都相交,,NA EB是交线,所以BE AN∥,又因为ANÌ面AMN,BEË面AMN,所以BE∥平面AMN,故D正确.故选:ABD10.ABC【分析】由饼状统计图的实际含义逐一验算各个选项即可求解.【详解】对于B,2023年Z国从A国进口天然气2480吨,全部为气态天然气,所以2023年Z国没有从A国进口液化天然气,B正确.对于A,2023年Z国从B国进口天然气2435吨,其中气态天然气1630吨,液化天然气805吨,所以2023年Z国从B国进口的液化天然气比从A国进口的多,A正确.对于C,假设2023年Z国气态天然气其余部分全部来自C国,共---=吨,486524801630340415则Z国从C国进口液化天然气24164152001-=吨,仍然大于从D国进口的天然气的总量,所以2023年Z国从C国进口的液化天然气一定比从D国进口的多,C正确.对于D,2023年Z国从B国进口液化天然气24351630805-=吨,2023年Z国从D国进口的天然气总量为1666吨,若全部为液化天然气,则2023年Z国从B国进口的液化天然气比从D国进口的少,D错误.故选:ABC.11.BCD【分析】根据勾股定理可判定A;根据三角形面积公式可判定B;根据向量运算可判定C;结合正余弦定理可判定D.答案第151页,共22页。
人教A版数学高二弧度制精选试卷练习(含答案)1
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
高一上学期数学竞赛试题(有答案)
高一上学期竞赛试题(数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.试卷满分150分.考试时间100分钟.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}12345U =,,,,,集合{}1,3A =,{}3,4,5B =,则集合()U C A B =( )A .{3}B .{4,5}C .{3,4,5}D .{1245},,,2.若直线过点(1,2),(4,2+,则此直线的倾斜角是( ) A.030 B.045 C .060 D .090 3.下列各组函数表示同一函数的是( )A .293x y x -=-与3y x =+ B.1y =-与1y x =-C .00()y x x =≠与10()y x =≠ D .21,y x x Z =+∈与21,y x x Z =-∈ 4.下列结论正确的是( ) A .2030321..<< B .2030312..<<C .2031032..<< D . 0322103..<<5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A.3122-()()f f f -<<()B. 3122-()()f f f <-<() C. 3212-()()f f f <<-() D. 3212-()()f f f <-<()6.(0)a >化简的结果是( )A. 12a B. 14a C. 18a D. 38a 7.如图,一个简单空间几何体的三视图其主视图与左视图是边长为 2的正三角形、俯视图轮廓为正方形,则其体积是( ).A.3D . 838.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中为真命题的是( ).A. ①和②B. ②和③C. ③和④D. ②和④9.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于 ( ) A π B 2π C 4π D 8π俯视图10.设函数1()ln (0),3f x x x x =->则()y f x = A. 在区间1(,1),(1,)e e 内均有零点 C .在区间1(,1)e 内有零点,在区间(1,)e 内无零点 B. 在区间1(,1),(1,)e e 内均无零点 D .在区间1(,1)e内无零点,在区间(1,)e 内有零点11.已知函数2()lg()f x ax x a =-+定义域为R ,则实数a 的取值范围是 ( )A .11(,)22-B .11(,)(,)22-∞-+∞C .1(,)2+∞D .11(,][,)22-∞-+∞12.已知三棱锥ABC S -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,3=SA ,那么直线AB 与平面SBC 所成角的正弦值为( ) A.43 B.45 C.47 D. 43第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设)(x f 在R 上是偶函数,若当0>x 时,有)1(log )(2+=x x f ,则=-)7(f . 14.设1(1)()3(1)x x f x x x +≥⎧=⎨-<⎩,则5(())2-f f 的值为 .15.4219432log 2log 3log -⋅= .16.已知函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,则a 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)已知集合{}{}{}37,210,A x x B x x C x x a =≤≤=<<=<. (1)求B A ;(2)求B A C R )(;(3)若A C ⊆,求a 的取值范围. (18)(本小题满分12分)设函数2211)(x x x f -+=.(1) 求)(x f 的定义域;(2) 判断)(x f 的奇偶性;(3) 求证:)()1(x f xf -=.(19)(本小题满分12分)P ABCD-如图,在底面为平行四边形的四棱锥PA AB =,点E 是PD中,AB AC ⊥,PA ⊥平面ABCD ,且的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; (Ⅲ)求二面角E AC B --的大小. (20)(本小题满分12分)(本小题12分)已知函数2421x x y --=的SCBA定义域为A,函数)1(log 2+-=a x y 的定义域为B.(1)若B A ⊆,求实数a 的取值范围;(2)若φ=B A ,求实数a 的取值范围.(21)(本小题满分12分)如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ;(2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=︒,求证:平面PEF ⊥平面PBC .(22)(本小题满分12分) 已知函数62252)(12-⋅-=+x xx f ,其中[0,3]x ∈, (1)求()f x 的最大值和最小值;(2)若实数a 满足:()0f x a -≥恒成立,求a 的取值范围.河南省新乡市新乡县第一中学高一上学期竞赛试题数学答案一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分. 13.3; 14.132; 15.32; 16.(3,⎤-∞-⎦ 三、解答题:本大题共6小题,共70分.17.(本小题满分10分)(1)B A {}210x x =<< ……………………………3分(2){}37或R C A x x x =<> ……………………4分B AC R )({}23710或x x x =<<<< ……………………………6分 (3)7a ≥ …………………………………10分 18.(本小题满分12分) (1)由210-≠x可得1≠±x , ……………………3分所以函数的定义域为:()()()1111,,,-∞--+∞;……………………4分(2)因为22221111()()()()+-+-===---x x f x f x x x,……………………7分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBDABDBDCDPAC EBF所以函数()f x 为偶函数;……………………8分(3)因为22222211111111111()()()()+++====----x x x f f x x x x x,……………………11分 所以 )()1(x f xf -= . .……………………12分 19. (本小题满分12分)(Ⅰ)PA ⊥平面ABCD,∴ AB 是PB 在平面ABCD 上的射影, 又AB ⊥AC,AC ⊂平面ABCD, ∴AC ⊥PB.(Ⅱ)连接BD,与AC 相交与O,连接EO, ABCD 是平行四边形 ∴O 是BD 的中点 又E 是PD 的中点, ∴EO PB. 又PB ⊄平面AEC,EO ⊂平面AEC, ∴PB //平面AEC,(Ⅲ)如图,取AD 的中点F,连EF,FO,则 PA ⊥平面EF 是△PAD 的中位线, ∴EF //PA 又ABCD , ∴EF ⊥平面ABCD同理FO 是△ADC 的中位线,∴FO //AB ∴FO ⊥AC 由三垂线定理可知∴∠EOF 是二面角E -AC -D 的平面角. 又FO =12AB =12PA =EF 。
河南省新乡市原阳县2023-2024学年高一上学期12月月考试题 数学含解析
原阳2023-2024学年上学期高一年级12月月考数学试卷(答案在最后)总分150分时长120分钟命题人审核人一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U =R ,集合{}1M x x =<,11242xN x ⎧⎫⎪⎪⎛⎫=<<⎨⎬⎪⎝⎭⎪⎪⎩⎭,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð2.已知21log 3a =,32b -=,ln 23c =,则a ,b ,c 的大小关系为()A.a b c<< B.b a c<< C.b<c<aD.a c b<<3.命题2:210p ax x ++=有实数根,若p ⌝是假命题,则实数a 的取值范围是()A.{|1}a a <B.{|1}a a ≤ C.{|1}a a > D.以上都不对4.若规定a b ad bc cd=-,则不等式0213x x<<的解集是()A .(1,1)-B.(C.D.(1)-⋃5.在今年的全国政协、人大两会上,代表们呼吁政府切实关心老百姓看病贵的问题,国家决定对某药品分两次降价,假设平均每次降价的百分率为x .已知该药品的原价是m 元,降价后的价格是y 元,则y 与x 的函数关系是()A.y =m (1-x )2B.y =m (1+x )2C.y =2m (1-x )D.y =2m (1+x )6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为A.a c b<< B.a b c<< C.b<c<aD.c<a<b7.某食品加工厂2021年获利20万元,经调整食品结构,开发新产品,计划从2022年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(lg 20.3010≈,lg30.4771≈)()A.2026年B.2027年C.2028年D.2029年8.定义在()0,∞+上的函数()f x 满足:()()112212x f x x f x x x --<0,且(2)4f =,则不等式8()0f x x->的解集为()A.()2,∞+ B.()0,2 C.()0,4 D.()4,+∞二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数()2f x x =的值域为[]0,4,则()f x 的定义域可以是()A.[]0,2 B.[]2,1- C.[]1,2 D.{}2,0,2-10.已知正实数a ,b 满足42a b +=,则()A.14ab ≤B.2164a b +≥ C.1192a b +≥D.4+≥11.(多选)已知函数()221f x x x =-++的定义域为()2,3-,则函数()f x 的单调递增区间是()A.(),1-∞- B.()3,1-- C.()0,1 D.()1,312.设()33,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,若()0f x a -=有三个不同的实数根,则实数a 的取值可以是()A.12B.1C.1-D.2三、填空题:本题共4小题,每小题5分,共20分,16题第一个空2分,第二个空3分.13.已知奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.14.若关于x 的不等式2210ax ax +-<的解集为R ,则实数a 的取值范围是__________.15.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为________.16.设函数()()11,022,0xx f x f x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,()log (1)a g x x =-,(其中1a >),(1)()2021f =________;(2)若函数()f x 与()g x 的图象有3个交点,则实数a 的取值范围为________.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.求下列各式的值.(1)411231322(0.25)(2)[(2)]1)2---⨯-+-;(2)82715lglg lg12.5log 9log 828-+-⋅.18.(1)已知集合{}2120|A x x ax b =++=,{}20|B x x ax b =-+=满足()R {2}A B ⋂=ð,()R {4}A B = ð,求实数a ,b 的值;(2)已知集合{}121|A x a x a =-<<+,函数2lg()y x x =-的定义域为B ,若A B ⋂=∅,求实数a 的取值范围.19.已知函数14()2x x f x m +=--.(1)当0m =时,求函数()f x 的零点;(2)若()f x 有两个零点,求实数m 的取值范围.20.某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为25()log (1)21f x x a a =+-++,[0,24]x ∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低;(2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?21.(1)对任意11x -≤≤,函数()2442y x a x a =+-+-的值恒大于0,求实数a 的取值范围;(2)不等式()228x y y x y λ+≥+对于任意的,R x y ∈恒成立,求实数λ的取值范围.22.已知函数()2e ,e ,x x x x m f x x x m ⎧--≤=⎨+>⎩和()2ln ,01ln ,1x x x g x x x x --<≤⎧=⎨+≥⎩有相同的最小值,(e 为自然对数的底数,且e 2.71828= )(1)求m ;(2)证明:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点;(3)若(2)中三个交点的横坐标分别为1x ,2x ,3x ()123x x x <<,求1232x x x ++的值.原阳2023-2024学年上学期高一年级12月月考数学试卷总分150分时长120分钟命题人审核人一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U =R ,集合{}1M x x =<,11242xN x ⎧⎫⎪⎪⎛⎫=<<⎨⎬⎪⎝⎭⎪⎪⎩⎭,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð【答案】A 【解析】【分析】解指数不等式化简集合N ,再利用集合的交并补运算逐项判断即可.【详解】依题意,21111{|()()(}{|12}222x N x x x -=<<=-<<,而{}1M x x =<,对于A ,{|2}M N x x ⋃=<,因此(){|2}U M N x x =≥ ð,A 是;对于B ,{|1}U M x x =≥ð,因此(){|1}U N M x x =>- ð,B 不是;对于C ,{|11}M N x x ⋂=-<<,因此(){|1U M N x x =≤- ð或1}x ≥,C 不是;对于D ,{|1U N x x =≤-ð或2}x ≥,因此(){|1U M N x x =< ð或2}x ≥,D 不是.故选:A 2.已知21log 3a =,32b -=,ln 23c =,则a ,b ,c 的大小关系为()A.a b c <<B.b a c<< C.b<c<aD.a c b<<【答案】A 【解析】【分析】根据指数函数、对数函数的性质判断即可.【详解】解:因为221log log 103a =<=,300221-<<=,即01b <<,ln20331c =>=,所以a b c <<.故选:A3.命题2:210p ax x ++=有实数根,若p ⌝是假命题,则实数a 的取值范围是()A.{|1}a a <B.{|1}a a ≤ C.{|1}a a > D.以上都不对【答案】B 【解析】【分析】p ⌝是假命题,则p 为真命题,即2210ax x ++=有实数根,分类讨论0a =与0a ≠时的情况即可.【详解】当0a =时,即210x +=有实数根,解得12x =,故符合要求;当0a ≠时,即有440a ∆=-≥,解得1a ≤且0a ≠;综上所述,1a ≤.故选:B.4.若规定a b ad bc cd=-,则不等式0213x x<<的解集是()A.(1,1)-B.(C.D.(1)-⋃【答案】D 【解析】【分析】由题意化简0213x x <<,直接求解即可.【详解】因为a b ad bc cd=-,所以2133x xx =-,所以2032x <-<,即213x <<,解得1x <<或1x <<-,故选:D5.在今年的全国政协、人大两会上,代表们呼吁政府切实关心老百姓看病贵的问题,国家决定对某药品分两次降价,假设平均每次降价的百分率为x .已知该药品的原价是m 元,降价后的价格是y 元,则y 与x 的函数关系是()A.y =m (1-x )2B.y =m (1+x )2C.y =2m (1-x )D.y =2m (1+x )【答案】A 【解析】【分析】根据指数函数模型列式求解.【详解】第一次降价后价格为(1)m x -,第二次降价后价格变为2(1)(1)(1)y m x x m x =--=-.故选:A .【点睛】本题考查指数函数模型的应用,平行增长率问题.属于基础题.6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为A.a c b << B.a b c<< C.b<c<aD.c<a<b【答案】A 【解析】【分析】771log 2log 2<=,0.70.7log 0.2log 0.71>=,0.20.70.71<<,再比较,,a b c 的大小.【详解】71log 22a =<,0.70.7log 0.2log 0.71b =>=,0.20.70.71c <=<,a c b <<,故选A.【点睛】本题考查了指对数比较大小,属于简单题型,同底的对数,指数可利用单调性比较大小,同指数不同底数,按照幂函数的单调性比较大小,或是和中间值比较大小.7.某食品加工厂2021年获利20万元,经调整食品结构,开发新产品,计划从2022年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(lg 20.3010≈,lg30.4771≈)()A.2026年B.2027年C.2028年D.2029年【答案】C 【解析】【分析】依据题意设出解析式,再用对数的相关知识求解即可.【详解】设第n 年获利y 元,则=20 1.2n y n ⨯,是正整数,2022年是第一年,故201.260n ⨯>,解得 1.2lg 3lg 3log 3== 6.03lg1.2lg 32lg 21n >≈+-故7n ≥,即从2028年开始这家加工厂年获利超过60万元.故选:C8.定义在()0,∞+上的函数()f x 满足:()()112212x f x x f x x x --<0,且(2)4f =,则不等式8()0f x x->的解集为()A.()2,∞+ B.()0,2 C.()0,4 D.()4,+∞【答案】B 【解析】【分析】根据()()112212x f x x f x x x --<0,得到()()g x xf x =在()0,∞+上递减,然后由(2)4f =,得到()28=g ,将不等式8()0f x x->转化为()(2)g x g >求解.【详解】因为定义在()0,∞+上的函数()f x 满足:()()112212x f x x f x x x --<0,所以()()g x xf x =在()0,∞+上递减,因为(2)4f =,所以()28=g ,因为不等式8()0f x x->,所以()80xf x x->,所以()80xf x ->,所以()8xf x >,即()(2)g x g >,所以02x <<,故选:B【点睛】本题主要考查函数单调性的应用,还考查了运算求解的能力,属于中档题.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数()2f x x =的值域为[]0,4,则()f x 的定义域可以是()A.[]0,2 B.[]2,1- C.[]1,2 D.{}2,0,2-【答案】AB 【解析】【分析】根据2y x =的图象求得正确答案.【详解】画出2y x =的图象如下图所示,由24x =解得2x =±,()2f x x =的图象是函数2y x =的图象的一部分,依题意,()2f x x =的值域为[]0,4,由图可知,()f x 的定义域可以是[]0,2、[]2,1-.故选:AB10.已知正实数a ,b 满足42a b +=,则()A.14ab ≤B.2164a b +≥ C.1192a b +≥ D.4+≥【答案】ABC 【解析】【分析】利用基本不等式可得A,B,D 正误,利用1的妙用可得C 的正误.【详解】对于A ,因为42a b ≤+=,所以14ab ≤,当且仅当41a b ==,即11,4a b ==时,取到等号,故A 正确;对于B ,2164a b +≥==,当且仅当41a b ==,即11,4a b ==时,取到等号,故B 正确;对于C ,()1111114194552222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当2a b =,即21,33a b ==时,取到等号,故C 正确;对于D,244a b +=++,2+≤,当且仅当41a b ==,即11,4a b ==时,取到等号,故D 错误.故选:ABC .11.(多选)已知函数()221f x x x =-++的定义域为()2,3-,则函数()f x 的单调递增区间是()A.(),1-∞- B.()3,1-- C.()0,1 D.()1,3【答案】BC 【解析】【分析】根据题意求出()f x 的定义域,将()f x 的解析式中绝对值符号去掉,结合二次函数的图象与性质即可判断.【详解】因为函数()221f x x x =-++的定义域为()2,3-,对称轴为直线1x =,开口向下,所以函数()f x 满足23x -<<,所以33x -<<.又()22221,03,2121,30,x x x f x x x x x x ⎧-++≤<=-++=⎨--+-<<⎩且221y x x =--+图象的对称轴为直线=1x -,所以由二次函数的图象与性质可知,函数()f x 的单调递增区间是()3,1--和()0,1.故选BC.【点睛】本题主要考查含绝对值的二次函数的单调性问题,注意数形结合思想的应用,属于提升题.12.设()33,0log ,0xx f x x x ⎧≤⎪=⎨>⎪⎩,若()0f x a -=有三个不同的实数根,则实数a 的取值可以是()A.12B.1C.1-D.2【答案】AB 【解析】【分析】先作出函数的图像,()0f x a -=有三个不同的实数根,化为函数33(0)()log (0)xx f x xx ⎧≤⎪=⎨>⎪⎩与直线y a =有三个交点,结合图像,即可得出结果.【详解】解:作出函数33(0)()log (0)xx f x xx ⎧≤⎪=⎨>⎪⎩图像如下:又()0f x a -=有三个不同的实数根,所以函数33(0)()log (0)xx f x xx ⎧≤⎪=⎨>⎪⎩与直线y a =有三个交点,由图像可得:01a <≤.故选:AB三、填空题:本题共4小题,每小题5分,共20分,16题第一个空2分,第二个空3分.13.已知奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.【答案】9【解析】【详解】由已知得,f (6)=8,f (3)=-1,因为f (x )是奇函数,所以f (6)+f (-3)=f (6)-f (3)=8-(-1)=9.答案:9.14.若关于x 的不等式2210ax ax +-<的解集为R ,则实数a 的取值范围是__________.【答案】(]1,0-【解析】【分析】分两种情况0a =和0a ≠,可求出实数a 的取值范围.【详解】 关于x 的不等式2210ax ax +-<的解集为R .当0a =时,原不等式为1<0-,该不等式在R 上恒成立;当0a ≠时,则有2Δ440a a a <⎧⎨=+<⎩,解得10a -<<.综上所述,实数a 的取值范围是(]1,0-.故答案为:(]1,0-15.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为________.【答案】13【解析】【分析】先利用基本不等式中“1”的妙用求得x y +的取值范围,从而求得3x y +的最大值.【详解】因为正数x ,y 满足40x y xy +-=,所以4x y xy +=,即141y x+=,则()14455549x y x y x y y x y x ⎛⎫+=++=++≥+=+= ⎪⎝⎭,当且仅当4x y y x =且141y x+=,即6,3x y ==时取等号,此时x y +取得最小值9,则3x y +的最大值为13.故答案为:1316.设函数()()11,022,0xx f x f x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,()log (1)a g x x =-,(其中1a >),(1)()2021f =________;(2)若函数()f x 与()g x 的图象有3个交点,则实数a 的取值范围为________.【答案】①.1②.【解析】【分析】根据题意,推得()2021(1)f f =-,即可求得()2021f 的值,作出函数()y f x =和()y g x =的图象,结合log (41)3a -=和log (61)3a -=,结合图象,即可求得a 的取值范围.【详解】由题意,函数()()11,022,0xx f x f x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,所以()()()()112021201920171(1)()112f f f f f -=====-=-= ;当02x <≤时,则220x -<-≤,可得()()212(12x f x f x -=-=-;当24x <≤时,则022x <-≤,可得()()412()12x f x f x -=-=-;当46x <≤时,则224x <-≤,可得()()612(12x f x f x -=-=-;当68x <≤时,则426x <-≤,可得()()812(12x f x f x -=-=-,画出函数()y f x =和()y g x =的图象,如图所示,由log (41)3a -=,可得a =log (61)3a -=,可得=a ,由图象可知,若两个函数的图象有3a <≤,所以实数a 的取值范围为.故答案为:1;.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.求下列各式的值.(1)411231322(0.25)(2)[(2)]1)2---⨯-+-;(2)82715lglg lg12.5log 9log 828-+-⋅.【答案】(1)1252-(2)13【解析】【分析】(1)根据指数幂的运算法则和运算性质,准确化简、运算,即可求解;(2)根据对数的运算法则和对数的换底公式,准确化简、运算,即可求解.【小问1详解】解:根据指数幂的运算法则和运算性质,可得:4112313221125(0.25)(2)[(2)]1)2416(1)22---⨯-+-=-⨯+--.【小问2详解】解:由对数的运算法则和对数的运算性质,可得:1827151525lg 9lg8lg lg lg12.5log 9log 8lg lg lg 28282lg8lg 27-⎛⎫-+-⋅=++-⋅ ⎪⎝⎭18252lg 3221lg()lg1012523lg 3333=⨯⨯-=-=-=.18.(1)已知集合{}2120|A x x ax b =++=,{}20|B x x ax b =-+=满足()R {2}A B ⋂=ð,()R {4}A B = ð,求实数a ,b 的值;(2)已知集合{}121|A x a x a =-<<+,函数2lg()y x x =-的定义域为B ,若A B ⋂=∅,求实数a 的取值范围.【答案】(1)812,77a b ==-;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ 【解析】【分析】(1)根据题目条件得到2,4B A ∈∈,从而得到方程组,求出实数a ,b 的值;(2)先根据对数函数的定义域得到{}|01B x x =<<,分A =∅与A ≠∅两种情况,得到不等式,求出实数a 的取值范围.【详解】(1)()R {2}A B ⋂=ð,(){}R 4A B ⋂=ð,故2,4B A ∈∈,故164120420a b a b ++=⎧⎨-+=⎩,解得87127a b ⎧=⎪⎪⎨⎪=-⎪⎩;(2)由题意得20x x ->,解得01x <<,故{}|01B x x =<<,A B ⋂=∅,当A =∅时,121a a -≥+,解得2a ≤-,当A ≠∅时,需满足12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得2a ≥或122a -<≤-,综上,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ .19.已知函数14()2x x f x m +=--.(1)当0m =时,求函数()f x 的零点;(2)若()f x 有两个零点,求实数m 的取值范围.【答案】(1)1(2)(1,0)-【解析】【分析】(1)m=0代入解析式直接求解即可;(2)转化为方程220t t m --=在()0,+∞上有两解,利用二次函数根的分布求解即可【详解】(1)0m =时,()()21422x x xf x +=-=-()22222x x x ⋅=-,令()0f x =可得22x =,即1x =.()f x ∴的零点是1.(2)令2x t =,显然0t >,则()22f x t t m =--.()f x 有两个零点,且2x t =为单调函数,∴方程220t t m --=在()0,+∞上有两解,0440120m m m ->⎧⎪∴+>⎨⎪--<⎩,解得:10m -<<.m ∴的取值范围是()1,0-.【点睛】本题考查函数零点,二次函数零点问题,熟记二次函数的性质是关键,是中档题20.某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为25()log (1)21f x x a a =+-++,[0,24]x ∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低;(2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?【答案】(1)一天中早上4点该厂的污水污染指数最低(2)调节参数a 应控制在2(0,]3内.【解析】【分析】(1)12a =时,令()251log 102x +-=,解得x 即可得出;(2)利用换元法()25log 1t x =+,再利用函数的单调性即可得出.【小问1详解】因为12a =,()()251log 1222f x x =+-+≥.当()2f x =时,()251log 102x +-=,即121255x +==,解得4x =.所以一天中早上4点该厂的污水污染指数最低.【小问2详解】设()25log 1t x =+,则当024x ≤≤时,01t ≤≤.设()[]21,0,1g t t a a t =-++∈,则()31,01,1t a t a g t t a a t -++≤≤⎧=⎨++<≤⎩,()g t 在[]0,a 上是减函数,在[],1a 上是增函数,则()()(){}max max 0,1f x g g =,因为()()031,12g a g a =+=+,则有()()0313123g a g a ⎧=+≤⎪⎨=+≤⎪⎩,解得23a ≤,又()0,1a ∈,故调节参数a 应控制在20,3⎛⎤ ⎥⎝⎦内.21.(1)对任意11x -≤≤,函数()2442y x a x a =+-+-的值恒大于0,求实数a 的取值范围;(2)不等式()228x y y x y λ+≥+对于任意的,R x y ∈恒成立,求实数λ的取值范围.【答案】(1)1a <(2){|84}λλ-≤≤【解析】【分析】(1)化简后分离参数,求出函数的最小值即可得解;(2)转化为二次不等式恒成立,利用判别式建立不等式求解即可.【详解】(1)由题意,当11x -≤≤时,()24420x a x a +-+->恒成立,则2(2)44x a x x ->-+-,因为11x -≤≤,所以224444222x x x x a x x x-+--+<==---,所以min (2)a x <-,由2y x =-单调递减,知当1x =时,min (2)1x -=,即1a <.(2)因为()228x y y x y λ+≥+对于任意的,R x y ∈成立,所以()2280x y y x y λ+-+≥对于任意的,R x y ∈成立.即()2280x yx y λλ-+-≥恒成立,由二次不等式的性质可得,()222224843(2)0y y y λλλλ∆=+-=+-≤,所以4)80()(λλ+-≤,解得84λ-≤≤.故实数入的取值范围为{|84}λλ-≤≤.22.已知函数()2e ,e ,x x x x m f x x x m ⎧--≤=⎨+>⎩和()2ln ,01ln ,1x x x g x x x x --<≤⎧=⎨+≥⎩有相同的最小值,(e 为自然对数的底数,且e 2.71828= )(1)求m ;(2)证明:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点;(3)若(2)中三个交点的横坐标分别为1x ,2x ,3x ()123x x x <<,求1232x x x ++的值.【答案】(1)0.(2)见解析;(3)2.【解析】【分析】(1)根据()f x ,()g x 单调性求出最小值,两个最小值相等求出m 的值.(2)根据函数单调性与图像判断并证明即可.(3)根据三个交点处函数值相等,再由函数式的结构得到三个交点的横坐标分别为1x ,2x ,3x 之间的关系,转化为2x 即可求解.【小问1详解】由()2e ,e ,x x x x m f x x x m⎧--≤=⎨+>⎩,(],x m ∈-∞时()01e x f x '=-<-,(),x m ∈+∞时()e 10x f x '=+>则()f x 在(],m -∞单调递减,在(),m +∞单调递增,所以()f x 最小值()()min 2e mm f x f m ==--;()2ln ,01ln ,1x x x g x x x x --<≤⎧=⎨+≥⎩(]0,1x ∈时,()110g x x '=--<,()1,x ∈+∞时,()110g x x'=+>所以()g x 在(]0,1单调递减,在()1,+∞单调递增,所以()g x 最小值()()min 11g x g ==;()()min min 2e 1m f x m g x =--==,即2e 1e 10m m m m --=⇒+-=令()=e 1m q m m +-,()=e 10m q m '+>所以()=e 1m q m m +-在定义域上单调递增,因为0(0)e 10q =-=,所以e 10m m +-=解得0m =.【小问2详解】由(1)知0m =,即()2e ,0e ,0x x x x f x x x ⎧--≤=⎨+>⎩;因为()()min min 1f x g x ==,所以当1b >时,考虑()f x b =与()g x b =解的个数,根据()f x ,()g x 单调性作图如下:易知x →-∞时,()f x →+∞;x →+∞时,()f x →+∞;0x +→时,()g x ∞→+;x →+∞时,()g x ∞→+;则()f x b =在区间(),0∞-与()0,∞+各有一个根,()g x b =在区间()0,1与()1,+∞各有一个根,要证:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点,即证:()()f x g x =在()0,1上有交点.当()0,1x ∈时,令()()()()e 2ln e ln 22x xh x f x g x x x x x x =-=+---=++-1()e 20x h x x'=++>,所以()h x 在()0,1上单调递增,(1)e>0h =,31e 3312(e 320e e h =-+-<,所以存在()00,1x ∈,使()00()f x g x =,即()()f x g x =在()0,1上有交点,得证.所以存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点.【小问3详解】如图y b =与函数()y f x =,()y g x =恰好共有三个不同的交点,三个交点的横坐标分别为1x ,2x ,3x ,()123x x x <<,则有121222332e e 2ln ln x x x x x x x x --+=+==--,因为112ln 122122e 2ln 2e 2eln x x x x x x x x ----⇒--=-=-而()2e x f x x =--单调递减,所以12ln x x =,因为322ln 23323e ln e eln x x x x x x x x +=+⇒+=+,而()e x f x x =+单调递增,所以23ln x x =,又因为2222222e 2ln e ln 22x x x x x x x +=--⇒++=.所以212322e 222ln x x x x x x ++=++=.【点睛】本题考查了导数的应用,利用导数求函数的单调性,函数的零点,利用同构去解决三个交点横坐标之间的数量关系.。
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
河南省新乡市原阳县第一高级中学2023-2024学年高一上学期1月月考数学试题
河南省新乡市原阳县第一高级中学2023-2024学年高一上学期1月月考数学试题学校:___________姓名:___________班级:___________考号:___________()R{2}A B Ç=ð,()R{4}A B =I ð,求实数a ,b 的值;(2)已知集合{}121|A x a x a =-<<+,函数2lg()y x x =-的定义域为B ,若A B Ç=Æ,求实数a 的取值范围.19.已知函数[]2+(2)2,5,5f x x x x a =+Î-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)若函数()f x 在区间[]5,5-上是单调函数,求a 的取值范围.20.已知函数()||(R)f x x m x x =-Î.(1)若()40f =,当[2x Î,5],求()f x 的值域;(2)判断函数()f x 的奇偶性,并证明;(3)设实数m 1³,若不等式2()m f x -£对任意的[1x Î,3]恒成立,求实数m 的取值范围.21.已知集合12{|(,,,),{,1},1,2,,}(2)n n iS X X x x x x k i n n ==Î=³L L .对于1212(,,,),(,,,)n n n A a a a B b b b S ==ÎL L ,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---L ;A与B之间的距离为1(,)||ni i i d A B a b ==-å.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -;(2)若对于任意的,,n A B C S Î,有n A B S -Î,求k 的值并证明:(,)(,)d A C B C d A B --=.22.已知函数()2e ,e ,x xx x m f x x x mì--£=í+>î和()2ln ,01ln ,1x x x g x x x x --<£ì=í+³î有相同的最小值,(e 为自然对数的底数,且e 2.71828=L )(1)求m ;(2)证明:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点;(3)若(2)中三个交点的横坐标分别为1x ,2x ,3x ()123x x x <<,求1232x x x ++的值.易知x ®-¥时,()f x ®+¥0+®时,()g x ¥®+;x ®则()f x b =在区间(),0¥-与()x b =在区间()0,1与(1,+¥要证:存在直线y b =与函数所以存在()00,1x Î,使()00()f x g x =,即()()f x g x =在()0,1上有交点,得证.所以存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点.(3)如图y b =与函数()y f x =,()y g x =恰好共有三个不同的交点,三个交点的横坐标分别为1x ,2x ,3x ,()123x x x <<,则有121222332e e 2ln ln x x x x x x x x --+=+==--,因为112ln 122122e 2ln 2e 2e ln x x x x x x x x ----Þ--=-=-而()2e x f x x =--单调递减,所以12ln x x =,因为322ln 23323e ln e e ln x x x x x x x x +=+Þ+=+,而()e x f x x =+单调递增,所以23ln x x =,又因为2222222e 2ln e ln 22x x x x x x x +=--Þ++=.所以212322e 222ln x x x x x x ++=++=.【点睛】本题考查了导数的应用,利用导数求函数的单调性,函数的零点,利用同构去解决三个交点横坐标之间的数量关系.答案第161页,共22页。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
2023—2024学年河南省新乡市高一上学期期中测试数学试卷
2023—2024学年河南省新乡市高一上学期期中测试数学试卷一、单选题1. 已知集合,,则()A.B.C.D.2. 命题“”的否定是()A.B.C.D.3. “”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 已知,则下列选项错误的是()A.B.C.D.5. 函数的部分图象大致为()A.B.C.D.6. 已知正数,满足,则的最小值为()A.25B.5C.10D.1007. 已知函数满足,当时,,则()A.3B.6C.12D.248. 体育课是体育教学的基本组织形式,主要使学生掌握体育与保健基础知识,基本技术、技能,实现学生的思想品德教育,提高其运动技术水平.新学期开学之际,某校计划用不超过1500元的资金购买单价分别为120元的篮球和140元的足球.已知该校至少要购买8个篮球,且至少购买2个足球,则不同的选购方式有()A.6种B.7种C.8种D.5种二、多选题9. 下列各组函数中,表示同一函数的有()A.与B.与C.与D.与10. 下列有关命题的说法正确的是()A.“菱形都是轴对称图形”是全称量词命题B.命题“任意一个幂函数的图象都经过原点”是真命题C.命题“”是真命题D.若是的充分不必要条件,是的充要条件,则是的必要不充分条件11. 已知函数满足,且,则()A.B.是偶函数C.D.12. 已知,且不等式恒成立,则的值可以是()A.2B.3C.4D.5三、填空题13. 已知函数的定义域为,则函数的定义域为________ .14. 某商场为了了解顾客对该商场产品质量和商场服务人员的服务态度的满意情况,随机采访了50名顾客,其中对商场产品质量满意的顾客有42名,对商场服务人员的服务态度满意的顾客有38名,对该商场产品质量和商场服务人员的服务态度都不满意的顾客有6名,则对该商场产品质量和商场服务人员的服务态度都满意的顾客有 ______ 名.15. 已知关于的不等式对任意的实数恒成立,则的最大值是________ .16. 已知是定义在上的增函数,则的取值范围是 ______ .四、解答题17. 已知集合,.(1)若,求的值;(2)若,求的取值范围.18. 已知幂函数,且在上单调递增.(1)求m的值;(2)设函数,求在上的值域.19. 已知函数为奇函数.(1)求的值;(2)试判断在上的单调性,并用单调性的定义证明;(3)若,且,求的最小值.20. 某地居民用电采用阶梯电价,其标准如下:每户每月用电不超过120度,每度0.6元;超过120度,但不超过300度的部分,每度0.8元;超过300度,但不超过500度的部分,每度1元;超过500度的部分,每度1.2元.某月A,B 两户共交电费y元,已知A,B两户该月用电量分别为度、度.(1)求关于的函数关系式;(2)若A,B两户该月共交电费486元,求A,B两户的用电量.21. 已知关于的不等式.(1)若原不等式的解集为或,求的值;(2)若,且原不等式的解集中恰有7个质数元素,求的取值范围.22. 已知函数,且,.(1)求的解析式;(2)若函数,求在上的最小值.。
河南省新乡市数学初二上学期试卷及答案指导(2025年)
2025年河南省新乡市数学初二上学期模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?选项:A、16厘米B、24厘米C、32厘米D、40厘米2、小明有12个苹果,他每天吃掉2个苹果,几天后小明剩下5个苹果?选项:A、4天B、5天C、6天D、7天3、(1)下列各数中,绝对值最小的是:A、-3B、-2.5C、-24、(2)一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的面积是:A、40平方厘米B、32平方厘米C、48平方厘米D、64平方厘米5、已知直角三角形ABC中,∠C是直角,AB=5cm,AC=3cm,那么BC的长度是()A. 4cmB. 6cmC. 7cmD. 8cm6、一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是()A. 15cmB. 18cmC. 24cmD. 30cm7、已知等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,求该三角形的周长。
8、下列各数中,是正有理数的是:A、-5B、0C、2/39、在等腰三角形ABC中,AB=AC,点D是底边BC的中点,如果∠BAC=60°,则∠BDC的度数是:A. 30°B. 45°C. 60°D. 90°二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是______cm。
2、在直角坐标系中,点A(3, -4)关于原点对称的点的坐标是 ______ 。
3、已知 |a| = 3,|b| = 2,且 a < b,则 a - b = _______.4、下列各式中,能用平方差公式分解因式的是 ( )A.x2+y2B.−x2+y2C.x2−2xy+y2D.x2+2xy+y25、若直线(y=mx+b)经过点 (3, 4),并且与 y 轴交于点 (0, -2),则该直线的斜率 m 为 ________ 。
河南省新乡市2021-2022学年高一上学期期末考试数学试题
【答案】C
6.某灯具商店销售一种节能灯,每件进价10元,每月销售量y(单位:件)与销售价格x(单位:元)之间满足如下关系式: ( 且 ).则灯具商店每月的最大利润为()
A.3000元B.4000元C.3800元D.4200元
【答案】B
7.函数 的单调递增区间为()
A B. C. D.
【答案】D
8.已知 , ,且 ,则 的最小值为()
A.24B.25C.26D.27
【答案】B
9.已知 , , ,则()
A. B. C. D.
【答案】B
10.已知 ,则 ()
A. B. C. D.
【答案】C
11.已知 是定义在 上的偶函数,当 时, 的图象如图所示,则不等式 的解集为()
A. B.
C D.
【答案】D
3.已知幂函数 在 上单调递减,则 ()
A.2B.16C. D.
【答案】D
4.“ 是第四象限角”是“ 是第二或第四象限角”的()
A.充分不必要条件B.必要不充分条件
C 充要条件D.既不充分也不必要条件
【答案】A
5.现有两个相互啮合的齿轮,大轮有64齿,小轮有24齿,当小轮转一周时,大轮转动的弧度是()
:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.
2.请将各题答案填写在答题卡上.
3.本试卷主要考试内容:人教A版必修第一册.
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.
【答案】
15.已知函数 ,则不等式 解集为__________.
【答案】
高中数学-高一上学期期末调研测试数学试题 Word版含解析72
2018-2019学年高一上学期期末调研测试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.有一个容量为66的样本,数据的分组及各组的频数如下:,,,,根据样本的频数分布估计,大于或等于的数据约占A. B. C. D.【答案】C【解析】【分析】找到大于或等于的频数,除以总数即可.【详解】由题意知,大于或等于的数据共有:则约占:本题正确选项:【点睛】考查统计中频数与总数的关系,属于基础题.3.秦九韶算法是中国古代求多项式的值的优秀算法,若,当时,用秦九韶算法求A. 1B. 3C. 4D. 5【答案】C【解析】【分析】通过将多项式化成秦九韶算法的形式,代入可得.【详解】由题意得:则:本题正确选项:【点睛】本题考查秦九韶算法的基本形式,属于基础题.4.下列四组函数中,不表示同一函数的是A. 与B. 与C. 与D. 与【答案】D【解析】【分析】根据相同函数对定义域和解析式的要求,依次判断各个选项.【详解】相同函数要求:函数定义域相同,解析式相同三个选项均满足要求,因此是同一函数选项:定义域为;定义域为,因此不是同一函数本题正确选项:【点睛】本题考查相同函数的概念,关键在于明确相同函数要求定义域和解析式相同,从而可以判断结果.5.执行如图所示程序框图,当输入的x为2019时,输出的A. 28B. 10C. 4D. 2【答案】C【解析】【分析】的变化遵循以为公差递减的等差数列的变化规律,到时结束,得到,然后代入解析式,输出结果.【详解】时,每次赋值均为可看作是以为首项,为公差的等差数列当时输出,所以,即即:,本题正确选项:【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.6.函数的单调递增区间为A. B. C. D.【答案】C【解析】【分析】结合对数真数大于零,求出定义域;再求出在定义域内的单调递减区间,得到最终结果.【详解】或在定义域内单调递减根据复合函数单调性可知,只需单调递减即可结合定义域可得单调递增区间为:本题正确选项:【点睛】本题考查求解复合函数的单调区间,复合函数单调性遵循“同增异减”原则,易错点在于忽略了函数自身的定义域要求.7.在一不透明袋子中装着标号为1,2,3,4,5,6的六个质地、大小、颜色无差别小球,现从袋子中有放回地随机摸出两个小球,并记录标号,则两标号之和为9的概率是A. B. C. D.【答案】A【解析】【分析】确定所有可能的基本事件总数,再列出标号和为的所有基本事件,根据古典概型可求得概率. 【详解】有放回的摸出两个小球共有:种情况用表示两次取出的数字编号标号之和为有:,,,四种情况所以,概率本题正确选项:【点睛】本题考查古典概型的相关知识,对于基本事件个数较少的情况,往往采用列举法来求解,属于基础题.8.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是A. 336B. 510C. 1326D. 3603 【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.9.设,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】将化成对数的形式,然后根据真数相同,底数不同的对数的大小关系,得到结果.【详解】由题意得:又本题正确选项:【点睛】本题考查对数大小比较问题,关键在于将对数化为同底或者同真数的对数,然后利用对数函数图像来比较.10.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】试题分析:根据题意,A.错误,令定义域为,由:,所以是非奇非偶函数;B错误,令定义域为,由:即:,所以是偶函数;C.错误.令定义域为,由:,所以为非奇非偶函数;D.正确.令定义域为,由,即,所以为偶函数,正确.综上,答案为D.考点:1.函数的奇偶性;2.奇偶函数的定义域.11.已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于当时,取得两个最值本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.12.设,表示不超过实数的最大整数,则函数的值域是A. B. C. D.【答案】B【解析】【分析】根据不同的范围,求解出的值域,从而得到的值域,同理可得的值域,再根据取整运算得到可能的取值.【详解】由题意得:,①当时,则,此时,,,则②当时,,,,.③当时,则,此时,,,则综上所述:的值域为本题正确选项:【点睛】本题考查新定义运算的问题,解题关键在于能够明确新定义运算的本质,易错点在于忽略与的彼此取值影响,单纯的考虑与整体的值域,造成求解错误.二、填空题(本大题共4小题,共20.0分)13.函数的定义域是_______________【答案】【解析】由题要使函数有意义须满足14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于,则去看电影;若豆子到正方形中心的距离大于,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______豆子大小可忽略不计【答案】【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知,小明不在家写作业的概率为:本题正确结果:【点睛】本题考查几何概型中的面积型,属于基础题.15.若函数为偶函数,则______.【答案】1【解析】【分析】为定义域上的偶函数,所以利用特殊值求出的值.【详解】是定义在上的偶函数即解得:本题正确结果:【点睛】本题考查利用函数奇偶性求解参数值,对于定义域明确的函数,常常采用赋值法来进行求解,相较于定义法,计算量要更小.16.已知函数,若存在实数a,b,c,满足,其中,则abc的取值范围是______.【答案】【解析】【分析】根据解析式,画出的图像,可知函数与每段的交点位置,由此可得,再求出的范围后,可确定整体的取值范围.【详解】由解析式可知图像如下图所示:由图像可知:又且时,可知即又本题正确结果:【点睛】本题考查函数图像及方程根的问题,关键在于能够通过函数图像得到的关系.三、解答题(本大题共6小题,共70.0分)17.设集合,不等式的解集为B.当时,求集合A,B;当时,求实数a的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2.【解析】【分析】(1)直接代入集合即可得,解不等式得;(2)分别讨论和两种情况,得到关于的不等式组,求得取值范围.【详解】(1)当时,(2)若,则有:①当,即,即时,符合题意,②当,即,即时,有解得:综合①②得:【点睛】本题考查了解二次不等式、集合间的包含关系及空集的定义,属基础题.易错点在于忽略了的情况.18.在平面直角坐标系中,记满足,的点形成区域A,若点的横、纵坐标均在集合2,3,4,中随机选择,求点落在区域A内的概率;若点在区域A中均匀出现,求方程有两个不同实数根的概率;【答案】(1);(2).【解析】【分析】(1)利用列举法确定基本事件,即可求点落在区域内的概率;(2)以面积为测度,求方程有两个实数根的概率.【详解】根据题意,点的横、纵坐标在集合中随机选择,共有个基本事件,并且是等可能的其中落在,的区域内有,,,,,,,,共个基本事件所以点落在区域内的概率为(2),表示如图的正方形区域,易得面积为若方程有两个不同实数根,即,解得为如图所示直线下方的阴影部分,其面积为则方程有两个不同实数根的概率【点睛】本题考查概率的计算,要明确基本事件可数时为古典概型,基本事件个数不可数时为几何概型,属于中档题.19.计算:;若a,b分别是方程的两个实根,求的值.【答案】(1);(2)12.【解析】【分析】(1)利用指数与对数运算性质即可得出;(2)根据题意,是方程的两个实根,由韦达定理得,,利用对数换底公式及其运算性质即可得出.【详解】(1)原式(2)根据题意,是方程的两个实根由韦达定理得,原式【点睛】本题考查了指数与对数运算性质、对数换底公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.20.下面给出了2010年亚洲某些国家的国民平均寿命单位:岁.国家平均寿命国家平均寿命国家平均寿命阿曼阿富汗59 巴基斯坦巴林阿联酋马来西亚朝鲜东帝汶孟加拉国韩国柬埔寨塞浦路斯老挝卡塔尔沙特阿拉伯蒙古科威特哈萨克斯坦缅甸菲律宾印度尼西亚日本黎巴嫩土库曼斯坦65吉尔吉斯斯泰国尼泊尔68坦乌兹别克斯约旦土耳其坦越南75 伊拉克也门中国以色列文莱伊朗74 新加坡叙利亚印度根据这40个国家的样本数据,得到如图所示的频率分布直方图,其中样本数据的分组区间为:,,,,,请根据上述所提供的数据,求出频率分布直方图中的a,b;请根据统计思想,利用中的频率分布直方图估计亚洲人民的平均寿命及国民寿命的中位数保留一位小数.【答案】(1),;(2)平均寿命71.8,中位数71.4.【解析】【分析】(1)根据表中数据,亚洲这个国家中,国民平均寿命在的频数是,频率是,由此能求出,同理可求;(2)由频率分布直方图能估计亚洲人民的平均寿命及国民寿命的中位数.【详解】(1)根据表中数据,亚洲这个国家中国民平均寿命在的频数是,频率是国民平均寿命在的频数是,频率是,计算得,由频率分布直方图可知,各个小矩形的面积各个区间内的频率转换为分数分别是:,,,,,以上所有样本国家的国民平均寿命约为:前三组频率和为中位数为根据统计思想,估计亚洲人民的平均寿命大约为岁,寿命的中位数约为岁【点睛】本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21.某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:年份年 1 2 3 4 5维护费万元Ⅰ求y关于t的线性回归方程;Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.参考公式:,【答案】(Ⅰ);(2)甲更有道理.【解析】【分析】(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.【详解】(Ⅰ),,,,,所以回归方程为(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:(万元)若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:(万元)所以甲更有道理【点睛】本题考查了求回归方程问题,考查函数求值,是一道常规题.22.已知,.求在上的最小值;若关于x的方程有正实数根,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)通过讨论的范围,结合二次函数的性质求出函数的单调区间,求出函数的最小值即可;(2)得到,令,问题转化为在有实根,求出的范围即可.【详解】(1)当时,在上单调递减故最小值当时,是关于的二次函数,对称轴为当时,,此时在上单调递减故最小值当时,对称轴当,即时,在单调递减,在单调递增故最小值当时,即时,在上单调递减故最小值综上所述:(2)由题意化简得令,则方程变形为,根据题意,原方程有正实数根即关于的一元二次方程有大于的实数根而方程在有实根令,在上的值域为故【点睛】本题考查了二次函数的性质,考查函数的单调性,最值问题,考查分类讨论思想,转化思想.关键是通过换元的方式将问题转化为二次函数在区间内有实根的问题,可以用二次函数成像处理,也可以利用分离变量的方式得到结果.。
2023-2024学年河南省新乡市高一上册第一次月考数学试题(含解析)
2023-2024学年河南省新乡市高一上册第一次月考数学试题一、单选题1.下列函数中在定义域上既是奇函数又是增函数的为()A .y =x +1B .y =-x 2C .y =x 3D .1y x=-【正确答案】C【分析】依据奇偶性和单调性依次判断每个选项即可.【详解】y =x +1是非奇非偶函数,y =-x 2是偶函数,y =x 3由幂函数的性质,是定义在R 上的奇函数,且为单调递增,1y x=-在在定义域为(,0)(0,)-∞+∞ ,不是定义域上的单调增函数,故选:C此题考查函数奇偶性单调性的判断,要求对奇偶性和单调性的判断方式熟练掌握,是简单题目.2.已知函数()()()2212(3)x x f x x f x ⎧≥+⎪=⎨<+⎪⎩,则()()13f f -=()A .7B .12C .18D .27【正确答案】A【分析】先求出f (1)=f (4)=42+1=17,f (3)=32+1=10,由此能求出f (1)﹣f (3)的值.【详解】∵函数f (x )()()()21232x x f x x ⎧+≥⎪=⎨+⎪⎩<,∴f (1)=f (4)=42+1=17,f (3)=32+1=10,∴f (1)﹣f (3)=17﹣10=7.故选A .本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.3.已知函数()21,0,21,0,x x f x x x ⎧-≤=⎨+>⎩已知()3f a =,则实数a 的值为A .2-或1B .2-或2C .1D .2-或2或1【正确答案】A【分析】可分别讨论当0x ≤时,213x -=,解出满足条件的x 的值.当0x >时,213x +=,解出满足条件的x 的值.【详解】当0x ≤时,213x -=,即2x =-;当0x >时,213x +=,即1x =;故选A此题考查分段函数值求参数,分别求出每个区间满足条件的x 范围即可,属于简单题目.4.下列各项中,()f x 与()g x 表示同一函数的是()A .()f x x =,()g x =B .()f x x =,()2g x =C .()f x x =,()2x g x x=D .()1f x x =-,()()()1111x x g x x x ⎧-≥⎪=⎨-<⎪⎩【正确答案】D【分析】根据函数的定义域与解析式逐项判断即可.【详解】对于A ,()g x x =,与()f x 的解析式不同,故A 错误;对于B ,()2g x =的定义域为{}0x x ≥,()f x 的定义域为R ,故B 错误;对于C ,()2x g x x=的定义域为{}0x x ≠,()f x 的定义域为R ,故C 错误;对于D ,()()()11111x x f x x x x ⎧-≥⎪=-=⎨-<⎪⎩,且()f x 与()g x 的定义域都为R ,故()f x 与()g x 表示同一函数,故D 正确.故选:D.5.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为()A .B .C.D.【正确答案】D【详解】试题分析:根据题意,甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20min ,在乙地休息10min 后,他又以匀速从乙地返回到甲地用了30min ,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min ,那么最后还是同样的匀速运动,直线的斜率不变可知选D.函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.6.已知函数()f x 为(1,1)-上的奇函数且单调递增,若(21)(1)0f x f x -+-+>,则x 的值范围是()A .(1,1)-B .(0,1)C .[1,)+∞D .[1,)-+∞【正确答案】B根据函数定义域以及函数单调性奇偶性,求解不等式即可.【详解】由题意,()f x 为(1,1)-上的奇函数且在(1,1)-单调递增,故(21)(1)0(21)(1)f x f x f x f x -+-+>⇔->-,1211,111,211,x x x x -<-<⎧⎪∴-<-<⎨⎪->-⎩解得01x <<.故选:B.本题考查利用函数奇偶性和单调性求解不等式,属基础题.7.不等式(4)3x x -<的解集为()A .{|1x x <或3}x >B .{|0x x <或4}x >C .{|13}x x <<D .{|04}x x <<【正确答案】A【分析】将不等式化为(1)(3)0x x -->,可解得结果.【详解】不等式(4)3x x -<化简为:2430x x -+>,所以(1)(3)0x x -->解得:1x <或3x >.故选:A.本题考查了一元二次不等式的解法,属于基础题.8.若0a b >>,下列不等式成立的是A .1b a<B .2a ab <C .22a b <D .11a b>【正确答案】A【详解】由不等式的性质,若0a b >>,则:1ba<,2a ab >,22a b >,11a b<.本题选择A 选项.9.已知0,0x y >>,若3xy =,则x y +的最小值为()A .3B .2C .D .1【正确答案】C【分析】直接利用基本不等式求最小值.【详解】由于0,0x y >>,3xy =,所以x y +≥=x y ==立.所以x y +的最小值为故选:C .本题考查用基本不等式求最值,基本不等式求最值时的三个条件:一正二定三相等,务必满足.10.关于x 的不等式()()21100ax a x a -++><的解集为()A .11x x a ⎧⎫<<⎨⎬⎩⎭B .1x x a ⎧>⎨⎩或}1x <C .1x x a ⎧<⎨⎩或}1x >D .11x x a ⎧⎫<<⎨⎬⎩⎭【正确答案】A根据二次不等式的求解方法求解即可.【详解】不等式()()21100ax a x a -++><可化为()()110ax x -->,则11x a<<.故选:A.本题考查含参一元二次不等式的解法,较简单.11.若不等式210x tx -+<对一切()1,2x ∈恒成立,则实数t 的取值范围为()A .2t <B .52t >C .1t ≥D .52t ≥【正确答案】D首先分离参数可得1t x x >+,然后结合对勾函数的性质求得152x x +<,从而可确定t 的取值范围.【详解】因为不等式210x tx -+<对一切()1,2x ∈恒成立,所以211x t x x x+>=+在区间(1,2)上恒成立,由对勾函数的性质可知函数1y x x=+在区间(1,2)上单调递增,且当2x =时,15222y =+=,所以152x x +<故实数t 的取值范围是52t .故选:D .方法点睛:一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式的符号即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题.12.若,,a b c R ∈且a b >,则下列不等式中一定成立的是()A .ac bc >B .2()0a b c ->C .11a b<D .22a b-<-【正确答案】D【分析】根据不等式的性质即可判断.【详解】对于A ,若0c ≤,则不等式不成立;对于B ,若0c =,则不等式不成立;对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D本题主要考查不等式的性质,需熟练掌握性质,属于基础题.13.设集合{1,2,4}A =,{1,2,3}B =,则A B ⋃=A .{3,4}B .{1,2}C .{2,3,4}D .{1,2,3,4}【正确答案】D 由并集的计算求解即可【详解】由题{}1,2,3,4A B ⋃=故选D本题考查集合的简单运算,并集的定义,是基础题14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【正确答案】A【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.本题主要考查并集、补集的定义与应用,属于基础题.15.命题“x ∀∈R ,0ax b +≤”的否定是()A .x ∃∈R ,0ax b +≤B .x ∃∈R ,0ax b +>C .x ∀∈R ,0ax b +≥D .x ∀∈R ,0ax b +>【正确答案】B【分析】根据全称量词的命题为存在量词命题直接写出即可.【详解】全称量词的命题为存在量词命题,所以命题“x ∀∈R ,0ax b +≤”的否定是“x ∃∈R ,0ax b +>”.故选:B.16.已知集合是M {x |x N}=∈,则()A .0M ∈B .πM∈C MD .1M∉【正确答案】A【分析】根据自然数的定义,得到结果.【详解】集合{}0,1,2,3,M =⋅⋅⋅0M∴∈本题正确选项:A本题考查自然数的定义、元素与集合的关系,属于基础题.17.已知集合{}1,2,4A =,集合(),{|},,B x y x A y A x y =∈∈>,则集合B 中元素的个数是()A .6B .5C .4D .3【分析】根据题意求出()()(){}2,1,4,1,4,2B =,即可求出结果.【详解】集合{}1,2,4A =,集合(),{|},,B x y x A y A x y =∈∈>,∴()()(){}2,1,4,1,4,2B =,∴集合B 中元素的个数是3个.故选:D.18.已知集合{}12A x x =≤≤,集合{}B x x a =≥.若A B B ⋃=,则实数a 的取值范围是()A .1a <B .1a ≤C .2a >D .2a ≥【正确答案】B【分析】A B B ⋃=转化为A B ⊆,从而可求实数a 的取值范围.【详解】因为A B B ⋃=,所以A B ⊆.因为{}12A x x =≤≤,{}B x x a =≥,所以1a ≤.故选:B.19.已知集合{}2210A x ax x =++=,若集合A 为单元素集,则a 的取值为()A .1B .1-C .0或1D .1-或0或1【正确答案】C【分析】根据集合A 为单元素集,可得方程2210ax x ++=只有一个实根,对a 分类讨论即可求解.【详解】若集合A 为单元素集,则方程2210ax x ++=只有一个实根.当0a =,可得12x =-,满足题意;当0a ≠时,440a ∆=-=,解得1a =.故a 的取值是0或1.故选:C.20.已知函数()532f x ax bx =++,若()27f =,则()2f -=()A .-7B .-3C .3D .7【分析】利用奇函数的性质即得.【详解】设()()532g x f x ax bx =-=+,则()()53g x ax bx g x -=--=-,即()()22f x f x -=--+,故()()2243f f -=-+=-.故选:B二、解答题21.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃ð;(2)若A B B = ,求a 的取值范围.【正确答案】(1){2x x <或3x ≥};(2)[)2-+∞,.(1)3a =-时,先计算B R ð,再进行并集运算即可;(2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R ð{1x x ≤或3x ≥},故()=⋃R A B ð{2x x <或3x ≥};(2)因为A B B = ,所以B A ⊆.若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-.综上所述,a 的取值范围为[)2-+∞,.易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.22.已知0a >,0b >且2a b +=.(1)求ab 的最大值;(2)求28a b+的最小值.【正确答案】(1)1;(2)9.(1)利用基本不等式求得ab 的最大值.(2)利用基本不等式求得28a b+的最小值.【详解】(1)依题意222122a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立,所以ab 的最大值为1.(2)()281281281022b a a b a b a b a b ⎛⎫⎛⎫+=⋅+⋅+=++ ⎪ ⎪⎝⎭⎝⎭()1110108922⎛≥+=+= ⎝.当且仅当2824,,33b a a b a b ===时等号成立,所以28a b+的最小值为9.本小题主要考查基本不等式求最值,属于基础题.23.已知()221xf x x =+.(1)判断()f x 在[-1,1]的单调性,并用定义加以证明;(2)求函数()f x 在[-1,1]的最值.【正确答案】(1)增函数,证明见解析;(2)最大值()11f =,最小值()11f -=-.【分析】(1)利用定义法证明函数的单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(2)由(1)根据函数的单调性即可解答.【详解】解:(1)函数()f x 在[]1,1-上单调递增;证明:设任意的[]12,1,1x x ∈-且12x x <,()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-++++()()()()122122122111x x x x xx --=++[]12,1,1x x ∈- 且12x x <,1211x x ∴-≤⋅<,210x x ->()()120f x f x ∴-<故函数()f x 在[]1,1-上单调递增;(2)由(1)知()f x 在[]1,1-上单调递增;所以()()2max 211111f x f ⨯===+()()()()2min 211111f x f ⨯-=-+-==-本题考查函数的单调性的证明,函数的最值,属于基础题.24.已知()f x 是定义在R 上的偶函数,且当0x ≥时,()223f x x x =+-.(1)求()f x 的解析式;(2)若()()121f m f m +<-,求实数m 的取值范围.【正确答案】(1)2223,0()23,0x x x f x x x x ⎧+-≥=⎨--<⎩;(2){0mm <∣或2}m >.【分析】(1)根据偶函数的性质进行求解即可;(2)根据偶函数的性质,结合二次函数()223f x x x =+-在0x ≥时的单调性进行求解即可.【详解】(1)当0x <时,()22()()2()323f x f x x x x x =-=-+⋅--=--,所以2223,0()23,0x x x f x x x x ⎧+-≥=⎨--<⎩;(2)当0x ≥时,()2223(1)4f x x x x =+-=+-,因此当0x ≥时,该函数单调递增,因为()f x 是定义在R 上的偶函数,且当0x ≥时,该函数单调递增,所以由()()()()121121121f m f m f m f m m m +<-⇒+<-⇒+<-,因此222(1)(21)202m m m m m +<-⇒->⇒>或0m <,所以实数m 的取值范围是{0m m <∣或2}m >.。
河南省新乡市第一中学2022-2023学年数学高一上期末达标检测模拟试题含解析
(1)求圆C的标准方程;
(2)求圆C在点B处的切线方程.
20.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
甲
6
6
9
9
乙
7
9
(1)该渔船捕捞几年开始盈利(即总收入减去成本及所有使用费用为正值)?
(2)若当年平均盈利额达到最大值时,渔船以30万元卖出,则该船为渔业公司带来的收益是多少万元?
参考答案
一、选择题(本大题共12小题,共60分)
1、A
【解析】根据圆的方程得出圆心坐标(1,0),直接依据点到直线的距离公式可以得出答案.
一、选择题(本大题共12小题,共60分)
1.圆 的圆心到直线 的距离是()
A. B.
C.1D.
2.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合的真子集有( )个
A.3B.4
C.7D.8
3.若函数 的图像向左平移 个单位得到 的图像,则
A. B.
C. D.
三、解答题(本大题共6小题,共70分)
17、(1) ;
(2) .
【解析】(1)利用同角三角函数的基本关系可求得 的值;
(2)利用诱导公式以及弦化切可求得结果.
【小问1详解】
解:因为 ,且 ,则 为第三象限角,故 ,
因此, .
【小问2详解】
解:原式 .
18、(1)最小正周期为 ,对称轴方程 ;
(2)单调递减区间为 ,值域为 .
【详解】由 可知:
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)
2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。
河南省新乡市九师联盟2023-2024学年高一上学期12月月考试题 数学含解析
高一数学试题(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第五章第3节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与2024-︒角终边相同的角是()A.24︒B.113︒C.136︒D.224︒2.已知集合{34},{20}A x x B x x =∈-<≤=->N∣∣,则()B A ⋂=R ð()A.{}1,2 B.{}2,1,0-- C.{}0,1,2 D.{}2,1,0,1,2--3.已知函数()2,0πsin ,03x x f x x x ⎧>⎪=⎨⎛⎫≤ ⎪⎪⎝⎭⎩则(1)f -=()A.2B.12-C.12D.24.函数3()ln(1)f x x x=--的零点所在区间为()A.(2,3)B.(3,4)C.(4,5)D.(5,6)5.“lg 0x >”的一个必要条件是()A.22x -<<B.42x -<≤-C.2x >- D.||2x >6.设13π21log 3,2,log 3a b c ===,则()A.b a c >>B.a b c >>C.c a b>> D.a c b>>7.已知1m >,点()()()1231,,,,1,m y m y m y -+都在二次函数22y x x =-的图象上,则()A.123y y y <<B.321y y y <<C.132y y y =< D.213y y y <=8.若函数()222,143,1x m x f x x mx m x ⎧-<=⎨-+≥⎩有3个零点,则实数m 的取值范围是()A .1,13⎡⎫⎪⎢⎣⎭ B.()[),01,-∞⋃+∞C.[)1,2 D.[)1,12,3⎡⎫+∞⎪⎢⎣⎭U 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知角α和β的终边关于x 轴对称,则()A.sin sin αβ=-B.tan tan αβ=C .πsin cos 2αβ⎛⎫+= ⎪⎝⎭D.cos(π)cos αβ-=10.下列说法正确的是()A.若0x >,则1x x+有最小值2B.若x ∈R ,则241xx +有最大值2C.若x y >,则33x y > D.若0x y <<,则11x y>11.关于幂函数()()1mf x m x -=-,下列结论正确的是()A.()f x 的图象经过原点B.()f x 为偶函数C.()f x 的值域为()0,∞+ D.()f x 在区间()0,∞+上单调递增12.设函数()f x 的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,,,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩则称()p f x 为()f x 的“p 界函数”.若函数()22f x x x =+,则()A.()323f = B.()3f x 的最小值为1-C.()3f x 在[]1,1-上单调递减D.()31f x -为偶函数三、填空题:本题共4小题,每小题5分,共20分.13.已知某扇形所在圆的半径为3,扇形的面积为3π,则该扇形的圆心角(正角)的弧度数为______.14.已知集合{}{}21,xA xB x x a =<=≥∣∣,若,x A x B ∃∈∈,则实数a 的取值范围是__________.15.函数()4323x f x x -=+的单调递增区间为__________.16.已知函数3322y x =+与函数1122x x y +--=-的图象交于,,M N P 三点,则此三点中最远的两点间的距离为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知角α的终边经过点()sin 30,1P ︒.(1)求sin α,cos α的值;(2)求sin(π)cos 5πcos 2ααα++⎛⎫+ ⎪⎝⎭的值.18.选用恰当的证明方法,证明下列不等式.(1)已知,x y 均为正数,且1x y +=,求证:4925x y+≥;(2)已知0a b >>,求证:3322a b ab a b+>+.19.已知函数21()21x x f x -=+.(1)求证:函数()f x 是定义域为R 的奇函数;(2)判断函数()f x 的单调性,并用单调性的定义证明.20.已知f x b =++(a ,b 均为常数),且(0)1,(1)2f f ==-.(1)求函数()f x 的解析式;(2)若对(1,2)x ∀∈,不等式3log [()]2f x m +≤成立,求实数m 的取值范围.21.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =-.(1)求函数()g x 的解析式;(2)若函数()()()1h x g x f x λ=-+在[]1,1-上单调递减,求实数λ的取值范围.22.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧AB上选择一点建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A与对城B的影响度之x,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明垃圾和.记C点到城A的距离为km处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为9.(1)若垃圾处理厂建在圆弧AB的中点处,求垃圾处理厂对城A和城B的总影响度;(2)求垃圾处理厂对城A和城B的总影响度的最小值.高一数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第五章第3节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与2024-︒角终边相同的角是()A.24︒B.113︒C.136︒D.224︒【答案】C 【解析】【分析】将2024-︒改写为20241363606︒-=-︒⨯︒,根据终边相同角的定义即可求解.【详解】因为20241363606︒-=-︒⨯︒,所以2024-︒角与136︒角终边相同.故选:C2.已知集合{34},{20}A x x B x x =∈-<≤=->N∣∣,则()B A ⋂=R ð()A.{}1,2 B.{}2,1,0-- C.{}0,1,2 D.{}2,1,0,1,2--【答案】C 【解析】【分析】根据集合的补集与交集的概念计算即可.【详解】由题意可得,{0,1,2,3,4},{|2}A B x x ==>,∴{|2}B x x =≤R ð,∴(){}0,1,2B A =R ð.故选:C .3.已知函数()2,0πsin ,03x x f x x x ⎧>⎪=⎨⎛⎫≤ ⎪⎪⎝⎭⎩则(1)f -=()A.2B.12-C.12D.2【答案】A 【解析】【分析】根据分段函数的解析式,代入计算可得.【详解】由题意可得()π1sin 32f ⎛⎫-=-=- ⎪⎝⎭.故选:A4.函数3()ln(1)f x x x=--的零点所在区间为()A.(2,3) B.(3,4)C.(4,5)D.(5,6)【答案】B 【解析】【分析】分别验证每个区间端点值的正负符号,由零点存在定理可判断出结果.【详解】易知函数3()ln(1)f x x x=--在其定义域(1,)+∞上连续不断,且3(3)ln 210,(4)ln 304f f =-<=->,则函数的零点在区间(3,4)上.故选:B .5.“lg 0x >”的一个必要条件是()A.22x -<<B.42x -<≤-C.2x >-D.||2x >【答案】C 【解析】【分析】先利用对数函数单调性求得“lg 0x >”的充要条件,然后把必要条件转化为真子集关系,逐项判断即可.【详解】由lg 0x >得1x >,要成为“lg 0x >”的必要条件,则{}1x x >是其对应的集合的真子集,而22,42,2x x x -<<-≤-均不满足题意,因为{}1x x >是{}2x x >-的真子集,所以“lg 0x >”的一个必要条件是“2x >-”.故选:C6.设13π21log 3,2,log 3a b c ===,则()A.b a c >>B.a b c >>C .c a b>> D.a c b>>【答案】A 【解析】【分析】利用指数函数与对数函数的单调性与“0,1”比较即可.【详解】13π210log 31,21,log 03a b c <===< ,c a b ∴<<.故选:A .7.已知1m >,点()()()1231,,,,1,m y m y m y -+都在二次函数22y x x =-的图象上,则()A.123y y y <<B.321y y y <<C.132y y y =<D.213y y y <=【答案】D 【解析】【分析】利用二次函数的对称性和单调性求解即可.【详解】二次函数22()2(1)1f x x x x =-=--,其图象的对称轴方程为1x =,而()()112m m -++=,所以()()11f m f m -+=,即13y y =,当1x >时,()f x 是单调增函数,因为1m >,所以11m m +>>,所以()()1f m f m +>,即23y y <,综上,213y y y <=.故选:D .8.若函数()222,143,1x m x f x x mx m x ⎧-<=⎨-+≥⎩有3个零点,则实数m 的取值范围是()A.1,13⎡⎫⎪⎢⎣⎭B.()[),01,-∞⋃+∞C.[)1,2D.[)1,12,3⎡⎫+∞⎪⎢⎣⎭U 【答案】C 【解析】【分析】分析可知,函数()f x 在(),1-∞上有一个零点,在[)1,+∞上有两个零点,求出这三个零点,根据题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】当1x <时,函数()2xf x m =-单调递增,则函数()f x 在(),1-∞上至多一个零点,当1x ≥时,函数()()()22433f x x mx m x m x m =-+=--至多两个零点,因为函数()f x 有三个零点,则函数()f x 在(),1-∞上有一个零点,在[)1,+∞上有两个零点,当1x <时,令()20xf x m =-=,可得2x m =,必有0m >,解得2log x m =,所以,2log 1m <,解得02m <<;当1x ≥时,由()()()30f x x m x m =--=,可得x m =或3x m =,所以,1313m m m m ≥⎧⎪≥⎨⎪≠⎩,解得m 1≥.综上所述,实数m 的取值范围为[)1,2.故选:C.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知角α和β的终边关于x 轴对称,则()A.sin sin αβ=-B.tan tan αβ=C.πsin cos 2αβ⎛⎫+=⎪⎝⎭D.cos(π)cos αβ-=【答案】AC 【解析】【分析】根据题意2π,k k αβ=-+∈Z ,然后根据诱导公式逐项判断即可.【详解】因为角α和β的终边关于x 轴对称,可得2π,k k αβ=-+∈Z .对于A ,由sin sin(2π)sin k αββ=-+=-,A 正确;对于B ,由tan tan(2π)tan()tan k αβββ=-+=-=-,B 错误;对于C ,由πsin cos cos(2π)cos()cos 2k ααβββ⎛⎫+==-+=-=⎪⎝⎭,C 正确;对于D ,由cos(π)cos cos(2π)cos k ααββ-=-=--+=-,D 错误.故选:AC10.下列说法正确的是()A.若0x >,则1x x+有最小值2B.若x ∈R ,则241xx +有最大值2C.若x y >,则33x y > D.若0x y <<,则11x y>【答案】ACD 【解析】【分析】根据基本不等式和不等式的性质判断.【详解】0x >,则12x x +≥=,当且仅当1x =时等号成立,A 正确;x ∈R ,20x>.211141222x x x x =≤++,当且仅当21x =,即0x =时等号成立,因此241x x +的最大值是12,B 错;由不等式的性质知C 正确,因为0x y <<,所以0,0y x xy ->>,所以110--=>y x x y xy ,即11x y>,D 正确,故选:ACD .11.关于幂函数()()1mf x m x -=-,下列结论正确的是()A.()f x 的图象经过原点B.()f x 为偶函数C.()f x 的值域为()0,∞+D.()f x 在区间()0,∞+上单调递增【答案】BC 【解析】【分析】由题意11m -=,得2()f x x -=,利用幂函数的性质判断各选项即可.【详解】由题意,11m -=,所以2m =,即2().f x x -=对于A ,()221f x xx-==的定义域为(,0)(0,)-∞+∞ ,故()f x 的图象不经过原点,A 错误;对于B ,因为221()f x xx-==的定义域为(,0)(0,)-∞+∞ ,2211()()()f x f x x x -===-,故()f x 为偶函数,B 正确;对于C ,由于21()0f x x =>,故值域为(0,)+∞,C 正确;对于D ,由于20-<,故2()f x x -=在区间(0,)+∞上单调递减,D 错误.故选:BC .12.设函数()f x 的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,,,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩则称()p f x 为()f x 的“p 界函数”.若函数()22f x x x =+,则()A.()323f = B.()3f x 的最小值为1-C.()3f x 在[]1,1-上单调递减 D.()31f x -为偶函数【答案】ABD 【解析】【分析】根据题意得出3()f x 的解析式,即可判断ABC ;求得3(1)f x -的解析式,作出函数的图象,由图象判断D .【详解】根据题意,由223x x +≤,解得31x -≤≤,232,31()3,33,1x x x f x x x ⎧+-≤≤⎪=<-⎨⎪>⎩,所以3(2)3f =,故A 正确;当31x -≤≤时,223()2(1)1f x x x x =+=+-,且3()f x 在[]1,1-上单调递增,在[]3,1--上单调递减,()()()33313,11,33f f f =-=--=,所以31()3f x -≤≤,即3()f x的值域为[]1,3-,故B正确,C错误;因为231,22(1)3,23,2x xf x xx⎧--≤≤⎪-=<-⎨⎪>⎩,则3(1)f x-的图象如图所示,由图可知()31f x-的图象关y轴对称,所以函数()31f x-为偶函数,故D正确.故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.已知某扇形所在圆的半径为3,扇形的面积为3π,则该扇形的圆心角(正角)的弧度数为______.【答案】2π3【解析】【分析】先根据扇形面积求得弧长,再利用弧长公式求得圆心角.【详解】由扇形面积12S rl=,得13π2lr=,解得2πl=,所以该扇形的圆心角(正角)2π3lrα==.故选:2π314.已知集合{}{}21,xA xB x x a=<=≥∣∣,若,x A x B∃∈∈,则实数a的取值范围是__________.【答案】(,0)-∞【解析】【分析】由命题的真假得出a A∈,从而易得其范围.【详解】{|21}{|0}xA x x x=<=<,{|}B x x a=≥,因为,x A x B∃∈∈,所以a A∈,所以a的范围是(,0)-∞,故答案为:(,0)-∞.15.函数()4323x f x x -=+的单调递增区间为__________.【答案】33(,,)22-∞--+∞【解析】【分析】利用分离常数法,得9()223f x x =-+,结合x 的范围可得答案.【详解】434699()2232323x x f x x x x -+-===-+++,由230x +¹,得32x ≠-,当3(,)2x ∈-∞-时,923y x =+单调递减,()f x 单调递增;当3(,)2x ∈-+∞时,923y x =+单调递减,()f x 单调递增,所以()f x 的单调增区间为33(,),(,)22-∞--+∞.故答案为:33(,,)22-∞--+∞.16.已知函数3322y x =+与函数1122x x y +--=-的图象交于,,M N P 三点,则此三点中最远的两点间的距离为__________.【答案】【解析】【分析】由题意可得,三个交点中一个必是点()1,0-,另外两个点关于点()1,0-对称.不妨记()1,0N -,设11133(,),122M x x x +>-,由1()f x =1()g x 求得1x ,所以此三点中最远的两点间的距离为2||MN .【详解】不妨记111(1)12333()(1),()2222222x x x x y f x x x y g x +--+-+=+=-===+=-,函数32y x =与22x x y -=-是奇函数且关于坐标原点对称,易知()(),f x g x 两个函数的图象均以点(1,0)-为对称中心,所以三个交点中一个必是点()1,0-,另外两个点关于点()1,0-对称.不妨记()1,0N -,设11133(,),122M x x x +>-,所以1()f x =1()g x ,即111(1)13(1)222x x x +-+=+-,解得111x +=,10x =,则2MN =,所以此三点中最远的两点间的距离为2||MN =..四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知角α的终边经过点()sin 30,1P ︒.(1)求sin α,cos α的值;(2)求sin(π)cos 5πcos 2ααα++⎛⎫+ ⎪⎝⎭的值.【答案】(1)sin 5α=,cos 5α=(2)12【解析】【分析】(1)根据三角函数定义即可得;(2)结合诱导公式即可得.【小问1详解】由1sin 302︒=,故角α的终边经过点1,12P ⎛⎫ ⎪⎝⎭,所以25sin 5α==,12cos 5α==;【小问2详解】sin(π)cos sin cos 1555πsin 225cos 25αααααα-+++-+==-⎛⎫+ ⎪⎝⎭.18.选用恰当的证明方法,证明下列不等式.(1)已知,x y 均为正数,且1x y +=,求证:4925x y+≥;(2)已知0a b >>,求证:3322a b ab a b +>+.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用1的妙用,结合基本不等式证明即可;(2)利用作差法证明即可.【小问1详解】证明:因为1x y +=,所以4949()()x y x y x y +=++49494913y x y x x y x y ⎛⎫=+++=++ ⎪⎝⎭,又因为0,0x y >>,所以490,0y x x y>>,所以4912y x x y +≥=,当且仅当49y x x y =,即23,55x y ==时取等号,所以4925x y+≥.【小问2详解】证明:33223232a b ab a b a ab b a b+--=-+-2222222()()()()()()a a b b b a a b a b a b a b =-+-=--=-+,因为0a b >>,所以20,()0a b a b +>->,所以2()()0a b a b -->,所以33220a b ab a b +-->,即3322a b ab a b +>+.19.已知函数21()21x x f x -=+.(1)求证:函数()f x 是定义域为R 的奇函数;(2)判断函数()f x 的单调性,并用单调性的定义证明.【答案】(1)证明见解析(2)函数()f x 在R 上单调递增,证明见解析【解析】【分析】(1)利用定义法证明函数为奇函数;(2)利用定义法证明函数的单调性.【小问1详解】函数21()21x x f x -=+的定义域为R ,对于x ∀∈R ,都有x -∈R ,且211221()()211221x x x x x x f x f x ------===-=-+++,所以函数()f x 是定义域为R 的奇函数.【小问2详解】函数()f x 在R 上单调递增,证明如下:对于12,x x ∀∈R ,且12x x <,()()()()()()()()()()()1221121212121212212121212222121212121212121x x x x x x x x x x x x x x f x f x -+--+----=-==++++++,因为12x x <,所以12022x x <<,则12120,10,102222x x x x -<+>+>,则()()120f x f x -<,故函数()f x 在R 上单调递增.20.已知f x b =++(a ,b 均为常数),且(0)1,(1)2f f ==-.(1)求函数()f x 的解析式;(2)若对(1,2)x ∀∈,不等式3log [()]2f x m +≤成立,求实数m 的取值范围.【答案】(1)2()41(0)f x x x x =-+≥(2)[3,11].【解析】【分析】(1)由(0)1,(1)2f f ==-,代入函数解析式求出,a b ,得函数()f x 的解析式;(2)不等式等价于0()9f x m <+≤,利用函数()f x 在定义区间内的值域,求实数m 的取值范围.【小问1详解】由f x b =++,得2f b =++,即2()(0)f x x ax b x =++≥,由(0)1,(1)2f f ==-,可得(0)1,(1)12,f b f a b ==⎧⎨=++=-⎩解得1,4.b a =⎧⎨=-⎩所以2()41(0)f x x x x =-+≥【小问2详解】由3log [()]2f x m +≤,可得0()9f x m <+≤,所以对(1,2)x ∀∈,都有0()9f x m <+≤成立.由于22()41(2)3f x x x x =-+=--,所以()f x 在(1,2)上单调递减,且(1)2,(2)3f f =-=-,因此当(1,2)x ∈时,()(3,2)f x ∈--,要使0()9f x m <+≤,则29m -≤,且30m -≥,解得311m ≤≤.故实数m 的取值范围为[3,11].21.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =-.(1)求函数()g x 的解析式;(2)若函数()()()1h x g x f x λ=-+在[]1,1-上单调递减,求实数λ的取值范围.【答案】(1)2()2g x x x=--(2)(,0]-∞【解析】【分析】(1)设点(),x y 是()g x 图象上任意一点,则(),x y 关于原点的对称点(),x y --在函数()f x 的图象上,即可求解;(2)2()(1)2(1)1h x x x λλ=-++-+,分为1λ=-,1λ>-与1λ<-三种情况讨论,结合二次函数的性质求解即可.【小问1详解】设点(),x y 是()g x 图象上任意一点,则(),x y 关于原点的对称点(),x y --在函数()f x 的图象上,所以2()2()y x x -=---,即22y x x =--,所以2()2g x x x =--.【小问2详解】222()()()12(2)1(1)2(1)1h x g x f x x x x x x x λλλλ=-+=----+=-++-+,①当1λ=-时,()41h x x =-+在[]1,1-上单调递减,满足题意;②当1λ>-时,要使()h x 在[]1,1-上单调递减,由二次函数的性质可得111λλ-≤-+,解得10λ-<≤,所以10λ-<≤;③当1λ<-时,要使()h x 在[]1,1-上单调递减,由二次函数的性质可得111λλ-≥+,解得1λ<-,所以1λ<-.综上,实数λ的取值范围是(,0]-∞.22.两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧AB 上选择一点建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和.记C 点到城A 的距离为km x ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为9.(1)若垃圾处理厂建在圆弧AB 的中点处,求垃圾处理厂对城A 和城B 的总影响度;(2)求垃圾处理厂对城A 和城B 的总影响度的最小值.【答案】(1)0.065(2)0.0625【解析】【分析】(1)由题意得90ACB ∠=︒,由20,AB AC x ==可得22400BC x =-,从而得总影响度的解析式,即可求解;(2)可得2225(320)(400)x y x x +=-,令2320(320,720)x t =∈+,所以5230400()1040y t t=-++,利用基本不等式求解即可得出答案.【小问1详解】点C 在以AB 为直径的半圆上,所以90ACB ∠=︒,由20,AB AC x ==,可得22400BC x =-,由题意可得2249(020)400y x x x =+<<-,因为垃圾处理厂建在弧 AB 的中点处,所以490.065200400200y =+=-,故所求总影响度为0.065.【小问2详解】由(1)知222222222494(400)95(320)400(400)(400)x x x y x x x x x x ⨯-++=+==---,令2320(320,720)x t =∈+,则2320x t =-,所以255(320)(720)2304001040t t y t t t t ==-⨯---+()5,320,720230400()1040t t t=∈-++,因为2304002480960t t +≥=⨯=,当且仅当230400t t =,即480,t x ==此时5510.0625230400960104016()1040y t t =≥==-+-++,故垃圾处理厂对城A 和城B 的总影响度的最小值为0.0625.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省新乡市2018-2019学年高一上学期期末考试数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则集合的元素个数为()A. 0B. 1C. 2D. 3[答案]C[解析]表示圆心为(1,1)的圆,且圆心在直线y=x上,即直线y=x与圆相交,∴集合的元素个数为2,故选:C.2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为()A. B. C. D.[答案]A[解析]设圆锥的底面半径为r,高为h,母线长为l,由题可知,r=h=,则,∴,侧面积为,故选:A.3.下列命题中,正确的命题是()A. 任意三点确定一个平面B. 三条平行直线最多确定一个平面C. 不同的两条直线均垂直于同一个平面,则这两条直线平行D. 一个平面中的两条直线与另一个平面都平行,则这两个平面平行[答案]C[解析]在A中,不共线的三点确定一个平面,故A错误;在B中,三条平行直线最多确定三个平面,故B错误;在C中,不同的两条直线均垂直于同一个平面,则由线面垂直的性质定理得这两条直线平行,故C正确;在D中,一个平面中的两条相交直线与另一个平面都平行,则这两个平面平行,故D错误.故选:C.4.若幂函数的图像过点,则函数的零点是()A. B. 9 C. D.[答案]B[解析]∵幂函数f(x)=xα的图象过点,∴f(2)=2α,解得,∴f(x),∴函数g(x)=f(x)﹣33,由g(x)=f(x)﹣33=0,得x=9.∴函数g(x)=f(x)﹣3的零点是9.故选:B.5.已知直线过点且平行于直线,则直线的方程是()A. B.C. D.[答案]D[解析]设与直线4x+y﹣8=0平行的直线方程为4x+y+c=0,∵直线4x+y+c=0过(1,1),∴4+1+c=0,即c=﹣5,则直线方程为4x+y﹣5=0,故选:D.6.已知函数,则的定义域为()A. B.C. D.[答案]B[解析]要使f(x)有意义,则4﹣x>0;∴x<4,∴f(x)的定义域为(﹣∞,4);∴函数g(x)满足:,∴x<2,且x≠1;∴g(x)的定义域为(﹣∞,1)∪(1,2).故选:B.7.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.[答案]D[解析]由三视图知,几何体是一个简单组合体,左侧是一个半球,半径是1,右侧是一个三棱柱,三棱柱的底面是斜边长为2的等腰直角三角形,高为2,∴组合体的体积是:,故选:D.8.已知点P与点Q关于直线对称,则点P的坐标为()A. B. C. D.[答案]A[解析]设P的坐标为(a,b),则PQ的中点坐标为(,),若点P与Q(1,﹣2)关于x+y﹣1=0对称,则有,解可得:a=3,b=0,则点P的坐标为(3,0);故选:A.9.在平面直角坐标系中,圆C与圆O:外切,且与直线相切,则圆C的面积的最小值为()A. B. C. D.[答案]C[解析]如图,圆心O到直线x﹣2y+5=0的距离d,则所求圆的半径r,圆C面积的最小值为S.故选:C.10.已知函数在上单调递减,且是偶函数,则,的大小关系是()A. B. C. D.[答案]D[解析]根据题意,函数f(x+3)是偶函数,则函数f(x)的图象关于直线x=3对称,则f(6)=f(0),又由函数f(x)在[3,+∞)上单调递减,则f(x)在(﹣∞,3]上为增函数,又由0<log32<1<30.5,则<f(log32)<f(30.5),则b>a>c;故选:D.11.已知函数,记,则()A. B. 9 C. D.[答案]A[解析]∵函数,∴1,∵f(2)+f(3)+f(4)+…+f(10)=m,,∴m+n=9×(﹣1)=﹣9.故选:A.12.如图,已知一个八面体的各条棱长为1,四边形ABCD为正方形,下列说法①该八面体的体积为;②该八面体的外接球的表面积为;③E到平面ADF的距离为;④EC与BF所成角为60°;其中不正确的个数为()A. 0B. 1C. 2D. 3[答案]C[解析]因为八面体的各条棱长均为1,四边形ABCD为正方形,可得该八面体为正八面体,E到平面ABCD的距离为,即有八面体的体积为21,故①错误;由正方形ABCD的中心到点A,B,C,D,E,F的距离相等,且为,可得该八面体的外接球的球心为正方形ABCD的中心,半径为,表面积为4π2π,故②正确;由正八面体的特点可得四边形EDFB为正方形,由EB∥DF,可得EB∥平面ADF,B到平面ADF的距离,设为d,即为E到平面ADF的距离,由V B﹣ADF=V F﹣ABD,可得h•,可得h,故③错误;由四边形EDFB为正方形,可得BF∥ED,DE与EC所成角即为EC与BF所成角,可得三角形CDE为等边三角形,可得EC与BF所成角为60°,故④正确.其中错误的个数为2.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.__________.[答案]6[解析]lg10+5=6.故答案为:6.14.已知正方体的体积为64,则这个正方体的内切球的体积为_________.[答案][解析]设正方体的内切球的半径为r,则正方体的棱长为2r,则正方体的体积为(2r)3=64,得r=2,因此,这个正方体的内切球的体积为.故答案为:.15.已知函数在上存在最小值,则m的取值范围是________. [答案][解析]当x≤0时,f(x)=x2+2x﹣1=(x+1)2﹣2≥﹣2,即有x=﹣1时,取得最小值﹣2,当x>0时,f(x)=3x+m递增,可得f(x)>1+m,由题意可得1+m≥﹣2,解得m≥﹣3,故答案为:[﹣3,+∞).16.已知实数x,y满足,则的取值范围是__________.[答案][解析]∵实数x,y满足x2﹣4x+3+y2=0,即(x﹣2)2+y2=1,表示以C(2,0)为圆心,半径等于1的圆.则1,表示圆上的点M(x,y)与定点A(1,﹣3)连线的斜率k加上1,如图.当切线位于AB这个位置时,k最小,k+1最小.当切线位于AE这个位置时,k不存在,k+1不存在.设AB的方程为y+3=k(x﹣1),即kx﹣y﹣k﹣3=0,由CB=1,可得1,求得k.而AE的方程为x=1,故k+1的范围为[,+∞),故答案为:[,+∞).三、解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤.17.已知集合,全集为R.(1)求;(2)若,求实数m的取值范围.解:(1)∁R B={x|x<0,或x≥5};∴A∩(∁R B)={x|﹣3<x<0};(2)A∪B={x|﹣3<x<5};∴(A∪B)⊆C,∴m≥5;∴实数m的取值范围为[5,+∞).18.已知直线的方程为,若在x轴上的截距为,且.(1)求直线和的交点坐标;(2)已知直线过直线与的交点,且在y轴上截距是在x轴上的截距的2倍,求的方程. 解:(1)∵l1⊥l2,∴2.∴直线l2的方程为:y﹣0=2(x),化为:y=2x﹣3.联立,解得.∴直线l1和l2的交点坐标为(2,1).(2)当直线l3经过原点时,可得方程:y x.当直线l3不经过过原点时,设在x轴上截距为a≠0,则在y轴上的截距的2a倍,其方程为:1,把交点坐标(2,1)代入可得:1,解得a.可得方程:2x+y=5.综上可得直线l3的方程为:x﹣2y=0,2x+y﹣5=0.19.已知圆C的圆心坐标为,且圆C与y轴相切.(1)已知,,点N是圆C上的任意一点,求的最小值.(2)已知,直线的斜率为,且与y轴交于点.若直线l与圆C相离,求a的取值范围.解:(1)当a=1时,圆C的方程为(x﹣1)2+y2=1,又|MC|,∴|MN|的最小值为5﹣1=4;(2)∵直线l的斜率为,且与y轴交于点,∴直线l的方程为,即4x﹣3y﹣2=0.∵直线l与圆C相离,∴|a|,又a<0,则2﹣4a>﹣5a,解得a>﹣2.∴a的取值范围为(﹣2,0).20.已知函数.(1)当时,,求实数的取值范围.(2)若在上的最大值大于0,求的取值范围.解:(1)当a=3时,,,得.(2)∵a>0,∴在定义域内单调递增,当a>1时,函数在上单调递增,,得即a>,又a>1,故a>1;当0<a<1时,函数在上单调递减,,得;又因为在上恒成立,故,即,综上:的取值范围.21.如图,四棱锥的底面是正方形,△P AD为等边三角形,M,N分别是AB,AD 的中点,且平面P AD⊥平面ABCD.(1)证明:;(2)设点E是棱PA上一点,若,求.(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,∴BM=AN,BC=AB,∠MBC=∠NAB=90°,∴△MBC≌△NAB,∴∠BCM=∠NAB,又∠NBA+∠BMC=90°,∴∠NBA+∠BMC=90°,∴CM⊥BN,∵△P AD为等边三角形,N是AD的中点,∴PN⊥AD,又平面P AD⊥平面ABCD,PN⊂平面P AD,平面P AD∩平面ABCD=AD,∴PN⊥平面ABCD,又CM⊂平面ABCD,∴CM⊥PN,∵BN,PN⊂平面PNB,BN∩PN=N,∴CM⊥平面PNB.(2)解:连结AC,交DM于点Q,连结EQ,高一上学期期末考试数学试题∵PC∥平面DEM,PC⊂平面P AC,平面P AC∩平面DEM=EQ,∴PC∥EQ,∴PE:EA=CQ:QA,在正方形ABCD中,AM∥CD,且CD=2AM,∴CQ:QA=CD:AM=2,∴2.22.已知是定义在上的奇函数,且,若对任意的,都有.(1)若,求的取值范围.(2)若不等式对任意和都恒成立,求t的取值范围.解:设任意x1,x2满足﹣5≤x1<x2≤5,由题意可得:f(x1)﹣f(x2)即f(x1)<f(x2).所以f(x)在定义域[﹣5,5]上是增函数,由f(2a﹣1)<f(3a﹣3),得,解得2<a,故a的取值范围为(2,];(2)由以上知f(x)是定义在[﹣5,5]上的单调递增的奇函数,且f(﹣5)=﹣2,得在[﹣5,5]上f(x)max=f(5)=﹣f(﹣5)=2.在[﹣5,5]上不等式f(x)≤(a﹣2)t+5对a∈[﹣3,0]都恒成立,所以2≤(a﹣2)t+5,即at﹣2t+3≥0,对a∈[﹣3,0]都恒成立,令g(a)=at﹣2t+3,a∈[﹣3,0],则只需,即,解得t,故t的取值范围(﹣∞,].11。