山东省泰安市2018年中考数学全真模拟试题六

合集下载

中考数学 2018年山东省泰安市中考数学试卷含答案(Word版)

中考数学 2018年山东省泰安市中考数学试卷含答案(Word版)

泰安市2018年初中学业水平考试数学试题第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:0(2)(2)--+-的结果是( )A .-3B .0C .-1D .3 2.下列运算正确的是( )A .33623y y y += B .236y y y ⋅= C .236(3)9y y = D .325y y y -÷=3.如图是下列哪个几何体的主视图与俯视图( )A .B .C .D .4.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α-5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( )A .42、42B .43、42C .43、43D .44、436.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩ D .301502005300x y x y +=⎧⎨+=⎩7.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y ax b =+在同一坐标系内的大致图象是( )A .B .C .D .8.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-9.如图,BM 与O 相切于点B ,若140MBA ∠=,则ACB ∠的度数为( )A .40B .50C .60D .70 10.一元二次方程(1)(3)25x x x +-=-根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B .( 2.8, 3.6)--C .(3.8,2.6)D .( 3.8, 2.6)-- 12.如图,M 的半径为2,圆心M 的坐标为(3,4),点P 是M 上的任意一点,PA PB ⊥,且PA 、PB与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A .3B .4C .6D .8第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是0.000000000000000000000000093kg ,将这个数据用科学记数法表示为kg .14.如图,O 是ABC ∆的外接圆,45A ∠=,4BC =,则O 的直径..为 .15.如图,在矩形ABCD 中,6AB =,10BC =,将矩形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则sin ABE ∠的值为 .16.观察“田”字中各数之间的关系:,…,,则c 的值为 .17.如图,在ABC ∆中,6AC =,10BC =,3tan 4C =,点D 是AC 边上的动点(不与点C 重合),过D作DE BC ⊥,垂足为E ,点F 是BD 的中点,连接EF ,设CD x =,DEF ∆的面积为S ,则S 与x 之间的函数关系式为 .18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为 步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值2443(1)11m m m m m -+÷----,其中2m =.20.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为A ,B ,C ,D 四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A 的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .(1)若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若2AF AE -=,求反比例函数的表达式.23.如图,ABC ∆中,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连接GE ,GD .(1)求证:ECG GHD ∆≅∆;(2)小亮同学经过探究发现:AD AC EC =+.请你帮助小亮同学证明这一结论. (3)若30B ∠=,判定四边形AEGF 是否为菱形,并说明理由.24.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.25.如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,//EF AB ,EAB EBA ∠=∠,过点B 作DA 的垂线,交DA 的延长线于点G .(1)DEF ∠和AEF ∠是否相等?若相等,请证明;若不相等,请说明理由; (2)找出图中与AGB ∆相似的三角形,并证明;(3)BF 的延长线交CD 的延长线于点H ,交AC 于点M .求证:2BM MF MH =⋅.泰安市2018年初中学业水平考试数学试题(A )参考答案一、选择题1-5: DDCAB 6-10: CCBAD 11、12:AC二、填空题13. 269.310-⨯ 14. (或8214+) 17. 233252y x x =-+ 18.20003三、解答题19.解:原式22(2)3111m m m m --+=÷--2(2)(2)(2)11m m m m m -+-=÷--2(2)11(2)(2)m m m m m --=⨯-+-22mm-=+.当2m =时,原式1===.20.解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意得:14001600101.4x x-=, 解得:20x =.经检验,20x =是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a 本,总利润w 元,则(28203)(20142)(1200)w a a =--+---4800a =+.又∵2014(1200)20000a a +⨯-≤, 解得16003a ≤, ∵w 随a 的增大而增大, ∴当a 最大时w 最大, ∴当533a =本时w 最大,此时,乙种图书进货本数为1200533667-=(本). 答:甲种图书进货533本,乙种图书进货667本时利润最大. 21.解:(1)由题意得,所抽取班级的人数为:820%40÷=(人), 该班等级为A 的人数为:40258240355---=-=(人), 该校初三年级等级为A 的学生人数约为:5110001000125408⨯=⨯=(人). 答:估计该校初三等级为A 的学生人数约为125人.(2)设两位满分男生为1m ,2m ,三位满分女生为1g ,2g ,3g .从这5名同学中选3名同学的所有可能结果为:121(,,)m m g ,122(,,)m m g ,123(,,)m m g ,112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,123(,,)g g g ,共10种情况. 其中,恰好有2名女生,1名男生的结果为:112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,共6种情况.所以恰有2名女生,1名男生的概率为63105=. 22.解:(1)∵(6,0)B -,3AD =,8AB =,E 为CD 的中点, ∴(3,4)E -,(6,8)A -, ∵反比例函数图象过点(3,4)E -, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩,解得430k x b ⎧=-⎪⎨⎪=⎩,∴43y x =-. (2)∵3AD =,4DE =, ∴5AE =, ∵2AF AE -=, ∴7AF =, ∴1BF =.设E 点坐标为(,4)a ,则点F 坐标为(3,1)a -, ∵E ,F 两点在my x=图象上, ∴43a a =-, 解得1a =-, ∴(1,4)E -, ∴4m =-, ∴4y x=-.23.(1)证明:∵AF FG =, ∴FAG FGA ∠=∠, ∵AG 平分CAB ∠, ∴CAG FAG ∠=∠, ∴CAG FGA ∠=∠, ∴//AC FG.∵DE AC ⊥,∴FG DE ⊥,∵FG BC ⊥,∴//DE BC ,∴AC BC ⊥,∴90C DHG ∠=∠=,CGE GED ∠=∠,∵F 是AD 的中点,//FG AE ,∴H 是ED 的中点,∴FG 是线段ED 的垂直平分线,∴GE GD =,GDE GED ∠=∠,∴CGE GDE ∠=∠,∴ECG GHD ∆≅∆.(2)证明:过点G 作GP AB ⊥于点P ,∴GC GP =,∴CAG PAG ∆≅∆,∴AC AP =.由(1)得EG DG =,∴Rt ECG Rt GPD ∆≅∆,∴EC PD =,∴AD AP PD AC EC =+=+.(3)四边形AEGF 是菱形,理由如下:∵30B ∠=,∴30ADE ∠=, ∴12AE AD =, ∴AE AF FG ==.由(1)得//AE FG ,∴四边形AEGF 是菱形.24.解:(1)由题意可得16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为233642y x x =--+. (2)由(4,0)A -,(0,2)E -,可求得AE 所在直线解析式为122y x =--. 过点D 作DN 与y 轴平行,交AE 于点F ,交x 轴于点G ,过点E 作EH DF ⊥,垂足为H ,设D 点坐标为200033(,6)42x x x --+,则F 点坐标为001(,2)2x x --, 则20033642DF x x =--+200013(2)824x x x ---=--+, 又ADE ADF EDF S S S ∆∆∆=+, ∴1122ADE S DF AG DF EH ∆=⋅⋅+⋅ 142DF =⨯⨯ 20032(8)4x x =⨯--+ 203250()233x =-++. ∴当023x =-时,ADE ∆的面积取得最大值503.(3)P 点的坐标为(1,1)-,(1,-,(1,2--±.25.解:(1)DEF AEF ∠=∠,理由如下:∵//EF AB ,∴DEF EBA ∠=∠,AEF EAB ∠=∠,又∵EAB EBA ∠=∠,∴DEF AEF ∠=∠.(2)EOA AGB ∆∆,证明如下:∵四边形ABCD 是菱形,∴AB AD =,AC BD ⊥,∴2GAB ABE ADB ABE ∠=∠+∠=∠.又∵2AEO ABE BAE ABE ∠=∠+∠=∠,∴GAB AEO ∠=∠,又90AGB AOE ∠=∠=,∴EOA AGB ∆∆.(3)连接DM .∵四边形ABCD 是菱形,由对称性可知BM DM =,ADM ABM ∠=∠,∵//AB CH ,∴ABM H ∠=∠,∴ADM H ∠=∠,又∵DMH FMD ∠=∠,∴MFD MDH ∆∆,中考数学,中考数学,中考数学 ∴DMMFMH DM =,∴2DM MF MH =⋅, ∴2BM MF MH =⋅.。

山东省泰安市2018中考数学试卷与答案(Word版)

山东省泰安市2018中考数学试卷与答案(Word版)

泰安市2018年初中学业水平考试数学试题第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:0(2)(2)--+-的结果是( )A .-3B .0C .-1D .3 2.下列运算正确的是( )A .33623y y y +=B .236y y y ⋅=C .236(3)9y y =D .325y y y -÷=3.如图是下列哪个几何体的主视图与俯视图( )A .B .C .D .4.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=o,则1∠的大小为( )A .14oB .16oC .90α-oD .44α-o5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B 型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩ B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩ D.301502005300x yx y+=⎧⎨+=⎩7.二次函数2y ax bx c=++的图象如图所示,则反比例函数ayx=与一次函数y axb=+在同一坐标系内的大致图象是()A. B. C. D.8.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-9.如图,BM 与O e 相切于点B ,若140MBA ∠=o,则ACB ∠的度数为( )A .40oB .50oC .60oD .70o10.一元二次方程(1)(3)25x x x +-=-根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180o,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B .( 2.8, 3.6)--C .(3.8,2.6)D .( 3.8, 2.6)--12.如图,M e 的半径为2,圆心M 的坐标为(3,4),点P 是M e 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A .3B .4C .6D .8第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是0.000000000000000000000000093kg ,将这个数据用科学记数法表示为kg .14.如图,O e 是ABC ∆的外接圆,45A ∠=o,4BC =,则O e 的直径为 .15.如图,在矩形ABCD 中,6AB =,10BC =,将矩形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则sin ABE ∠的值为 .16.观察“田”字中各数之间的关系:,…,,则c 的值为 .17.如图,在ABC ∆中,6AC =,10BC =,3tan 4C =,点D 是AC 边上的动点(不与点C 重合),过D 作DE BC ⊥,垂足为E ,点F 是BD 的中点,连接EF ,设CD x =,DEF ∆的面积为S ,则S 与x之间的函数关系式为 .18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为 步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值2443(1)11m m m m m -+÷----,其中22m =.20.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为A ,B ,C ,D 四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A 的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x =的图象经过点E ,与AB 交于点F .(1)若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若2AF AE -=,求反比例函数的表达式.23.如图,ABC ∆中,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连接GE ,GD .(1)求证:ECG GHD ∆≅∆;(2)小亮同学经过探究发现:AD AC EC =+.请你帮助小亮同学证明这一结论.(3)若30B ∠=o,判定四边形AEGF 是否为菱形,并说明理由.24.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.25.如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,//EF AB ,EAB EBA ∠=∠,过点B 作DA 的垂线,交DA 的延长线于点G .(1)DEF ∠和AEF ∠是否相等?若相等,请证明;若不相等,请说明理由; (2)找出图中与AGB ∆相似的三角形,并证明;(3)BF 的延长线交CD 的延长线于点H ,交AC 于点M .求证:2BM MF MH =⋅.泰安市2018年初中学业水平考试数学试题(A )参考答案一、选择题1-5: DDCAB 6-10: CCBAD 11、12:AC二、填空题13. 269.310-⨯ 14. 421010 16. 270(或8214+)17.233252y x x =-+ 18. 20003三、解答题19.解:原式22(2)3111m m m m --+=÷-- 2(2)(2)(2)11m m m m m -+-=÷--2(2)11(2)(2)m m m m m --=⨯-+-2 2m m -=+.当2m=时,原式1===.20.解:(1)设乙种图书售价每本x元,则甲种图书售价为每本1.4x元. 由题意得:14001600101.4x x-=,解得:20x=.经检验,20x=是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a本,总利润w元,则(28203)(20142)(1200)w a a=--+---4800a=+.又∵2014(1200)20000a a+⨯-≤,解得16003a≤,∵w随a的增大而增大,∴当a最大时w最大,∴当533a=本时w最大,此时,乙种图书进货本数为1200533667-=(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.21.解:(1)由题意得,所抽取班级的人数为:820%40÷=(人),该班等级为A的人数为:40258240355---=-=(人),该校初三年级等级为A 的学生人数约为:5110001000125408⨯=⨯=(人).答:估计该校初三等级为A 的学生人数约为125人. (2)设两位满分男生为1m ,2m ,三位满分女生为1g ,2g ,3g .从这5名同学中选3名同学的所有可能结果为:121(,,)m m g ,122(,,)m m g ,123(,,)m m g ,112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,123(,,)g g g ,共10种情况.其中,恰好有2名女生,1名男生的结果为:112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,共6种情况.所以恰有2名女生,1名男生的概率为63105=.22.解:(1)∵(6,0)B -,3AD =,8AB =,E 为CD 的中点, ∴(3,4)E -,(6,8)A -, ∵反比例函数图象过点(3,4)E -, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k xb ⎧=-⎪⎨⎪=⎩,∴43y x=-. (2)∵3AD =,4DE =, ∴5AE =, ∵2AF AE -=,∴1BF =.设E 点坐标为(,4)a ,则点F 坐标为(3,1)a -,∵E ,F 两点在m yx =图象上,∴43a a =-,解得1a =-,∴(1,4)E -,∴4m =-,∴4y x =-.23.(1)证明:∵AF FG =,∴FAG FGA ∠=∠,∵AG 平分CAB ∠,∴CAG FAG ∠=∠,∴CAG FGA ∠=∠,∴//AC FG .∵DE AC ⊥,∴FG DE ⊥,∴//DE BC ,∴AC BC ⊥,∴90C DHG ∠=∠=o ,CGE GED ∠=∠,∵F 是AD 的中点,//FG AE ,∴H 是ED 的中点,∴FG 是线段ED 的垂直平分线,∴GE GD =,GDE GED ∠=∠,∴CGE GDE ∠=∠,∴ECG GHD ∆≅∆.(2)证明:过点G 作GP AB ⊥于点P ,∴GC GP =,∴CAG PAG ∆≅∆,∴AC AP =.由(1)得EG DG =,∴Rt ECG Rt GPD ∆≅∆,∴EC PD =,∴AD AP PD AC EC =+=+.(3)四边形AEGF 是菱形,理由如下:∵30B ∠=o ,∴30ADE ∠=o , ∴12AE AD=,∴AE AF FG ==.由(1)得//AE FG ,∴四边形AEGF 是菱形.24.解:(1)由题意可得16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为233642y x x =--+.(2)由(4,0)A -,(0,2)E -,可求得AE 所在直线解析式为122y x =--.过点D 作DN 与y 轴平行,交AE 于点F ,交x 轴于点G ,过点E 作EH DF ⊥,垂足为H ,设D 点坐标为200033(,6)42x x x --+,则F 点坐标为001(,2)2x x --, 则20033642DF x x =--+200013(2)824x x x ---=--+,又ADE ADF EDF S S S ∆∆∆=+,∴1122ADES DF AG DF EH ∆=⋅⋅+⋅142DF=⨯⨯20032(8)4x x=⨯--+23250()233x=-++.∴当23x=-时,ADE∆的面积取得最大值503.(3)P点的坐标为(1,1)-,(1,11)-±,(1,219)--±.25.解:(1)DEF AEF∠=∠,理由如下:∵//EF AB,∴DEF EBA∠=∠,AEF EAB∠=∠,又∵EAB EBA∠=∠,∴DEF AEF∠=∠.(2)EOA AGB∆∆:,证明如下:∵四边形ABCD是菱形,∴AB AD=,AC BD⊥,∴2GAB ABE ADB ABE∠=∠+∠=∠.又∵2AEO ABE BAE ABE∠=∠+∠=∠,∴GAB AEO ∠=∠,又90AGB AOE ∠=∠=o ,∴EOA AGB ∆∆:.(3)连接DM .∵四边形ABCD 是菱形,由对称性可知 BM DM =,ADM ABM ∠=∠, ∵//AB CH ,∴ABM H ∠=∠,∴ADM H ∠=∠,又∵DMH FMD ∠=∠,∴MFD MDH ∆∆:, ∴DMMF MH DM =,∴2DM MF MH =⋅,∴2BM MF MH =⋅.。

山东省泰安市2018年中考数学真题试题(含解析)

山东省泰安市2018年中考数学真题试题(含解析)

山东省泰安市2018年中考数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,。

山东省泰安市2018年中考数学试卷及参考答案

山东省泰安市2018年中考数学试卷及参考答案

山东省泰安市2018年中考数学试卷一、选择题1.计算:的结果是()A . -3B . 0C . -1D . 32. 下列运算正确的是()A .B .C .D .3. 如图是下列哪个几何体的主视图与俯视图()A .B .C .D .4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A .B .C .D .5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A . 42、42B . 43、42C . 43、43D . 44、436. 夏季来临,某超市试销,两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问,两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A .B .C .D .7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A .B .C .D .8. 不等式组有3个整数解,则 的取值范围是( )A . B . C . D . 9. 如图, 与 相切于点 ,若 ,则 的度数为( )A .B .C .D . 10. 一元二次方程 根的情况是( )A . 无实数根B . 有一个正根,一个负根C . 有两个正根,且都小于3D . 有两个正根,且有一根大于311. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1, 经过平移后得到,若 上一点 平移后对应点为 ,点 绕原点顺时针旋转 ,对应点为 ,则点 的坐标为( )A .B .C .D .12. 如图, 的半径为2,圆心 的坐标为 ,点 是 上的任意一点,,且 , 与 轴分别交于 , 两点,若点 ,点 关于原点 对称,则 的最小值为( )A . 3B . 4C . 6D . 8二、填空题13. 一个铁原子的质量是,将这个数据用科学记数法表示为________ .14. 如图, 是 的外接圆, ,,则 的直径为________.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为________.16. 观察“田”字中各数的关系:则C的值为 ________。

山东省泰安市2018年中考数学试题(原卷版)

山东省泰安市2018年中考数学试题(原卷版)

泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 32. 下列运算正确的是()A. B. C. D.3. 如图是下列哪个几何体的主视图与俯视图()学%科%网...A. B. C. D.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、436. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.9. 如图,与相切于点,若,则的度数为()A. B. C. D.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于311. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.14. 如图,是的外接圆,,,则的直径..为__________.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.。

山东省泰安市新泰市2018届中考数学模拟考试试题(附答案)

山东省泰安市新泰市2018届中考数学模拟考试试题(附答案)

山东省泰安市新泰市2018届中考数学模拟考试试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分。

考试时间120分钟。

注意事项:1.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。

2.考试结束后,监考人员将本试卷和答题纸一并收回。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列四个数中,最大的一个数是A.2 B C.0 D.﹣22.下列计算正确的是A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=03.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是A. B. C. D.第3题图第5题图4.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为A.5 B.6 C.7 D.85.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是A .B .C .D .6.解不等式组()111212x x <-≤-⎧⎪⎨⎪⎩,该不等式组的最大整数解是A.3B.4C.2D.-37.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是A .23π B.3π-C.23π D.23π-第7题图 第8题图 第9题图8.如图,⊙O 的直径AB=4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC=5,则AD 的长为A .65 B .85CD9.如图,在□ABCD 中,DAB ∠的平分线交CD 于点E ,交BC 的延长线于点G ,ABC ∠的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE .下列结论错误的是 A .OH BO = B .CE DF = C.CG DH = D .AE AB = 10.某班45名同学某天每人的生活费用统计如下表:A.平均数是20B.众数是20C.中位数是25D.方差是2011.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ).A .10B .7C .5D .4A B CDE第11题图 第12题图12.已知二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0 ②2a +b =0 ③a -b +c >0 ④4a -2b +c <0 其中正确的是( ) A . ①② B .只有①C .③④D .①④第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,满分18分.)13.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .14.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数1y x=图象上的概率是 . 15.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90°的扇形OAB ,且点O 、A 、B 在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是__________cm.第15题图 第16题图16.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .17.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为_____________km (精确到0.1).第17题图 第18题图18.如图,在平面直角坐标系中,直线l :3333-=x y 与x 轴交于点1B ,以1OB 为边长作等边三角形11OB A ,过点1A 作21B A 平行于x 轴,交直线l 于点2B ,以21B A 为边长作等边三角形212B A A ,过点2A 作32B A 平行于x 轴,交直线l 于点3B ,以32B A 为边长作等边三角形323B A A ,…,则点2018A 的横坐标是________.三、解答题(本大题共7小题,满分66分,解答应写出必要的文字说明、证明过程或推演步骤)19.(本小题满分8分)先化简,再求值:1)1331(2+-÷+-+-x xx x x x ,其中x 的值从不等式组⎩⎨⎧<-≤142;3-2x x 的整数解中选取.20.(本小题满分8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题: (1)求m 的值;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为多少度?(4)已知该校共有1200名学生,请你估计该校约有多少名学生最喜爱足球活动?21.(本小题满分9分)如图,在平面直角坐标系中,OA ⊥OB ,AB⊥x 轴于点C ,点A (,1)在反比例函数ky x=的图象上.(1)求反比例函数ky x=的表达式; (2)在x 轴的负半轴上存在一点P ,使得S △A O P =12S △A O B,求点P 的坐标;(3)若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE .直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.22.(本小题满分10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而杏梅有所增产.(1)该地某果农今年收获樱桃和杏梅共400千克,其中杏梅的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、杏梅两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年杏梅的市场销售量为200千克,销售均价为20元/千克,今年杏梅的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和杏梅的销售总金额与他去年樱桃和杏梅的市场销售总金额相同,求m的值.23.(本小题满分10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.24.(本小题满分10分)如图(1)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC 于C1交AB的延长线于B1.⑴请你探究:AC CDAB DB=,1111AC C DAB DB=是否都成立?⑵请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问AC CDAB DB=一定成立吗?并证明你的判断.⑶如图(2)所示Rt △ABC 中,∠ACB =900,AC =8,BC =332,DE ∥AC 交AB 于点E,试求DFFA的值.图1 图225.(本小题满分11分)如图,抛物线252y ax bx =++与直线AB 交于点A (-1,0),B (4,52),点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD.(1)求抛物线的解析式;(2)设点D 的横坐标为m ,△ADB 的面积为S ,求S 关于m 的函数关系式,并求出当S 取最大值时的点C 的坐标。

2018年山东省泰安市中考数学试卷(带答案解析)

2018年山东省泰安市中考数学试卷(带答案解析)

8.(3 分)不等式组
t ᯩ
tꊘ
<t
有 3 个整数解,则 a 的取值范围是(

t ꊘt
A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5
【解答】解:不等式组
t ᯩ
tꊘ
<t

t ꊘt
t 由 ᯩ ﹣ꊘx<﹣1,解得:x>4, 由 4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,
ᯩ ∴DE= x,CE= x, ∴BE=10﹣ x,
第 9页(共 19页)
∴S△BED=ꊘ×(10﹣
ᯩ x)• x=﹣ꊘ
x2+3x.
∵DF=BF,
∴S=ꊘS△BED=t
ᯩ ꊘ
x2ለ
ᯩ ꊘ

故答案为
S=t
ᯩ ꊘ
x2ለ
ᯩ ꊘ

18.(3 分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一 个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而 见木?” 用今天的话说,大意是:如图,DEFG 是一座边长为 200 步(“步”是古代的长度 单位)的正方形小城,东门 H 位于 GD 的中点,南门 K 位于 ED 的中点,出东门 15 步的 A 处有一树木,求出南门多少步恰好看到位于 A 处的树木(即点 D 在直
故不等式组的解为:4<x≤2﹣a,
由关于 x 的不等式组
t ᯩ
tꊘ
<t
有 3 个整数解,
t ꊘt
解得:7≤2﹣a<8,
解得:﹣6<a≤﹣5.
故选:B.
9.(3 分)如图,BM 与⊙O 相切于点 B,若∠MBA=140°,则∠ACB 的度数为 ()
第 4页(共 19页)

2018年山东省泰安市中考数学试卷

2018年山东省泰安市中考数学试卷

2018年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3分)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。

山东省泰安市2018年中考数学试题word版解析版.docx

山东省泰安市2018年中考数学试题word版解析版.docx

泰安市 2018 年初中学业水平考试数学试题一、选择题(本大题共12 个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对 3 分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】 D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2 1+=3.故选 D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于 1 是解题的关键.2.下列运算正确的是()A. B. C. D.【答案】 D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.333详解: 2y +y =3y ,故 A 错误;y2?y3=y5,故 B 错误;(3y2)3=27y6,故 C 错误;y3÷y﹣2=y3﹣(﹣2) =y5.故 D 正确.故选 D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】 C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项 C 符合题意.故选 C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】 A【解析】分析:依据平行线的性质,即可得到∠2= ∠ 3=44°,再根据三角形外角性质,可得∠3=∠ 1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠ 2=∠ 3=44°,根据三角形外角性质,可得:∠ 3=∠ 1+30°,∴∠ 1=44°﹣30°=14°.故选 A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5.某中学九年级二班六级的 8 名同学在一次排球垫球测试中的成绩如下(单位:个)3538424440474545则这组数据的中位数、平均数分别是()A. 42、 42B.43、 42C.43、43D.44、 43【答案】 B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47 ,则这组数据的中位数为:=43, =(35+38+42+44+40+47+45+45)=42 .故选 B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30 台,销售收入5300 元,型风扇每台200元,型风扇每台150 元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】 C【解析】分析:直接利用两周内共销售30 台,销售收入5300 元,分别得出等式进而得出答案.详解:设 A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:.故选 C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】 C【解析】分析:首先利用二次函数图象得出a, b 的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a> 0,对称轴在y 轴左侧,故a,b 同号,则b>0,故反比例函数y= 图象分布在第一、三象限,一次函数y=ax+b 经过第一、二、三象限.故选 C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a, b 的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】 B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有 3 个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由 4( x﹣ 1)≤ 2( x﹣a),解得: x≤ 2﹣a,故不等式组的解为:4< x≤ 2﹣ a,由关于 x 的不等式组有3个整数解,得: 7≤ 2﹣a< 8,解得:﹣ 6<a≤﹣ 5.故选 B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于 a 的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】 A【解析】分析:连接OA、 OB,由切线的性质知∠OBM =90°,从而得∠ ABO=∠ BAO=50°,由三角形内角和定理知∠ AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM 是⊙ O 的切线,∴∠ OBM=90 °.∵∠ MBA =140 °,∴∠ABO=50 °.∵OA=OB,∴∠ ABO =∠BAO =50 °,∴∠ AOB =80 °,∴∠ ACB= ∠AOB=40 °.故选 A.510. 一元二次方程根的情况是()A.无实数根B.有一个正根,一个负根C. 有两个正根,且都小于 3D.有两个正根,且有一根大于3【答案】 D【解析】分析:直接整理原方程,进而解方程得出x 的值.x 1 x3=2x 5详解:( + )(﹣)﹣2﹣ 2x﹣ 3=2x﹣ 5,则 x2﹣4x+2=0 ,( x﹣2)212整理得: x=2,解得: x =2+> 3,x =2﹣,故有两个正根,且有一根大于3.故选 D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】 A【解析】分析:由题意将点P 向下平移 5 个单位,再向左平移 4 个单位得到P1,再根据 P1与 P2关于原点对称,即可解决问题.详解:由题意将点P 向下平移 5 个单位,再向左平移 4 个单位得到P1.∵P(1.2, 1.4),∴ P1(﹣ 2.8,﹣ 3.6).∵P1与 P2关于原点对称,∴ P2( 2.8,3.6).故选 A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D.8【答案】 C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP= AB,当 OP 最短时, AB 最短.连接OM 交⊙ M 于点 P,则此时OP 最短,且OP=OM - PM,计算即可得到结论.详解:连接OP.∵PA⊥ PB, OA=OB,∴ OP= AB,当 OP 最短时, AB 最短.连接 OM 交⊙ M 于点 P,则此时 OP 最短,且 OP=OM - PM==3,∴ AB 的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB 的长转化为2OP.二、填空题(本大题共 6 小题,满分 18 分 .只要求填写最后结果,每小题填对得 3 分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a× 10n的形式,其中1≤|a| < 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值< 1 时, n 是负数; n 的绝对值等于第一个非零数前零的个数.详解: 0.000000000000000000000000093=9.3 × 10﹣26.故答案为: 9.3× 10﹣ 26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.14. 如图,是的外接圆,,,则的直径为 __________ ...【答案】【解析】分析:连接OB, OC,依据△ BOC 是等腰直角三角形,即可得到BO=CO=BC?cos45°=2,进而得出⊙ O 的直径为4.详解:如图,连接OB,OC.∵∠ A=45 °,∴∠ BOC=90 °,∴△ BOC 是等腰直角三角形.又∵ BC=4,∴ BO=CO=BC?cos45 °=2,∴⊙ O的直径为4.故答案为: 4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知, A'E=AE,A'B=AB=6,∠ BA'E=90°,∴∠ BA'C=90°.在 Rt△A'CB 中,A'C==8,设AE =x,则 A'E=x,∴ DE=10﹣ x,CE=A'C+A'E=8+x.在 Rt△CDE 中,根据勾股定理得:( 10﹣x)2+36=8 x2x=2,∴AE=2Rt ABE BE==2,∴sin∠ABE ==.( +),∴.在△中,根据勾股定理得:故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE 是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD =x,得到DE =,CE =,则BE=10-,由DEB 的面积 S 等于△BDE 面积的一半,即可得出结论.详解:∵DE⊥ BC,垂足为 E,∴ tan∠ C= = ,CD=x,∴ DE =,CE=,则BE=10-,∴ S= S△BED=(10-) ?化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,17.《九章算术》是中国传统数学最重要的著作,在开门,出东门十五步有木,问:出南门几步而见木?解题的关键是设法将BE 与 DE 都用含有 x 的代数式表示.“勾股”章中有这样一个问题:“今有邑方二百步,各中”用今天的话说,大意是:如图,是一座边长为200 步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15 步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG =90°,从而∠ KDC +∠ HDA =90°,再由∠ C+∠KDC =90°,得到∠ C=∠HDA ,即有△ CKD ∽△ DHA ,由相似三角形的性质得到CK : KD =HD : HA,求解即可得到结论.详解:∵DEFG 是正方形,∴∠ EDG =90°,∴∠ KDC +∠ HDA =90°.∵∠ C+∠ KDC =90°,∴∠ C=∠HDA .∵∠ CKD =∠DHA =90°,∴△ CKD ∽△ DHA ,∴CK :KD =HD : HA,∴CK: 100=100: 15,解得: CK =.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD ∽△ DHA .三、解答题(本大题共7 小题,满分 66 分 .解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式 =÷(﹣)=÷=?=﹣=当 m=﹣2时,原式=﹣=﹣=﹣ 1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.文美书店决定用不多于 20000 元购进甲乙两种图书共 1200 本进行销售 .甲、乙两种图书的进价分别为每本 20 元、 14 元,甲种图书每本的售价是乙种图书每本售价的 1.4 倍,若用 1680 元在文美书店可购买甲种图书的本数比用1400 元购买乙种图书的本数少10 本.( 1)甲乙两种图书的售价分别为每本多少元?( 2)书店为了让利读者,决定甲种图书售价每本降低 3 元,乙种图书售价每本降低 2 元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28 元,乙种图书售价每本20 元;(2)甲种图书进货533 本,乙种图书进货 667 本时利润最大 .【解析】分析:( 1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400 元购买乙种图书的本数少10 本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:( 1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28 元,乙种图书售价每本20 元.( 2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533 本,乙种图书进货667 本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000 名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:( 1)请估计本校初三年级等级为的学生人数;( 2)学校决定从得满分的 3 名女生和 2 名男生中随机抽取 3 人参加市级比赛,请求出恰好抽到 2 名女生和1 名男生的概率.【答案】( 1)估计该校初三等级为的学生人数约为125 人;(2)恰有 2 名女生, 1 名男生的概率为.【解析】分析:( 1)先根据 C 等级人数及其所占百分比求得总人数,用总人数减去B、 C、 D 的人数求得A 等级人数,再用总人数乘以样本中 A 等级人数所占比例;( 2)列出从 3 名女生和 2 名男生中随机抽取 3 人的所有等可能结果,再从中找到恰好抽到 2 名女生和 1 名男生的结果数,根据概率公式计算可得.18÷20%=40人,∴该班级等级为A的学生人数为40﹣(25 8 2)详解:()∵所抽取学生的总数为+ + =5 人,则估计本校初三年级等级为 A 的学生人数为 1000×=125人;( 2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这 5 名同学中选 3人的所有等可能结果为:( B1, B2,B3)、( A2, B2, B3)、(A2, B1, B3)、( A2, B1,B2)、( A1, B2, B3)、( A1,B1, B3)、( A1, B1,B2)、( A1, A2, B3)、(A1, A2,B2)、( A1, A2,B1),其中恰好有 2 名女生、 1 名男生的结果有 6 种,所以恰好抽到 2 名女生和 1 名男生的概率为= .点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、 8,是的中点,反比例函数的图象经过点,与交于点.2018 年中考真题( 1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;( 2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:( 1)由已知求出A、 E 的坐标,即可得出m 的值和一次函数函数的解析式;( 2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:( 1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.( 2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.2018 年中考真题∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、 E、 F 的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.( 1)求证:;( 2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.( 3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;( 2)证明见解析;( 3)四边形是菱形,理由见解析.【解析】分析:( 1)由条件得出∠C=∠ DHG =90°,∠ CGE=∠ GED ,由 F 是 AD 的中点, FG∥ AE,即可得到FG 是线段 ED 的垂直平分线,进而得到 GE=GD ,∠ CGE=∠GDE ,利用 AAS 即可判定△ ECG≌△ GHD ;(2)过点 G 作 GP⊥AB 于 P,判定△ CAG≌△ PAG,可得 AC=AP ,由( 1)可得 EG=DG,即可得到 Rt△ ECG≌ Rt△ GPD ,依据 EC =PD ,即可得出 AD =AP+PD =AC+EC;。

2018山东泰安市中考数学试题[含答案解析版]

2018山东泰安市中考数学试题[含答案解析版]

2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B. C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A.42、42 B.43、42 C.43、43 D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A. B.C.D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)(2018•泰安)不等式组有3个整数解,则a的取值范围是( )A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )A.40° B.50° C.60° D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是( ) A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1。

山东省泰安市2018年中考数学试题(解析版)

山东省泰安市2018年中考数学试题(解析版)

泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB的面积S 等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析.【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析. 【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。

泰安市泰山区2018年中考数学模拟试题6

泰安市泰山区2018年中考数学模拟试题6

2018年泰山区数学中考模拟试题(六)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间120分钟。

第Ⅰ卷(选择题共36分)一.选择题(本大题共12小题,计36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分.)1.一种面粉的质量标识为“50±0。

25千克",则下列面粉中合格的是()A.50。

30千克B.49。

51千克 C.49。

80千克D.50.70千克2.将数字2.03×10﹣3化为小数是()A.0。

203 B.0。

0203 C.0。

00203D.0。

0002033.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°4.观察下列图形,其中既是轴对称又是中心对称图形的是( )A.B.C.D.5.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°6.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是()A.75(1+)cm2B.75(1+)cm2 C.75(2+)cm2D.75(2+)cm27.关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.2 8.如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,弦BD⊥AC下列结论:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正确的只有( )A.①③ B.②④C.②③D.①④9.如图,D为△BAC的外角平分线上一点并且满足BD=CD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠ACD.其中正确的结论有()A.1个B.2个 C.3个 D.4个10.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③2b+c+3=0;④当1<x<3时,x2+(b﹣1)x+c<0其中正确的有( )个.A.4 B.3 C.2 D.111.如图,四边形ABCD是矩形,AB=8,BC=4,动点P以每秒2个单位的速度从点A沿线段AB向B点运动,同时动点Q以每秒3个单位的速度从点B出发沿B﹣C﹣D的方向运动,当点Q到达点D时P、Q同时停止运动,若记△PQA的面积为y,运动时间为x,则下列图象中能大致表示y与x之间函数关系图象的是()A.B.C.D.12.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标是()A.()2015B.﹣()2015C.﹣()2016D.()2016第Ⅱ卷(非选择题共84分)二.填空题(共6小题计,18分)13.关于x的方程(a—5)x2—4x—1=0有实数根,则a的取值范围为.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k= .15.已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是cm2.16.将一块矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体水箱,且此长方体水箱的底面长比宽多2米.求该矩形铁皮的长和宽各是多少米?若设该矩形铁皮的宽是x米,则根据题意,可得方程.17.“奔跑吧,兄弟!”节目组预设计一个新游戏:“奔跑"路线A、B、C、D四地,如图A、B、C三地在同一直线上,D在A北偏东30°方向,在C北偏西45°方向,C在A北偏东75°方向,且BD=BC=40m,从A地到D地的距离是m.18.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C 落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.三.解答题(解答应写出必要的文字说明、证明过程或推演步骤。

山东省泰安市2018年中考数学全真模拟试题六

山东省泰安市2018年中考数学全真模拟试题六

中考数学模拟试题六一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.9-的相反数是( ) A .91- B .91 C .9- D .9 2.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.601 1×10113.下列运算错误的是( ).A .()326a a --=B .()325a a = C .231a a a -÷= D .532a a a =⋅ 4.图中的三视图对应的正三棱柱是(A )A .B .C .D .5.为了解随州市2016年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )A .150B .被抽取的150名学生C .被抽取的150名考生的中考数学成绩D .随州市2016年中考数学成绩6.菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补7.如图,圆O 是Rt △ABC 的外接圆,∠ACB=90°,∠A=25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( B )A .25° B.40° C.50° D.65°8.若关于的方程1242+-=-x x ax 无解,则a 的值为( ) A .1 B .2 C .1或2 D .0或29.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )A .B .C .D .10.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( B )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:=++m mn mn 962 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题六一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.9-的相反数是( ) A .91- B .91 C .9- D .9 2.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.601 1×10113.下列运算错误的是( ).A .()326a a --=B .()325a a = C .231a a a -÷= D .532a a a =⋅ 4.图中的三视图对应的正三棱柱是(A )A .B .C .D .5.为了解随州市2016年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )A .150B .被抽取的150名学生C .被抽取的150名考生的中考数学成绩D .随州市2016年中考数学成绩6.菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补7.如图,圆O 是Rt △ABC 的外接圆,∠ACB=90°,∠A=25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( B )A .25° B.40° C.50° D.65°8.若关于的方程1242+-=-x x ax 无解,则a 的值为( ) A .1 B .2 C .1或2 D .0或29.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )A .B .C .D .10.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( B )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:=++m mn mn 962 。

12.关于x 的方程012=+-x ax 有实根,则实数a 的范围为 _______13.一个圆锥的母线长为4,侧面积为π8,则这个圆锥的底面圆的半径是 .14.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于__4:9________.15.已知函数22++=mx x y ,当1≤x ≤2时,y >0恒成立,则m 的取值范围为 ______16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为_3_________.三、解答下列各题(共72分)17.(5分)先化简,再求值:)211(342--⋅--a a a ,其中3-=a .18.(6分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.19.(6分)如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F 。

(1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接AC ,BE ,求证:四边形ABEC 是矩形。

20.(7分))某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为 25 人,扇形统计图中短跑项目所对应圆心角的度数为 72 °;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.21.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载。

某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于24米,在l 上点D 的同侧取点A ,B ,使∠CAD=30°,∠CBD=60°。

(1)求AB 的长;(结果保留根号)(2)本路段对校车限速为45千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?请说明理由。

(参考数据:41.12,73.13==);l22.(8分)如图,PA为⊙O的切线,A为切点,直线PO交⊙O于点M、N,过点A作PO的垂线AB,垂足为C,交⊙O于点B,延长BO与⊙O交于点D,连接AD、BM.(1)等式OD2=OC•OP成立吗?若成立,请加以证明;若不成立,请说明理由.(2)若AD=6,tan∠M=,求sin∠D的值.23.(10分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:24.(10分)如图,△ABC 为等腰三角形,AB=AC ,D 为△ABC 内一点,连接AD ,将线段AD 绕点A 旋转至AE ,使得∠DAE=∠BAC ,F ,G ,H 分别为BC ,CD ,DE 的中点,连接BD ,CE ,GF ,GH .(1)求证:GH=GF ;(2)猜测∠FGH 与∠BAC 的数量关系并加以证明.25、(12分) 已知正方形OABC 中,O 为坐标原点,点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,点B (4,4).二次函数y = -61x 2+bx +c 的图象经过点A 、B .点P (t ,0)是x 轴上一动点,连接AP .(1)求此二次函数的解析式;(2)如图①,过点P 作AP 的垂线与线段BC 交于点G ,当点P 在线段OC (点P 不与点C 、O 重合)上运动至何处时,线段GC 的长有最大值,求出这个最大值;(3)如图②,过点O 作AP 的垂线与直线BC 交于点D ,二次函数y = -61x 2+bx +c 的图象上是否存在点Q ,使得以P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形?若存在,求出t 的值;若不存在,请说明理由.图① 图② 备用图答案18.解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.20.解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.21.22.解:(1)等式OD2=OC•OP成立;理由如下连接OA,如图1所示:∵PA为⊙O的切线,A为切点,过点A作PO的垂线AB,垂足为C,∴∠OAP=∠ACO=90°,∵∠AOC=∠POA,∴△OAC∽△OPA,∴=,即OA2=OC•OP∵OD=OA,∴OD2=OC•OP;(2)连接BN,如图2所示:则∠MBN=90°.∵tan∠M=,∴=,∴设BN=x,BM=2x,则由勾股定理,得MN==x,∵BM•BN=MN•BC,∴BC=x,又∵AB⊥MN,∴AB=2BC=x,∴Rt△ABD中,BD=MN=x,AD2+AB2=BD2,∴62+(x)2=(x)2,解得:x=2,∴BD=×2=10,AB=8,∴sin∠D===.23.解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.24. 证明:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H分别为BC,CD,DE的中点,∴GH∥GF,且GH=CE,GF=BD,∴GH=GF;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GE∥BD,∴∠HGD=∠ECD,∠GFC=∠DBC,∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD=∠ABC+∠ACB=180°﹣∠BAC,∴∠FGH与∠BAC互补.25.解:(1)∵B (4,4),∴AB =BC =4,∵四边形ABCO 是正方形,∴OA =4,∴A (0,4),将点A (0,4),B (4,4)代入y = -61x 2+bx +c , 得⎪⎩⎪⎨⎧=++⨯=441661-4c b c , 解得⎪⎩⎪⎨⎧==432c b ,∴二次函数解析式为y =-61x 2+32x +4.(2)∵P (t ,0),∴OP =t ,PC =4-t ,∵AP ⊥PG ,∴∠APO +∠CPG =180°-90°=90°,∵∠OAP +∠APO =90°,∴∠OAP =∠CPG ,又∵∠AOP =∠PCG =90°,∴△AOP ∽△PCG , ∴PC AO =GC OP, 即t -44=GC t,整理得,GC =-41(t -2)2+1,∴当t =2时,GC 有最大值是1,即P (2,0)时,GC 的最大值是1.(3)存在点Q ,使得以P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形.理由如下:如解图①、②,易得∠OAP =∠COD ,在△AOP 和△OCD 中,⎪⎩⎪⎨⎧︒=∠=∠=∠=∠90OCD AOP OCOA COD OAP , ∴△AOP ≌△OCD (ASA ),∴OP =CD ,第1题解图①由P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形得,PC ∥DQ 且PC =DQ , ∵P (t ,0),D (4,t ),∴PC =DQ =|t-4|,∴点Q 的坐标为(t ,t )或(8-t ,t ),①当Q (t ,t )时,-61t 2+32t +4=t , 整理得,t 2+2t-24=0,解得t 1=4(舍去),t 2=-6,②当Q (8-t ,t )时,-61(8-t )2+32(8-t )+4=t , 第1题解图②整理得,t 2-6t +8=0,解得t 1=2,t 2=4(舍去),综上所述,存在点Q (-6,-6)或(6,2),使得以P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形.。

相关文档
最新文档